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PREFACE

Relativistic Astrophysics Group (RAG) at the Institute of Physics, the Faculty of Philosophy
and Science of the Silesian University in Opava, started a series of Workshops on Black
Holes and Neutron Stars called RAGtime in 1999. The purpose of the workshops was
to enable presentation and discussion on recent developments in the field of relativistic
astrophysics related to accretion processes onto black holes and neutron stars, and to
general physical phenomena connected to the properties of black holes, and the internal
structure of neutron stars or quark stars, as they were obtained by collaborating research
groups at the Silesian University, the Faculty of Mathematics and Physics of the Charles
University in Prague, the International School for Advanced Studies in Trieste, the Institute
of Astrophysics at University of Oxford, the Department of Astrophysics of Chalmers
University, Göteborg, the Institute of Physics at the University of Trondheim, the Institute
of Physics at the University of Bergen, the Institute of Astronomy of the Polish Academy
of Science, and other remarkable institutes.

The RAGtime workshops are also vitally important for students of theoretical physics
and astrophysics of the Silesian University, because they have a regular opportunity to be
in a direct contact with the most recent results of relativistic astrophysics and yet they have
a possibility to discuss problems with leading (worldwide) astrophysicists like Prof. Marek
Abramowicz, Prof. John Miller, Prof. Antonio Lanza, Prof. Luciano Rezzolla, Prof. Bożena
Czerny, Doc. Vladimı́r Karas, Dr. Petr Hadrava, Dr. Jiřı́ Grygar and others.

We would like to thank all the authors for careful preparation of their contributions.

Opava, December 2004 S. Hledı́k and Z. Stuchlı́k
editors
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Twin peak QPOs frequencies in microquasars
and Sgr A∗

The resonance and other orbital models

Marek A. Abramowicz1,2,5, Włodek Kluźniak1,3,4,
Zdeněk Stuchlı́k5 and Gabriel Török1,2,5
1UKAFF supercomputer facility, Dept. of Physics and Astronomy, University of Leicester, England
2Theoretical Physics, Chalmers University S-412-96 Göteborg, Sweden, marek@fy.chalmers.se
3Institute of Astronomy, Zielona Góra University ul. Lubuska 2, PL-65-265 Zielona Góra, Poland
4Copernicus Astronomical Centre, Warszawa, Poland, wlodek@camk.edu.pl
5Institute of Physics, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic,
zdenek.stuchlik@fpf.slu.cz

ABSTRACT
In all four microquasars which show twin peak kHz QPOs, the ratio of the two
frequencies is 3:2. This rather strongly supports the suggestion by [Abramowicz and
Kluźniak, 2001] that twin peak kHz QPOs are due to a resonance between some
modes of accretion disk oscillations. Detailed studies of this suggestion revealed that
several such non-linear resonances are present in nearly Keplerian disks in strong
gravity. Here, we fit to observations predictions of the resonance hypothesis for
two particular types of non-linear resonances between vertical and radial epicyclic
frequencies. For three microquasars with known masses, the fits give an accurate
estimate of the spin.

Keywords: LMXRB and Galactic Centre black holes – X-ray variability –
observations – theory

1 INTRODUCTION

Many Galactic black hole and neutron star sources in low X-ray mass binaries show both
chaotic and quasi periodic variability in their observed X-ray fluxes. Some of the quasi
periodic oscillations (QPOs) are in the kHz range and often come in pairs (νupp, νdown)

of twin peaks in the Fourier power spectra (e.g., [van der Klis, 2000], [McClintock and
Remillard, 2003]). There is no general agreement on a physical mechanism exciting QPOs.
We follow here a suggestion by [Abramowicz and Kluźniak, 2001] that twin peak kHz
QPOs are due to a resonance in accretion disk oscillation modes. The resonance model is
based on fundamental features of strong gravity, and motivated by observations that sharply
illuminate physical nature of QPOs:

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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Figure 1. The best fit for the frequency–mass
scaling for microquasars’ kHz twin peak QPOs,
νupp = 2793/M [Hz/M⊙], adopted from [Mc-
Clintock and Remillard, 2003] who pointed out
the scaling. The scaling proves that oscillations
are relativistic, i.e., they occur at a radius fixed in
terms of the gravitational radius rG = G M0/c2.
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Figure 2. The 3:2 correlation for this micro-
quasars. More on that in Section 3 (error bars
are discussed in subsection 7.1).

Table 1. Frequencies of twin peak kHz QPOs in microquasars.

Source νupp [Hz] ∆νupp [Hz] νdown [Hz] ∆νdown [Hz] 2νupp/3νdown − 1 Mass [M⊙]

(a)XTE 1550–564 276 ±3 184 ±5 0.00000 8.4 – 10.8

(a)GRO 1655–40 450 ±3 300 ±5 0.00000 6.0 – 6.6

(a)GRS 1915+105 168 ±3 113 ±5 0.00885 10.0 – 18.0

(b) H 1743–322 240 ±3 166 ±8 -0.03614 not measured

(a)From [McClintock and Remillard, 2003].
(b)From [Homan et al., 2003].

(i) A correlation νlow = 0.08νhigh was found between low and high frequency QPOs
in black hole and neutron stars sources by [Psaltis et al., 1999], and extended to white
dwarfs by [Mauche, 2002] and [Warner et al., 2003]. It proves that in general the QPOs
phenomenon is due to accretion disk oscillations, and not to kinematic effects like, e.g.,
Doppler modulation of fluxes from isolated hot spots: QPOs are waves, not particles (more
on this in Section 6).

(ii) The frequencies of twin peak kHz QPOs in microquasars scale with mass, ν ∼ 1/M
(Fig. 1). This proves a relativistic origin of them.

(iii) In all four microquasars with twin peak kHz QPOs pairs, νupp/νdown = 3/2 (Table 1,
Fig. 2), suggesting a resonance (Section 3).
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2 THE ORBITAL MOTIONS IN BLACK HOLE’S STRONG GRAVITY. THE
1/M SCALING

Consider a black hole1 with the mass M0 and angular momentum J0. According to the
standard Shakura–Sunyaev accretion disk model, matter spirals down the central black hole
along streamlines that are located almost on the equatorial plane θ = θ0 = π/2, and that
locally differ only slightly from a family of concentric circles r = r0 = const. The small
deviations, δr = r − r0, δθ = θ − θ0 are governed, with accuracy to linear terms, by

δr̈ + ω2
r δr = δar , δθ̈ + ω2

θ δθ = δaθ . (1)

Here dot denotes time derivative. For purely Keplerian (free) motion δar = 0, δaθ = 0 and
the above equations describe two uncoupled harmonic oscillators with the eigenfrequencies
ωθ , ωr equal, in Kerr geometry (e.g., [Abramowicz et al., 1999]),

ω2
θ = Ω2

K

(
1 − 4ax−3/2 + 3a2x−2

)
,

ω2
r = Ω2

K

(
1 − 6x−1 + 8ax−3/2 − 3a2x−2

)
, (2)

ΩK =
(

GM0

r3
G

)1/2 (
x3/2 + a

)−1
,

where x = r/M . The two epicyclic frequencies, vertical νθ = ωθ/2π and radial νr =
ωr/2π, are shown in Fig. 3 together with the Keplerian orbital frequency νK = ΩK/2π for
a non rotating (a = 0) black hole, and for a moderately rotating (a = 0.8) black hole. Figs 4
and 5 show these frequencies in the whole range of a, from a maximally co-rotating black
hole (a = 1) to a maximally counter-rotating black hole (a = −1).

In Newton’s theory with the −GM0/r potential it is GM0/r3/2 = νK = νr = νθ , but in
the strong gravity of a rotating black hole, νK > νθ > νr . The radial epicyclic frequency νr
goes to zero at rISCO, the Innermost Stable Circular Orbit for the Keplerian (free) motion,
and has a maximum at a particular circular orbit with the radius r > rISCO

2 , depending on
the black hole spin [Okazaki et al., 1987]. Note that all three orbital frequencies in (2) have
the general form,

ν =
(

GM0

r3
G

)1/2

f (x, a) = 32293
(

M0

M⊙

)−1
f (x, a) [Hz], (3)

with f (x, a) being a dimensionless function. For several relativistic effects radius is fixed
in terms of gravitational radius, which means that also x = x(a) is fixed. In this case the
above formula predicts that frequencies scale as 1/M , with some scatter induced by the spin
of the black hole a. In particular, each orbital resonance n : m discussed here occurs at its
own resonance radius xn:m(a). The scatter for the particular 3:2 resonance is not very large
because, as we shall see in the next Section, this resonances occurs at x3:2(a) > 4, where

1 We rescale mass with M = G M0/c2 = rG, and angular momentum with a = J0c/GM2
0 . We use Boyer–

Lindquist coordinates, t, r, θ,φ.
2 Analogically – marginally bound circular orbit rRISCO is the limit of stable nongeodesic orbits in thick accretion
disks with pressure suffering their balance (see also discussion in subsection 4.1)
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Figure 3. Orbital frequency νK, and the two epicyclic frequencies, radial νr , and vertical νθ for
Keplerian circular orbits around a 10 M⊙ black hole. Such orbits are possible only for radii larger
than the radius of the circular photon orbit rph. This limit is labelled here and in other Figures by the
subscript “ph”. Left panel for non-rotating black hole, right panel for a moderately (a = 0.8) rotating
one. In Newton’s theory with the 1/r potential, all the three frequencies are equal: νK = νθ = νr .
Strong Einstein’s gravity makes νK ≥ νθ > νr .
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Figure 4. Left: The Keplerian orbital frequency for 10 M⊙ mass black hole. Right: RISCO and
ISCO frequencies for 10 M⊙ mass black hole. The accretion disk inner edge must be located between
RISCO and ICSO, depending on disk’s efficiency. If efficiency is not known, one may only argue that
the maximal possible orbital frequency is somewhere in the shaded region, but not necessarily on the
νK(rms) line.

the influence of a is not dominant. The 1/M scaling of the twin peak QPOs frequencies
with the 3:2 ratio was proposed by [Abramowicz et al., 2004] as a method for estimating
black hole masses in AGNs and ULXs, based on [Mirabel and Rodrı́guez, 1998] analogy
between microquasars in our Galaxy and distant quasars. Indeed, if the analogy is also valid
for accretion disk oscillations, then discovering in ULXs the twin peak QPOs frequencies
with the 3:2 ratio, would resolve the controversy about their mass: if ULXs black holes
have the same masses as microquasars, the frequencies will be ∼ 100 Hz; if ULXs black
holes are ∼1000 times more massive, the frequencies will be ∼0.1 Hz instead.
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Figure 5. Left: The vertical epicyclic frequency for 10 M⊙ mass black hole. Right: the radial
epicyclic frequency for 10 M⊙ mass black hole.

3 NON-LINEAR, RELATIVISTIC ORBITAL RESONANCES

3.1 Importance of the non-linear effects

The effective potential U(r, θ; ℓ) for orbital motion of a particle with a fixed angular
momentum ℓ > ℓms has a minimum at r0(ℓ), corresponding to the location of a stable
circular orbit. Its Taylor expansion (for simplicity we write it on the equatorial plane
θ = π/2),

U(r, ℓ) = 1
2

(
∂2U

∂r2

)

0
(r − r0)

2 + 1
6

(
∂3U

∂r3

)

0
(r − r0)

3 + . . . (4)

contains higher than quadratic terms, which means that small oscillations around the mini-
mum at r −r0 are described by non-linear differential equations (e.g., [Landau and Lifshitz,
1973, Nayfeh and Mook, 1979]). Non-linear resonances that may be excited in these non-
linear oscillations have several characteristic properties that closely resemble those observed
in QPOs:

(i) Resonance occurs in a region with a finite and often large width δν.
(ii) The frequencies of oscillations νi depend on amplitude and for this reason they may

be time dependent and may differ from the fixed eigenvalue frequencies νi(0) of the system,
νi (t) = νi(0) + δνi (t).

(iii) Combination frequencies, νi(0) ± νk(0) may be present.
(iv) Subharmonic frequencies may be present.

In this Section we shall describe two particularly important non-linear, relativistic reso-
nances, starting from the 3:2 parametric resonance which in our opinion is the best candidate
to explain twin peak kHz QPOs in Galactic black hole sources.

3.2 The 3:2 parametric resonance

We shall start with an argument appealing to physical intuition and showing that the
resonance now discussed is a very natural, indeed necessary, consequence of strong gravity.
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Figure 7. Generally non-monotonic dependence νupp(a) for 3:2 parametric, 3:1 and 2:1 forced
resonance in example for ten solar masses black hole.

In thin disks, random fluctuations have δr ≫ δθ . Thus, δrδθ is a first order term in δθ and
should be included in the first order equation for vertical oscillations (1). The equation now
takes the form,

δθ̈ + ω2
θ [1 + h δr ] δθ = δaθ , (5)

where h is a known constant. The first order equation for δr has the solution δr =
A0 cos(ωr t). Inserting this in (5) together with δaθ = 0, one arrives at the Mathieu equation
(A0 is absorbed in h),

δθ̈ + ω2
θ [1 + h cos(ωr t)] δθ = 0, (6)
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that describes the parametric resonance. From the theory of the Mathieu equation one
knows that when
ωr

ωθ
= νr

νθ
= 2

n
, n = 1, 2, 3, . . . (7)

the parametric resonance is excited [Landau and Lifshitz, 1973]. The resonance is strongest
for the smallest possible value of n. Because near black holes νr < νθ , the smallest possible
value for resonance is n = 3, which means that 2νθ = 3νr . This explains the observed 3:2
ratio, because, obviously,

νupp = νθ , νdown = νr . (8)

Of course in real disks neither δr = A0 cos(ωr t), nor δaθ = 0 exactly, but one may
expect that because these equations are approximately obeyed for thin disks, the parametric
resonance will also be excited in realistic situations. And this is indeed the case. The
parametric resonance of the type discussed above was found in numerical simulations of
oscillations in a nearly Keplerian accretion disk by [Abramowicz et al., 2003a]. Their
numerical results were reproduced in an exact analytic solutions first by [Rebusco, 2003]
and later confirmed and generalised by [Horák, 2004]. The analytic solution is accurate up
to third order terms in δr , δθ , and based on the method of multiple scales (see, e.g., [Nayfeh
and Mook, 1979]). Existence of the 3:2 parametric resonance is therefore a mathematical
property of thin, nearly Keplerian disks. It was found that the resonance is excited only in
the non-Keplerian case, with some weak forces δaθ ̸= 0 and δar ̸= 0 present. Their origin
is certainly connected to stresses (pressure, magnetic field, viscosity), but exact details
remain to be determined – at present δaθ and δar are not calculated from first principles but
described by an ansatz3.

The parametric resonance occurs at a particular radiusr3:2(a), determined by the condition
3ωr (r3:2, a) = 2ωθ (r3:2, a) and equation (2). We show the function r3:2(a) in Fig. 6. In Fig. 8
we fit the 3:2 resonance theoretically predicted frequencies to the observational data for the
three microquasars with the known masses.

3.3 The forced 3:1 and 2:1 resonances – possible combination of frequencies

A direct resonant forcing of vertical oscillations by the radial ones through a pressure cou-
pling, and with δar ∼ cos(ωr t), was evident in recent numerical simulations of oscillations
of a perfect fluid torus [Lee et al., 2003]. This supports an idea [Abramowicz and Kluźniak,
2001] for another possible model for the twin peak kHz QPOs: a forced non-linear oscillator,

δθ̈ + ω2
θ δθ + [non linear terms in δθ ] = h(r) cos(ωr t), ωθ = nωr . (9)

Obviously, there is no value for n such that ωθ and ωr could be in the 3:2 ratio. However,
the non-linear terms allow the presence of combination frequencies in a resonant solutions
for δθ(t) (see, e.g., [Landau and Lifshitz, 1973]),

3 While the lack of a full physical understanding is obviously not satisfactory, the experience tells that such a
situation is not uncommon for non-linear systems. Examples are known of mathematically possible resonances
causing damage in bridges, aeroplane wings etc., for which no specific physical excitation mechanism could have
been pinned down [Nayfeh and Mook, 1979].
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oscillations.

ω− = ωθ − ωr , ω+ = ωθ + ωr . (10)

As noticed by [Abramowicz and Kluźniak, 2001], these combination frequencies may be
in the 3:2 ratio for n = 2, or n = 3 forced resonances (for the detailed discussion of other
possibilities, see [Török et al., 2004]). Simple arithmetic shows that in these two cases the
observed frequencies νdown = ωdown/2π and νupp = ωupp/2π are uniquely given by,

ωdown = ω− = 2ωr , ωupp = ωθ = 3ωr for n = 3 f. epicycl. res. ωθ = 3ωr , (11)

ωupp = ω+ = 3ωr , ωdown = ωθ = 2ωr for n = 2 f. epicycl. res. ωθ = 2ωr . (12)

We fit observed QPOs to those predicted by the forced epicyclic 3:1 and 2:1 resonances
in Fig. 9.
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Figure 10. From left: fit of the predictions of the hypothetical 3:2, 3:1 and 2:1 “Keplerian” resonance
to observations. Resonances are between radial epicyclic oscillations and some hypothetical (and
physically unlikely) oscillations at Keplerian frequency.

3.4 “Keplerian” resonances

The resonances discussed so far were due to a coupling between epicyclic oscillations –
radial and vertical. Such a coupling exists in variety of realistic physical situations. One
may also imagine a physical coupling between radial epicyclic oscillations and the orbital
Keplerian motion. For example, [Abramowicz and Kluźniak, 2001] noticed that it is possible
for the radial epicyclic frequency to be in a resonant relation with the orbital frequency,
nνr = mνK, with n, m integer. The case (Table 2) νK/νr = 3/2 is excluded by observations –
see left panel of Fig. 10. The remaining possibilities are that the upper frequency νupp = νK,
with νK/νr = 3, or νupp = νK + νr , with νK/νr = 2/1 (Fig. 10 – middle and right panel).

[Kato, 2001a] considered a particular case of the g-modes with frequencies (14). In
this case, the co-rotation resonance with νm = νK may occur. However, the co-rotation
resonance leads to damping, and not excitation, of modes [Kato, 2001b].

Another possibility for a physical coupling between radial epicyclic oscillations and
the orbital Keplerian motion is provided by the Spiegel’s vortex idea [Abramowicz et al.,
1992]. When the potential vorticity is conserved, coherent vortices tend to form in pairs with
opposite vorticity [Bracco et al., 1998]. One may imagine that because the spatial distance
between the two structures that oscillate with the epicyclic radial frequency depends on
the velocity profile of the disk, i.e., also on the oscillations of orbital velocity, a resonance
between these two frequencies is possible.

In Fig. 10 we plot the prediction of the only three possible “Keplerian” cases correspond-
ing to ωupp/ωdown = 3/2.

4 NON-RESONANT FREQUENCIES THAT SCALE WITH 1/M

4.1 The highest possible orbital frequency, ISCO and RISCO

Matter moves, roughly, on circular orbits in the region r > rin and free-falls in the region
r < rin. The radius r = rin is often called the inner radius of accretion disk. It is located
between the marginally stable rms, i.e., ISCO and marginally boundrmb, i.e., RISCO circular
orbits [Kozłowski et al., 1978, Krolik and Hawley, 2002], depending on efficiency. Thin,
standard Shakura-Sunyaev disk have high efficiencies and their inner edge is located almost
exactly at ISCO. Adafs, with their very low efficiencies, have the inner edges almost exactly
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Table 2. Summary of relation for observed frequencies νupp, νdown for “standard” (νv = νθ ) and
“Keplerian” (νv = νK) resonances.

Theory Observed frequencies
Type of resonance nνrad = mνv

n m νupp νdown

parametric 3 2 νθ νrad

st
an

da
rd

3:1 forced 3 1 νθ νθ − νrad

2:1 forced 2 1 νθ + νrad νθ

parametric 3 2 νK νrad

K
ep

le
ria

n

3:1 forced 3 1 νK νK − νrad

2:1 forced 2 1 νK + νrad νK
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Figure 11. Left: ISCO frequencies compared with the observed kHz twin peak QPOs. Right: the
same for RISCO.

at RISCO [Abramowicz et al., 1996]. The same is true for super-Eddington slim and thick
disks [Abramowicz et al., 1988, Jaroszyński et al., 1980]. In Fig. 4 we compare ISCO
and RISCO frequencies for 10 M⊙ black holes with different spins. For a non-rotating
black hole one has rRISCO = 4M , νRISCO = 4037 (M/M⊙)−1 [Hz], and rISCO = 6M ,
νISCO = 2197 (M/M⊙)−1 [Hz]. Comparing ISCO and RISCO frequencies with the twin
peak kHz QPOs upper frequency is only of formal interest. It is done in Fig. 11.

4.2 Dragging of inertial frames and the c-mode

The “corrugation” c-mode [Silbergleit et al., 2001] is a non-axisymmetric, vertically incom-
pressible wave near the inner edge of the disk that exists only for co-rotating disks a > 0.
It precesses around the angular momentum of the black hole. Its frequency coincides with



Twin peak QPOs frequencies in microquasars and Sgr A∗ 11

a

1655-40

1550-564

1915+105

lo
g

( ν u
pp

[H
z ]

)

log (M/M⊙)

M/M⊙ 181614121086

-��200Hz-��250Hz-��300Hz-��350Hz-��400Hz-��450Hz-��500Hz

-��0.851-��0.833-��0.816-��0.799-��0.782-��0.7652
2.2
2.4
2.6

0.8 0.9 1 1.1 1.2 1.3
a

1655-40

1550-564

1915+105

lo
g

( ν u
pp

[H
z ]

)

log (M/M⊙)

M/M⊙

-���0.-�-0.2-�-0.4-�-0.6-�-0.8-���-1.

181614121086

-��250Hz-��300Hz-��350Hz-��400Hz-��450Hz-��500Hz

2.2
2.4
2.6
2.8

0.8 0.9 1 1.1 1.2 1.3
Figure 12. Left: c-mode ISCO frequencies compared with the observed kHz twin peak QPOs. Right:
the same at RISCO.

the Lense–Thirring frequency produced by the dragging of inertial frames. In Fig. 12 we
compare with observations the highest frequency connected to the c-mode, assuming that
the mode is located at ISCO or RISCO:

νupp = νLT(rms), or νupp = νLT(rmb), where (in units SI) νLT = GM0

πc2r3 a. (13)

4.3 The trapped modes

One of the characteristic properties of the oscillations of relativistic disks is the presence
of trapped mode oscillations [Okazaki et al., 1987,Nowak and Wagoner, 1992,Perez et al.,
1997]. The physical reason for the trapping is that the radial epicyclic frequency, νr , is
not monotonic but has a maximum value, νtrapp , at a radius rtrapp slightly larger than the
ISCO. For the non-rotating black hole rtrapp = 8M [Kato and Fukue, 1980]. The g-mode
(inertial-gravity) oscillations [Perez et al., 1997] can be characterised by a restoring force
that is typically dominated by the net gravitational-centrifugal force. The axisymmetric (m
= 0) g-modes are centred at rtrapp. Non-axisymmetric trapped g-modes with the azimuthal
wave-number m = 1 have frequencies [Kato, 2001b]

ν ∼ νK(rtrapp) ± νtrapp, and ν ∼ νK(rtrapp). (14)

In Fig. 13 we show the highest frequency connected to these oscillations, νupp =
νK(rtrapp) + νtrapp, and compare it with observations.

5 IMPORTANCE OF THE 1/M SCALING. ULX AND INTERMEDIATE
BLACK HOLES.

If [Mirabel and Rodrı́guez, 1998] analogy between microquasars in our Galaxy and distant
quasars is valid also for the properties of accretion disks oscillations in those black-hole
sources, one would expect the radiation from AGNs to be modulated quasi-periodically
at a frequency in the microhertz range for a billion solar mass black hole. Discovering
the counterpart of microquasar’s 3:2 twin peak kHz QPOs in AGNs would convincingly
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Figure 13. The highest trapped g-mode frequencies compared with the observed kHz twin peak
QPOs.
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Figure 14. Left: the observed twin peak 3:2 QPOs in microquasars and their yet to be discovered
counterparts in ULXs and AGNs: the importance of the 1/M scaling. The solid line is the best
fit νupp vs. 1/M found by [McClintock and Remillard, 2003] and described by equation νupp

.=
2.8 (M⊙/M) kHz). Dotted lines for the case of the 3:2 parametric resonance are for a = 0 (lower
line) and a = 1 (upper line). Mass range for Sgr A∗ corresponds to the range given by inequality (15).
Vertical error bar for Sgr A∗ is given by Table 3. Right: the same, only dotted lines are for 2:1 forced
resonance.

test this theory which, if true, would provide a new method of estimating the central
black-hole mass. [Abramowicz et al., 2004] pointed out that determination of the (as yet
undetected) frequencies of the twin QPOs in the recently discovered ULX (ultra-luminous
X-ray) sources, would resolve the controversy about their mass – twin QPOs in a 2:3
frequency ratio would have a frequency of about 0.1 Hz, instead of the 100 Hz value in
the microquasars, if the black hole mass were about 1000 times larger than is usual for
stellar-mass black holes. The idea of the 3:2 resonance frequency 1/M scaling is illustrated
in Figs 14 and 15. One should notice that the lack of a priori knowledge of black hole’s
angular momentum is of relatively minor importance.
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5.1 Double peak QPOs with the 3:2 ratio in Sgr A∗ ?

From the best current analysis of stellar orbits within 10-100 light hours of Sgr A∗, obtained
independently by the MPI Garching group [Schoedel, 2002,Schoedel et al., 2003,Eisenhauer
et al., 2003] and the UCLA group [Ghez, 2003,Ghez, 2004], the best estimate of the central
mass is 3.6 ± 0.4 × 106 M⊙, where the error bars represent both statistical and systematic
errors. Earlier lower statistical mass estimates based on proper motions of stars further
away gave somewhat lower masses (2.6 × 106 M⊙) but in the light of new information on
stellar distribution and anisotropies these earlier data would now also lead to masses near
3.5 × 106 M⊙ (see the discussion in [Schoedel et al., 2003]). This well constrained mass
must be contained within a few light hours, which is still several hundred Schwarzschild
radii, of course. The analysis of the spatial distribution of the stellar cusp centred on the
BH suggests that most likely no more than 1 × 103 M⊙ of that is in form of stars or stellar
remnants (the latter is less well constrained: [Genzel et al., 2003]). From the lack of motion
of the radio source itself and a theoretical comparison of the stochastic motions of a BH of
different masses with surrounding stars, a lower limit of the mass contained within the radius
of the radio source (10 light minutes, 20 Schwarzschild radii) is about ∼ 105 M⊙ [Reid
et al., 1999, Reid et al., 2003, Backer and Sramek, 1999, Schoedel et al., 2003].

From these papers one concludes that the most likely mass of the BH in Sgr A∗ is in the
interval

2.6 × 106 M⊙ < M < 4.4 × 106 M⊙, (15)

and that a very conservative lower limit is ∼ 105 M⊙ 4. [Genzel et al., 2003] measured
a clear periodicity of 17 min (1020 sec) in Sgr A∗ variability during a flaring event. This
period is in the range of Keplerian orbital periods at a few gravitational radii away from a
black hole with the mass constrained by (15). More recently, [Aschenbach et al., 2004] have
reported three other QPOs periodicities, 692 sec, 1130 sec, 2178 sec, roughly in the orbital
Keplerian range, and two much shorter periods of 100 sec and 219 sec. [Aschenbach et al.,
2004] gave not enough information to convince the reader that periodicities found by them

4 We thank Reinhard Genzel for providing updated information on the Sgr A∗ mass measurements that is discussed
here.
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Table 3. Frequencies of twin peak mHz QPOs in Galaxy centre black hole.

Source νupp ∆νupp νdown ∆νdown 2νupp/3νdown − 1 Mass
[mHz] [mHz] [mHz] [mHz] [106 M⊙]

(a)Sgr A∗ 1.445 ±0.16 0.886 ±0.04 0.08728 2.6 – 4.4

(a)From [Aschenbach et al., 2004].
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Figure 16. Left: The same 3:2 ratio as for microquasars (Fig. 1) seems to be present in double peak
QPOs in Sgr A∗. The accuracy is so high that the error bars cannot be shown in this logarithmic
plot. Right: Spin dependence for 3:2 parametric, 3:1 and 2:1 forced resonance in Sgr A∗ implied by
measured period 692 s, shadows respect accuracy of measuring.

are significant and real. It is also difficult to judge their estimates of errors in the frequency
determination. This is a serious problem, because quality of the time series used by them
is not impressively high, and their PDS appear rather messy. Their value of 1130 sec differ
by 10% from the 1020 sec period found by [Genzel et al., 2003] and may correspond to the
same real periodicity of the source, but again it is difficult to be firmly convicted. Having
these serious uncertainties in mind5, we note nevertheless that

(1/692) : (1/1130) : (1/2178) ≈ 3 : 2 : 1, (16)

i.e., that the “Keplerian” frequencies found in Sgr A∗ form ratios that are very close to be
an exact commensurable sequence, 3:2:1.The data for Sgr A* are picked-up in Table 3.
Corresponding spin calculations for five representative values of the Sgr A∗ mass are
summarised in Table 6, and illustrated in Figs 16, 14 and 15.

5 We thank several X-ray observers and data analysts who have discussed this point with us.
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6 DISCUSSION: WHAT NEEDS TO BE DONE

6.1 Physics of X-ray flux modulation

The analytic resonance model predicts twin peak kHz QPOs frequencies with values and
ratios corresponding to those observed. However, it is rather vague in explaining how
the X-ray flux is actually modulated by the resonant disk oscillations. One has here an
interesting and promising prediction, but without much of supporting physics. Situation
with numerical simulations is exactly opposite – they provide a very detailed description of
physics, but fail to predict twin peak kHz QPOs. Indeed, although the recent sophisticated
3-D MHD simulations of accretion disks performed independently by several groups (e.g.,
[Igumenshchev et al., 2003, Villiers et al., 2003]) reveal a very complex time-dependent
accretion flow structure, no twin peak kHz QPOs resembling those observed have ever been
found in these simulations.

The apparent lack of agreement between the analytic and numerical models may have
its source in the fact that all analytic models describe thin, nearly Keplerian, disks while
numerical simulations deal with far more thicker disks and adafs. This may reflect a
genuine physical difference, and suggest that twin peak kHz QPOs originate only in thin,
nearly Keplerian disks, but not in the thick non-Keplerian ones. However, a possible
counterexample to that may emerge from studies of oscillations of tori in the QPOs context,
indicated by [Rezzolla et al., 2003] and further developed by [Kluźniak et al., 2003],
and [Lee et al., 2003]. Such tori at present are not yet physically realistic – are assumed to be
adiabatic, constant angular momentum, inviscid and axisymmetric. It is therefore impossible
to formulate a firm opinion about their possible relevance to the QPOs phenomenon.
In this respect, it would be crucially important to develop 3-D, time dependent, non-
axisymmetric and not equatorial plane symmetric numerical codes to study wrapped, non
steady slim disks in Kerr geometry. It is a difficult task. The existing time dependent slim
accretion disk numerical codes which are an obvious starting point for further developments
(e.g., [Szuszkiewicz and Miller, 2001]) are far behind of what is needed.

Figure 17. Three snapshots of accretion disk from 3-D MHD simulation by [Igumenshchev et al.,
2003] (reproduced with permission) show a very complex behaviour dominated by vigorous convec-
tion, but not kHz QPOs. This is typical for all recent 3-D MHD simulations, also by other authors.
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6.2 X-ray flux modulation by Doppler, light bending and lensing in Kerr geometry

X-ray flux must also be modulated by the relativistic Doppler effect, light bending and
lensing. [Schnittman and Bertschinger, 2003] assumed that the 3:2 parametric resonance
produces a “hot spot”, a coherent non-axisymmetric structure at r = r3:2 that corotates
with the disk. They then determined, by directly calculating light trajectories from the spot
to an observer very far away (at infinity), X-ray flux modulation by the disk rotation and
by relativistic effects on light propagation. They concluded that relativistic effects in light
trajectories are very strong, in fact dominant, for high inclinations, i > 60◦, in accord
with the results obtained for spots orbiting the Schwarzschild black holes (see, e.g., [Bao
and Stuchlı́k, 1992]). By matching the calculated variability power spectra with those
observed, [Schnittman and Bertschinger, 2003] restricted several free parameters of the hot
spot, in particular its size and shape.

A different model for modulation by general relativistic Doppler effect, light bending and
lensing was developed by Bursa, Abramowicz, Karas and Kluźniak (2003, in preparation).
They assumed that an optically thin and geometrically slender torus located at the parametric
resonance radius, r = r3/2 oscillates with the epicyclic frequencies νr , νθ . Then, by ray
tracing, they constructed the observed light curve of the torus. An interesting result of
this calculation is that a significant modulation may be obtained also in a situation which
is almost axially symmetric. Details may be found in M. Bursa’s contribution to these
Proceedings [Bursa, 2004].

6.3 The Psaltis–Belloni–van der Klis–Mouche correlation. The 13th wave?

It was noticed by [Psaltis et al., 1999] that a correlation exists between the high (∼kilohertz)
QPOs frequencies νhigh, and the low (∼hertz) QPOs frequencies νlow for neutron star and
black hole sources,

νlow = 0.08νhigh (17)

[Mauche, 2002] extended this correlation to cataclysmic variables and show that it is
obeyed by high frequency quasi-coherent “dwarf nova oscillations” and the low frequency
“horizontal branch” oscillations.

This is a very serious problem to any relativistic model of kHz QPOs including the
resonance model discussed here. Indeed, one may assume that the correlation (17) indicates
the same physical origin of high frequency oscillations in black hole, neutron stars and
white dwarf accretion disks. However, this immediately excludes relativistic mechanisms
because, obviously, correlation (17) is incompatible with the relativistic 1/M scaling.

[Abramowicz et al., 2003b], suggested a possible way to resolve the problem. In turbulent
accretion disks around black holes, neutron stars and white dwarfs alike, most of the high
frequency variability should be connected to transient oscillatory phenomena that occur at
random locations in disks. Because they are not connected to any particular location fixed
in terms of gravitational radius, they do not scale with 1/M . These locally excited high
frequency waves are subject to the side-band [Benjamin and Feir, 1967] instability, well
known in oceanography. Suppose that a deep water wave pulse contains initially waves of
identical length. Non-linearities will cause the crests of waves with the larger amplitude a
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to travel more quickly, ω2 ∼ k(1 + k2a2). Thus, wave number k will tend to increase in
the front of the pulse and decrease at the end of the pulse. The shorter waves in the front of
the pulse and the longer waves behind the pulse cause energy to approach the centre of the
pulse, resulting in an increase of the amplitude in the centre. This feeds the instability. As
a result, about every ∼nth wave has a higher amplitude, and this creates a low frequency
quasi-periodicity, with ω/n. The value of n depends on particular details, and there is not
a general agreed theory to explain why the “9th wave” seems to be the most common in
oceans and sees. If the side band instability is also behind the correlation, then in accretion
disks, for some reason, 1/0.08 ∼ 13 = n, i.e., “13th wave” is most common.

Among these random high frequency phenomena, only double peak kHz QPOs with
rational ratios originate due to a relativistic effect: strong gravity’s orbital epicyclic para-
metric resonance. They of course may also be accompanied by the low frequency “13th
wave” and therefore fit the correlation (17). However, they are unique to black hole and
neutron stars accretion disks. And this is the point here. Because it is likely that finding
the reason for accretion disks’ “13th wave” could be similarly unsuccessful as finding the
reason for the “9th wave” in oceanography, one may argue that the discussion above has
a little predictive power. However, it obviously makes one clear, testable prediction: there
should be no twin peak dwarf nova oscillations.

6.4 Models without the 1/M scaling

Some of the twin peak kHz QPOs theoretical models based not on relativistic orbital motion
but instead on hydrodynamical oscillations [Rezzolla et al., 2003] or magnetohydrodynami-
cal ones [Li and Narayan, 2003] may predict rational ratios of frequencies (and in particular
the 3:2 ratio), but without making some ad hoc assumptions they do not naturally explain
the 1/M relativistic orbital scaling.

7 CONCLUSIONS

7.1 Orbital resonance model for microquasars

In Table 4 we summarise results of our estimates of the black hole spin for the three
microquasars with known masses. The uncertainty in the spin estimate is due to uncertainty
in the present knowledge of the black hole mass. In this respect we note that in the case
of GRO 1655–40, the possible spin ranges given in Table 2 for 3:1 and 2:1 Keplerian
resonances are, respectively, 0.45–0.53, and 0.31–0.42. They are more precise than the
corresponding estimates by Abramowicz & Kluźniak (2001), i.e., 0.36–0.67 and 0.2–0.6.
The improvement in the accuracy is due to the improvement in the knowledge of the mass
of GRO 1655–40. In 2001 the mass was known to be in the range 5.5 < M/M⊙ < 7.9,
while in 2003 the accuracy increased to 6.0 < M/M⊙ < 6.6.

The resonance model is rather sensitive to observational constraints: the data already
excludes the 3:2 Keplerian resonance as a possible explanation of twin peak QPOs in case
of two microquasars. All other resonances discussed in the paper are consistent with the
existing data, but it is plausible that future observations may narrow down the choice of
a resonance. Future developments in accretion disk theory could also narrow down the
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Table 4. Summary of angular momentum estimates for resonance models (Figs 8–10).

Interval of possible spin implicated for given source:
Model 1550–564 1655–40 1915+105

3:2 [νθ , νr ] parametric +0.89 – +0.99 +0.96 – +0.99 +0.69 – +0.99

2:1 [νθ , νr ] forced +0.12 – +0.42 +0.31 – +0.42 −0.41 – +0.44

3:1 [νθ , νr ] forced +0.32 – +0.59 +0.50 – +0.59 −0.15 – +0.61

3:2 [νK, νr ] “Keplerian” p. +0.79

2:1 [νK, νr ] “Keplerian” f. +0.12 – +0.43 +0.31 – +0.42 −0.41 – +0.44
3:1 [νK, νr ] “Keplerian” f. +0.29 – +0.54 +0.45 – +0.53 −0.13 – +0.55

Table contain pure values of dimensionless spin computed from exact upper observed frequency,
additional error ∆a(∆νupp) resulting from uncertainty of frequency measurement (Table 1) is for
microquasars XTE 1550–564 (GRO 1655–40, GRS 1915+105) given by relation: ∆a(∆νupp) ∼
±0.03 (0.01, 0.05).

Table 5. Summary of angular momentum estimates for some other models (Figs 11–13).

Interval of possible spin implicated for given source:
Model 1550–564 1655–40 1915+105

Marginally stable (ISCO) +0.07 – +0.35 +0.25 – +0.35 −0.41 – +0.37

Marginally bound (RISCO) – −0.56 −0.78 – −0.58 – −0.53

C-mode at ISCO +0.81 – +0.85 +0.84 – +0.85 +0.76 – +0.85

C-mode at RISCO +0.63 – +0.68 +0.66 – +0.68 +0.56 – +0.68

Highest g-mode +0.11 – +0.40 +0.29 – +0.39 −0.38 – +0.41

choice. For example, it is often argued that the presence of relativistic jet is a signature of
large black hole spin [Blandford and Znajek, 1977], see however [Ghosh and Abramowicz,
1997]. Because microquasars do have jets, one would except that a ≈ 1 for their black
holes. This argument, if proven true, would uniquely point to the 3:2 parametric resonance,
as the only possible choice for this microquasars.

7.2 Implications for other black hole sources

If commensurability of double peak QPOs frequencies in Sgr A∗ is confirmed, this together
with the already established 1/M scaling, would give a very strong support for the suggestion
that the double peak QPOs physics, the same in microquasars and in Sgr A∗, is due to a
non-linear orbital resonance in strong gravity. It would be interesting to see whether other
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Table 6. Sgr A∗ spin estimates from observed 3:2 QPOs, calculated for five representative values of
mass from large spectrum above lower conservative limit include the best mass estimate 3.6×106 M⊙.

Mass [106 M⊙]: 0.8 1.8 2.2 2.6 3.6

Resonances

3:2 [νθ , νr ] parametric 0.32 0.94 (b) (a) (a)

2:1 [νθ , νr ] forced (b) 0.28 0.49 0.64 0.86

3:1 [νθ , νr ] forced −0.91 0.46 0.65 0.79 (b)

3:2 [νK, νr ] “Keplerian” p. 0.37 (a) (a) (a) (a)

2:1 [νK, νr ] “Keplerian” f. (c) 0.27 0.49 0.65 0.88

3:1 [νK, νr ] “Keplerian” f. −0.82 0.41 0.59 0.71 0.89

(a) marking no solution with −1 < a < 1
(b) marking no solution with −1 < a < 1 but see Fig. 16 (left panel) – there is some possibility
because of frequency measurement errors
(c) marking no solution with −1 < a < 1 but there is some possibility because of frequency
measurement error
Because in the case of Galaxy centre black hole the error bar of measured upper frequency is much
smaller then of down frequency (1.5∆a(νdown) < ∆a(νupp)) is more correct to compute spin
estimate from down frequency. This is already fixed in [Török, 2004].

black hole sources, ULXs and AGNs, as was described in Section 5, show the same
phenomenon [Abramowicz et al., 2004].

For black hole sources with known mass that display the double peak QPOs, one may
measure the black hole spin, but the spin estimate depends on which of the theoretically
possible resonance, 2:1, 3:1, or 3:2, is actually excited in the source. At present, neither
observations, nor the resonance theory could firmly determine this.

Different resonances occur at very different resonance radii. Fig. 6 shows that accretion
disk physics at these radii is also very different. The 3:2 parametric resonance is located
at a very outer part of the innermost region of the disk, the 2:1 resonance is located in
the middle of this region, and the 3:1 resonance most close to the inner edge. A physical
excitation mechanism (still unknown) may be very different for different resonances.
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ABSTRACT
We are carrying out a project to study rapid variability of radiation originating from
accreting compact objects. Our goal is to examine fluctuations of the radiation flux
occurring on the light-crossing time scales, taking into account effects of strong
gravitational field. The assumption of a geometrically thin, optically thick disc has
been often imposed in previous works, but here it is relaxed. Instead, we construct
a toy model of an oscillating torus in the slender approximation, we assume thermal
bremsstrahlung for the intrinsic emissivity of the medium, and we compute observed
(predicted) radiation signal including the contribution of indirect (higher-order) im-
ages and caustics.

1 INTRODUCTION

In the past decade, missions such as XMM, RXTE, BeppoSAX and others have opened an
X-ray window to the deep universe and allowed us to observe sources of energetic radiation
in details we have never seen before. In many active galactic nuclei as well as in cataclysmic
variables and low-mass X-ray binaries we observe rapid temporal changes of flux and of
individual spectral features. In the widely accepted scenario, these sources contain a compact
object surrounded by an accretion flow in the form of a disc or a torus (see, e.g., [Ulrich
et al., 1997,van der Klis, 2000]). The strong gravity near these objects introduces distinctive
deviations from Newtonian physics including bending of light rays, gravitational red shift
and existence of the inner-most stable circular orbit. All these effects of general relativity
affect profiles of observed light curves and have impact on the power spectra.

To address these issues I have developed a new three-dimensional modular ray-tracing
code which can be used to study light curve profiles and power spectra of luminous, spatially
extensive astrophysical objects, such as thick accretion flows or tori, as well as radiation
from 2D patterns, such as hot spots, belts, thin disks, etc.

2 DESCRIPTION OF THE CODE

Various numerical and semi-analytical approaches have been developed in order to tackle
the problem of light ray-tracing in a curved spacetime. Some of them are focused on solving

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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a special kind of problems, often they are limited to 2D geometry of a sphere or a disk.
Therefore the need for a general, efficient and 3D ray-tracing computational tool has arised
which motivates the development of a new code, called sim4.

Code cim4 is a MPI-parallel modular ray-tracer written in the C language. It is modular
in the sense that certain parts of the code (modules) can be easily modified or replaced. There
are modules for a metric, a topology and for a model. Each module provides a small set of
functions which are called by the core and to which a user may put its own implementation
of a problem. This concept of modularity makes the code to be very versatile and powerful –
with several changes in the code it is possible to turn focus to completely different problems.

2.1 Ray-tracing

For our calculations we adopt the approximation of geometrical optics in a vacuum space-
time. The integration begins with division of the image plane into a number of pixels of
equal solid angle on the observer’s sky, each pixel corresponding to a single light ray.
Following the method proposed by [Rauch and Blandford, 1994] and further developed
by [Dovčiak et al., 2004] and using given spacetime metric function, for each ray the code
determines the initial position and 4-velocity and integrates the geodesic equation

d2xµ

dλ2 = −Γ µ
αβ

dxα

dλ
dxβ

dλ
(1)

back in time, i.e., from the observer to the source. Note that both in the above equation
and throughout, geometrised units G = c ≡ 1 are used. This approach has the advantage
that only photons which hit the target are actually integrated. On the other hand it puts
a constraint on a metric function which must be stationary. Since in most astrophysical
cases the distribution of matter is, in the first approximation, spherical, rays for not all
pixels on the rectangular image plane are integrated, but only those which have impact
parameter less than a certain value.

The determination of the gravitational lensing effect is performed by construction of two
unit vectors U and V that, at the beginning, are perpendicular to the photon’s 4-velocity
and they are perpendicular to one another as well, so they enclose an area of a unit size.
These vectors are transported along with the light ray by integrating the geodesic deviation
equation if the form

d2Uµ

dλ2 = −2Γ µ
αβ uα dUβ

dλ
− Γ

µ
αβ,γ uαuβUγ , (2)

where u stands for the photon’s 4-velocity, and the same equation for V . The lensing factor,
defined as the ratio of the photon tube cross-section area in infinity and at the point of
emission, is given by

l ≡ Sinf

Sem
= 1

U × V
= 1
√

(UµUµ)(V νVν) − (UµVµ)2
. (3)

After certain number of integration steps the code collects the actual photon position,
momentum and corresponding lensing factor, passes these information to the topology
module which decides whether to save (and eventually dumps the data to an output file)
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and whether to stop the integration. It allows the user to specify exactly what data will be
recorded and for how long the ray will be integrated. The recording condition can be either
two or three dimensional and also allows to select several distinct regions. How often the data
are recorded depends on chosen precision and also on the integration step. As the integration
goes on, the code watches the step size and adjusts the saving frequency: when the step is
small it saves more often, when it is large it saves less often and conserves resources.

All data are stored in the file which can be small or huge depending on the resolution,
recording condition and chosen precision. This data file is then used to computation of the
light curve and, in fact, if the recording condition is made general enough it can be reused
many times even for completely different set of problems.

2.2 Light curve

In the next step the information from the photon data file is used to construct the light
curve. The code reads the set of recorded points for each photon from the file and using
spline interpolation it reconstructs its whole trajectory. Then by making small spatial steps
it follows the trajectory back in time from its end to where it starts and always asks the
model module to return the amount of radiation flux (with respect to the observer at infinity)
which is produced at that place. Knowing the time delay it can then determine the exact
instant of time when this amount of flux reaches the observer.

The model module is where all the physics is stored and “where the radiation comes
from”. It can be as much complex and involve as much physics as one wish including
access to external data (for instance from MHD simulations). An example of a possible
model is given in the following section.

2.3 Visualisation

Visualisation is very similar process to construction a light curve and it follows almost the
same procedure. The difference is that while to make a light curve we require very good
time resolution and need no spatial resolution, to make an image or a movie we need no
or little time resolution but require the information about spatial resolution. So instead of
summing the flux carried by each photon to one number, the code records the numbers
separately to corresponding pixels of the projection plane making an actual image of the
observed object at that point of time.

3 TOY TORUS MODEL

As an example of the code usage and capabilities I present, without explaining any mo-
tivation or astrophysical background, the model of a toy torus. While real tori that exist
or may exist as a part of an accretion flows near the central objects can be very complex,
the toy torus is an abstraction that should be as simple as possible, but still keeping basic
properties of the real situation. Simplified physics will then help to uncover and isolate
effects of general relativity on the light curve.
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We consider a part of an accretion flow with constant distribution of specific angular
momentum ℓ = ℓK(r0) = (M r3

0 )1/2/(r0 − 2M) in the Schwarzschild spacetime, where M
is the mass of the central object and r0 is the distance of the equilibrium point. The solution
of the relativistic Euler equation

∂µ p
p + ϵ

= −∂µ(ln ut ) + Ω ∂µℓ

1 −Ωℓ
(4)

can be given by determining surfaces of a constant potential W (r, θ) by relations [Abramow-
icz et al., 1978]

∆W ≡ W − Win = −
∫ p

0

d p
p + ϵ

(5)

and

W = ln ut = 1
2

ln

[
−gt t

1 + gtt
gφφ
ℓ2

]

. (6)

Here u is the fluid 4-velocity, Ω = −ℓ gt t/gφφ is the angular velocity field, p and ϵ
denote the pressure and the total energy density of the fluid and the subscript “in” refers
to the inner edge of the torus. The equipotential surfaces are determined by the condition
∆W (r, θ) = const and the surfaces of constant pressure are given by Eq.(5). For a polytropic
gas, where

p = Kργ , (7)
ϵ = ρ + p

γ − 1
, (8)

we can integrate Eq. (5) and obtain the mass density profile ρ. Here γ = 5
3 is the polytropic

index and K is the polytropic constant. We fix K by specifying the density and temperature
in the torus centre.
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Figure 1. Mass density ρ (left) and temperature T (right) profile inside the torus in the θ = π/2
plane. Thick line corresponds to the real potential W , thin line to the toy potential Wtoy.
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Figure 2. Configuration: The equilibrium centre of the torus E is in the distance r0 from the centre
of gravity G. The real centre of the torus T, i.e., point where pressure and density are maximal, is
displaced from E by δr in radial and δθ in vertical direction.

Using the equation of state we can then express all basic thermodynamical quantities in
terms of W in this way

ρ =
[
γ − 1
Kγ

(
e∆W − 1

)] 1
γ−1

, (9)

p = Kργ , (10)
T = Kργ−1 µmu

kB
. (11)

Constants µ, mu and kB are mean molecular weight, atomic mass unit and the Boltzmann
constant respectively. For hydrogen-helium ratio 75 : 25, µ = 7

4 .
Instead of considering the real profile of equipotentials given by Eq. (6), we make an

abstraction to the slender torus of a circular cross-section. We introduce a toroidal coordinate
system (R, ς,ϕ), where R is the distance from the torus centre (the point of maximal
pressure T), ς is an angular distance measured from the plane parallel to the equatorial
plane and ϕ is an angular position in azimuthal direction (see Fig. 2). In terms of the
standard spherical Schwarzschild coordinates (r, θ,φ) they are defined as

R2 = (r cos θ − δθ)2 + (r sin θ − r0 − δr)2 , (12)
sin ς = r cos θ − δθ

R
, (13)

ϕ = φ . (14)

In this coordinate system we expand the potential W around point R = 0 in the vertical
direction and keep only quadratic terms in R. The toy potential is then

Wtoy = 1
2

ln
[

(r0 − 2M)2

r0(r0 − 3M)

]
+ R2

2r2
0 (r0 − 3M)

(15)

and

∆Wtoy ≡ (Wtoy)in − Wtoy = R2
0 − R2

2r2
0 (r0 − 3M)

, (16)
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Figure 3. Contours of equipotential surfaces of the real potential W (left) and the toy potential Wtoy
(right) in the r -z cross-section plane.

where R0 is the torus cross-section radius with respect to the Schwarzschild radial coordi-
nate.

Now we impose periodic radial and vertical oscillations on the torus centre with frequen-
cies ωr and ωθ , so it will travel around the equilibrium point E being displaced at the time
t by

δr = δr0 cos(ωr t) , (17)
δθ = δθ0 cos(ωθ t) . (18)

To complete the set of equations for the model suppose the flow is advection-dominated,
optically thin and radiates by thermal bremsstrahlung. In the local frame the emissivity
(here in CGS units) is [Abramowicz et al., 1996]

f = 5.698 × 1020 ρ2 T
1
2 ergs cm−3 s−1 . (19)

Here ρ and T are given by equations (9) and (11) with W replaced by Wtoy. The overall
intensity observed at infinity is an integration of the emissivity f over the path length along
geodesics and it can be written down as

Iobs(t) =
∫

f (r, θ, φ, t−∆t)
√−gt t kt g4 dλ . (20)

The integration along the light ray that is parametrised by an affine parameter λ. Sinf is
the area subtended by the ray at infinity, l is the lensing factor, k t = dt/dλ is the time
component of photon’s 4-momentum, g is the red-shift factor and ∆t is the photon time
delay.

Results of numerical simulations are shown in Fig. 4. In this setup the torus cross-section
radius is R0 = 2M , oscillations amplitudes are δθ0 = δr0 = 1M and frequencies are
ωθ = ΩK and ωr = 2

3ΩK. All relativistic effects including light bending, formation of
Einstein’s rings and Doppler boosting can be clearly seen. As different effects become
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Figure 4. Results of numerical simulations of the oscillating toy torus. Its cross-section radius is
R0 = 2M , distance of equilibrium point r0 = 10.8M , oscillation amplitudes δθ0 = δr0 = 1M and
frequencies ωθ = ΩK, ωr = 2

3ΩK. The snapshot of an instant image, as viewed by a distant observer
(on the top), the computed light curve (in the middle) and the corresponding power spectrum (at the
bottom) are shown for three different viewing angles 45 (left), 65 (middle) and 85 (right) degrees.

more important at certain inclinations (e.g., Doppler boosting is strongest in the edge-on
view), the profile of light curves is also changing and although the amplitudes of oscillations
keep the same, the power spectrum shows that relative power of the two frequencies changes
with inclinations.

4 CONCLUSIONS

The new three-dimensional general relativistic ray-tracing code has been presented here. It
is parallel high performance solver of geodesic equation which can be run on both shared
and distributed memory systems. Based on the given metric, topology and model the code is
capable of integrating radiative transfer equations along photon trajectories and calculates
light curves and photo-realistic images of the examined object. Its modularity allows to use
a set of light trajectories for multiple light curve calculations.
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ABSTRACT
We report on a new general relativistic computational model enhancing, in vari-
ous respects, the capability of presently available tools for fitting spectra of X-ray
sources. The new model is intended for spectral analysis of black-hole accretion
discs. Our approach is flexible enough to allow easy modifications of intrinsic emis-
sivity profiles. Axial symmetry is not assumed, although it can be imposed in order
to reduce computational cost of data fitting. The main current application of our
code is within the XSPEC data-fitting package, however, its applicability goes be-
yond that: the code can be compiled in a stand-alone mode, capable of examining
time-variable spectral features and doing polarimetry of sources in the strong-gravity
regime. Basic features of our approach are described in a separate paper (Dovčiak,
Karas & Yaqoob [Dovčiak et al., 2004]). Here we illustrate some of its applications
in more detail. We concentrate ourselves on various aspects of line emission and
Compton reflection, including the current implementation of the lamp-post model as
an example of a more complicated form of intrinsic emissivity.

1 INTRODUCTION

Regions of strong gravitational field are most usually explored via X-ray spectroscopy,
because very hot X-ray emitting material is commonly believed to be present in regions
near a neutron star surface or a black-hole horizon. Accretion plays crucial role in the process
of energy liberation and mass accumulation that takes place in this kind of objects [Kato
et al., 1998, Krolik, 1999]. In particular, disc-type accretion represents an important mode
which is realized under suitable circumstances, given by the global geometrical arrangement
and local microphysics of the fluid medium. A central compact body, undetectable via its
own radiation, resides in galactic nuclei where it is surrounded by a rather dense population
of stars and gaseous environment. Photons emerging from the accretion disc and its corona

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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are influenced by gravity of the black hole, so they bear various imprints of the gravitational
field structure. This concerns especially X-rays originating very near the core and, for
this reason, spectral analysis with X-ray satellites is particularly relevant for astronomical
study of strong gravitational fields around black holes. For a general discussion, see review
articles [Fabian et al., 2000,Reynolds and Nowak, 2003] and further references cited therein.

In this paper we describe a newly developed computational model aimed for the spectral
analysis of line profiles and continuum originating in a geometrically thin, planar accretion
disc near a rotating (Kerr) black hole. Such analysis has been routinely performed via
XSPEC package [Arnaud, 1996], which performs deconvolution of observed spectra for
the effective area and energy redistribution of the detector. Previously, several routines
were developed and linked with this package in order to fit data to a specific model of a
black-hole accretion disc [Laor, 1991, Martocchia et al., 2000]. However, a substantially
improved variant of the computational approach has been desirable because previous tools
have various limitations that may be critical for analyses of present-day and forthcoming
high-resolution data.

We describe the layout and usage of the new code and we show some examples and com-
parisons between new model components. Our present contribution provides information
complementary to the basic description which can be found in [Dovčiak et al., 2004]. We
suggest the reader to consult that paper as well as further details in Thesis [Dovčiak, 2004], as
they give more examples and citations to previous works. Here we concentrate our attention
to technical issues of the code structure and its performance when computing and fitting
spectra. Different perspectives and applications of general relativistic computations for
black-hole accretion discs have been considered by various authors. In particular, it is very
useful to consult recent papers of Gierliński, Maciolek-Niedźwiecki & Ebisawa [Gierliński
et al., 2001] and Schnittman & Bertschinger [Schnittman and Bertschinger, 2004]. Very
recently, a new independent code has been developed by Beckwith & Done [Beckwith and
Done, 2004]. Their approach also allows to study accretion disc spectra including strong
gravity effects of a Kerr black hole. This is also one of the applications of our code, and
so relatively accurate comparisons between both tools are possible. We performed several
such comparisons and found a very good agreement in the shape of predicted line profiles.

Given a limited space for this contribution, we cannot describe all aspects of the new
code: capability of the code with respect to timing and polarimetry are discussed elsewhere.
Nonetheless, it may be good to bear in mind that such capability has been already imple-
mented and tested, taking into account all strong-gravity effects on time-delays and the
Stokes parameters.

2 TRANSFER FUNCTIONS

We concentrate on geometrically thin and optically thick accretion discs and we point out
that general relativity effects can play a role if the configuration is sufficiently dense in a
limited region, typically a few tens of gravitational radii. Nevertheless, our computational
domain extends up to about ≈ 103 gravitational radii in a non-uniform spatial grid.

In order to calculate the final spectrum that an observer at infinity measures when local
emission from the accretion disc is given, one must first specify the intrinsic emissivity in
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frame co-moving with the disc medium and then perform transfer of photons to a distant
observer. Here we concentrate on the latter part of this task.

Six functions need to be computed across the source: (i) energy shift affecting the pho-
tons (i.e., gravitational and Doppler g-factor, needed to account for spectral redistribution),
(ii) gravitational lensing (for the evaluation of radiation flux or count rate), (iii) direction
of emission with respect to the disc normal (for the limb darkening effect), (iv) relative
time-delay of the light signal (i.e., the mutual delay between photons arriving from different
regions of the source, needed for the proper account of the light-time effect in timing analy-
sis), (v) change of the polarization angle due to photon propagation in the gravitational field
(for polarimetry), and (vi) azimuthal direction of emission (also for polarimetry). While the
first three quantities are always necessary, the time-delay factor is required only when local
emission is not stationary (e.g., the case of orbiting spots) and the change of the polariza-
tion angle with the azimuthal direction of emission are essential for calculating the overall
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Figure 1. Six transfer functions are shown in the equatorial plane of a Kerr black hole with a .= 0.9987
(horizon rh = 1.05). The black hole rotates counter-clockwise. The observer is located upwards at
the inclination θo = 70◦. The values of transfer functions are encoded by a colour scale, as indicated
above each graph. For mathematical formulae defining these functions see eqs. (A13), (A14)–(A19)
and (A26) in Appendix A1.
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degree and angle of polarization, as observed at infinity. In the adopted approximation of
geometrical optics, light rays follow null geodesics (in curved space-time) and spectral
computations are reduced to a text-book problem [Chandrasekhar, 1992] which, however,
may be rather demanding computationally on practical level of data fitting. Useful form of
light-ray equations and further references can be found in various papers [Dovčiak et al.,
2004, Fanton et al., 1997, Rauch and Blandford, 1994]. We summarize the basic equations
in Appendix A1.

In order for our new model to be fast and practical, we pre-calculated the transfer
functions for 21 values of the angular momentum of the black hole and 20 values of the
inclination angle of the observer. The choice of the grid appears sufficiently fine to ensure
high accuracy. We have stored the transfer functions in the form of tables – i.e., as binary
extensions of a FITS file. For a technical description of the files layout see Appendix A3.1.
Values of the transfer functions are interpolated when integrating the spectrum for a given
angular momentum of the black hole and inclination angle of the observer.

The graphical representation of the tables is shown in Fig. 1. Six frames of contour plots
correspond to individual transfer functions, which are necessary in computations. This figure
captures equatorial plane for given values of a and θo. The radius extends up to r = 103rg
in the tables, but here we show only the central region, r ≤ 6rg, where relativistic effects
are most prominent.1 Clock-wise distortion of the contours is due to frame-dragging near a
rapidly rotating Kerr black hole, and it is clearly visible in the Boyer–Lindquist coordinates
here. Notice that this dramatic distortion appears in the graphical representation only. In
order to achieve high accuracy of the tables the dragging effect has been largely eliminated
in computations by means of appropriate transformation of coordinates, as described below.

3 PHOTON FLUX FROM AN ACCRETION DISC

Properties of radiation are described in terms of photon numbers. The source appears as
a point-like object for a distant observer, so that the observer measures the flux entering
the solid angle dΩo, which is associated with the detector area dSo≡D2 dΩo (see Fig. 2a).
This relation defines distance D between the observer and the source. We denote the total
photon flux received by a detector,

N S
o (E) ≡ dn(E)

dt dSo
=
∫

dΩ Nl(E/g) g2 , (1)

where

Nl(El) ≡ dnl(El)

dτ dSl dΩl
(2)

is a local photon flux emitted from the surface of the disc, dn(E) is the number of photons
with energy in the interval ⟨E, E + dE ⟩ and g = E/El is the redshift factor. The local
flux, Nl(El), may vary over the disc as well as in time, and it can also depend on the local

1 Spheroidal coordinates have been employed. We denote rg = G M•/c2 ≈ 1.5 × 105(M•/M⊙) cm and we
use geometrized units with c = G M• = 1 hereafter, which means that we scale lengths with M•. Therefore, all
quantities are dimensionless.
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Figure 2. Denomination of various elements of solid angles and areas defined in the text: a) the light
source appears to the observer to be point-like; b) the light rays received by the detector are coming
from different parts of the disc (closer view of the disc than in previous figure); c) area of a light tube
changes as the light rays travel close to the black hole (the disc is edge on).

emission angle. This dependency is emphasised explicitly only in the final formula (11),
otherwise it is omitted for brevity.

The emission arriving at the detector within the solid angle dΩ (see Fig. 2b) originates
from the proper area dSl on the disc (as measured in the rest frame co-moving with the
disc). Hence, in our computations we want to integrate the flux contributions over a fine
mesh on the disc surface. To achieve this aim, we adjust Eq. (1) to the form

N S
o (E) = 1

D2

∫
dS

D2dΩ
dS

Nl(E/g) g2 = 1
D2

∫
dS

dS⊥
dS

dSf

dS⊥
Nl(E/g) g2 . (3)

Here dSf stands for an element of area perpendicular to light rays corresponding to the
solid angle dΩ at a distance D, dS⊥ is the proper area measured in the local frame of
the disc and perpendicular to the rays, and dS is the coordinate area for integration. We
integrate in a two-dimensional slice of a four-dimensional space-time, which is specified
by coordinates θ = π/2 and t = to − ∆t with ∆t being a time delay with which photons
from different parts of the disc (that lies in the equatorial plane) arrive to the observer (at
the same coordinate time to). Therefore, let us define the coordinate area by (we employ
coordinates t ′, θ, r, ϕ with t ′ = t −∆t and ∆t = ∆t (r, θ,ϕ))

dS ≡ |d2St ′
θ | =

∣∣∣∣
∂xµ

∂t ′
d2Sµ

θ

∣∣∣∣ = |d2St
θ | = |gθµd2Stµ| . (4)

We define the tensor d2Sαβ by two four-vector elements dxµ
1 ≡ (dt1, dr, 0, 0) and dxµ

2 ≡
(dt2, 0, 0, dϕ) and by Levi-Civita tensor εαβγ δ. The time components of these vectors, dt1
and dt2, are such that the vectors dxµ

1 and dxµ
2 lie in the tangent space to the above defined

space-time slice. Then we obtain

dS = |gθθεtθαβ dx [α
1 dxβ]

2 | = gθθ
√

−∥gµν∥ dr dϕ = dr dϕ , (5)

where gµν is the metric tensor and ∥gµν∥ is the determinant of the metric. The proper area,
dS⊥, perpendicular to the light ray can be expressed covariantly in the following way:

dS⊥ = −Uα pβ d2Sαβ

Uµ pµ
. (6)



38 M. Dovčiak et al.

Here, dS⊥ is the projection of an element of area, defined by d2Sαβ , on a spatial slice of
an observer with velocity Uα and perpendicular to light rays. Uα is four-velocity of an
observer measuring the area dS⊥, and pβ is four-momentum of the photon. The proper area
dS⊥ corresponding to the same flux tube is identical for all observers. This means that the
last equation holds true for any four-velocity U α , and we can express it as

pβ d2Sαβ + pα dS⊥ = 0, α = t, r, θ,ϕ. (7)

For α = t (note that d2Str = d2Stϕ = 0) we get

dS⊥
dS

=
∣∣∣∣

1
gθθ

dS⊥
d2Stθ

∣∣∣∣ =
∣∣∣∣−

pθ

pt

∣∣∣∣ = rµe

g
. (8)

In the last equation we used the formula for the cosine of local emission angle µe, see
Eq. (A15), and the fact that we have chosen such an affine parameter of the light geodesic
that pt = −1. From eqs. (3), (4) and (8) we get for the observed flux per unit solid angle

NΩ
o (E) ≡ dn(E)

dt dΩo
= N0

∫ rout

rin

dr
∫ φ+∆φ

φ
dϕ Nl(E/g) g l µe r, (9)

where N0 is a normalisation constant and

l = dSf

dS⊥
(10)

is the lensing factor in the limit D → ∞ (the limit is performed while keeping D2dΩ
constant, see Fig. 2c).

For the line emission, the normalisation constant N0 is chosen in such a way that the
total flux from the disc is unity. In the case of a continuum model, the flux is normalised to
unity at a certain value of the observed energy (typically at E = 1 keV, as in other XSPEC
models).

Finally, the integrated flux per energy bin, ∆E , is

∆NΩ
o (E,∆E, t) =

∫ E+∆E

E
dĒ NΩ

o (Ē, t)

= N0

∫ rout

rin

dr
∫ φ+∆φ

φ
dϕ

∫ (E+∆E)/g

E/g
dEl Nl(El, r,ϕ, µe, t −∆t) g2 l µe r , (11)

where ∆t is the relative time delay with which photons arrive to the observer from differ-
ent parts of the disc. The transfer functions g, l, µe and ∆t are read from the FITS file
KBHtablesNN.fits described in Appendix A3.1. This equation is numerically inte-
grated for a given local flux Nl(El, r,ϕ, µe, t − ∆t) in all hereby described new general
relativistic non-axisymmetric models.

Let us assume that the local emission is stationary and the dependence on the axial
coordinate is only through the prescribed dependence on the local emission angle f (µe)

(limb darkening/brightening law) together with an arbitrary radial dependence R(r), i.e.,

Nl(El, r,ϕ, µe, t −∆t) ≡ Nl(El) R(r) f (µe). (12)

The observed flux NΩ
o (E) is in this case given by
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NΩ
o (E) =

∫ ∞

−∞
dEl Nl(El) G(E, El), (13)

where

G(E, El) = N0

∫ rout

rin

dr R(r)

∫ 2π

0
dϕ f (µe) g2 l µe r δ(E − gEl). (14)

In this case, the integrated flux can be expressed in the following way:

∆NΩ
o (E,∆E) =

∫ E+∆E

E
dĒ NΩ

o (Ē)

=
∫ E+∆E

E
dĒ N0

∫ rout

rin

dr R(r)

∫ 2π

0
dϕ f (µe) Nl(Ē/g) g l µe r

∫ ∞

−∞
dEl δ(El − Ē/g)

= N0

∫ rout

rin

dr R(r)

∫ ∞

−∞
dEl Nl(El)

∫ (E+∆E)/El

E/El

dḡ F(ḡ), (15)

where we substituted ḡ = Ē/El and

F(ḡ) =
∫ 2π

0
dϕ f (µe) g2 l µe r δ(ḡ − g) . (16)

Eq. (15) is numerically integrated in all axially symmetric models. The function dF(ḡ) ≡
dḡ F(ḡ) has been pre-calculated for several limb darkening/brightening laws f (µe) and
stored in separate files, KBHlineNN.fits (see Appendix A3.2).

4 STOKES PARAMETERS IN STRONG GRAVITY REGIME

For polarisation studies, Stokes parameters are used. Let us define specific Stokes parameters
in the following way:

iν ≡ Iν
E

, qν ≡ Qν

E
, uν ≡ Uν

E
, vν ≡ Vν

E
, (17)

where Iν , Qν , Uν and Vν are Stokes parameters for light with frequency ν, E is energy of a
photon at this frequency. Further on, we drop the index ν but we will always consider these
quantities for light of a given frequency. We can calculate the integrated specific Stokes
parameters (per energy bin), i.e., ∆io, ∆qo, ∆uo and∆vo. These are the quantities that the
observer determines from the local specific Stokes parameters i l, ql, ul and vl on the disc in
the following way:

∆io(E,∆E) = N0

∫
dS

∫
dEl il(El) Fr , (18)

∆qo(E,∆E) = N0

∫
dS

∫
dEl [ql(El) cos 2Ψ − ul(El) sin 2Ψ ] Fr , (19)

∆uo(E,∆E) = N0

∫
dS

∫
dEl [ql(El) sin 2Ψ + ul(El) cos 2Ψ ] Fr , (20)

∆vo(E,∆E) = N0

∫
dS

∫
dEl vl(El) Fr . (21)
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An

n’A
pA

ψA

fA

(i) Let three-vectors pA, nA, n′
A and fA be the

momentum of a photon, normal to the disc, pro-
jection of the normal to the plane perpendicular
to the momentum and a vector which is parallelly
transported along the geodesic (as four-vector),
respectively;
(ii) let ΨA be an angle between n′

A and fA;
(iii) let the quantities in (i) and (ii) be evaluated
at the disc for A = 1 with respect to the local rest
frame co-moving with the disc, and at infinity for
A = 2 with respect to the stationary observer at
the same light geodesic;
(iv) then the change of polarisation angle is de-
fined as Ψ = Ψ2 − Ψ1.

Figure 3. Definition of the change of polarisation angle Ψ .

Here, F ≡ F(r,ϕ) = g2 l µe is a transfer function, Ψ is the angle by which a vector
parallelly transported along the light geodesic rotates. We refer to this angle also as a
change of the polarisation angle, because the polarisation vector is parallelly transported
along light geodesics. See Fig. 3 for an exact definition of the angle Ψ . The integration
boundaries are the same as in Eq. (11). As can be seen from the definition, the first specific
Stokes parameter is equal to the photon flux, therefore, eqs. (11) and (18) are identical. The
local specific Stokes parameters may depend on r , ϕ, µe and t −∆t , which we did not state
in the eqs. (18)–(21) explicitly for simplicity.

The specific Stokes parameters that the observer measures may vary in time in the
case when the local parameters also depend on time. In eqs. (18)–(21) we used a law of
transformation of the Stokes parameters by the rotation of axes (eqs. (I.185) and (I.186)
in [Chandrasekhar, 1960]).

An alternative way for expressing polarisation of light is by using the degree of polari-
sation Po and two polarisation angles χo and ξo, defined by

Po =
√

q2
o + u2

o + v2
o/io , (22)

tan 2χo = uo/qo , (23)
sin 2ξo = vo/

√
q2

o + u2
o + v2

o . (24)

5 NEW MODEL FOR

We have developed several general relativistic models for line emission and Compton
reflection continuum. The line models are supposed to be more accurate and versatile than
the LAOR model [Laor, 1991], and substantially faster than the KERRSPEC model [Martocchia
et al., 2000]. Several models of intrinsic emissivity were employed, including the lamp-post
model [Matt et al., 1992]. Among other features, these models allow various parameters
to be fitted such as the black-hole angular momentum, observer inclination, accretion disc
size and some of the parameters characterising disc emissivity and primary illumination
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properties. They also allow a change in the grid resolution and, hence, to control accuracy
and computational speed. Furthermore, we developed very general convolution models. All
these models are based on pre-calculated tables described in Section 2 and thus the geodesics
do not need to be calculated each time one integrates the disc emission. These tables are
calculated for the vacuum Kerr space-time and for a Keplerian co-rotating disc plus matter
that is freely falling below the marginally stable orbit. The falling matter has the energy
and angular momentum of the matter at the marginally stable orbit. It is possible to use
different pre-calculated tables if they are stored in a specific FITS file (see Appendix A3.1
for its detailed description).

There are two types of new models. The first type integrates the local disc emission in
both of the polar coordinates on the disc and thus enables one to choose non-axisymmetric
area of integration. This option is useful for example when computing spectra of spots or
partially obscured discs. One can also choose the resolution of integration and thus control
the precision and speed of the computation. The second type of models is axisymmetric –
the axially dependent part of the emission from rings is pre-calculated and stored in a FITS
file (the function dF(ḡ) = dḡ F(ḡ) from (16) is integrated for different radii with the
angular grid having 20 000 points). These models have less parameters that can be fitted
and thus are less flexible even though more suited to the standard analysis approach. On
the other hand they are fast because the emission is integrated only in one dimension (in
the radial coordinate of the disc). It may be worth emphasising that the assumption about
axial symmetry concerns only the form of intrinsic emissivity of the disc, which cannot
depend on the polar angle in this case, not the shape of individual light rays, which is always
complicated near a rotating black hole.

There are several parameters and switches that are common for all new models (see
Table 1):

a/M – specific angular momentum of the Kerr black hole in units of GM/c (M is the mass
of the central black hole),
theta o – the inclination of the observer in degrees,
rin-rh – inner radius of the disc relative to the black-hole horizon in units of GM/c2,
ms – switch for the marginally stable orbit,
rout-rh – outer radius of the disc relative to the black-hole horizon in units of GM/c2,
zshift – overall redshift of the object,

Table 1. Common parameters for all models.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
zshift – 0. -0.999. 10.
ntable – 0. 0. 99.
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ntable – number of the FITS file with pre-calculated tables to be used.

The inner and outer radii are given relative to the black-hole horizon and, therefore, their
minimum value is zero. This becomes handy when one fits the a/M parameter, because the
horizon of the black hole as well as the marginally stable orbit changes with a/M, and so the
lower limit for inner and outer disc edges cannot be set to constant values. The ms switch
determines whether we intend to integrate also emission below the marginally stable orbit.
If its value is set to zero and the inner radius of the disc is below this orbit then the emission
below the marginally stable orbit is taken into account, otherwise it is not.

The ntable switch determines which of the pre-calculated tables should be used
for intrinsic emissivity. In particular, ntable = 0 for files KBHtables00.fits
(KBHline00.fits), ntable = 1 for KBHtables01.fits (KBHline01.fits),
etc., corresponding to non-axisymmetric (axisymmetric) models.

The following set of parameters is relevant only for non-axisymmetric models (see
Table 2):

phi – position angle of the axial sector of the disc in degrees,
dphi – inner angle of the axial sector of the disc in degrees,
nrad – radial resolution of the grid,
division – switch for spacing of radial grid (0 – equidistant, 1 – exponential),
nphi – axial resolution of the grid,
smooth – switch for performing simple smoothing (0 – no, 1 – yes),
Stokes – switch for computing polarisation (see Table 3).

The phi and dphi parameters determine the axial sector of the disc from which emission
comes (see Fig. 4). The nrad and nphi parameters determine the grid for numerical
integration. If the division switch is zero, the radial grid is equidistant; if it is equal to
unity then the radial grid is exponential (i.e., more points closer to the black hole).

If the smooth switch is set to unity then a simple smoothing is applied to the final
spectrum. Here NΩ

o (El) = [NΩ
o (Ei−1) + 2NΩ

o (El) + NΩ
o (Ei+1)]/4.

If the Stokes switch is different from zero, then the model also calculates polarisation.
Its value determines, which of the Stokes parameters should be computed by XSPEC, i.e.,
what will be stored in the output array for the photon flux photar; see Table 3. (If
Stokes ̸= 0 then a new ascii data file stokes.dat is created in the current directory,

Table 2. Common parameters for non-axisymmetric models.

Parameter Unit Default value Minimum value Maximum value

phi deg 0. -180. 180.
dphi deg 360. 0. 360.
nrad – 200. 1. 10000.
division – 1. 0. 1.
nphi – 180. 1. 20000.
smooth – 1. 0. 1.
Stokes – 0. 0. 6.
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Figure 4. Segment of a disc from which emission comes (view from above).

Table 3. Definition of the Stokes parameter.

Value Photon flux array photar contains†‡

0 i = I/E , where I is the first Stokes parameter (intensity)
1 q = Q/E , where Q is the second Stokes parameter
2 u = U/E , where U is the third Stokes parameter
3 v = V/E , where V is the fourth Stokes parameter
4 degree of polarisation, P =

√
q2 + u2 + v2/i

5 angle χ[deg] of polarisation, tan 2χ = u/q
6 angle ξ [deg] of polarisation, sin 2ξ = v/

√
q2 + u2 + v2

† the photar array contains values described in the table and multiplied by width of the
corresponding energy bin
‡ E is energy of observed photons

where values of energy E together with all Stokes parameters i, q, u, v, P, χ[deg] and
ξ [deg] are stored, each in one column.)

A realistic model of polarisation has been currently implemented only in the KYL1CR
model (see Section 7.1 below). In other models, a simple assumption is made – the local
emission is assumed to be linearly polarised in the direction perpendicular to the disc (i.e.,
ql = il = Nl and ul = vl = 0). In all models (including KYL1CR) there is always no final
circular polarisation (i.e., v = ξ = 0), which follows from the fact that the fourth local
Stokes parameter is zero in each model.

6 MODELS FOR A RELATIVISTIC SPECTRAL LINE

Three general relativistic line models are included in the new set of XSPEC routines – non-
axisymmetric Gaussian line model KYG1LINE, axisymmetric Gaussian line model KYGLINE
and fluorescent lamp-post line model KYF1LL.
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6.1 Non-axisymmetric Gaussian line model KYG1LINE

The KYG1LINE model computes the integrated flux from the disc according to Eq. (11). It
assumes that the local emission from the disc is

Nl(El) = 1
ralpha

f (µe) exp

[

−
(

1000
El − Erest√

2sigma

)2
]

(25)

for r ≥ rb,

Nl(El) = jump rbeta−alpha
b

1
rbeta

f (µe) exp

[
−
(

1000
El − Erest√

2sigma

)2
]

(26)

for r < rb. The local emission is assumed to be a Gaussian line with its peak flux depending
on the radius as a broken power law. The line is defined by nine points equally spaced with
the central point at its maximum. The normalisation constant N0 in (11) is such that the
total integrated flux of the line is unity. The parameters defining the Gaussian line are (see
Table 4):

Erest – rest energy of the line in keV,
sigma – width of the line in eV,
alpha – radial power-law index for the outer region,
beta – radial power-law index for the inner region,
rb – parameter defining the border between regions with different power-law indices,
jump – ratio between flux in the inner and outer regions at the border radius,
limb – switch for different limb darkening/brightening laws.

There are two regions with different power-law dependences with indices alpha and
beta. The power law changes at the border radius rb where the local emissivity does
not need to be continuous (for jump ̸= 1). The rb parameter defines this radius in the
following way:

rb = rb× rms for rb ≥ 0 , (27)
rb = −rb+ rh for rb < 0 , (28)

where rms is the radius of the marginally stable orbit and rh is the radius of the horizon of
the black hole.

The function f (µe) = f (cos δe) in (25) and (26) describes the limb darkening/brighten-
ing law, i.e., the dependence of the local emission on the local emission angle. Several limb
darkening/brightening laws are implemented:

f (µe) = 1 for limb = 0 , (29)
f (µe) = 1 + 2.06µe for limb = −1 , (30)
f (µe) = ln (1 + µ−1

e ) for limb = −2 , (31)
f (µe) = µlimb

e for limb ̸= 0,−1,−2 . (32)

Eq. (29) corresponds to the isotropic local emission, Eq. (30) corresponds to limb darkening
in an optically thick electron scattering atmosphere (used by Laor [Laor et al., 1990, Laor,
1991,Phillips and Mészáros, 1986]), and Eq. (31) corresponds to limb brightening predicted
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Table 4. Parameters of the non-axisymmetric Gaussian line model KYG1LINE. Model parameters that
are not common for all non-axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
phi deg 0. -180. 180.
dphi deg 360. 0. 360.
nrad – 200. 1. 10000.
division – 1. 0. 1.
nphi – 180. 1. 20000.
smooth – 1. 0. 1.
zshift – 0. -0.999 10.
ntable – 0. 0. 99.

*Erest keV 6.4 1. 99.
*sigma eV 2. 0.01 1000.
*alpha – 3. -20. 20.
*beta – 4. -20. 20.
*rb rms 0. 0. 160.
*jump – 1. 0. 1e6
*limb – -1. -10. 10.
Stokes – 0. 0. 6.

by some models of a fluorescent line emitted by an accretion disc due to X-ray illumination
[Ghisellini et al., 1994, Haardt, 1993].

There is also a similar model KYG2LINE present among the new XSPEC models, which
is useful when fitting two general relativistic lines simultaneously. The parameters are the
same as in the KYG1LINE model except that there are two sets of those parameters describing
the local Gaussian line emission. There is one more parameter present, ratio21, which
is the ratio of the maximum of the second local line to the maximum of the first local line.
Polarisation computations are not included in this model.

6.2 Axisymmetric Gaussian line model KYGLINE

This model uses Eq. (15) for computing the disc emission with local flux being

Nl(El) = δ(El − Erest) , (33)
R(r) = r−alpha . (34)

The function dF(ḡ) ≡ dḡ F(ḡ) in (16) was pre-calculated for three different limb darken-
ing/brightening laws (29)–(31) and stored in corresponding FITS files KBHline00.fits
to KBHline02.fits. The local emission is a delta function with its maximum depending
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Table 5. Parameters of the axisymmetric Gaussian line model KYGLINE. Model parameters that are
not common for all axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
zshift – 0. -0.999 10.
ntable – 1. 0. 99.

*Erest keV 6.4 1. 99.
*alpha – 3. -20. 20.

on the radius as a power law with index alpha and also depending on the local emission
angle. The normalisation constant N0 in (15) is such that the total integrated flux of the line
is unity.

There are less parameters defining the line in this model than in the previous one (see
Table 5):

Erest – rest energy of the line in keV,
alpha – radial power-law index.

Note that the limb darkening/brightening law can be chosen by means of the ntable
switch.

This model is much faster than the non-axisymmetric KYG1LINE model. Although it is not
possible to change the resolution grid on the disc, it is hardly needed because the resolution
is set to be very large, corresponding to nrad = 500, division = 1 and nphi = 20 000
in the KYG1LINE model, which is more than sufficient in most cases. (These values apply
if the maximum range of radii is selected, i.e., rin=0, ms=0 and rout=999; in case of a
smaller range the number of points decreases accordingly.) This means that the resolution
of the KYG1LINE model is much higher than what can be achieved with the laor model,
and the performance is still very good.

6.3 Non-axisymmetric fluorescent lamp-post line model KYF1LL

The line in this model is induced by the illumination of the disc from the primary power-law
source located on the axis at height above the black hole. This model computes the final
spectrum according to Eq. (11) with the local photon flux

Nl(El) = gPhoIndex−1
L

sin θLdθL

r dr

√

1 − 2height
height2 + a2 f (µi, µe)

× exp

[
−
(

1000
El − Erest√

2sigma

)2
]
. (35)
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Table 6. Parameters of the fluorescent lamp-post line model KYF1LL. Model parameters that are not
common for all non-axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
phi deg 0. -180. 180.
dphi deg 360. 0. 360.
nrad – 200. 1. 10000.
division – 1. 0. 1.
nphi – 180. 1. 20000.
smooth – 1. 0. 1.
zshift – 0. -0.999 10.
ntable – 0. 0. 99.

*PhoIndex – 2. 1.5 3.
*height GM/c2 3. -20. 100.
*Erest keV 6.4 1. 99.
*sigma eV 2. 0.01 1000.
Stokes – 0. 0. 6.

Here, gL is ratio of the energy of a photon received by the accretion disc to the energy
of the same photon when emitted from a source on the axis, θL is an angle under which
the photon is emitted from the source (measured in the local frame of the source) and
µi ≡ cos δi is the cosine of the incident angle (measured in the local frame of the disc) –
see Fig. 5. All of these functions depend on height above the black hole at which the
source is located and on the rotational parameter a/M of the black hole. Values of gL, θL
and µi for a given height and rotation are read from the lamp-post tables lamp.fits (see
Appendix A3.3). At present, only tables for a/M = 0.9987492 (i.e., for the horizon of the
black hole rh = 1.05) and height = 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30, 50, 75 and 100
are included in lamp.fits, therefore, the a/M parameter is used only for the negative
values of height (see below).

The factor in front of the function f (µi, µe) gives the radial dependence of the disc
emissivity, which is different from the assumed broken power law in the KYG1LINE model.
For the derivation of this factor, which characterises the illumination from a primary source
on the axis see Appendix A2.

The function f (µi, µe) is a coefficient of reflection. It depends on the incident and
reflection angles. Although the normalisation of this function also depends on the photon
index of the power-law emission from a primary source, we do not need to take this into
account because the final spectrum is always normalised to unity. Values of this function
are read from a pre-calculated table which is stored in fluorescent line.fits file
(see [Matt et al., 1991] and Appendix A3.4).
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Figure 5. Reflection models: (a) lamp-post model; (b) diffuse corona model.

The local emission (35) is defined in nine points of local energy E l that are equally spaced
with the central point at its maximum. The normalisation constant N0 in the formula (11) is
such that the total integrated flux of the line is unity. The parameters defining local emission
in this model are (see Table 6):

PhoIndex – photon index of primary power-law illumination,
height – height above the black hole where the primary source is located for height >
0, and radial power-law index for height ≤ 0,
Erest – rest energy of the line in keV,
sigma – width of the line in eV.

If positive, the height parameter works as a switch – the exact value present in the
tables lamp.fits must be chosen. If the height parameter is negative, then this model
assumes that the local emission is the same as in the KYG1LINE model with the parameters
alpha = −height, rb = 0 and limb = −2 (PhoIndex parameter is unused in this
case).

7 COMPTON REFLECTION MODELS

We have developed two new relativistic continuum models – lamp-post Compton reflection
model KYL1CR and the KYH1REFL model which is a relativistically blurred HREFL model
that is already present in XSPEC. Both of these models are non-axisymmetric.

7.1 Non-axisymmetric lamp-post Compton reflection model KYL1CR

The emission in this model is induced by the illumination of the disc from the primary
power-law source located on the axis at height above the black hole. As in every non-
axisymmetric model the observed spectrum is computed according to Eq. (11). The local
emission is

Nl(El) = gPhoIndex−1
L

sin θLdθL

r dr

√

1 − 2height
height2 + (a/M)2 f (El; µi, µe) (36)

for height > 0,
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Nl(El) = rheight f̄ (El; µe) (37)

for height ≤ 0. For the definition of gL, θL and µi see Section 6.3 and Appendix A3.3,
where pre-calculated tables of these functions in lamp.fits are described.

The function f (El; µi, µe) gives dependence of the locally emitted spectrum on the angle
of incidence and the angle of emission, assuming a power-law illumination. This function
depends on the photon index PhoIndex of the power-law emission from a primary source.
Values of this function for various photon indices of primary emission are read from the
pre-calculated tables stored in refspectra.fits (see Appendix A3.5). These tables
were calculated by the Monte Carlo simulations of Compton scattering [Matt et al., 1991].
At present, tables for PhoIndex = 1.5, 1.6, . . . , 2.9, 3.0 and for local energies in the
range from 2 keV to 300 keV are available. The normalisation constant N0 in Eq. (11) is
such that the final photon flux at an energy of 3 keV is equal to unity, which is different from
what is usual for continuum models in XSPEC (where the photon flux is unity at 1 keV). The
choice adopted is due to the fact that current tables in refspectra.fits do not extend
below 2 keV.

The function f̄ (El; µe), which is used for negative height, is an averaged function
f (El; µi, µe) over µi

f̄ (El; µe) ≡
∫ 1

0
dµi f (El; µi, µe) . (38)

The local emission (37) can be interpreted as emission induced by illumination from clouds
localised near above the disc rather than from a primary source on the axis (see Fig. 5). In
this case photons strike the disc from all directions.

For positive values of height the KYL1CR model includes a physical model of polari-
sation based on Rayleigh scattering in single scattering approximation. The specific local
Stokes parameters describing local polarisation of light are

il(El) = Il + Ir

⟨Il + Ir⟩
Nl(El) , (39)

ql(El) = Il − Ir

⟨Il + Ir⟩
Nl(El) , (40)

ul(El) = U
⟨Il + Ir⟩

Nl(El) , (41)

vl(El) = 0 , (42)

where functions Il, Ir and U determine the angular dependence of the Stokes parameters in
the following way

Il = µ2
e(1 + µ2

i ) + 2(1 − µ2
e)(1 − µ2

i ) − 4µeµi

√
(1 − µ2

e)(1 − µ2
i ) cos (Φe −Φi)

−µ2
e(1 − µ2

i ) cos 2(Φe −Φi) , (43)
Ir = 1 + µ2

i + (1 − µ2
i ) cos 2(Φe − Φi) , (44)

U = −4µi

√
(1 − µ2

e)(1 − µ2
i ) sin (Φe −Φi) − 2µe(1 − µ2

i ) sin 2(Φe −Φi) , (45)
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Table 7. Parameters of the lamp-post Compton reflection model KYL1CR. Model parameters that are
not common for all non-axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
phi deg 0. -180. 180.
dphi deg 360. 0. 360.
nrad – 200. 1. 10000.
division – 1. 0. 1.
nphi – 180. 1. 20000.
smooth – 1. 0. 1.
zshift – 0. -0.999 10.
ntable – 0. 0. 99.

*PhoIndex – 2. 1.5 3.
*height GM/c2 3. -20. 100.
*line – 0. 0. 1.
*E cut keV 300. 1. 1000.
Stokes – 0. 0. 6.

Here Φe and Φi are the azimuthal emission and the incident angles in the local rest frame
co-moving with the accretion disc (see Appendixes A1 and A2 for their definition). For the
derivation of these formulae see the definitions (I.147) and eqs. (X.172) in [Chandrasekhar,
1960]. We have omitted a common multiplication factor, which would be cancelled anyway
in eqs. (39)–(42). The symbol ⟨ ⟩ in definitions of the local Stokes parameters means value
averaged over the difference of the azimuthal anglesΦe −Φi. We divide the parameters by
⟨Il + Ir⟩ because the function f (El; µi, µe), and thus also the local photon flux Nl(El), is
averaged over the difference of the azimuthal angles.

The parameters defining local emission in this model are (see Table 7):

PhoIndex – photon index of primary power-law illumination,
height – height above the black hole where the primary source is located for height >

0, and radial power-law index for height ≤ 0,
line – switch whether to include the iron lines (0 – no, 1 – yes),
E cut – exponential cut-off energy of the primary source in keV.

Tablesrefspectra.fits for the function f (El; µi, µe) also contain the emission in the
iron lines Kα and Kβ. The two lines can be excluded from computations if the line switch
is set to zero. The E cut parameter sets the upper boundary in energies where the emission
from a primary source ceases to follow a power-law dependence. If the E cut parameter
is lower than both the maximum energy of the considered dataset and the maximum energy
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in the tables for f (El; µi, µe) in refspectra.fits (300 keV), then this model is not
valid.

7.2 Non-axisymmetric Compton reflection model KYH1REFL

This model is based on an existing multiplicative HREFL model in combination with the
POWERLAW model, both of which are present in XSPEC. Local emission in (11) is the same as
the spectrum given by the model HREFL*POWERLAW with the parameters thetamin = 0
and thetamax = 90 with a broken power-law radial dependence added:

Nl(El) = r−alpha HREFL*POWERLAW for r ≥ rb , (46)
Nl(El) = jump rbeta−alpha

b r−beta HREFL*POWERLAW for r < rb . (47)

For a definition of the boundary radius rb by the rb parameter see eqs. (27)–(28), and
for a detailed description of the HREFL model see [Dovčiak et al., 2004] and the XSPEC
manual. The KYH1REFL model can be interpreted as a Compton-reflection model for which
the source of primary irradiation is near above the disc, in contrast to the lamp-post scheme
with the source on the axis (see Fig. 5). The approximations for Compton reflection used in
HREFL (and therefore also in KYH1REFL) are valid below ∼ 15 keV in the disc rest-frame.
The normalisation of the final spectrum in this model is the same as in other continuum
models in XSPEC, i.e., photon flux is unity at the energy of 1 keV.

The parameters defining the local emission in KYH1REFL (see Table 8) are

PhoIndex – photon index of the primary power-law illumination,
alpha – radial power-law index for the outer region,
beta – radial power-law index for the inner region,
rb – parameter defining the border between regions with different power-law indices,
jump – ratio between flux in the inner and outer regions at the border radius,
Feabun – iron abundance relative to solar,
FeKedge – iron K-edge energy,
Escfrac – fraction of the direct flux from the power-law primary source seen by the
observer,
covfac – normalisation of the reflected continuum.

8 GENERAL RELATIVISTIC CONVOLUTION MODELS

We have also produced two convolution-type models, KY1CONV and KYCONV, which can
be applied to any existing XSPEC model for the intrinsic X-ray emission from a disc
around a Kerr black hole. We must stress that these models are substantially more pow-
erful than the usual convolution models in XSPEC (these are commonly defined in terms
of one-dimensional integration over energy bins). Despite the fact that our convolution
models still use the standard XSPEC syntax in evaluating the observed spectrum (e.g., KY-
CONV(POWERLAW)), our code accomplishes a more complex operation. It still performs
ray-tracing across the disc surface so that the intrinsic model contributions are integrated
from different radii and azimuths on the disc.

There are several restrictions that arise from the fact that we use existing XSPEC models:
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Table 8. Parameters of the reflection KYH1REFL model. Model parameters that are not common for
all non-axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
phi deg 0. -180. 180.
dphi deg 360. 0. 360.
nrad – 200. 1. 10000.
division – 1. 0. 1.
nphi – 180. 1. 20000.
smooth – 1. 0. 1.
zshift – 0. -0.999 10.
ntable – 0. 0. 99.

*PhoIndex – 1. 0. 10.
*alpha – 3. -20. 20.
*beta – 4. -20. 20.
*rb rms 0. 0. 160.
*jump – 1. 0. 1e6
*Feabun – 1. 0. 200.
*FeKedge keV 7.11 7.0 10.
*Escfrac – 1. 0. 1000.
*covfac – 1. 0. 1000.
Stokes – 0. 0. 6.

• by local XSPEC models only the energy dependence of the photon flux can be defined,
• only a certain type of radial dependence of the local photon flux can be imposed – we
have chosen to use a broken power-law radial dependence,
• there is no azimuthal dependence of the local photon flux, except through limb darkening
law,
• local flux depends on the binning of the data because it is defined in the centre of each
bin, a large number of bins is needed for highly varying local flux.

For emissivities that cannot be defined by existing XSPEC models, or where the limitations
mentioned above are too restrictive, one has to add a new user-defined model to XSPEC
(by adding a new subroutine to XSPEC). This method is more flexible and faster than
convolution models (especially when compared with the non-axisymmetric one), and hence
it is recommended even for cases when these prefabricated models could be used. In any
new model for XSPEC one can use the common ray-tracing driver for relativistic smearing
of the local emission: ide for non-axisymmetric models and idre for axisymmetric ones.
For a detailed description see Appendixes A4.1 and A4.2.
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8.1 Non-axisymmetric convolution model KYC1ONV

The local emission in this model is computed according to Eq. (11) with the local emissivity
equal to

Nl(El) = r−alpha f (µe) MODEL for r > rb , (48)
Nl(El) = jump rbeta−alpha

b r−beta f (µe) MODEL for r ≤ rb . (49)

For a definition of the boundary radius rb by the rb parameter see eqs. (27)–(28) and for
definition of different limb darkening laws f (µe) see eqs. (29)–(32). The local emission is
given by the MODEL in the centre of energy bins used in XSPEC with the broken power-law
radial dependence and limb darkening law added. Apart from the parameters of the MODEL,
the local emission is defined also by the following parameters (see Table 9):

normal – switch for the normalisation of the final spectrum,
= 0 – total flux is unity (used usually for the line),
> 0 – flux is unity at the energy = normal keV (used usually for the continuum),
< 0 – flux is not normalised,
ne loc – number of points in the energy grid where the local photon flux is defined,
alpha – radial power-law index for the outer region,
beta – radial power-law index for the inner region,
rb – parameter defining the border between regions with different power-law indices,
jump – ratio between the flux in the inner and outer regions at the border radius,
limb – switch for different limb darkening/brightening laws.

The local emission in each KY model has to be defined either on equidistant or exponential
(i.e., equidistant in logarithmic scale) energy grid. Because the energy grid used in the
convolution model depends on the binning of the data, which may be arbitrary, the flux
has to be rebinned. It is always rebinned into an exponentially spaced energy grid in KY
convolution models. The ne loc parameter defines the number of points in which the
rebinned flux will be defined.

8.2 Axisymmetric convolution model KYCONV

The local emission in this model is computed according to Eq. (15) with the local emissivity
equal to

Nl(El) = MODEL , (50)
R(r) = r−alpha . (51)

(52)

Except for the parameters of the MODEL, the local emission is defined also by the following
parameters (see Table 10):

alpha – radial power-law index,
ne loc – number of points in energy grid where the local photon flux is defined,
normal – switch for the normalisation of the final spectrum,
= 0 – total flux is unity (used usually for the line),



54 M. Dovčiak et al.

Table 9. Parameters of the non-axisymmetric convolution model KYC1ONV. Model parameters that
are not common for all non-axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
phi deg 0. -180. 180.
dphi deg 360. 0. 360.
nrad – 200. 1. 10000.
division – 1. 0. 1.
nphi – 180. 1. 20000.
smooth – 1. 0. 1.

*normal – 1. -1. 100.
zshift – 0. -0.999 10.
ntable – 0. 0. 99.

*ne loc – 100. 3. 5000.
*alpha – 3. -20. 20.
*beta – 4. -20. 20.
*rb rms 0. 0. 160.
*jump – 1. 0. 1e6
*limb – 0. -10. 10.
Stokes – 0. 0. 6.

> 0 – flux is unity at the energy = normal keV (used usually for the continuum),
< 0 – flux is not normalised.

Note that the limb darkening/brightening law can be chosen through the ntable switch.
This model is much faster than the non-axisymmetric convolution model KYC1ONV.

9 EXAMPLES AND COMPARISONS

In our new models we have concentrated ourselves mainly on two components that con-
tribute to the X-ray spectra of active galactic nuclei and X-ray binaries with black-hole
candidates – spectral line emission and its relativistic broadening, and the Compton re-
flection from an illuminated disc. Two basic types of illumination have been considered –
the disc illuminated either from every direction by a nearby diffuse corona above the disc,
or from a particular direction by a small source placed on the axis above the black hole
(see Fig. 5). The illumination in the former case decreases with radius as a power law.
Hence, this model is characterised by the radial power-law index α. On the other hand, the
illumination anisotropy in the latter (lamp-post) model depends mainly on the position of
a primary source of emission characterised by height h where it is located. In both cases
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Table 10. Parameters of the axisymmetric convolution model KYCONV. Model parameters that are
not common for all axisymmetric models are denoted by asterisk.

Parameter Unit Default value Minimum value Maximum value

a/M GM/c 0.9982 0. 1.
theta o deg 30. 0. 89.
rin-rh GM/c2 0. 0. 999.
ms – 1. 0. 1.
rout-rh GM/c2 400. 0. 999.
zshift – 0. -0.999 10.
ntable – 0. 0. 99.

*alpha – 3. -20. 20.
*ne loc – 100. 3. 5000.
*normal – 1. -1. 100.

it is assumed that the primary emission has a continuum power-law shape which can be
characterised by a photon index Γ (PhoIndex).

The emission from the disc depends on quite a number of parameters. It is influenced by
the mass M and the rotation a of the central black hole, by the area from which the emission
from disc comes (defined by inner radius rin, outer radius rout and azimuthal segment with
boundaries at ϕ and ϕ + ∆ϕ), by the inclination θo of the observer, by the radial power-
law index α, by the photon index Γ and by the position h of a primary source. Limb
darkening/brightening law (dependence on the local emission angle) is another important
factor that determines the final spectrum we observe.

Here, we will show several examples of emission for the lamp-post fluorescent line model
and for the reflection models. For other examples and comparisons, see the accompanying
paper (Dovčiak, Karas & Yaqoob [Dovčiak et al., 2004]). In all figures in this section, we
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Figure 6. An example of a line profile originating from a disc in equatorial plane of a Kerr black hole
(a = 0.9987 G M/c2, i.e., rh = 1.05 G M/c2) due to the illumination from a primary source on the
axis. The KYF1LL model was used. Left: Dependence of the line profile on the height (in G M/c2)
of a primary source with photon index Γ = 2. Right: Dependence of the line profile on the photon
index of the primary emission with a source at height 3 G M/c2 above the black hole.



56 M. Dovčiak et al.

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

 2  4  6  8  10  12  14

Fl
ux

 [p
ho

to
ns

/s
/c

m
2 /k

eV
]

Energy [keV]

kyhrefl
hrefl(powerlaw)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 2  4  6  8  10  12  14

Fl
ux

 [p
ho

to
ns

/s
/c

m
2 /k

eV
]

Energy [keV]

kyhrefl
hrefl(powerlaw)

Figure 7. Comparison of the general relativistic KYH1REFL model with non-relativistic HREFL(POWER-
LAW). The relativistic blurring of the iron edge is clearly visible. The power-law index of the primary
source is PhoIndex=2 (left) and PhoIndex=2.6 (right).
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Figure 8. General relativistic lamp-post Compton reflection model KYL1CR with (dashed) and without
(solid) iron lines Kα and Kβ. The emission from the disc is induced by illumination from a primary
source placed 2 G M/c2 (left) and 100 G M/c2 (right) above the black hole.

assumed the inclination angle θo = 30◦, the rotational parameter a = 0.9987 GM/c2, and
an emitting ring extending from rin = rms to rout = 400 GM/c2.

In Fig. 6 we demonstrate that the broad iron emission lines due to illumination from the
source placed on the axis depend heavily on the height where the “lamp” is located (left),
as well as on the photon index of the primary emission (right). It can be seen that the
intrinsic width of the line (2 eV in this example) is much less than its subsequent relativistic
broadening, and the local profile (assumed to be Gaussian) is thus smeared in the final
spectrum. These graphs correspond to the iron Kα line with the rest energy of 6.4 keV.

Relativistic effects are demonstrated also in Fig. 7 where the non-relativistic reflection
model HREFL(POWERLAW) is compared with our relativistic KYH1REFL. Blurring of the iron
edge is clearly visible. Here, we set the radial power-law index α = 1 in KYH1REFL. Other
parameters defining these models were set to their default values.

Examples of the Compton reflection emission component of the spectra with and without
the fluorescent Kα and Kβ lines are shown in Fig. 8. It can be seen that originally narrow
lines can contribute substantially to the continuum component.
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Figure 9. Comparison of the two new general relativistic Compton reflection models KYL1CR and
KYH1REFL. The lamp-post KYL1CR model is characterised by the height h above the disc where a
primary source of emission is placed, the reflection KYH1REFL model is characterised by the radial
power-law index α. Left: h = 2 G M/c2, α = 3.4 . Right: h = 100 G M/c2, α = 1.5 .

We compare the two new relativistic reflection models KYL1CR and KYH1REFL in Fig. 9.
Note that the KYL1CR model is valid only above approximately 2 keV and the KYH1REFL
model only below approximately 15 keV.

10 CONCLUSIONS

In this paper we described the main features of the newly developed set of routines.
We have concentrated ourselves on various technical issues connected with fitting X-ray
spectra using our model. In particular, we described several variants of the code which are
suited for modelling relativistic spectral components originating in a Keplerian disc near a
rotating black hole. Both axially symmetric and non-axisymmetric models were discussed.
For further details and for exemplary analysis of XMM-Newton satellite data we refer to
Dovčiak et al. [Dovčiak et al., 2004].

Our package offers a number of applications which could not be examined in the limited
space of the present paper. In particular, timing analysis can be performed with the code,
but we defer detailed description of this capability to subsequent papers. Also, we have
only briefly touched the possibility of polarimetric analysis, which offers great possibilities
for future X-ray spectroscopy but goes beyond routine capabilities of devices installed
onboard present day satellites. Additional emissivity laws can be easily adopted. This can
be achieved either by using the convolution component or by adding a new user-defined
model. The latter method is more flexible and faster, and hence recommended. In both
approaches, the ray-tracing routine is linked and used for relativistic blurring.

As general motivation for developing this project further, we remind the reader that
various disc-like structures are almost ubiquitous in objects where the fluid orbits around
and inflows onto a compact body. The central mass, M•, can vary by many orders of
magnitude in different objects, and its value provides the basic classification for black-hole
sources. Physical characteristics of accretion discs also scale roughly with M•. Indeed,
accretion discs around supermassive black holes in active galactic nuclei and quasars share
some properties with circumstellar discs in close binary systems, e.g., cataclysmic variable
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stars and microquasars. However, there are important distinctions between the two kinds
of objects which prohibit any simple scaling (for example, galactic nuclear discs tend to
be colder and less dense compared to circumstellar discs). In both cases there is strong
evidence suggesting that some spectral components (namely, the iron Kα line emission)
originate, at least in part, within ∼ 10 gravitational radii of a central black-hole.

The central compact body governs gravitational field in which the medium of an accretion
flow evolves. Since we consider a general relativistic description of the gravitational field,
the rotation of the central body should not be ignored. An angular momentum is actually
one of the model parameters which could in principle be measured by means of spectral
analysis of observed radiation.
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APPENDIX A: APPENDIX

A1 Summary of equations

Before writing equations for the transfer functions let us summarise basic formulae defining
the Kerr space-time, light geodesics and disc’s motion. We remind the reader that units
GM• = c = 1 are used (M• is the mass of the central black hole).

The Kerr metric in Boyer–Lindquist coordinates is

gµν =

⎛

⎜⎜⎜⎜⎜⎜⎝

−
(

1 − 2r
ρ2

)
0 0 − 2ar sin2θ

ρ2

0 ρ2

∆ 0 0

0 0 ρ2 0

− 2ar sin2θ
ρ2 0 0 A sin2θ

ρ2

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where ρ2 ≡ r2 +a2 cos2θ ,∆ ≡ r2 −2r +a2 and A ≡ (r2 +a2)2 −∆a2 sin2θ . We assume
0 ≤ a ≤ 1 everywhere in this paper.

The four-momentum of the photons emitted from the disc is (see e.g., [Carter, 1968]
and [Misner et al., 1973])

pt
e = [a(l − a) + (r 2 + a2)(r2 + a2 − al)/∆]/r2 , (A1)

pr
e = Rsgn{(r2 + a2 − al)2 −∆[(l − a)2 + q2]}1/2/r2 , (A2)

pθ
e = −q/r2 , (A3)
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pϕ
e = [l − a + a(r 2 + a2 − al)/∆]/r2 . (A4)

Here l = α sin θo and q2 = β2 + cos2(α2 − a2) are constants of motion with α and β being
impact parameters measured perpendicular and parallel, respectively, to the spin axis of the
black hole projected onto the observer’s sky. Here we define α to be positive when photon
travels in the direction of the four-vector ∂

∂ϕ at infinity, and β to be positive if it travels in
the direction of − ∂

∂θ at infinity. Furthermore, we have denoted sign of the radial component
of the momentum by Rsgn. We have chosen an affine parameter along light geodesics in
such a way that the conserved energy is normalised to −pe t = −po t = 1.

The Keplerian velocity of the co-rotating disc above the marginally stable orbit is

U t = r2 + a
√

r

r
√

r2 − 3r + 2a
√

r
, (A5)

U r = 0 , (A6)
U θ = 0 , (A7)

Uϕ = 1
√

r(r2 − 3r + 2a
√

r)
. (A8)

We assume that the matter in the disc below the marginally stable orbit conserves its
specific energy and its specific angular momentum, i.e., Ut (r < rms) = Ut (rms) and
Uϕ(r < rms) = Uϕ(rms). We get the radial component U r (r < rms) from the normalisation
of the four-velocity, Uµ Uµ = −1, and from the fact that the disc rotates in the equatorial
plane even below the marginally stable orbit, i.e., U θ (r < rms) = 0.

In our calculations we use the following local orthonormal tetrad connected with the
matter in the disc

e(t) µ = Uµ , (A9)

e(r) µ =
( √grr U r Ut√

1 + U r Ur
,
√

grr (1 + U r Ur ), 0,

√grr U r Uϕ√
1 + U r Ur

)
, (A10)

e(θ) µ = (0, 0,
√

gθθ , 0) , (A11)

e(ϕ) µ =
(

−
√
∆Uϕ

√
1 + U r Ur

, 0, 0,

√
∆U t

√
1 + U rUr

)

. (A12)

The gravitational and Doppler shift (g-factor) is defined as the ratio of the energy of a
photon received by an observer at infinity to the local energy of the same photon when
emitted from an accretion disc

g = νo

νe
= po t

pe µ Uµ
= − 1

pe µ Uµ
. (A13)

Here νo and νe denote frequency of the observed and emitted photons, respectively.
We define lensing as the ratio of the area at infinity perpendicular to the light rays

through which photons come to the proper area on the disc perpendicular to the light rays
and corresponding to the same flux tube

dSf

dS⊥
= 1
√

∥Ye1∥2∥Ye2∥2− < Ye1, Ye2 >2
. (A14)
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The four-vectors Ye1 and Ye2 are transported along the geodesic according to the equation
of the geodesic deviation from infinity where they are unit, space-like and perpendicular to
each other and to the four-momentum of light. In (A14) we have denoted the magnitude of
a four-vector by ∥ ∥ and the scalar product of two four-vectors by < , >.

The cosine of the local emission angle is

µe = cos δe = − pe α nα

pe µ Uµ
, (A15)

where nα = −eα
(θ) is the normal to the disc with respect to the observer co-moving with the

matter in the disc.
The relative time delay ∆t is the Boyer–Lindquist time which elapses between the

emission of a photon from the disc and its reception by an observer (plus a certain constant
so that the delay is finite close to the black hole). We have integrated the equation of the
geodesics in Kerr ingoing coordinates and thus we have calculated the delay in the Kerr
ingoing time coordinate ∆tK. The Boyer–Lindquist time coordinate can be obtained from
the Kerr ingoing one by the following equation

dt = dtK −
[

1 + 2r
(r − r+)(r − r−)

]
dr , (A16)

with r± = 1 ±
√

1 − a2. Then we define the delay as

∆t = ∆tK −
[

r + 2
r+ − r−

ln
r − r+
r − r−

+ ln [(r − r+)(r − r−)]
]

for a < 1 , (A17)

∆t = ∆tK −
[

r − 2
r − 1

+ 2 ln (r − 1)

]
for a = 1 . (A18)

There is a minus in front of the brackets because the direction of integration is from infinity
(represented by ro = 1011 in our computations) to the disc.

The change of the polarisation angle is (see [Connors and Stark, 1977], [Connors et al.,
1980])

tanΨ = Y
X

, (A19)

where

X = −(α − a sin θo)κ1 − βκ2 , (A20)
Y = (α − a sin θo)κ2 − βκ1 , (A21)

(A22)

with κ1 and κ2 being components of the complex constant of motion κpw (see [Walker and
Penrose, 1970])

κ1 = ar pθ
e f t − r [a pt

e − (r2 + a2) pϕ
e ] f θ − r(r2 + a2) pθ

e f ϕ , (A23)
κ2 = −r pr

e f t + r [pt
e − a pϕ

e ] f r + ar pr
e f ϕ . (A24)

Here the polarisation vector f µ is a four-vector corresponding to the three-vector f1 from
Fig. 3 which is chosen in such a way that it is a unit vector parallel with n′

1 (i.e., Ψ1 = 0)
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f µ = nµ − µe
(
g pµ

e − Uµ
)

√
1 − µ2

e
. (A25)

We define the azimuthal emission angle as the angle between the projection of the three-
momentum of the emitted photon into the disc (in the local rest frame co-moving with the
disc) and the radial tetrad vector:

Φe = −Re
sgn arccos

(
g pe α eα

(ϕ)√
1 − µ2

e

)

+ π

2
, (A26)

where Re
sgn is positive if the emitted photon travels outwards (p(r)

e > 0) and negative if it
travels inwards (p(r)

e < 0) in the local rest frame of the disc.
We conclude this section by the relationship between the Boyer–Lindquist coordinate

ϕ and the Kerr ingoing coordinate ϕK, which we use when we interpolate between the
pre-calculated tables

ϕ = ϕK + a
r+ − r−

ln
r − r+
r − r−

for a < 1 , (A27)

ϕ = ϕK − 1
r − 1

for a = 1 . (A28)

A2 Local emission in lamp-post models

The local emission from a disc is proportional to the incident illumination from a power-law
primary source placed on the axis at height h above the black hole. To calculate the incident
illumination we need to integrate the geodesics from the source to the disc.

The four-momentum of the incident photons which were emitted by a primary source
and which are striking the disc at radius r is (see e.g., [Carter, 1968] and [Misner et al.,
1973])

pt
i = 1 + 2/r + 4/∆ , (A29)

pr
i = R′

sgn[(r2 + a2)2 −∆(a2 + q2
L)]1/2/r2 , (A30)

pθ
i = qL/r2 , (A31)

pϕ
i = 2a/(r∆) , (A32)

where q2
L = sin2θL (h2 + a2)2/∆L − a2 is Carter’s constant of motion with ∆L = h2 −

2h + a2, and with the angle of emission θL being the local angle under which the photon
is emitted from a primary source (it is measured in the rest frame of the source). We define
this angle by tan θL = −p(θ)

L /p(r)
L , where p(r)

L = pµ
L e(r)

L µ and p(θ)
L = pµ

L e(θ)
L µ with pµ

L and
e(a)

L µ being the four-momentum of emitted photons and the local tetrad connected with a
primary source, respectively. The angle is 0◦ when the photon is emitted downwards and
180◦ if the photon is emitted upwards.

We denoted the sign of the radial component of the momentum by R′
sgn. We have chosen

such an affine parameter for the light geodesic that the conserved energy of the light is
−pi t = −pL t = 1. The conserved angular momentum of incident photons is zero (lL = 0).

The gravitational and Doppler shift of the photons striking the disc which were emitted
by a primary source is
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gL = νi

νL
= pi µUµ

pL αUα
L

= − pi µUµ

U t
L

. (A33)

Here νi and νL denote the frequency of the incident and emitted photons, respectively
and Uα

L is a four-velocity of the primary source with the only non-zero component
U t

L =
√

(h2 + a2)/∆L.
The cosine of the local incident angle is

µi = | cos δi | = pi α nα

pi µ Uµ
, (A34)

where nα = −eα
(θ) is normal to the disc with respect to the observer co-moving with the

matter in the disc.
We further define the azimuthal incident angle as the angle between the projection of the

three-momentum of the incident photon into the disc (in the local rest frame co-moving
with the disc) and the radial tetrad vector,

Φi = −Ri
sgn arccos

(
−1

√
1 − µ2

i

pi α eα
(ϕ)

pi µUµ

)
+ π

2
, (A35)

where Ri
sgn is positive if the incident photon travels outwards (p(r)

i > 0) and negative if it
travels inwards (p(r)

i < 0) in the local rest frame of the disc.
In lamp-post models the emission of the disc will be proportional to the incident radiation

N S
i (El) which comes from a primary source

N S
i (El) = NΩ

L (EL)
dΩL

dSl
. (A36)

Here NΩ
L (EL) = N0L E−Γ

L is an isotropic and stationary power-law emission from a
primary source which is emitted into a solid angle dΩL and which illuminates local area
dSl on the disc. The energy of the photon striking the disc (measured in the local frame
co-moving with the disc) will be redshifted

El = gL EL . (A37)

The ratio dΩL/dSl is

dΩL

dSl
= dΩL

dS
dS
dSl

= sin θLdθL dϕ
dr dϕ

dS
dSl

, (A38)

where (see eqs. (5) and (7))

dS = dr dϕ = |d2St
θ | = −gθθ pit

pθ
i

dS⊥ = gθθ

pθ
i

dS⊥ . (A39)

Here we used the same space-time slice as in the discussion above Eq. (4) and thus the
element d2Sαβ is defined as before, see Eq. (5). Note that here the area dS⊥ is defined by
the incident flux tube as opposed to dS⊥ in Eq. (8) where it was defined by the emitted flux
tube. The coordinate area dS corresponds to the proper area dS⊥ which is perpendicular to
the incident light ray (in the local rest frame co-moving with the disc). The corresponding
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proper area (measured in the same local frame) lying in the equatorial plane will be

dSl = |d2S(t)
(θ)| = |eµ

(t) e(θ) ν d2Sµν | = |g−1/2
θθ Uµ d2Sµθ | =

= −g−1/2
θθ

piµ Uµ

pθ
i

dS⊥ = g−1/2
θθ

U t
L

pθ
i

gL dS⊥ . (A40)

Here we have used Eq. (4) for the tetrad components of the element d2Sαβ , eqs. (6) and
(A33).

It follows from eqs. (A36)–(A40) that the incident radiation will be again a power law
with the same photon index Γ as in primary emission

N S
i (El) = N0i E−Γ

l , (A41)

with the normalisation factor

N0i = N0L gΓ −1
L

√
1 − 2h

h2 + a2
sin θL dθL

r dr
. (A42)

The emission of the disc due to illumination will be proportional to this factor.

A3 Description of FITS files

A3.1 Transfer functions in KBHtablesNN.fits

The transfer functions are stored in the file KBHtablesNN.fits as binary extensions
and parametrised by the value of the observer inclination angle θo and the horizon of the
black hole rh. We found parametrisation by rh more convenient than using the rotational
parameter a, although the latter choice may be more common. Each extension provides
values of a particular transfer function for different radii, which are given in terms of r −rh,
and for the Kerr ingoing axial coordinates ϕK. Values of the horizon rh, inclination θo,
radius r − rh and angle ϕK, at which the functions are evaluated, are defined as vectors at
the beginning of the FITS file.

The definition of the file KBHtablesNN.fits:

0. All of the extensions defined below are binary.
(i) The first extension contains six integers defining which of the functions is present in

the tables. The integers correspond to the delay, g-factor, cosine of the local emission angle,
lensing, change of the polarisation angle and azimuthal emission angle, respectively. Value
0 means that the function is not present in the tables, value 1 means it is.

(ii) The second extension contains a vector of the horizon values in GM/c2 (1.00 ≤
rh ≤ 2.00).

(iii) The third extension contains a vector of the values of the observer’s inclination
angle θo in degrees (0◦ ≤ θo ≤ 90◦, 0◦ – axis, 90◦ – equatorial plane).

(iv) The fourth extension contains a vector of the values of the radius relative to the
horizon r − rh in GM/c2.

(v) The fifth extension contains a vector of the values of the azimuthal angleϕK in radians
(0 ≤ ϕK ≤ 2π). Note that ϕK is a Kerr ingoing axial coordinate, not the Boyer–Lindquist
one!
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(vi) All the previous vectors have to have values sorted in an increasing order.
(vii) In the following extensions the transfer functions are defined, each extension is for

a particular value of rh and θo. The values of rh and θo are changing with each extension in
the following order:

rh[1] × θo[1],
rh[1] × θo[2],
rh[1] × θo[3],

. . .

. . .
rh[2] × θo[1],
rh[2] × θo[2],
rh[2] × θo[3],

. . .

. . .
(viii) Each of these extensions has the same number of columns (up to six). In each

column, a particular transfer function is stored – the delay, g-factor, cosine of the local
emission angle, lensing, change of the polarisation angle and azimuthal emission angle,
respectively. The order of the functions is important but some of the functions may be
missing as defined in the first extension (see 1. above). The functions are:

delay – the Boyer–Lindquist time in GM/c3 that elapses between the emission of a photon
from the disc and absorption of the photon by the observer’s eye at infinity plus a constant,

g-factor – the ratio of the energy of a photon received by the observer at infinity to the
local energy of the same photon when emitted from an accretion disc,

cosine of the emission angle – the cosine of the local emission angle between the emitted
light ray and local disc normal,

lensing – the ratio of the area at infinity perpendicular to the light rays through which pho-
tons come to the proper area on the disc perpendicular to the light rays and corresponding
to the same flux tube,

change of the polarisation angle in radians – if the light emitted from the disc is linearly
polarised then the direction of polarisation will be changed by this angle at infinity –
counter-clockwise if positive, clockwise if negative (we are looking towards the coming
emitted beam); on the disc we measure the angle of polarisation with respect to the “up”
direction perpendicular to the disc with respect to the local rest frame; at infinity we also
measure the angle of polarisation with respect to the “up” direction perpendicular to the
disc – the change of the polarisation angle is the difference between these two angles,

azimuthal emission angle in radians – the angle between the projection of the three-mo-
mentum of an emitted photon into the disc (in the local rest frame co-moving with the
disc) and the radial tetrad vector.

For mathematical formulae defining the functions see eqs. (A13), (A14)–(A15), (A17)–
(A19) and (A26) in Appendix A1.

(ix) Each row corresponds to a particular value of r − rh (see 4. above).
(x) Each element corresponding to a particular column and row is a vector. Each element

of this vector corresponds to a particular value of ϕK (see 5. above).
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We have pre-calculated three sets of tables – KBHtables00.fits, KBHtables50.
fits and KBHtables99.fits. All of these tables were computed for an accretion disc
near a Kerr black hole with no disc corona present. Therefore, ray-tracing in the vacuum
Kerr space-time could be used for calculating the transfer functions. When computing the
transfer functions, it was supposed that the matter in the disc rotates on stable circular (free)
orbits above the marginally stable orbit. The matter below this orbit is freely falling and
has the same energy and angular momentum as the matter which is on the marginally stable
orbit.

The observer is placed in the direction ϕ = π/2. The black hole rotates counter-
clockwise. All six functions are present in these tables.

Tables are calculated for these values of the black-hole horizon:
– KBHtables00.fits: 1.00, 1.05, 1.10, 1.15, . . . , 1.90, 1.95, 2.00 (21 elements),
– KBHtables50.fits: 1.00, 1.10, 1.20, . . . , 1.90, 2.00 (11 elements),
– KBHtables99.fits: 1.05 (1 element),
and for these values of the observer’s inclination:
– KBHtables00.fits: 0.1, 1, 5, 10, 15, 20, . . . , 80, 85, 89 (20 elements),
– KBHtables50.fits: 0.1, 1, 10, 20, . . . , 80, 89 (11 elements),
– KBHtables99.fits: 0.1, 1, 5, 10, 15, 20, . . . , 80, 85, 89 (20 elements).

The radii and azimuths at which the functions are evaluated are same for all three tables:
– radii r − rh are exponentially increasing from 0 to 999 (150 elements),
– values of the azimuthal angle ϕK are equidistantly spread from 0 to 2π radians with a
much denser cover “behind” the black hole, i.e., near ϕK = 1.5π (because some of the
functions are changing heavily in this area for higher inclination angles, θo > 70◦) (200
elements).

A3.2 Tables in KBHlineNN.fits

Pre-calculated functions dF(g) ≡ dg F(g) defined in Eq. (16) are stored in FITS files
KBHlineNN.fits. These functions are used by all axisymmetric models. They are stored
as binary extensions and they are parametrised by the value of the observer inclination angle
θo and the horizon of the black hole rh. Each extension provides values for different radii,
which are given in terms of r − rh, and for different g-factors. Values of the g-factor, radius
r − rh, horizon rh, and inclination θo, at which the functions are evaluated, are defined as
vectors at the beginning of the FITS file.

The definition of the file KBHlineNN.fits:

0. All of the extensions defined below are binary.
(i) The first extension contains one row with three columns that define bins in the

g-factor:
– integer in the first column defines the width of the bins (0 – constant, 1 – exponentially
growing),
– real number in the second column defines the lower boundary of the first bin (minimum
of the g-factor),
– real number in the third column defines the upper boundary of the last bin (maximum
of the g-factor).
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(ii) The second extension a contains vector of the values of the radius relative to the
horizon r − rh in GM/c2.

(iii) The third extension contains a vector of the horizon values in GM/c2 (1.00 ≤ rh ≤
2.00).

(iv) The fourth extension contains a vector of the values of the observer’s inclination
angle θo in degrees (0◦ ≤ θo ≤ 90◦, 0◦ – axis, 90◦ – equatorial plane).

(v) All the previous vectors have to have values sorted in an increasing order.
(vi) In the following extensions the functions dF(g) are defined, each extension is for

a particular value of rh and θo. The values of rh and θo are changing with each extension
in the same order as in tables in the KBHtablesNN.fits file (see the previous section,
point 7.). Each extension has one column.

(vii) Each row corresponds to a particular value of r − rh (see 2. above).
(viii) Each element corresponding to a particular column and row is a vector. Each

element of this vector corresponds to a value of the function for a particular bin in the
g-factor. This bin can be calculated from number of elements of the vector and data from
the first extension (see 1. above).

We have pre-calculated several sets of tables for different limb darkening/brightening
laws and with different resolutions. All of them were calculated from tables in the files
KBHtables00.fits (see the previous section for details) and therefore these tables are
calculated for the same values of the black-hole horizon and observer’s inclination. All
of these tables have equidistant bins in the g-factor which fall in the interval ⟨0.001, 1.7⟩.
Several sets of tables are available:
– KBHline00.fits for isotropic emission, see Eq. (29),
– KBHline01.fits for Laor’s limb darkening, see Eq. (30),
– KBHline02.fits for Haardt’s limb brightening, see Eq. (31).
All of these tables have 300 bins in the g-factor and 500 values of the radius r − rh which
are exponentially increasing from 0 to 999. We have produced also tables with a lower
resolution – KBHline50.fits, KBHline51.fits and KBHline52.fitswith 200
bins in the g-factor and 300 values of the radius.

A3.3 Lamp-post tables in lamp.fits

This file contains pre-calculated values of the functions needed for the lamp-post model.
It is supposed that a primary source of emission is placed on the axis at a height h above
the Kerr black hole. The matter in the disc rotates on stable circular (free) orbits above the
marginally stable orbit and it is freely falling below this orbit where it has the same energy
and angular momentum as the matter which is on the marginally stable orbit. It is assumed
that the corona between the source and the disc is optically thin, therefore ray-tracing in the
vacuum Kerr space-time could be used for computing the functions.

There are five functions stored in the lamp.fits file as binary extensions. They are
parametrised by the value of the horizon of the black hole rh, and height h, which are
defined as vectors at the beginning of the FITS file. Currently only tables for rh = 1.05
(i.e., a .= 0.9987492) and h = 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 30, 50, 75 and 100 are
available. The functions included are:
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– angle of emission in degrees – the angle under which a photon is emitted from a primary
source placed at a height h on the axis above the black hole measured by a local stationary
observer (0◦ – a photon is emitted downwards, 180◦ – a photon is emitted upwards),
– radius – the radius in GM/c2 at which a photon strikes the disc,
– g-factor – the ratio of the energy of a photon hitting the disc to the energy of the same
photon when emitted from a primary source,
– cosine of the incident angle – an absolute value of the cosine of the local incident angle
between the incident light ray and local disc normal,
– azimuthal incident angle in radians – the angle between the projection of the three-
momentum of the incident photon into the disc (in the local rest frame co-moving with
the disc) and the radial tetrad vector.
For mathematical formulae defining the functions see eqs. (A33)–(A35) in Appendix A2.

The definition of the file lamp.fits:

0. All of the extensions defined below are binary.
(i) The first extension contains a vector of the horizon values in GM/c2, though currently

only FITS files with tables for one value of the black-hole horizon are accepted (1.00 ≤
rh ≤ 2.00).

(ii) The second extension contains a vector of the values of heights h of a primary source
in GM/c2.

(iii) In the following extensions the functions are defined. Each extension is for a par-
ticular value of rh and h. The values of rh and h are changing with each extension in the
following order:

rh[1] × h[1],
rh[1] × h[2],
rh[1] × h[3],

. . .
rh[2] × h[1],
rh[2] × h[2],
rh[2] × h[3],

. . .
(iv) Each of these extensions has five columns. In each column, a particular function

is stored – the angle of emission, radius, g-factor, cosine of the local incident angle and
azimuthal incident angle, respectively. Extensions may have a different number of rows.

A3.4 Coefficient of reflection in fluorescent line.fits

Values of the coefficient of reflection f (µi, µe) for a fluorescent line are stored for different
incident and reflection angles in this file. For details on the model of scattering used for
computations see [Matt et al., 1991]. It is assumed that the incident radiation is a power law
with the photon index Γ = 1.7. The coefficient does not change its angular dependences
for other photon indices, only its normalisation changes (see Fig. 14 in [George and Fabian,
1991]). The FITS file consists of three binary extensions:
– the first extension contains absolute values of the cosine of incident angles,
– the second extension contains values of the cosine of reflection angles,
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– the third extension contains one column with vector elements, here values of the coeffi-
cient of reflection are stored for different incident angles (rows) and for different reflection
angles (elements of a vector).

A3.5 Tables in refspectra.fits

The function f (El; µi, µe) which gives dependence of a locally emitted spectrum on the
angle of incidence and angle of emission is stored in this FITS file. The emission is induced
by a power-law incident radiation. Values of this function were computed by the Monte
Carlo simulations of Compton scattering, for details see [Matt et al., 1991]. The reflected
radiation depends on the photon index Γ of the incident radiation. There are several binary
extensions in this FITS file:
– the first extension contains energy values in keV where the function f (E l; µi, µe) is
computed, currently the interval from 2 to 300 keV is covered,
– the second extension contains the absolute values of the cosine of the incident angles,
– the third extension contains the values of the cosine of the emission angles,
– the fourth extension contains the values of the photon indices Γ of the incident power
law, currently tables for Γ = 1.5, 1.6, . . . , 2.9 and 3.0 are computed,
– in the following extensions the function f (El; µi, µe) is defined, each extension is for a
particular value of Γ ; here values of the function are stored as a vector for different incident
angles (rows) and for different angles of emission (columns), each element of this vector
corresponds to a value of the function for a certain value of energy.

A4 Description of the integration routines

Here we describe the technical details about the integration routines, which act as a common
driver performing the ray-tracing for various models of the local emission. The descrip-
tion of non-axisymmetric and axisymmetric versions are both provided. An appropriate
choice depends on the form of intrinsic emissivity. Obviously, non-axisymmetric tasks are
computationally more demanding.

A4.1 Non-axisymmetric integration routine ide

This subroutine integrates the local emission and local Stokes parameters for (partially)
polarised emission of the accretion disc near a rotating (Kerr) black hole (characterised by
the angular momentum a) for an observer with an inclination angle θo. The subroutine has
to be called with ten parameters:

ide(ear,ne,nt,far,qar,uar,var,ide param,emissivity,ne loc)

ear – real array of energy bins (same as ear for local models in XSPEC),
ne – integer, number of energy bins (same as ne for local models in XSPEC),
nt – integer, number of grid points in time (nt = 1 means stationary model),
far(ne,nt) – real array of photon flux per bin (same as photar for local models in
XSPEC but with the time resolution),
qar(ne,nt) – real array of the Stokes parameter Q divided by the energy,
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uar(ne,nt) – real array of the Stokes parameter U divided by the energy,
var(ne,nt) – real array of the Stokes parameter V divided by the energy,
ide param – twenty more parameters needed for the integration (explained below),
emissivity – name of the external emissivity subroutine, where the local emission of
the disc is defined (explained in detail below),
ne loc – number of points (in energies) where local photon flux (per keV) in the emissivity
subroutine is defined.

The description of the ide param parameters follows:

ide param(1) – a/M – the black-hole angular momentum (0 ≤ a/M ≤ 1),
ide param(2) – theta o – the observer inclination in degrees (0◦ – pole, 90◦ –
equatorial plane),
ide param(3) – rin-rh – the inner edge of the non-zero disc emissivity relative to
the black-hole horizon (in GM/c2),
ide param(4) – ms – determines whether we also integrate emission below the margin-
ally stable orbit; if its value is set to zero and the inner radius of the disc is below the
marginally stable orbit then the emission below this orbit is taken into account, if set to
unity it is not,
ide param(5) – rout-rh – the outer edge of the non-zero disc emissivity relative to
the black-hole horizon (in GM/c2),
ide param(6) – phi – the position angle of the axial sector of the disc with non-zero
emissivity in degrees,
ide param(7) – dphi – the inner angle of the axial sector of the disc with non-zero
emissivity in degrees (dphi ≤ 360◦),
ide param(8) – nrad – the radial resolution of the grid,
ide param(9) – division – the switch for the spacing of the radial grid (0 – equidis-
tant, 1 – exponential),
ide param(10) – nphi – the axial resolution of the grid,
ide param(11) – smooth – the switch for performing simple smoothing (0 – no, 1 –
yes),
ide param(12) – normal – the switch for normalising the final spectrum,
if = 0 – total flux is unity (usually used for the line),
if > 0 – flux is unity at the energy = normal keV (usually used for the continuum),
if < 0 – final spectrum is not normalised,
ide param(13) – zshift – the overall redshift of the object,
ide param(14) – ntable – tables to be used, it defines a double digit number NN in
the name of the FITS file KBHtablesNN.fits containing the tables (0 ≤ ntable ≤ 99),
ide param(15) – edivision – the switch for spacing the grid in local energies (0 –
equidistant, 1 – exponential),
ide param(16) – periodic – if set to unity then local emissivity is periodic if set to
zero it is not (need not be set if nt = 1),
ide param(17) – dt – the time step (need not be set if nt = 1),
ide param(18) – polar – whether the change of the polarisation angle and/or az-
imuthal emission angle will be read from FITS tables (0 – no, 1 – yes),
ide param(19) – r0-rh and
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ide param(20) – phi0 – in dynamical computations the initial time will be set to the
time when photons emitted from the point [r0, phi0] on the disc (in the Boyer–Lindquist
coordinates) reach the observer.

The ide subroutine needs an external emissivity subroutine in which the local emission
and local Stokes parameters are defined. This subroutine has twelve parameters:

emissivity(ear loc,ne loc,nt,far loc,qar loc,uar loc,
var loc,r,phi,cosine, phiphoton,first emis)

ear loc(0:ne loc) – real array of the local energies where local photon fluxfar loc
is defined, with special meaning of ear loc(0) – if its value is larger than zero then the
local emissivity consists of two energy regions where the flux is non-zero; the flux between
these regions is zero and ear loc(0) defines the number of points in local energies with
the zero local flux,
ne loc – integer, the number of points (in energies) where the local photon flux (per keV)
is defined,
nt – integer, the number of grid points in time (nt = 1 means stationary model),
far loc(0:ne loc,nt) – real array of the local photon flux (per keV) – if the lo-
cal emissivity consists of two separate non-zero regions (i.e., ear loc(0) > 0) then
far loc(0,it) is the index of the last point of the first non-zero local energy region,
qar loc(ne loc,nt) – real array of the local Stokes parameter Q divided by the local
energy,
uar loc(ne loc,nt) – real array of the local Stokes parameter U divided by the local
energy,
var loc(ne loc,nt) – real array of the local Stokes parameter V divided by the local
energy,
r – the radius in GM/c2 where the local photon flux far loc at the local energies
ear loc is demanded
phi – the azimuth (the Boyer–Lindquist coordinate ϕ) where the local photon flux
far loc at the local energies ear loc is demanded,
cosine – the cosine of the local angle between the emitted ray and local disc normal,
phiphoton – the angle between the emitted ray projected onto the plane of the disc (in
the local frame of the moving disc) and the radial component of the local tetrad (in radians),
first emis – boolean, TRUE if we enter the emissivity subroutine from the ide sub-
routine for the first time, FALSE if this subroutine was already evaluated during the present
run. This distinction is convenient to initialise some variables when calling the emissivity
subroutine for the first time (e.g., calculation of the falling spot trajectory can be performed
in this place).

A4.2 Axisymmetric integration routine idre

This subroutine integrates the local axisymmetric emission of an accretion disc near a
rotating (Kerr) black hole (characterised by the angular momentum a) for an observer with
an inclination angle θo. The subroutine has to be called with eight parameters:

idre(ear,ne,photar,idre param,cmodel,ne loc,ear loc,far loc)
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ear – real array of energy bins (same as ear for local models in XSPEC),
ne – integer, the number of energy bins (same as ne for local models in XSPEC),
photar – real array of the photon flux per bin (same as photar for local models in
XSPEC),
idre param – ten more parameters needed for the integration (explained below),
cmodel – 32-byte string with a base name of a FITS file with tables for axisymmetric
emission (e.g., “KBHline” for KBHlineNN.fits),
ne loc – the number of points (in energies) where the local photon flux (per keV) is
defined in the emissivity subroutine,
ear loc – array of the local energies where the local photon flux far loc is defined
far loc – array of the local photon flux (per keV).

The description of the idre param parameters follows:

idre param(1) – a/M – the black-hole angular momentum (0 ≤ a/M ≤ 1),
idre param(2) – theta o – the observer inclination in degrees (0◦ – pole, 90◦ –
equatorial plane),
idre param(3) – rin-rh – the inner edge of the non-zero disc emissivity relative to
the black-hole horizon (in GM/c2),
idre param(4) – ms – determines whether we also integrate emission below the
marginally stable orbit; if its value is set to zero and the inner radius of the disc is be-
low the marginally stable orbit then the emission below this orbit is taken into account, if
set to unity it is not,
idre param(5) – rout-rh – the outer edge of the non-zero disc emissivity relative
to the black-hole horizon (in GM/c2),
idre param(6) – smooth – the switch for performing simple smoothing (0 – no, 1 –
yes),
idre param(7) – normal – the switch for normalising the final spectrum,
if = 0 – total flux is unity (usually used for the line),
if > 0 – flux is unity at the energy = normal keV (usually used for the continuum),
if < 0 – final spectrum is not normalised,
idre param(8) – zshift – the overall redshift of the object,
idre param(9) – ntable – tables to be used, it defines a double digit number NN
in the name of the FITS file (e.g., in KBHlineNN.fits) containing the tables (0 ≤
ntable ≤ 99),
idre param(10) – alpha – the radial power-law index.

The idre subroutine does not need for its operation any external emissivity subroutine.
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ABSTRACT
Solutions of general relativistic field equations for static, spherically symmetric, equi-
librium perfect-fluid configurations obeying the polytropic and adiabatic equation of
state in the presence of a repulsive cosmological constant are discussed. The influence
of the cosmological constant on the total mass of the configurations, their radius and
the profiles of energy density, rest energy density, pressure and metric coefficients is
studied and compared for the polytropic and adiabatic case. The static equilibrium
configurations are allowed for σ < σcrit (α < αcrit), where the critical values σcrit
(αcrit) of the relativity parameter σ (α) ≡ pc/ρcc2 of the polytropes (adiabates) de-
pend on the cosmological constant and the polytropic index n of the equation of state
and can be determined by a numerical procedure. The numerical results show that
for sufficiently small values of the relativity parameter σ = α ≪ σcrit, the polytro-
pic spheres are more compact than the adiabatic ones. Increase of the cosmological
constant causes increase of both the radius and mass of the spheres and makes the
profiles of the metric coefficients flatter. For large values of the relativity paramater,
σ = α σcrit, the situation is more complex and depends also on the value of the
polytropic parameter n. The mass of the adiabatic spheres can exceed the mass of the
polytropes for n 2. In the case of n = 3, the adiabatic spheres can even be more
compact than the polytropic ones. Generally, the role of the cosmological constant
is supressed with both σ = α and n growing.

1 INTRODUCTION

Recent observations of the Hubble parameter, dynamical estimates of the present energy
density, measurements of the cosmic relict radiation anisotropy, gravitational lensing of
quasars statistics, galaxy number counts and high-redshift supernovae suggest that a nonzero
(although very small) relict repulsive cosmological constant (or quintessence) must be
invoked to explain the dynamics of the Universe (see [Linde, 1990, Krauss and Turner,
1995, Ostriker and Steinhardt, 1995, Krauss, 1998, Bahcall et al., 1999, Caldwell et al.,
1998, Armendariz-Picon et al., 2000, Wang et al., 2000]).

The presence of a repulsive, i.e., positive, cosmological constant causes dramatical chan-
ges in black-hole backgrounds asymptotics, which become de Sitter, and the cosmologi-
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cal event horizon, behind which the geometry is dynamic, appears [Stuchlı́k and Hledı́k,
1999, Stuchlı́k and Hledı́k, 2002b].

Besides vacuum black-hole (naked-singularity) spacetimes, unusual phenomena can also
be expected in non-vacuum spacetimes (representing static mass configurations) with a
nonzero cosmological constant.

Simple assumption of polytropic or adiabatic gas enables to obtain basic properties of
configurations governed by the relativistic laws in a relatively simple way. Let us recall
that the ultrarelativistic (nonrelativistic) degenerate Fermi gas is governed by the adiabatic
equation of state withΓ = 4/3 (Γ = 5/3), or in terms of polytropic index n = 3 (n = 3/2).

Spherically symmetric equilibrium configurations of perfect fluid obeying the polytropic
or adiabatic equation of state in spacetimes with a repulsive cosmological constant were
discussed in [Stuchlı́k and Hledı́k, 2002a,Hledı́k et al., 2003], generalizing the well known
results of Tooper [Tooper, 1964, Tooper, 1965]. In these papers, the profiles of the energy
density, rest energy density, pressure and metric coefficients are given together with the
gravitational potential energy and binding energy. Moreover, the spacetime structure of the
polytropic and adiabatic spheres are represented by the embedding diagrams of both the
ordinary geometry and optical geometry, reflecting some special properties of the geodetical
motion [Stuchlı́k et al., 2000,Hledı́k, 2002]. Here we present a comparison of the polytropic
and adiabatic spheres with common relativistic parameter σ = α, and common polytropic
index n. We compare profiles of the energy density, rest energy density, pressure and
temporal and radial metric coefficients of the spacetimes.

2 EQUATIONS OF STRUCTURE

In standard Schwarzschild coordinates, the line element for a spherically symmetric, static
equilibrium configuration reads

ds2 = −e2Φ c2dt2 + e2Ψ dr2 + r2(dθ2 + sin2 θ dφ2). (1)

The matter inside the sphere is described by the perfect-fluid stress-energy tensor

T µ
ν = (p + ρc2)UµUν + p δµν (2)

and is assumed to obey either the polytropic equation of state

p = Kρ1+ 1
n , (3)

where ρ and p denote the total mass-energy density and pressure, respectively, or

p = Kρ
1+ 1

n
g , (4)

whereρg denotes the rest mass-energy density, being related to the total mass-energy density
by [Tooper, 1964, Tooper, 1965]

ρ = ρg + np/c2. (5)

The polytropic (adiabatic) index n is assumed to be a given constant, not necessarily an
integer, K is a constant that has to be determined by the thermal characteristics of a given
fluid sphere.
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The 4-velocity field of the fluid is given by

ui = dx i

dτ
= 0, i = r, θ,φ, ut = dt

dτ
= e−Φ . (6)

The energy-momentum tensor (2) is related to the spacetime geometry (1) by Einstein’s
gravitational equations in the standard form

Gµν ≡ Rµν − 1
2

Rgµν +Λgµν = 8πG
c4 Tµν (7)

and the law of local energy-momentum conservation is described by

T µν
;ν = 0. (8)

It is convenient to express the field equations in terms of the orthonormal tetrad compo-
nents using 4-vectors carried by the fluid elements:

e⃗(t) = 1
eΦ

∂

∂t
, e⃗(r) = 1

eΨ

∂

∂r
, e⃗(θ) = 1

r
∂

∂θ
, e⃗(φ) = 1

r sin θ
∂

∂φ
. (9)

Projection of the conservation law T µν
;ν = 0 to the hypersurface orthogonal to the 4-

velocity uµ gives the equation of hydrostatic equilibrium in the form

(ρc2 + p)
dΦ
dr

= −d p
dr

. (10)

There are two relevant structure equations – the (t)(t) and (r)(r) tetrad components of the
field equations.

The (t)(t) component reads

G(t)(t) = 1
r2 − e−2Ψ

r2 − 1
r

d
dr

e−2Ψ −Λ = 8πG
c2 ρ (11)

or, equivalently,

d
dr

[
r
(

1 − e−2Ψ
)

− 1
3
Λr3

]
= d

dr
2G
c2 m(r), (12)

where

m(r) =
∫ r

0
4πr2ρ dr or

dm(r)

dr
= 4πρ(r)r2. (13)

Integrating, one obtains [Misner et al., 1973, Stuchlı́k, 2000]

e2Ψ =
[

1 − 2Gm(r)

c2r
− 1

3
Λr2

]−1
. (14)

The (r)(r) component reads

G(r)(r) = − 1
r2 + e−2Ψ

r2 + 2e−2Ψ

r
dΦ
dr

+Λ = 8πG
c4 p. (15)

Using Eq. (14), we arrive to the relation

dΦ
dr

=
G
c2 m(r) − 1

3Λr3 + 4πG
c4 pr3

r
[
r − 2G

c2 m(r) − 1
3Λr3

] (16)
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which enables to convert the equation of hydrostatic equilibrium (10) into the Tolman–
Oppenheimer–Volkoff (TOV) form modified for the presence of a nonzero cosmological
constant (see, e.g., [Stuchlı́k, 2000])

d p
dr

= −(ρc2 + p)

G
c2 m(r) − 1

3Λr3 + 4πG
c4 pr3

r
[
r − 2G

c2 m(r) − 1
3Λr3

] . (17)

3 POLYTROPIC AND ADIABATIC SPHERES

The key equations, namely Eq. (3) for the polytropic case or Eq. (4) for the adiabatic case,
together with mass conservation (13) and the equation of hydrostatical equilibrium (17),
can conveniently be converted into dimensionless form by introducing appropriate new
variables. In the subsequent treatment we have to distinguish the polytropic and adiabatic
cases. The polytropic case is considered in detail in [Stuchlı́k and Hledı́k, 2002a] (see
also [Stuchlı́k, 2002]). The adiabatic case is discussed in detail in [Hledı́k et al., 2003]. Here
we concentrate our attention on comparison of the profiles for the polytropic and adiabatic
spheres.

3.1 The polytropic case

Let us introduce new variable θ defined by the relation

ρ = ρcθ
n, (18)

which implies

p = Kρ
1+ 1

n
c θn+1 = pcθ

n+1, (19)

and the following quantities: relativity parameter

σ = K
c2ρ

1/n
c = pc

ρcc2 , (20)

scale factors

L∗ =
[

(n + 1)Kρ1/n
c

4πGρc

]1/2

=
[
σ (n + 1)c2

4πGρc

]1/2

, (21)

M∗ = 4πL∗3ρc = c2

G
σ (n + 1)L∗ (22)

and dimensionless radial coordinate, mass and cosmological parameter

ξ = r
L∗ , v(ξ) = m(r)

M∗ , λ = ρvac

ρc
. (23)

The cosmological constant Λ is related to the vacuum energy by the relation

ρvacc2 = Λc4

8πG
(24)
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or, explicitly to the cosmological parameter λ, by

Λ = 8πG
c2 ρcλ, (25)

ρc and pc being the central density and pressure, respectively.
Then the equations of structure can be rewritten in dimensionless form

dθ
dξ

=

(
2
3λξ

3 − σξ3θn+1 − v
)

(1 + σθ)

ξ2 grr (ξ, v; n, σ,λ), (26)

dv

dξ
= ξ2θn, (27)

(28)

where the radial metric coefficient is given by

grr (ξ, v; n, σ,λ) ≡ 1

1 − 2σ (n + 1)
(

v
ξ + 1

3λξ
2
) . (29)

The temporal metric coefficient for the polytropic case in the presence of a nonzero cosmo-
logical constant can be derived in analogous way as in [Tooper, 1964]

−gt t = e2Φ = (1 + σθ)−2(n+1)

{
1 − 2σ (n + 1)

[
v(ξ1)

ξ1
+ 1

3
λξ2

1

]}
. (30)

3.2 The adiabatic case

Let us introduce new variable θ defined as

ρg = ρgcθ
n, (31)

which implies

p = Kρ
1+ 1

n
gc θn+1 = pcθ

n+1, (32)

and the following quantities: relativity parameter

α = K
c2 ρ

1/n
gc = pc

ρgcc2 , (33)

scale factors

L∗ =
[

(n + 1)Kρ1/n
gc

4πGρgc

]1/2

=
[
α(n + 1)c2

4πGρgc

]1/2

, (34)

M∗ = 4πL∗3ρgc = c2

G
α(n + 1)L∗ (35)

and dimensionless radial coordinate, mass and cosmological parameter

ξ = r
L∗ , v(ξ) = m(r)

M∗ , λ = ρvac

ρc
. (36)
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The cosmological constant Λ is related to the vacuum energy by the relation (24), or,
explicitly to the cosmological parameter λ, by

Λ = 8πG
c2 ρgcλ, (37)

ρgc being the central rest-energy density.
Then the equations of structure can be rewritten in dimensionless form

dθ
dξ

=

(
2
3λξ

3 − σξ3θn+1 − v
)

[1 + α(n + 1)θ ]
ξ2 grr (ξ, v; n,α,λ), (38)

dv

dξ
= ξ2θn(1 + nαθ), (39)

(40)

where the radial metric coefficient is given by

grr (ξ, v; n,α,λ) ≡ 1

1 − 2α(n + 1)
(

v
ξ + 1

3λξ
2
) (41)

The temporal metric coefficient for the adiabatic case is given by the relation (see [Tooper,
1965])

−gt t = e2Φ = [1 + α(n + 1)θ ]−2
{

1 − 2α(n + 1)

[
v(ξ1)

ξ1
+ 1

3
λξ2

1

]}
. (42)

3.3 Boundary conditions and method of solution

Both the systems of two ODE’s (26), (27) for the polytropic case and (38), (39) for the
adiabatic case are subject to solution under the initial conditions:

θ(0) = 1, v(0) = 0. (43)

It apparently follows from (27), (43) or (38), (39) that v(ξ) ∝ ξ 3 for ξ → 0 and, according
to Eq. (26),

lim
ξ→0+

dθ
dξ

= 0. (44)

Thus, for ξ = 0, the right-hand side of the equation (26) or (38) must be defined as zero by
virtue of numerical solution.

The boundary of the fluid sphere (r = R) is represented by the first zero point of θ(ξ),
say at ξ1:

θ(ξ1) = 0, θ(ξ) > 0 for 0 ≤ ξ < ξ1. (45)

In the Newtonian limit (σ ≪ 1), for both the polytropic and adiabatic spheres, the
structure equations can be transformed to one equation of second order

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
+ θn − 2λ = 0 (46)
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that is reduced to the well known Lane–Emden equation, if the cosmological term disap-
pears.

The systems of ordinary differential equations (26), (27) and (38), (39) were integrated
numerically using the Bulirsch–Stoer method. The solutions were started at the initial
values (43) and proceeded forward until negative value of θ is found. (Although negative
value is unphysical, after redefining the power function x n ≡ −|x |n for negative x , it
has a good mathematical sense.) This requires first estimate of the zero point (45), which
can be adaptively decreased (increased) by the code developed if the estimate is overshot
(undershot). This procedure is repeated until the very last calculated point has θ < 0. Then
the last four points (the first three of them with positive θ ) are interpolated by a cubic
polynomial and the zero point (45) is established.

4 RELEVANCE OF THE REPULSIVE COSMOLOGICAL CONSTANT IN THE
NUMERICAL RESULTS

We shall concentrate on the influence of the repulsive cosmological constant on the structure
of both the polytropic and adiabatic fluid spheres, and on the comparison with the Λ = 0
case.

Numerical analysis reveals some interesting phenomena connected to the solutions of
the systems (26), (27) and (38), (39). Fixing the polytropic (adiabatic) index n ≤ 3 and the
relativity parameter σ or α, the boundary of the fluid sphere exists only if the cosmological
parameter λ does not exceed critical value λcrit. If λ > λcrit holds, the quantity θ only drops
to its minimum at certain ξ and starts to increase behind this point, i.e., there is no static,
spatially limited equilibrium configuration.

The behaviour of the critical value of the cosmological constant for the polytropic case
is shown in Fig. 1. With λ and n being fixed, the relativity parameter σ (or α) has to be
limited. It follows from Fig. 1 that there can be more than one critical value of σcrit (αcrit).

Numerical results for the profiles of both the metric coefficients, distribution of total
mass-energy density (relative to the central one), distribution of rest mass-energy density
(relative to the total mass-energy density at the centre), distribution of the pressure (relative
to the central one), and the dimensionless mass m(r)/M∗ are graphically represented for
five values of n = 1.0(0.5)3.0. For each value of n, four plots are constructed: the first pair
of plots having small common value of relativity parameters, σ = α = 0.1, the second
pair of plots having the common value of relativity parameters σ = α equal or slightly
below n/(n + 1), which corresponds to sound speed equal to c in the polytropic case
(see [Tooper, 1964, Tooper, 1965]). Each pair of plots with common n and σ = α consists
of the plot for zero cosmological constant and the plot with λ slightly below the smaller
of the polytropic and adiabatic critical λ to ensure the existence of the surface for both
polytropic and adiabatic cases.

Although the normalised mass-energy density distribution ρ/ρc is natively θn for the
polytropic case, it should be emphasised that, due to (31), there is different formula in the
adiabatic case, namely (see [Tooper, 1965])

ρ

ρc
= θn(1 + nαθ)

1 + nα
. (47)
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Figure 1. Dependence of λcrit on σ for selected values of polytropic index n.

At the centre, where θ = 1, both expressions (18) and (47) coincide.
Moreover, the distribution of rest mass-energy density relative to the total mass-energy

density at the centre may be written as

ρg

ρc
=
(

θ

1 + σθ

)n
(48)

in the polytropic case (see [Tooper, 1964]), and as

ρg

ρc
= θn

1 + nα
(49)

in the adiabatic case (see [Tooper, 1964]).
There is another subtle point concerning the plots. Even if we put the polytropic index

and the relativity parameter for the polytropic case equal to the corresponding quantities
for the adiabatic case, one may easily find out that the scale factors (21) and (34) differ,
which subsequently leads to different values of dimensionless radius ξ for the same Sch-
warzschildian radius r . Since we intend to compare the Schwarzschildian radius r , let us
rescale the adiabatic dimensionless radius as follows (we provide subscripts “p” and “a” to
distinguish both cases):

ξa = r
L∗

a
= r

L∗
p

L∗
p

L∗
a

= ξp
L∗

p

L∗
a

= kξp, (50)

where

k =
√(

ρgc

ρc

)

a
(51)
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(the subscript “a” emphasises the quantities in the fraction must be taken for adiabatic case).
Substituting Eq. (49) with θ = 0 yields the final expression for the coefficient k

k = 1√
1 + nα

. (52)

The dimensionless radial coordinate corresponding to the same radius r is generally smaller
for the adiabatic case. For this reason, the values of ξ corresponding to quantities related to
the adiabatic case must be multiplied by

κ = k−1 =
√

1 + nα (53)

to enable direct comparison. Because the mass scale factor M∗ can be written in the
rightmost shape of (21) and (34), the same considerations may be applied to the values of
m(r)/M∗.

5 DISCUSSION AND CONCLUSIONS

We compare the properties of the polytropic and adiabatic spheres and discuss the influence
of the repulsive cosmological constant on their structure profiles. We shall separate the
discussion according the fixed values of the polytropic index. The values of the index are
chosen in such a way that provides insight into physically interesting equations of state,
i.e., we consider n = 1, 1.5, 2, 2.5, 3. Recall that n = 3 (3/2) corresponds to the adiabatic
equation of state for ultrarelativistic (nonrelativistic) Fermi degenerate gas.

5.1 Case n = 1

The polytropic spheres have bigger mass and smaller radius than the adiabatic ones. The
difference grows with both the relativistic parameter σ = α and the cosmological parameter
λ growing. Clearly, in this case the polytropes are more compact than the adiabates. With
σ = α growing, the profiles of the metric coefficients become more steeper, while with λ
growing they become flatter. Notice that in this special case of n = 1, the relation ρgc/ρc
is exactly the same for both polytropic and adiabatic spheres with any given σ = α and λ
(see Figs 2 and 3).

5.2 Case n = 1.5

The radius of the polytropic spheres have smaller radius than the adiabatic ones again. The
difference is larger than in the case n = 1 and grows with both σ = α and λ growing.
On the other hand, the total mass of the polytropic spheres is always greater than the mass
of the adiabatic ones for small values σ = α, independently of λ, but for large values of
σ = α ∼ σcrit the total mass becomes comparable; for λ large enough the adiabates can be
even more massive (but not more compact) than the adiabates (see Figs 4 and 5).

The profiles of metric coefficients, energy density and pressure have the same properties
as in the case n = 1.
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Figure 2. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 1.0 and common relativity parameter
σ = α = 0.1. The left plot describes the λ = 0 case, the right one corresponds to λ = 0.09. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.
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Figure 3. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 1.0 and common relativity parameter
σ = α = 0.5. The left plot describes the λ = 0 case, the right one corresponds to λ = 0.02. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.

5.3 Case n = 2

We can make the same conclusion as for the case of n = 1.5. Moreover, the adiabates can
be more massive than the polytropes even for λ = 0, if σ = α is large enough (see Figs 6
and 7).

5.4 Case n = 2.5

In this case we can observe qualitatively the same properties as in the case of n = 2, however,
for large values σ = α, the adiabatic spheres have larger mass than the polytropes almost
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Figure 5. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 1.5 and common relativity parameter
σ = α = 0.6. The left plot describes the λ = 0 case, the right one corresponds to λ = 0.015. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.

independently on λ. The density and pressure profiles become close to a step character, with
large values of relative density concentrated nearby the central part (see Figs 8 and 9).

5.5 Case n = 3

In this case, corresponding to the adiabatic spheres composed of ultrarelativistic Fermi gas,
the role of λ is rather suppressed, and the profiles of density and pressure are qualitatively
similar to the case n = 2, 5 or n = 2. However, the adiabatic spheres can be more compact
than the polytropes if σ = α is large enough. The step-like character of the density and



86 S. Hledı́k, Z. Stuchlı́k and K. Mrázová
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Figure 6. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 2.0 and common relativity parameter
σ = α = 0.1. The left plot describes the λ = 0 case, the right one corresponds to λ = 0.014. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.
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Figure 7. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 2.0 and common relativity parameter
σ = α = 0.666. The left plot describes the λ = 0 case, the right one corresponds to λ = 0.001. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.

pressure profiles is clearly evident (see Figs 10 and 11). In fact, for large values σ = α, the
energy density is exponentially in ∼ 99 % of the radius of the equilibrium configuration.

The numerical results show that for sufficiently small values of the relativity parameter
σ = α ≪ σcrit, the polytropic spheres are more compact than the adiabatic ones. Increase
of the cosmological constant causes increase of both the radius and mass of the spheres
and makes the profiles of the metric coefficients flatter. For large values of the relativity
paramater, σ = α σcrit, the situation is more complex and depends also on the value of
the polytropic parameter n. The mass of the adiabatic spheres can exceed the mass of the
polytropes for n 2. In the case of n = 3, the adiabatic spheres can even be more compact
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Figure 8. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 2.5 and common relativity parameter
σ = α = 0.1. The left plot describes the λ = 0 case, the right one corresponds to λ = 0.004. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.
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Figure 9. Profiles of metric coefficients, distribution of total mass-energy density, rest mass-energy
density, pressure, and mass m(r) for polytropic index n = 2.5 and common relativity parameter
σ = α = 0.7. The left plot describes the λ = 0 case, the right one corresponds to λ = 6 × 10−6. The
continuous (dashed) curves correspond to polytropic (adiabatic) case. The curves for pressure, mass
and vertical lines marking the sphere boundary are drawn in bold.

than the polytropic ones. Generally, the role of the cosmological constant is suppressed with
both σ = α and n growing.
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General aspects of nonlinear resonance 3 : 2
in QPO context
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Astronomical Institute, Academy of Science, Czech Republic

ABSTRACT
In the resonant model, quasi periodic oscillations (QPOs) are supposed to be con-
sequence of a nonlinear resonance between modes of oscillations within innermost
parts of an accretion disk. Several models with prescribed mode-mode interaction
were proposed to examine characteristic properties of the resonance 3 : 2. In this
paper I first review some general properties of nonlinear oscillations of the system
having quadratic nonlinearity relevant for QPOs. Then I present very simple way
how to study internal resonances of fully general system using the method of multi-
ple scales. Finally, I concentrate to conservative systems and discuss their behaviour
near the resonance 3 : 2.

1 INTRODUCTION

Recent observations made by RXTE discovered very rich phenomenology in light curves
of more than 20 neutron stars and several black holes. The most attention is attracted to the
two peaks which are often present in the kilohertz part of sources power spectra, because
their frequency is comparable to the Keplerian orbital frequency in the innermost parts of
an accretion disk.

The two peaks are present simultaneously in power spectra of neutron stars. Their
positions wary considerably with time but remains almost linearly correlated. The slope of
correlation is somewhat lower then 3 : 2 and is quite independent on the source. Although
the frequency ratio does not remain constant, it is often close to 3 : 2 [Abramowicz et al.,
2002].

Single QPOs were also reported in several black hole systems. Contrary to neutron
starts, two peaks are not observed in the same time rather exceptionally, however in several
cases both peaks were detected simultaneously. Their positions are constantly at the same
frequencies which are in perfect rational ratio in all sources. This ratio is often 3 : 2, but
can be also 5 : 3 [Remillard et al., 2002]. Several black holes exhibits only one QPO which
properties are similar to upper peak.

The frequencies of QPO seem to scale with mass of compact object as 1/M . This scaling
is apparent between black hole sources, however rescaled frequencies to the one solar
mass is also in good agreement with that observed in neutron stars. Since general relativity
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effects are subject to the same scaling, kilohertz QPOs can be seen as good probe to strong
gravitational fields.

The properties mentioned above found natural explanation in the resonant model which
is briefly described in the next section. In section 3 I review general properties of nonlinear
oscillations and introduce the method of multiple scales. The possible resonances in the
oscillations of very general system having two degrees of freedom are discussed using
this method in section 4. In section 4 we examine general properties of the oscillations of
conservative systems near the resonance 3 : 2.

2 ORBITAL RESONANCE

In the resonant model [Kluźniak and Abramowicz, 2000], a rational frequency ratios of
high frequency QPOs can be produced as a result of nonlinear resonances between modes of
oscillations within innermost parts of accretion disk (see also [Abramowicz and Kluźniak,
2001,Abramowicz et al., 2004]). Oscillations of the fluid in an accretion disk can be simply
modelled by the epicyclic oscillations of test particle about circular orbit in an equatorial
plane. Suppose that the particle angular momentum is fixed to a value ℓ. The effective
potential Uℓ(r, θ) has a minimum at a radius r0, corresponding to the location of stable
circular orbit. Observer moving along this orbits sees radial, vertical and azimuthal epicyclic
oscillations of the particle. Since the angular momentum of the particle is conserved, only
two of them – radial and vertical – are independent.

The frequencies of epicyclic oscillations can be derived from the geodesic equations
expanded to the linear order in deviations δr = r − r0 and δθ = θ − π/2 from the
circular orbit. We get two independent second order differential equations describing two
uncoupled oscillators with frequenciesωr andωθ , which are given by the second derivatives
of effective potential Uℓ(r, θ). In Newtonian theory ωr and ωθ are equal to the Keplerian
orbital frequency ΩK. This is in tune with the fact that orbits of particles are planar and
closed curves. The degeneracy between two epicyclic frequencies can be seen as a result of
scale-freedom of the Newtonian gravitational potential [Abramowicz and Kluźniak, 2003].
In Schwarzschild geometry this freedom is broken by introduction the gravitational radius
rg = 2GM/c2. The degeneracy between the vertical epicyclic and orbital frequency is
related to the spherical symmetry of the gravitational potential which assure the planar
trajectories of particles. All the three frequencies are different in the vicinity of rotating
Kerr black hole. In this case ωr < ωθ ≤ ΩK, which is a general property of epicyclic
motion in Einstein gravity.

The above linear analysis is very useful in discussion of qualitative properties of particle
orbits, but it does not provide any information about nonlinear effects such an epicyclic
resonance. One should include higher terms than linear into the equations and solve them
somehow. In the case of pure geodesic motion the exact equations can be solved analytically,
however the solution does not show any resonance [Abramowicz et al., 2003]. It is necessary
to include additional small forces of non-gravitational origin (pressure, magnetic field,
viscosity, or other) which influence the motion of particles in accretion disk and excite a
resonance. The precise determination of these forces require detail study of internal structure
of an accretion disc which is beyond the scope of this paper. For the following discussion
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it is sufficient to assume that this force has the form of nonlinear coupling between the
modes of oscillations and thus that the particle oscillations are governed by the very general
system of equations

δ̈r + ω2
r δr = ω2

r f (δr, δθ, δ̇r , δ̇θ), (1)
δ̈θ + ω2

θ δθ = ω2
θ g(δr, δθ, δ̇r, δ̇θ ), (2)

where function f resp. g contains nonlinear part of geodesic equation and radial resp.
vertical components of the non-geodesic forces. The nonlinearity of f and g means that the
lowest term of their Taylor expansion is quadratic in deviations δr , δθ and their derivatives.

3 EFFECTS OF NONLINEARITIES

3.1 Expansion method

Expansion method is very useful for solving nonlinear equations. In fact, our equations (1)
and (2) cannot be solved exactly for arbitrary large amplitude of oscillations, but we can
starts with linear analysis and step-by-step include higher order terms. The main advantage
of this method is that although the original equation is nonlinear we solve linear equations
in each step. Typical procedure is apparent from the following example. Let us consider
simple algebraic equation

x = 1 + ϵx3, (3)

for ϵ ≪ 1. When ϵ = 0 we solve linear equation with the solution x0 = 1. For nonzero, but
small ϵ we seek the solution in the form of an expansion

x(ϵ) = x0 + ϵx1 + ϵ2x2 + . . . (4)

When we substitute (4) into (3) and equate terms of the same power of ϵ, we get a
system of linear algebraic equations for xn which can be solved successively. Since the
series converges one can approximate it by a finite number of terms (i.e., for a sufficient
approximation one solves finite number of equations).

3.2 Quadratic nonlinearity

The situation is a bit more complicated in case of nonlinear ordinary differential equations.
Let us consider the case of small but finite oscillation of a single-degree-of-freedom system
with quadratic nonlinearity governed by equation

ẍ + ω2x = αω2x2. (5)

The strength of the nonlinearity is parametrised by the constant α. When α = 0 one obtain
governing equation of the corresponding linear system. We seek a perturbation expansion
of the form

x(t, ϵ) = ϵx1(t) + ϵ2x2(t) + . . . , (6)

The expansion parameter ϵ express the order of amplitude of oscillations. For a practical
purpose it is necessary to require this series to be uniformly convergent for all times of
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interest. In that case the higher order terms are small compared to lower order terms and
a sufficient approximation is reached concerning finite number of terms in expansion. The
expansion (6) can represent periodic solutions as well as unbounded solutions with expo-
nential grow. The uniformity of the expansion means that the higher order approximations
are not larger than lower order term itself.

We substitute expansion (6) into governing equation (5) and, since the xk are independent
of ϵ, equate the coefficient of corresponding powers of ϵ at both hand-sides. This leads to
the following system of equations (up to the third order):

ẍ1 + ω2x1 = 0, (7)
ẍ2 + ω2x2 = αω2x2

1 , (8)
ẍ3 + ω2x3 = 2αω2x1x2. (9)

The general solution of (7) can be written in the form x1(t) = Aeiωt + cc, where cc
denotes complex conjugate. The complex constant A contains information about initial
amplitude and phase of oscillations. Substituting it into (8) we find linear equation for the
first approximation x2(t)

ẍ2 + ω2x2 = α
(

A2e2iωt + |A|2
)

+ cc. (10)

A general solutions contains solution of homogeneous equation and one particular solution.

x2(t) = A2eiωt − α

(
1
3

A2
1e2iωt − |A1|2

)
+ cc, (11)

where A1 denotes a constant A of solution of (7). Therefore the solution of governing
equation up to the second order of approximation is given by

x(t) =
(
ϵA1 + ϵ2 A2

)
eiωt − α

(
1
3

A2
1e2iωt − |A1|2

)
+ cc. (12)

In fact, there are two possible ways how to satisfy a general initial conditions x(0) = ϵx0
and ẋ(0) = ϵ ẋ0 imposed on equation (5). One is to compare them with the general
solution (12) and find constant A1, A2. This procedure should be repeated in each order of
approximation which involves quite complicated algebra especially in higher orders. The
second equivalent and apparently much easier way is to include only particular solutions
to the higher approximations and treat the constant A as a function of ϵ which expansion is
A1 + ϵA2 + . . . Then a given initial condition are satisfied if one expands the solution for
x1 via ϵ and choose the coefficients An such that the initial condition is satisfied.

According to this discussion we express the solution of (10) as

x2(t) = −α
(

1
3

A2e2iωt − |A|2
)

+ cc. (13)

Substituting x1 and x2 into (9) we obtain

ẍ3 + ω2x3 = 2α2ω2

3

(
5A|A|2eiωt − A3e3iωt

)
+ cc. (14)

Since the right hand-side of this equation contains term ∝ eiωt any solution contain secular
term proportional to teiωt , which becomes unbounded as t → ∞. However, this fact has
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nothing to do with true physical behaviour of the system for large times. The meaning is
rather mathematical. Starting from time when (ωt) ∼ 1/(ϵα), the higher order approxi-
mation x3, which contains the secular term, does not provide a small correction to x1 and
x2 and the expansion (6) becomes singular. The presence of the secular term in the third
approximation reflects very general feature of the nonlinear oscillations – dependence of the
observed frequency on the actual amplitude. For larger amplitude the actual frequency of
oscillations differs from the eigenfrequency ω and the higher order terms in the expansion
(6) always oscillating with an integer multiples of ω must quickly increase as time grows.
There are several methods taking into account this amplitude-frequency interaction such
Lindstedt–Poincaré method developed in the nineteenth century or the method of multiple
scales.

3.3 The method of multiple scales

Is it possible to find an expansion representing a solution of equation (5) which is uniformly
valid even for larger time then ∼ ϵ−1? The answer is yes, if one considers more general
form of the expansion than (6). In the method of multiple scales more general dependence
of coefficients xi on the time is reached by introducing several time scales Tµ, instead of
one physical time t . The time scales are introduced as

Tµ ≡ ϵµt, µ = 0, 1, 2, . . . (15)

and they are treated as independent. It follows that instead of the single time derivation we
have an expansion of partial derivatives with respect to the Tµ

d
dt

= D0 + ϵD1 + ϵ2 D2 + . . . , (16)

d2

dt2 = D2
0 + 2ϵD0 D1 + ϵ2(D2

1 + 2D0 D2) + . . . , (17)

where Dµ = ∂/∂Tµ.
We assume that the solution can be represented by an expansion having the form

x(t, ϵ) = ϵx1(Tµ) + ϵ2x2(Tµ) + ϵ3x3(Tµ) + . . . (18)

The number of time scales is the same as the order at which the expansion is truncated.
Here we carry out the expansion to the third order and thus first three scales T0, T1 and T2
are sufficient.

Substituting (18) and (17) into the governing equation (5) and equating the coefficients
of ϵ, ϵ2 and ϵ3 to zero we obtain

(D2
0 + ω2)x1 = 0, (19)

(D2
0 + ω2)x2 = −2D0 D1x1 + αω2x1, (20)

(D2
0 + ω2)x3 = −2D0 D1x2 − D2

1 x1 − 2D0 D2x1 + αω2x1x2. (21)

Note that although these equations are more complicated than (7)–(9), they are still linear
and can be solved successively. The solution of the equation (19) is the same as the solution
of corresponding linear system, the only difference is that constant A generally depends on
the other scales
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x1 = A(T1, T2)eiωT0 + cc. (22)

Substituting of x1 to the equation (20) we obtain

(D2
0 + ω2)x2 = −2iω(D1 A)eiωT0 + αω2

(
A2e2iωT0 + |A|2

)
+ cc. (23)

The first term on the right hand-side produce secular term in the second order approximation
which cause the non-uniformity of the expansion (18). In case of method of multiple scales
these terms can be eliminated by imposing additional conditions1 on the function A(Tµ).
Actually, the reason why the same number of scales as the order of approximation is needed
is that we eliminate one secular term and thus specify one additional condition on A(Tµ) in
each step. The secular term is eliminated if we require D1 A = 0 and thus we assume that
A does not depend on the first time scale. One particular solution of equation (23) is

x2(t) = −α
(

1
3

A2(T2)e2iωT0 − |A(T2)|2
)

+ cc. (24)

Using the condition D1 A = 0 the equation (21) takes much simpler form

(D2
0 + ω2)x3 = −

(
2iωD2 A + 10α2ω2

3
A|A|2

)
eiωT0 − 2α2ω2

3
A3e3iωT0 + cc. (25)

The secular term is eliminated if we equal the terms in the bracket to zero

2iωD2 A + 10α2ω2

3
A|A|2 = 0. (26)

This second additional condition fully determines (excepting initial conditions) time be-
haviour of “constant” A. For this purpose, it is convenient to write it in polar form A = 1

2 ãeiφ

and then separate real and imaginary parts. We obtain

D2ã = 0 and D2φ = −5α2

12
ωã2. (27)

The solutions of this equations are

ã = ã0 and φ = − 5
12
α2ã2

0ωT2 + φ0, (28)

where ã0 and φ0 are constants which are determined from the initial condition.
It follows from (22) that A(T2) slowly modulate the amplitude and the phase of oscilla-

tions. Since ã is constant, the amplitude is constant all the time. Sinceφ depends on T2 = ϵ2t
linearly, also the frequency of the oscillations is constant but not equal to eigenfrequency
ω.

Substituting (28) and (24) into (18) we obtain solution of (5) up to the second order

x(t) = a0 cos(ω⋆t + φ0) − α

6
a2

0 cos[2(ω⋆t + φ0)] + α

2
a2

0 + O(a3
0), (29)

where a0 = ϵã0 ≪ 1 and ω⋆ is the observable frequency of oscillation given by

ω⋆ = ω

(
1 − 5α2

12
a2

0

)
. (30)

1 These conditions are sometimes called conditions of solvability or consistency.
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3.4 Essential properties of nonlinear oscillations

We close this section summarising main properties of nonlinear oscillations. The equation
(29) is very helpful for this purpose.

The leading term of the expansion (29) describes oscillations with frequency close to
eigenfrequency of the system. Both the amplitude and the frequency are constant in time, but
they are not independent (as in case of the linear approximation). The frequency correction
given by (30) is proportional to the square of the amplitude. This fact is sometimes called the
amplitude-frequency interaction and, as was mention above, it causes the non-uniformity
of the expansion (6) (see Fig. 1).

The second term oscillates with double frequency and provide a second-order correction
to the leading term. The presence of higher harmonics is another particular feature of
nonlinear oscillations and the fact that it has been reported in several sources of QPOs,
points to nonlinear nature of this phenomena.

-0.1
-0.05

0
0.05

0.1

0 2 4 6 8 10

!!! 1t =

!t

x

Figure 1. Oscillations of the system with quadratic nonlinearity governed by the equation (5). We
compare results of the multiple scales method (solid curve), simple straight forward-expansion method
(dashed curve) and using a direct numerical integration (points). The initial condition are x(0) = 0.1
and ẋ(0) = 0 and the strength of nonlinearity is α = 3. The horizontal doted line shows the shifted
“equilibrium position” and the vertical one denotes value (ωt) = (ϵα)−1 at which the straight-forward
expansion becomes nonuniform. Note the excellent agreement between the multiple scales expansion
and the numerical integration. The solution corresponding to the linear system is also shown (dotted
curve).
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The third term describes constant shift from the equilibrium position and is related to
asymmetry of the potential energy about the point x = 0. In the linear case, this effect
miss because the potential depends on x 2. Hence, the drift or steady-streaming, is the third
characteristic feature of nonlinear oscillations.

4 INTERNAL RESONANCES OF CONSERVATIVE SYSTEMS

Let us study nonlinear oscillations of the system having two degree of freedom δr and δθ .
The oscillations are described by two coupled differential equations of the very general
form

δ̈r + ω2
r δr = ω2

r fr (δr, δθ, δ̇r , δ̇θ), (31)
δ̈θ + ω2

θ δθ = ω2
θ fθ (δr, δθ, δ̇r , δ̇θ). (32)

Suppose that the functions fr and fθ are nonlinear, i.e., their Taylor expansion starts in the
second order. Other assumption is that these function are invariant under a reflection of time
(i.e., that the Taylor expansion does not contain odd powers of time derivatives of r and
θ ). As we see later this assumption is related to the conservation of energy in the system.
Many authors studied such systems with a particular form of functions f and g, however
in this paper we keep discussion fully general.

We seek the solutions of the governing equations in the form of the multiple scales
expansions

δr(t, ϵ) =
N∑

n=1

ϵnrn(Tµ), δθ(t, ϵ) =
N∑

n=1

ϵnθn(Tµ), (33)

where Tµ = ϵµt are independent time scales, µ = 0, 1, 2, N − 1 (we finish this discussion
in the fourth order, however it is possible to proceed to higher orders in suggested way).
We expand the time derivatives according to (16) and (16) and equate terms of the same
order in ϵ on the both sides of the governing equations.

In the first order we obtain equations corresponding to the linear approximation

(D2
0 + ω2

r )r1 = 0, (D2
0 + ω2

θ )θ1 = 0. (34)

with the solutions

x1 = Âr + Â−r , θ1 = Âθ + Â−θ . (35)

where we denoted Âx = Axeiωx T0 and Â−x = A∗
x e−iωx T0 . The complex functions Âx

generally depends on higher time-scales T1, T2, T3, . . . and x = r, θ respectively (since
many considerations are independent of the mode of oscillations we keep this notation
through the whole paper).

Having solved the linear approximation, we can proceed to higher orders. The terms
proportional to ϵ2 in the expanded left-hand side of the governing equation (31) resp. (31)
are
[
δ̈x + ω2

x x
]

2
= (D2

0 + ω2
x )x2 + 2iωx D1 Âx − 2iωx D1 Â−x , (36)
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On the right hand side there are second order terms of the Taylor expansion of the nonlin-
earity f (δr, δθ, δ̇r , δ̇θ), with r1, θ1, D0r1 and D0θ1 on the place of δr , δθ , δ̇r and δ̇θ . Since
the derivation D0 only adds coefficient iω the second-order terms on the right hand-side
can be expressed as the linear combination of quadratic terms constructed from Â±r and
Â±θ

[
fx (δr, δθ, δ̇r , δ̇θ)

]
2 = ω2

x

∑

|α|=2

C(2,x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ , (37)

where α = (α1, . . . ,α4) and |α| = α1 + . . . + α4. The constants C (2,x)
α are combinations

of the coefficients of the Taylor expansion and ωx . The coefficients coming from the terms
containing time derivatives are generally complex, since each time derivation produce one
i. However, if we suppose that the Taylor expansion does not contain odd powers of time
derivatives, all of the constants C (2,x)

α are real. Equating (36) and (37) we have

(D2
0 + ω2

x )x2 = −2iωx D1 Âx + 2iωe D1 Â−x + ω2
x

∑

|α|=2

C(2,x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ . (38)

The right hand-side of the equation (38) contains one secular term independently of the
eigenfrequencies ωr and ωθ . We call it strictly secular term. However, in some particular
cases, additional secular terms appears. For example, whenωr ≈ 2ωθ the terms proportional
to Â2

θ in the radial equation and Âr Â−θ in the meridional equation becomes nearly secular
and they should be included in the solvability conditions. The analogical situation happens
when ωr ≈ ωθ/2. The solutions in these cases shows qualitatively different behaviour and
we speak about internal or parametric resonance. Possible resonances in the second order
of approximation and appropriate solvability conditions are listed in the Table 1. At this
moment, let us keep the discussion general and require.

D1 Ax = 0. (39)

Table 1. Possible resonances and appropriate solvability conditions in the second order of approxima-
tion. We substitute constants C(n,x)

α by K and L for simplicity. The first record is related to the case
when the system is far from any listed resonance. In this case only strictly secular terms are present.
The first resp. second row in the record of each resonance is related to the equation for the radial
resp. vertical oscillations. In that case, we list only nearly secular terms in the 2nd column, however
strictly secular terms are included in the solvability conditions.

ωθ : ωr Secular terms Solvability condition

any D1 Âr D1 Âr = 0
D1 Âθ D1 Âθ = 0

1 : 2 Â−r Âθ −2iD1 Âr + ωr K Â−r Âθ = 0
Â2

r −2iD1 Âθ + ωθ L Â2
r = 0

2 : 1 Â2
θ −2iD1 Âr + ωr K Â2

θ = 0
Âr Â−θ −2iD1 Âθ + L Âr A−θ = 0
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Table 2. Possible resonances in the third order of approximation.

ωθ : ωr Secular terms Solvability condition

D2 Âr , |Ar |2 Âr , |A2
θ | Âr 2iD2 Âr − ωr

[
κr |Ar |2 + κθ |Aθ |2

]
Âr = 0

D2 Âθ , |Ar |2 Âθ , |A2
θ | Âθ 2iD2 Âθ − ωθ

[
λr |Ar |2 + λθ |Aθ |2

]
Âθ = 0

1 : 3 Â3
θ 2iD2 Âr − ωr

[
κr |Ar |2 + κθ |Aθ |2

]
Âr + ωr K Â3

θ = 0

Âr Â2
−θ 2iD2 Âθ − ωθ

[
λr |Ar |2 + λθ |Aθ |2

]
Âθ + ωθ L Âr Â2

−θ = 0

1 : 1 |Ar |2 Âθ , |Aθ |2 Âθ , 2iD2 Âr − ωr
[
κr |Ar |2 + κθ |Aθ |2

]
Âr + ωr (K1|Ar |2 Âθ +

Â2
r Â−θ , Â−r Â2

θ +K2|Aθ |2 Âθ + K3 Â2
r Â−θ + K4 Â−r Â2

θ ) = 0
|Ar |2 Âr , |Aθ |2 Âθ , 2iD2 Âθ − ωθ

[
λr |Ar |2 + λθ |Aθ |2

]
Âθ + ωθ (L1|Ar |2 Âr +

Â−r Â2
θ , Â2

r Â−θ +L2|Aθ |2 Âθ + L3 Â−r Â2
θ + L4 Â2

r Â−θ ) = 0

3 : 1 Â2−r Âθ 2iD2 Âr − ωr
[
κr |Ar |2 + κθ |Aθ |2

]
Âr + ωr K Â2−r Âθ = 0

Â3
r 2iD2 Âθ − ωθ

[
λr |Ar |2 + λθ |Aθ |2

]
Âθ + ωθ L Â3

r = 0

Far from the resonances, the frequencies and the amplitudes are constant and the behaviour
of the system is almost same as in the linear approximation. The only difference is the
presence of the higher harmonics oscillating with the frequencies 2ωr , 2ωθ and |ωr ± ωθ |.
They are given by a particular solution of equation (38) after elimination of secular term
and can be expressed as a linear combination

x2 =
∑

|α|=2

Q(2,x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ . (40)

Under the assumption of the invariance under the time reflection, constants Q (2,x)
α are real

and their relation to C (2,x)
α becomes obvious, if one substitute (40) into (38).

When we proceed to the higher order, the discussion is analogical in many respects. The
terms proportional to ϵ3 which appear on the left hand-side of the governing equations are
given by
[
δ̈x + ω2

x x
]

3
= (D2

0 + ω2
x )x3 + 2iωx D2 Âx − 2iωe D2 Â−x . (41)

The terms containing D1x1 and D1x2 vanishes in consequence of the solvability conditions
(39). The right hand-side contains cubic terms of the Taylor expansion combined using
first-order approximations r1, θ1 and quadratic terms combined using one first-order, r1 or
θ1, and one second-order approximation, r2 or θ2. Since the second order approximation x2
is given by a linear combination of Â±r and Â±θ , the governing equations take the form

(D2
0 + ω2

x )x3 = −2iωx D2 Âx + 2iωe D2 Â−x + ω2
x

∑

|α|=3

C(3,x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ , (42)

where all constants C (3,x)
α are real. The secular terms together with possible resonances are

summarised in the Table 2. Far from any listed resonance we eliminate only strictly secular
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terms. Multiplying by e−iωx t , the solvability conditions take the form

D2 Ar = − iωr

2

[
κr |Ar |2 + κθ |Aθ |2

]
Ar , (43)

D2 Aθ = − iωθ

2

[
λr |Ar |2 + λθ |Aθ |2

]
Aθ , (44)

where we denoted κr = C(3,r)
2010 , κθ = C(3,r)

1101 , λr = C(3,θ)
1110 and λθ = C(3,θ)

0201 because of
simpler notation. A particular solution of equations (42) is given by linear combination of
cubic terms constructed from Â±r and Â±θ

x3 =
∑

|α|=3

Q(3,x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ , (45)

where all coefficients Q(3,x)
α are real.

The terms proportional to ϵ4 in the expanded left hand-side of the equations (31) and
(32) are
[
δ̈x + ω2

x x
]

4
= (D2

0 + ω2
x )x3 + 2D3 D0x1 + 2D0 D2x2, (46)

The operator D0 D2 acts on x2 given by (40). The result is found using the solvability
conditions (43), (44) and and can be written in the form

2D0 D2x2 = ω2
x

∑

|α|=4

J (x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ . (47)

where constants J (x)
α are real because both D0 and D2 produce one i. The right hand-site is

expanded in a similar way. We obtain

(D2
0 + ω2

x )x4 = −2iωx D3 Âx + 2iωe D3 Â−x + ω2
x

∑

|α|=4

C(4,x)
α Âα1

r Âα2
θ Âα3

−r Âα4
−θ , (48)

with real C(4,x)
α . On the right hand-side there is only one strictly secular term −2iωx D3 Âx ,

the sum contains only terms which becomes nearly secular in case of a resonance. These
terms and solvability conditions are listed in the Table 3.

One general feature of a internal resonance k : l is that kωr and lωθ need not to be
infinitesimally close. Consider, for example, resonance 1 : 2. The resonance occurs when
ωθ ≈ 2ωr . Suppose that the system departs from this exact ratio by small (first-order)
deviation ωθ = 2ωr + ϵσ , where σ is often called detuning parameter. The terms Â−r Âθ

and Â2
r in the equations (38) remain still secular in T0 since

Â−r Âθ = A∗
r Aθei(ωθ−ωr )T0 = A∗

r Aθei(ωr +ϵσ )T0 = A∗
r Aθeiσ T1eiωr T0 (49)

and analogically for Â2
r .

Let us study oscillations of the conservative system with eigenfrequencies close to
resonance 3 : 2. The time behaviour of frequency and amplitude is given by solvability
conditions (39), (43) and (44). In the fourth order we also eliminate terms which become
nearly secular. For this purpose let us introduce a detuning parameters σ2 and σ3 according
to

3ωr = 2ωθ + ϵ2σ2 + ϵ3σ3, (50)
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Table 3. Possible resonances in the fourth order of approximation.

ωθ : ωr Secular terms Solvability condition

D3 Âr D3 Âr = 0
D3 Âθ D3 Âθ = 0

1 : 4 Â4
θ 2iD3 Âr − ωr K Â4

θ = 0
Âr Â3

θ 2iD3 Âθ − ωθ L Âr Â3
θ = 0

2 : 3 Âr Â3
−θ 2iD3 Âr − ωr K Âr Â3

−θ = 0
Â2

r Â2
−θ 2iD3 Âθ − ωθ L Â2

r Â2
−θ = 0

3 : 2 Â2
−r Â2

θ 2iD3 Âr − ωr K Â2
−r Â2

θ = 0
Â3

r Â−θ 2iD3 Âθ − ωθ L Â3
r Â−θ = 0

4 : 1 Â3
r Âθ 2iD3 Âr − ωr K Â3

r Âθ

A4
r 2iD3 Âθ − ωθ L Â4

r = 0

where the term ϵσ1 misses because the complex amplitude A depend on T2 and T3. The
secular terms in (48) is eliminated if (see Table 3)

2iD3 Ar − ωrα(A2
r )

∗ A2
θe−i(σ2T2+σ3T3) = 0, (51)

2iD3 Aθ − ωθβA3
r A∗

θei(σ2T2+σ3T3) = 0, (52)

where α and β are real constant which depend on properties of the system. Since Ar and
Aθ are complex, the conditions (51) and (52) together with (39) and (43) represents 8 real
equations. This can be seen, if we substitute polar forms Ar = 1

2 ãr eiφr and Aθ = 1
2 ãθeiφθ

and separate real and imaginary parts. We obtain

D2ãr = 0, (53)
D2ãθ = 0, (54)
D2φr = −ωr

8

[
κr ã2

r + κθ ã2
θ

]
, (55)

D2φθ = −ωθ

8

[
λr ã2

r + λθ ã2
θ

]
, (56)

D3ãr = αωr

16
ã2

r ã2
θ sin(−3φr + 2φθ − σ2T2 − σ3T3), (57)

D3ãθ = βωθ

16
ã3

r ãθ sin(3φr − 2φθ + σ2T2 + σ3T3), (58)

D3φr = −αωr

16
ãr ã2

θ cos(−3φr + 2φθ − σ2T2 − σ3T3), (59)

D3φθ = −βωθ

16
ã3

r cos(3φr − 2φθ + σ2T2 + σ3T3). (60)

The amplitudes ãr and ãθ of the oscillations change slowly, because they depend only on T3.
Phases of oscillations φr and φθ are modified on both time scales T2 and T3. The number of
equations can be if we introduce the phase function γ (T2, T3) = 2φθ − 3φr − σT2 − σ3T3.
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Then we get

D3ãr = αωr

16
ã2

r ã2
θ sin γ , (61)

D3ãθ = −βωθ

16
ã3

r ãθ sin γ , (62)

D2γ = −σ2 + ωθ

4

(
µr ã2

r + µθ ã2
θ

)
, (63)

D3γ = −σ3 + ωθ

8
ãr

(
αã2

θ − βã2
r

)
cos γ , (64)

were we used the fact that near the resonance ωr ≈ (2/3)ωθ and then we defined µr =
κr −λr and µθ = κθ −λθ . The situation can be further simplified if we come back to the one
physical time t . Then equations for evolution of γ are merged using d/dt = ϵ2 D2 + ϵ3 D3
and we obtain

ȧr = αωr

16
a2

r a2
θ sin γ , (65)

ȧθ = −βωθ

16
a3

r aθ sin γ , (66)

γ̇ = −σ + ωθ

4

[
µr a2

r + µθa2
θ + ar

2

(
αa2

θ − βa2
r

)
cos γ

]
, (67)

where we defined a = ϵã and σ = ϵ2σ2 + ϵ3σ 3.

4.1 The steady-state solutions

For the steady-state solutions amplitudes and frequencies of oscillations remain constant in
time. It is obvious from the equations (65) and (66) that, the condition ȧr = ȧθ = 0 can be
for nonzero amplitudes satisfied only if sin γ = 0 constantly and thus also γ̇ = 0. Under
this conditions equation (67) becomes

− σ

ωθ
= 1

4

[
µr a2

r + µθa2
θ ± ar

2

(
αa2

θ − βa2
r

)]
, (68)

which is an algebraic equation. The left hand-side can be expressed using the eigenfrequency
ratio R = ωθ/ωr as

σ

ωθ
= − 2

R

(
R − 3

2

)
. (69)

Then we get

R = 3
2

+ 3
16

(
µr a2

r + µθa2
θ

)
± 3

32
ar

(
αa2

θ − βa2
r

)
, (70)

were we neglected terms of order a4. Note that the lowest correction to eigenfrequencies
is of order a2. Thus for a given amplitudes ar , aθ steady state oscillations occur when the
ratio of eigenfrequencies departs from 3/2 by deviations of order a2.

The relation between observed frequencies of oscillations ω⋆
r , ω⋆

θ and eigenfrequencies
ωr , ωθ are given by the time derivation of phases φr and φθ

ω⋆
r = ωr + φ̇r , ω⋆

θ = ωθ + φ̇θ . (71)
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Figure 2. Comparison of an analytical constraint on the behaviour of the system studied in [Abramow-
icz et al., 2003] and the numerical solution. Numerical solution is plotted by the solid curve. Each
point of the curve corresponds to the amplitudes of the oscillations in one time. On the other hand,
from the discussion of equation (75) we know that these points must lay on a ellipse. This ellipse is
plotted by dashed line.

Then we can find simple relation between observed frequencies and the phase function

3ω⋆
r − 2ω⋆

θ = 3ωr − 2ωθ + (3φ̇r − 2φ̇θ ) = σ + (3φ̇r − 2φ̇θ ) = −γ̇ . (72)

For steady state solutions γ̇ = 0, and thus observed frequencies are adjusted to exact 3 : 2
ratio even if eigenfrequencies depart from it.

Finally, let us derive explicit relations for ω⋆
r and ω⋆

θ up to to the second order in
amplitudes. Using the equations (55) and (56) we obtain

ω⋆
r = ωr

[
1 − 1

8

(
κr a2

r + κθa2
θ

)]
, ω⋆

θ = ωθ

[
1 − 1

8

(
λr a2

r + λθa2
θ

)]
. (73)

4.2 Integrals of motion

The time-dependent solution is described by three variables ar (t), aθ (t) and γ (t) and three
first-order differential equations (65), (66) and (67). However, the number of differential
equations can be reduced to one because it is possible two find two integrals of motion of
the system.

Consider equations (65) and (66). Eliminating of sin γ from both equations we find
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d
dt

(a2
r + νa2

θ ) = 0 (74)

and thus

a2
r + νa2

θ = const = E, (75)

where we defined

ν = αωr

βωθ
≈ 2α

3β
. (76)

When ν > 0, the both amplitudes of oscillations are bounded. The curve [(ar (t), aθ )] is a
segment of an ellipse. The constant E is proportional to the energy of the system. On the
other hand, when ν < 0, one amplitude of oscillations can grows without bounds while the
second amplitude vanish. This case correspond to the presence of an regenerative element
in the system [Nayev and Mook, 1979]. The corresponding curve in the [(ar (t), aθ )] plane
is hyperbola. In further discussion we assume that ν > 0.

In order to verify that the the energy of the system is conserved, I numerically integrated
governing equation (31) and (32) for the one particular system discussed in [Abramowicz
et al., 2003]. The comparison is in Fig. 2. Note that numerical and analytical results are in
very good agreement.

The second integral of motion is found in following way. Let us multiply the equation
(67) by aθ . Then we obtain

aθ γ̇ = −σaθ + ωθ

4
µr a2

r aθ + ωθ

4
µθa3

θ + ωθ

8
αar a3

θ cos γ − ωθ

8
βa3

r aθ cos γ . (77)

Changing the independent variable from t to aθ and multiplying the whole equation by daθ

we find

a3
r a2

θ d(cos γ ) + 8σ
βωθ

d(a2
θ ) − 4µr

β
a2

r aθd(a2
θ ) − µθ

β
d(a4

θ ) −

−2α
β

ar a3
θ cos γ daθ + 2a3

r aθ cos γ daθ = 0. (78)

The equation (75) implies

aθdaθ = −ar dar

ν
. (79)

With aid of this relation the equation (78) takes the form

3a2
r a2

θ cos γ dar + 2a3
r aθ cos γ daθ + a3

r a2
θ d(cos γ ) +

+ 8σ
βωθ

d(a2
θ ) + µr

βν
d(a4

r ) − µθ

β
d(a4

θ ) = 0. (80)

The first three terms express the differential of function −a3
r a2

θ cos γ . Using this the above
equation can be arranged to the form

d
(

a3
r a2

θ cos γ + 8σ
βωθ

a2
θ + µr

βν
a4

r − µθ

β
a4
θ

)
= 0. (81)

In other words,

a3
r a2

θ cos γ + 8σ
βωθ

a2
θ + µr

βν
a4

r − µθ

β
a4
θ = const = L (82)

is another integral of equations (65)–(67).
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4.3 Analytical results

Knowing two integral of motion, we should find one differential equation which governs
behaviour of the system.

First, the amplitudes ar and aθ are not independent because they are related by equation
(75). To satisfied this relation manifestly, let us define new variable ξ(t) by

a2
r = ξE, a2

θ = (1 − ξ)
E
ν

. (83)

The equation describing an evolution of ξ(t) is derived as follows. Let us multiply the
equation (65) by 2ar and integrate it. Then we obtain

d(a2
r )

dt
= α

8
ωr a3

r a2
θ sin γ . (84)

Since Ė = 0, we can change a2
r and ξ and then square it. Then we find

(
8E
αωr

)2
ξ̇2 =

(
a3

r a2
θ sin γ

)2
. (85)

The right hand-side of this equation can be expressed using (82)
(

a3
r a2

θ sin γ
)2

=
(

a3
r a2

θ

)2
−
(

L − 8σ
βωθ

a2
θ − µr

βν
a4

r + µθ

β
a4
θ

)2
. (86)

After the substitution into the equation (85) and using the relations (83) and (83) we get

ξ̇2

E3

(
8
βωθ

)2
= (1−ξ)2ξ3− ν2

E5

[
L − 8σ E

βνωθ
(1 − ξ) − µr E2

βν
ξ2 + µθ E2

βν2 (1 − ξ)2
]2

.(87)

The equation of motion has very familiar form.

K2ξ̇2 = F2(ξ) − G2(ξ), (88)

where the K2 is a positive constant, F(ξ) = (1 − ξ)ξ 3/2 and G(ξ) is a quadratic function
which coefficients depend on initial condition through E and L. For example, the same
form has the equation containing an effective potential which governs motion of test particle
around the massive body in both Newtonian and Einstein gravity. Therefore the following
discussion is same as in that case.

In general, the motion occurs only when ξ̇2 is positive and thus for ξ which satisfy
|F(ξ)| ≥ |G(ξ)|. The turning points, where ξ̇ changes its signature, are determined by the
condition

|F(ξ)| = |G(ξ)|. (89)

The functions ±F(ξ) and G(ξ) are plotted together in the Fig. 3. Generally, the function
G intersects functions ±F in two points which corresponds to ξ(t) oscillating between
two bounds ξ1 and ξ2 given by condition (89). That means, the radial and vertical mode
of oscillations will periodically exchange the energy. The exchanged energy is given by
∆E/E = ξ2 − ξ1. However, for some particular values of L and E only one intersection
of ±F and G can be found. These stationary oscillations correspond to the steady state
solutions which were discussed in the previous section.
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Figure 3. The functions ±F(ξ) = ±(1 − ξ)ξ3/2 and the quadratic function G(ξ) which second
power is the second term on the right hand-side of the equation (87). The behaviour of the system
corresponds to ξ in the interval [ξ1, ξ2] (denoted by the two dotted vertical lines) where the condition
|F(ξ)| ≥ |G(ξ)| is satisfied.

The period of the energy exchange can be find by integration of the equation (87)

T = 16
βωθ

E−3/2
∫ ξ2

ξ1

dξ
√

F2(ξ) − G2(ξ)
. (90)

The integral on the right hand-side can be estimated in the following way. Since P5 =
F2(ξ) − G2(ξ) is a polynomial of the fifth order in ξ having two roots ξ1 and ξ2 in the
interval [0, 1], we can write it as −(ξ − ξ1)(ξ − ξ2)P3(ξ), where P3(ξ) is a polynomial of
the third order positive in the interval [0, 1]. Using the mean-value theorem we get
∫ ξ2

ξ1

dξ√−(ξ − ξ1)(ξ − ξ2)P3(ξ)
= 1

p

∫ ξ2

ξ1

dξ√−(ξ − ξ1)(ξ − ξ2)
= π

p
, (91)

where p > 0 is a value of P3 for some ξ in the interval [ξ1, ξ2]. Since P5 ∼ F2 ∼ 0.01
and (ξ2 − ξ1)

2 ∼ 0.01 typically, the values of P3(ξ) are of order of 1 and thus p ∼ 1. The
period of the energy exchange can be roughly approximated by

T ∼ 16π

βωθ
E−3/2. (92)

However, near the steady state (ξ2 − ξ1)
2 is near to zero and the period becomes much

longer.
The observed frequencies ω⋆

r and ω⋆
θ , given by relations (73), depend on squares of am-

plitudes ar and aθ . Since the both a2
r and a2

θ are parametrised by ξ(t), observed frequencies
are linear functions of ξ and are linearly correlated each other. The slope of this correlation
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Figure 4. Amplitudes and observed frequencies of oscillations versus time in units of one over the
lower eigenfrequency. The lower and upper mode corresponds to the radial and vertical oscillations.

ω⋆
θ = Kω⋆

r + Q is independent of the energy of oscillations and is given only by parameters
of the system

K = ωθ

ωr

λrν − λθ

κrν − κθ
. (93)

The slope of the correlation differs from 3/2, however the observed frequencies are still
close to it.

4.4 Numerical results

The equations (65)–(67) were solved numerically using the 5th order Runge–Kutta method
with an adaptive step size. One of the solutions is in the Fig. 4. It is in agreement with the
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general results obtained analytically in the last section. The top panel of the Fig. 4 shows the
time behaviour of the amplitudes of two modes of oscillations. Since energy of the system
is constant, amplitudes are anticorrelated and the two modes exchanges some amount of
energy. The bottom panel shows observed frequencies which are correlated each other and
they are also correlated to one of the amplitudes. The frequency ratio varies with time and
it differs from exact 3/2, however it is still very close to it.

5 CONCLUSIONS

Although this discussion was originally motivated by observations and models connected
to QPO, the results are very general and can be applied to any system with governing
equations of the form (31) and (32). Moreover, the solvability conditions, which are derived
for all resonances up to the 4th order and summarised in tables 1, 2 and 3, are valid also
for nonconservative systems. The only difference is that constants C (n,x)

α which appears in
the multiple scale expansion are generally complex. However, the results discussed in the
previous section are derived under the assumption that the system is conservative and thus
all the constants C (n,x)

α are real. In future I plane to include also nonconservative systems
into the discussion.

The main result of this calculation is prediction of the low frequency modulation of the
amplitudes and frequencies of oscillations. The characteristic timescale is approximately
given by equation (92). In separate paper [Horák et al., 2004] we pointed to possible connec-
tion of this modulation to the “normal branch oscillations” (NBOs) often observed together
with QPOs. Specially, the correlation between higher frequency and lower amplitude ap-
parent from Fig. 4 is the same as was recently seen in SCO X-1 [Yu et al., 2001].
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ABSTRACT
Definition of the inertial forces in the framework of the optical reference geometry
is applied to the stationary and axially symmmetric Kerr–de Sitter spacetimes. The
attention is restricted to the inertial forces acting on particles moving along circular
orbits in the equatorial plane of these spacetimes. It is shown, where the gravitational
force vanishes, and where the centrifugal force vanishes independently of velocities
of test particles. The Coriolis force does not vanish for a non-zero velocity.

1 INTRODUCTION

The covariant definition of the inertial forces in the framework of the optical reference
geometry was introduced by M. Abramowicz and his co-workers [Abramowicz et al.,
1988, Abramowicz et al., 1995, Abramowicz et al., 1993b]. This definition provides a
description of relativistic dynamics in accordance with our natural Newtonian intuition. It
is its main advantage in comparison with a number of other definitions of inertial forces in
the framework of general relativity [Jantzen et al., 1992].

The inertial forces related to the optical reference geometry were extensively exploited in
many papers describing properties of black-hole spacetimes [Abramowicz, 1990,Abramow-
icz and Miller, 1990, Abramowicz et al., 1993a]. Moreover, it has been shown that many
important properties of relativistic dynamics in terms of inertial forces can be effectively
illustrated by properties of embeding diagrams of the optical reference geometry [Hledı́k,
2001, Hledı́k, 2002]. Black-hole spacetimes with a non-zero cosmological constant were
treated in terms of the optical reference geometry in the simplest, spherically symmetric
cases of the Schwarzschild-de Sitter and Reissner-Nordström–de Sitter spacetimes [Stuch-
lı́k and Hledı́k, 1999b, Stuchlı́k et al., 2001, Stuchlı́k and Hledı́k, 2002]. In the later case,
naked-singularity spacetimes appear along with the black-hole spacetimes. Here, we shall
consider the Kerr–de Sitter black-hole and naked-singularity spacetimes.

In Section 2, a brief summary of the Abramowicz definition of the gravitational, Coriolis,
centrifugal, and Euler forces is given in general stationary spacetimes. In Section 3, we
focus on the forces acting on particles stationary moving along circular orbits in equa-
torial planes of stationary and axially symmetric spacetimes. Basic properties of the
forces in the Kerr–de Sitter spacetimes and its limit cases, i.e., in the Kerr spacetimes
and Schwarzschild–de Sitter spacetimes are discussed in Section 5. Basic features of the

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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Kerr–de Sitter spacetimes are summarized in Section 4. In Section 6, some concluding
remarks are presented.

2 INERTIAL FORCES IN STATIONARY SPACETIMES

2.1 Special observers

Let us consider a stationary spacetime described by the metric gik (with signature +2)
containing a timelike vector field ni . We can identify this vector field with 4-velocity field
of family of special observers related to the spacetime. Let [Abramowicz et al., 1993b]

nknk = −1, ni∇i nk = ∇kΦ, (1)

where Φ is a scalar function called gravitational potential. It is useful (but not necessary
for the definition of inertial forces) to require that the vector field n i satisfies the condition
of hypersurface orthogonality

n[i∇j nk] = 0. (2)

We can find at least two solutions of Eq. (1): Φ = const and n i corresponding to the
4-velocity field of free-falling (geodesic) observers is the first solution. Φ = 1

2 ln (−ιi ιi )
and ni = e−Φ ιi corresponding to the 4-velocity of stationary observer is the second one. In
the second case, ni is the unit vector field parallel to the timelike Killing vector ιi , which
exists due to the spacetime stationarity (eΦ is the norm coefficient). The equation

ni∇iΦ = 0, (3)

following from (1), suggests that the special observers with 4-velocity n i observe no change
in the gravitational potential as their proper time passes. It means the observers are fixed
with respect to the gravitational field. The local instantaneous 3-dimensional space of the
observer, which is orthogonal to ni , is described by the metric

hik = gik + ni nk, (4)

the so-called directly projected geometry. It is useful to define the conformally adjusted
metric of the spacetime

g̃ik = e−2Φ gik (5)

and the conformally adjusted metric of the directly projected geometry

h̃ik = e−2Φhik , (6)

the so-called optical reference geometry.

2.2 Inertial forces

The 4-velocity ui of a particle with a rest mass m can be decomposed into the time part and
spatial part (ni orthogonal) in the reference frame of the special observer with the 4-velocity
ni by using the relation



Inertial forces in Kerr–de Sitter spacetimes 113

ui = γ (ni + vτ i ), (7)

where τ i is the unit spacelike vector parallel to the 3-velocity vi of the particle in the
3-dimensional space (ni orthogonal) and γ = (1 − v2)−1/2 is the Lorentz factor (the speed
of light c = 1). Note that γ vτ k = γ vk = ui hk

i and γ = −ni ui ; hi
k = δi

k + ni nk is
the projection tensor allowing the special observer to define 3-dimensional quantities by
projecting 4-dimensional quantities into his local instantaneous 3-dimensional space (n i

orthogonal).
The 4-acceleration of the particle is defined by the relation ak = ui∇i uk . Using (7),

we can easily derive the following formula for the 4-acceleration (in which the terms are
arranged according to the powers of the speed and its derivate)

ak = γ 2∇kΦ + γ 2v(ni∇iτk + τ i∇i nk) + γ 2v2τ i∇iτk + (vγ )̇τk + γ̇ nk , (8)

where (vγ )̇ ≡ ui∇i (γ v). By using τ̃ i = eΦτ i (the spacelike unit vector in the optical
reference geometry, parallel to τ i ), its covariant form τ̃i = e−Φτi , the scalar E = −ιi ui ,
the identity γ 2 = 1 + v2γ 2 and by denoting ṽ = γ v, we obtain (after amount of simple but
tedious algebra)

ak = ∇kΦ + γ 2v(ni∇iτk + τ i∇i nk) + ṽ2τ̃ i ∇̃i τ̃k + (−Ev)̇τ̃k + γ̇ nk . (9)

By projecting (9) (using the projection tensor hk
j ) into the 3-dimensional space (orthogonal

to ni ) and by using the condition of hypersurface orthogonality (2), we arrive at

a⊥
j = hk

j ak = ∇jΦ + ṽ2τ̃ i ∇̃i τ̃ j + γ 2vX j + V̇ τ̃ j , (10)

where X j ≡ ni (∇iτ j − ∇jτi ) and V̇ ≡ ui∇i (−Ev).
The real force acting on the particle (for example a thrust of a rocket orbiting a black

hole) in the 3-dimensional space of the comoving frame of the particle can be expressed
by the relation F⊥

k = ma⊥
k . This equation can be rewritten to the form F⊥

k − ma⊥
k = 0,

which suggests that the particle is not accelerated and the real force is balanced by the
inertial force F ′

k
⊥ = −ma⊥

k , i.e., Fk
⊥ + F ′

k
⊥ = 0. Due to the Eq. (10), we can decompose

this inertial force into the sum of (subsequently) the gravitational, centrifugal, Coriolis, and
Euler forces [Abramowicz et al., 1993b]

F ′
k
⊥ = −ma⊥

k

= −m∇kΦ − mṽ2τ̃ i ∇̃i τ̃k − mγ 2vXk − mV̇ τ̃k

= Gk
⊥ + Zk

⊥ + Ck
⊥ + Ek

⊥. (11)

Finally, we obtain the following expressions for the different kinds of inertial forces, which
are familiar from the Newtonian physics. (Notice that in the context of the optical geometry
relativistic approach, the gravitational force belongs to the inertial forces.)

G⊥
k = −m∇kΦ, (12)

C⊥
k = −mγ 2vXk, (13)

Z⊥
k = −mṽ2τ̃ i ∇̃i τ̃k, (14)

E⊥
k = −mV̇ τ̃k . (15)

(In the following text, the superscript symbol ⊥ is dropped.)
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3 CIRCULAR MOTION IN STATIONARY AND AXIALLY SYMMETRIC
SPACETIMES

Consider a spacetime with a timelike Killing vector field ηi and axial Killing vector field
ξ i . We can denote m i as the 4-velocity of the special stationary observer who was defined
in the subsection 2.1. According to this, the 4-velocity m i should be the unit vector parallel
to an arbitrary timelike Killing vector ν i = Cηi + Dξ i , where C , D are coefficients of the
linear combination. After normalising ν i , we arrive at m i = e−Φ[ηi + (D/C)ξ i ], where
Φ = 1

2 ln
{
−[ηi + (D/C)ξ i ][ηi + (D/C)ξi ]

}
. If we introduce the new timelike Killing

vector ιi = ηi + (D/C)ξ i and D/C ≡ Ω , we obtain the relation

mi = e−Φ ιi = e−Φ(ηi +Ωξ i ), (16)

which corresponds to the well-known unit 4-velocity of the stationary observer in axially
symmetric and stationary spacetimes moving at r = const with the angular 3-velocity
Ω = dφ/dt . In general, this 4-velocity is not hypersurface orthogonal, but the case corre-
sponding to the locally non-rotating frames withΩ ≡ ΩLNRF = −ηiηi/η

iξi is hypersurface
orthogonal. Therefore we can choose the 4-velocity

ni ≡ e−Φ ιi = e−Φ(ηi +ΩLNRFξ
i ) (17)

as the 4-velocity field of the special family of locally non-rotating observers.
The 4-velocity of the particle moving along a circular orbit (r = const) in the equatorial

plane can be written in the form

ui = A(ηi +Ωξ i ). (18)

Due to the choice of locally non-rotating observers (with n i being hypersurface orthogonal),
the unit vector τ i is located in the hypersurface and it is directed along the Killing vector
ξ i , because we consider the circular orbits, i.e.,

τ i = (ξ kξk)
−1/2ξ i . (19)

From this fact and from (18) and (7), we obtain relations

γ = AeΦ, (20)
v = e−Φ(ξ iξi )

1/2(Ω −ΩLNRF). (21)

By using the general form of the inertial forces (12)–(15) and the equations (18)–(21),
we arrive at the expressions for components of the gravitational, Coriolis, and centrifugal
forces acting on the particle moving along the circular orbit with Ω = const [Abramowicz
et al., 1995]

Gk = −m
1
2
∂k(ln e2Φ), (22)

Ck = mγ 2v g−3/2
φφ e−Φ(gφφ∂k gtφ − gtφ∂k gφφ), (23)

Zk = m(γ v)2 1
2

g−1
φφ e−2Φ(e2Φ∂k gφφ − gφφ∂ke2Φ). (24)

Note that the Euler force Ek appears in the case ofΩ ̸= const. Due to the axial symmetry and
stationarity of the spacetimes the t and φ-components vanish. Moreover the θ -components
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vanish in the case of the motion in the equatorial plane, which we shall focus on. Then the
only non-vanishing r -components of the forces can be rewritten in the form

Gr = −m∇rΦ, (25)
Cr = −m(1 + ṽ2)1/2ṽ R̃∇rΩLNRF, (26)
Zr = mṽ2 R̃−1∇r R̃, (27)

where

ṽ = γ v, r̃ = (ξ iξi )
1/2, R̃ = r̃e−Φ . (28)

Note that by using Ω̃ = Ω − ΩLNRF, we obtain from (21) the relation v = Ω̃ R̃ having
the familiar Newtonian form. From these expressions, it is really obvious that the inertial
forces have the Newtonian character. The gravitational force is velocity-independent, the
Coriolis force depends on the first power of the velocity, and the centrifugal force depends
on the second power of the velocity. We can also give the mass and velocity independent
parts of the forces [Abramowicz et al., 1995]

Gr = Gr

m
= −m

1
2
∂r (ln e2Φ) = −∇rΦ, (29)

Cr = Cr

mγ 2v
= g−3/2

φφ e−Φ(gφφ∂r gtφ − gtφ∂r gφφ) = −R̃∇rΩLNRF, (30)

Zr = Zr

m(γ v)2 = 1
2

g−1
φφ e−2Φ(e2Φ∂r gφφ − gφφ∂r e2Φ) = R̃−1∇r R̃. (31)

4 KERR–DE SITTER SPACETIMES

The Kerr–de Sitter spacetime is a stationary and axially symmetric solution of Einstein’s
vacuum equations with a positive (repulsive) cosmological constant. This solution describes
the geometry of a spacetime around an isolated Kerr (rotating and uncharged) black hole
or naked singularity determined by a mass M and a specific angular momentum a in the
universe with a repulsive cosmological constantΛ > 0.

The line element of the Kerr–de Sitter geometry (in the standard Boyer–Lindquist coor-
dinates, geometric units with c = G = 1, and signature +2) is given by the relation

ds2 = − ∆r

I 2ρ2 (dt−a sin2 θ dφ)2+∆θ sin2 θ

I 2ρ2 [a dt−(r2+a2) dφ]2+ ρ2

∆r
dr2+ ρ2

∆θ
dθ2,(32)

where

∆r = r2 − 2Mr + a2 − 1
3
Λr2(r2 + a2), (33)

∆θ = 1 + 1
3
Λa2 cos2 θ, (34)

I = 1 + 1
3
Λa2, (35)

ρ2 = r2 + a2 cos2 θ . (36)
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It is convenient to use the following dimensionless quantities s/M → s, t/M → t ,
r/M → r , a/M → a and to introduce a dimensionless cosmological parameter

y = 1
3
ΛM2. (37)

The Kerr–de Sitter geometry, being stationary and axially symmetric, admits two Killing
vector fields: the timelike vector field η = ∂/∂t and the spacelike vector field ξ = ∂/∂φ,
which are not orthogonal in general. In addition note that gt t = (ηiηi ), gtφ = (ηiξi ), and
gφφ = (ξ iξi ).

4.1 Black-hole and naked-singularity spacetimes

The stationary regions of the Kerr–de Sitter spacetimes are determined by the relation

∆r (r; a, y) = r2 − 2r + a2 − yr2(r2 + a2) ≥ 0, (38)

and bounded by the horizons: r = rh− (the inner black-hole horizon), r = rh+ (the outer
black-hole horizon), and r = rc (the cosmological horizon), which are the real roots of
the equality in (38). We can express the condition for the positions of the horizons in the
form [Stuchlı́k and Hledı́k, 2000, Stuchlı́k and Slaný, 2004]

y = yh(r; a2) ≡ r2 − 2r + a2

r2(r2 + a2)
. (39)

In addition note that in the Kerr–de Sitter spacetimes

y > 0 (40)

Using (39), we can now discuss the number of horizons. The asymptotic behaviour of
the function yh(r; a2) is given by yh(r → ∞; a2) → 0 and yh(r → 0; a2) → ∞. The
stationary points of the function yh(r; a2) are determined (due to the condition ∂r yh(r; a2) =
0) by the relation

a2(r) = a2
he(r) ≡ 1

2
(−2r2 +

√
8r + 1 + r), (41)

which determines the curve in the plane (r+ × a2) (see Fig. 1a). From the condition
∂r a2

he(r) = 0 and relation (41), it follows that the maximum a2
he,max of this function is

located at

rhe,max = 1
4
(3 + 2

√
3)

.= 1.62, (42)

and takes the value

a2
he,max

.= 1.21. (43)

Using this point, we can divide the curve a2
he(r) into the “left” and “right” parts denoted by

a2
he1(r) and a2

he2(r). By using second partial derivate of the function yh(r; a2) at the points
of this curve, we can convince ourselves that the function yh(r; a2) has local maximum
at a2

he2(r) and local minimum at a2
he1(r) for a specific value of the parameter a2. The

point a2
he,max corresponds to an inflexion point of yh(r; a) (see Fig. 1b). It is also useful to
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Figure 1. (a) Curve a2
he(r) and its parts, regions NS-BH and NS (separated by the line a2 = a2

he,max
.=

1.21) corresponding to the classification of the Kerr–de Sitter spacetimes. Notice that the outer black-
hole stationary region can not occur in the light-gray part and the inner black-hole region can not
occur in the dark-gray part of the NS-BH region. (b) Behaviour of the function yh(r, a2) (solid) for
the specific value of the parameter a2 = 0.75. Intersections of the dashed line y = 0.03 and the
function yh(r; a2) determine the inner black-hole, outer black-hole, and cosmological horizons of the
Kerr–de Sitter spacetimes with these rotational and cosmological parameters.

introduce yhe1 and yhe2 as the values of the function yh(r; a2) at the points of the “left” and
“right” parts of the curve a2

he(r).
By using the rotational parameter a2, we can now give the following classification of the

Kerr–de Sitter spacetimes (see Fig. 1a) .

Class BH-NS: 0 < a2 < 1.21. In these spacetimes,

• there is 1 horizon in the case of y < yhe1,
• there is 1 horizon in the case of y > yhe2,
• there are 2 horizons in the case of y = yhe1,
• there are 2 horizons in the case of y = yhe2,
• there are 3 horizons in the case of yhe1 < y < yhe2.

Class NS: a2 ≥ 1.21. In these spacetimes, there is one horizon in the case of any value of
y.

The class NS contains only the Kerr–de Sitter naked-singularity spacetimes, whereas
the class BH-NS contains the Kerr–de Sitter black-hole spacetimes and naked-singularity
spacetimes as well, in dependence on the value of the cosmological parameter y. Spacetimes
containing 3 or 2 horizons are black-hole spacetimes and spacetimes containing 1 horizon
are naked-singularity spacetimes (see Fig.1). Thereinafter we use “BH” instead of the word
“black-hole” and “NS” instead of the word “naked-singularity”.

5 INERTIAL FORCES IN KERR–DE SITTER SPACETIMES

By using (32), we can express the inertial forces (22)–(24) in the following form

Gr = m
{

r∆r [ra4y + (yr3 + r + 2)a2 + r3]
}−1

×
{

r3a2(a2 + r2)2 y2
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+ r2(a2 + r2)[r3 + a2(r + 4)]y − r4 − 2r2a2 + 4ra2 − a4
}

, (44)

Zr = m(γ v)2
{

r∆r [ra4y + (yr3 + r + 2)a2 + r3]
}−1

×
{

r3a4(a2 + r2)y2

+ r2a2[(2r + 5)a2 + r2(2r + 3)]y + r 4(r − 3) + ra2[r(r − 3) + 6] − 2a4
}

, (45)

Cr = mγ 2v
2a(a2 + r2)

r
√
∆r [ra4y + (yr3 + r + 2)a2 + r3] . (46)

The behaviour of the gravitational, centrifugal, and Coriolis forces acting on a particle sta-
tionary moving along a circular orbit in the equatorial plane of the Kerr–de Sitter spacetimes
(see Fig. 2) can be elucidated by studying the following basic problems.

(a) Range of definition: The forces are defined only in the stationary regions of the Kerr–
de Sitter spacetimes where

r > 0, y > 0, ∆r (r; a2, y) > 0 ⇔ y < yh(r; a2). (47)

(b) Divergence: The forces diverge at points where their denominator equals to zero, i.e.,
at the singularity and horizons.
(c) Vanishing of forces: The velocity dependent forces, i.e., the centrifugal and Coriolis
forces, naturally vanish for v = 0. It is, however much more interesting to establish where
the forces vanish independently of the velocity, as well as to establish where the gravitational
force force vanishes. Each of forces vanishes on the circular orbit with the radius r satisfying
the condition of their numerator equal to zero. It means the gravitational force vanishes on
circular orbits with the radius determined by the relation

y = yG(r; a2) ≡ −r [r3 + a2(r + 4)] +
√

r(a2 + r2)[r5 + r2a2(r + 12) + 4a4]
2r2a2(a2 + r2)

, (48)

and the centrifugal force vanishes independently of the velocity on circular orbits with the
radius determined by the relation

y = yZ(r; a2) ≡
[
2a2r2(a2 + r2)

]−1
×
{
−(2r + 5)ra2 − r3(2r + 3)

+
√

r(a2 + 3r2)[8a4 + ra2(16r + 1) + r 3(8r + 3)]
}

. (49)

The Coriolis force vanishes only in the case of the velocity equal to zero, therefore we
shall restrict our attention only to the circular orbits where the gravitational and centrifugal
forces vanish. The discussion of the existence and number of such orbits is then based on
the study of the behaviour of the functions yG(r; a2) and yZ(r; a2).
(d) Change of orientation of forces: At the radii of circular orbits where the forces vanish
independently of the velocity, the forces can change their orientation. It only happens in the
case of no local extrema of the forces at these radii.

The problem (c) is discussed in the following part of the article in detail.
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Figure 2. Behaviour of velocity independent parts of gravitational, Coriolis, and centrifugal forces for
the specific values of the parameters a2 = 0.77 and y = 0.02. The intersections of the vertical lines
and r − axis determine the positions of horizons. The intersections of these functions, denoted as Gr ,
Zr , and Cr with r − axes determine the radii of circular orbits, where the gravitational, centrifugal,
and Coriolis forces vanish independently of the velocity.

5.1 Gravitational force

5.1.1 Existence of circular orbits with Gr = 0

The relevant part of the function yG(r; a2) must satisfy the conditions (47) for the range of
definition of forces, i.e., the relations

yG(r; a2) < yh(r; a2), (50)
yG(r; a2) > 0. (51)

We start with the determination of the region where yG(r; a2) < yh(r; a2). The asymp-
totic behaviour of the function yG(r; a2) is given by yG(r → ∞; a2) → +0 and
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Figure 3. Regions Y (white), N (gray), regions A, B, C , D, E , and F (separated by curves and
dashed lines), curve a2

Gh(r) (dashed and dotted) enclosing the area where yG(r; a2) > yh(r; a2),
and curve a2

G0(r) (solid) enclosing the area where yG(r; a2) < 0. The intersections of the thick
line a2 = 0.75 and the curve a2

G0(r) determine the points where yG(r; a2)=0, and the intersections
with the curve a2

Gh(r) determine the points where yG(r; a2)=yh(r; a2), for the specific value of the
parameter a2 = 0.75 (compare with Fig. 4).

yG(r → 0; a2) → ∞, whereas yG(r → 0; a2) < yh(r → 0; a2) and yG(r → ∞; a2) <

yh(r → ∞; a2).
The points where yG(r; a2) = yh(r; a2) are given by the relation

a2 = a2
Gh(r) ≡ 1

2
(−2r2 +

√
8r + 1r + r), (52)

which determines the curve in the plane (r+ × a2) (see Fig. 3).
Note that the function a2

Gh(r) is identical with the function a2
he(r) and that the local

maximum a2
Gh,max

.= 1.21 of this function is located at rGh,max
.= 1.62. In addition, this

point divides the curve a2
Gh(r) into the “left” and “right” parts denoted by a2

Gh1(r) and
a2

Gh2(r). By using the asymptotic behaviour of the function yG(r; a2) and (52), we can
determine the region in the plane (r+ × a2) where yG(r; a2) < yh(r; a2) (see Fig. 3). It is
also useful to introduce yGh1 and yGh2 as the values of the function yG(r; a2) at the points
of the “left” and “right” parts of the curve a2

Gh(r).
Next, we determine the region where yG(r; a2) > 0. The points where yG(r; a2) = 0

are given by the relation

r4 + 2r2a2 − 4ra2 + a4 = 0, (53)

which we denote as the implicit form of the function a2
G0(r). Note that in the plane (r+×a2),

this function determine the curve (see Fig. 3), which consists of two parts determined by
the solution of (53), i.e, by the relation

a2 = a2
G0±(r) ≡ 2r − r2 ± 2

√
r2 − r3. (54)
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Figure 4. Behaviour of functions yG(r; a2) and yh(r; a2) for the specific value of the parameter
a2 = 0.75.

The maximum a2
G0,max

.= 1.69 of this function is located at rG0,max
.= 0.75. In addition,

this point divides the curve into the “left” and “right” parts denoted by a2
G01(r) and a2

G02(r).
The asymptotic behaviour of the function yG(r; a2) and (53) determine the region in the
plane (r+ × a2) where yG(r; a2) > 0 (see Fig. 3).

The plane (r+ × a2) can be divided into two regions: the region Y where the function
fulfils the conditions (50) and (51), i.e., where the existence of the circular orbits with
Gr = 0 is possible and the region N where the existence of the circular orbits with Gr = 0
is not possible. We can also divide the region Y into six subregions with respect to the radial
coordinate r : A-region (r > rGh2), B-region (0 < r < rG01), C-region (rG02 < r < rGh1),
D-region (r > rG02), E-region (0 < r < rG01), and F-region (r > 0) (see Fig. 3). It is
also useful to introduce yG01 and yG02 as values of the function yG(r; a2) at the “left” and
“right” parts of the curve a2

G0(r). The common point of the functions a2
Gh(r) and a2

G0(r)

takes the value a2
Gh0,int = 1 and is located at rGh0,int = 1.

5.1.2 Number of circular orbits with Gr = 0

The number of the circular orbits with Gr = 0 depends on the number of local extrema of
the function yG(r; a2). The stationary points of the function yG(r; a2) are determined (due
to the condition ∂r yG(r; a2) = 0) by the relation

6r2 + 2a2 − (r2 + a2)(9r4 + 8a2r2 + 3a4)
√

r(r2 + a2)[r5 + r2a2(r + 12) + 4a2]
= 0, (55)

which we denote as the implicit form of the function a2
Ge(r). This function also determines

the curve in the plane (r+ ×a2) (see Fig 5a). The maximum a2
Ge,max

.= 2.44 of this function
divides the curve into the “left” and “right” parts denoted by a2

Ge1(r) and a2
Ge2(r). The

“right” part of this curve corresponds to local maxima of the function yG(r; a2), the “left”
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Figure 5. (a) Curve a2
Ge(r). The intersections of the dashed line a2 = 1.5 with this curve determine

the stationary points of the function yG(r; a2) for the specific value of the parameter a2 = 1.5
(compare with the next part of the figure). (b) Behaviour of function yG(r; a2) for the specific value
of the parameter a2 = 1.5. Intersections of the dashed line y = 0.035 with the graph of the function
yG(r; 1.5) determine radii of circular orbits with Gr = 0 in the Kerr–de Sitter spacetimes with the
parameters a2 = 1.5 and y = 0.035.

part corresponds to the local minima, whereas these extrema coalesce at rGe,max
.= 1.36

(see Fig. 5). Notice that in the Kerr–de Sitter spacetimes, even three circular orbits with
Gr = 0 can occur in the case of two local extrema of the function yG(r; a2). It is also useful
to introduce yGe1 and yGe2 as the values of the function yG(r; a2) at the points of the “left”
and “right” parts of the curve a2

Ge(r).
The common point of the functions a2

Gh(r) and a2
Ge(r) is identical with the maximum of

the function a2
Gh(r).

5.1.3 Classification of Kerr–de Sitter spacetimes

Using the rotational and cosmological parameters, we can give the following classification
of the Kerr–de Sitter spacetimes (see Fig. 6).

Class GI: (0 < a2 ≤ 1)
In these spacetimes, there are 2 regions of r where the existence of the orbits with Gr = 0
is possible: A-region and B-region.

(a) spacetimes with 0 < y < yGh2 are BH spacetimes containing:

• 1 orbit in the A-region (in the outer BH region),

• 1 orbit in the B-region (in the inner BH region).
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Figure 6. Curves a2
Gh(r) (dashed and dotted), a2

G0(r) (solid), a2
Ge(r) (dashed), and regions I , I I ,

I I I , I V , and V (separated by dashed lines) corresponding to the classification of the Kerr–de Sitter
spacetimes.

(b) spacetimes with y ≥ yGh2 are NS spacetimes containing:

• 1 orbit in the B-region

Class GII: (1 < a2 < 1.21)
In these spacetimes, there are 3 regions of r where the existence of the orbits with Gr = 0
is possible: A-region, B-region, and C-region.

(a) spacetimes with 0 < y < yGh1 are NS spacetimes containing:

• 1 orbit in the A-region,

• 1 orbit in the B-region,

• 1 orbit in the C-region.

(b) spacetimes with yGh1 ≤ y < yGh2 are BH spacetimes containing:

• 1 orbit in the A-region (in the outer BH region),

• 1 orbit in the B-region (in the inner BH region)

(c) spacetimes with y ≥ yGh2 are NS spacetimes containing:

• 1 orbit in the B-region

Class GIII: (1.21 ≤ a2 ≤ 1.69)
These spacetimes are NS spacetimes. There are 2 regions of r where the existence of
the orbits with Gr = 0 is possible: D-region and E-region. They can be divided into 2
subclasses.
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Subclass GIIIa: (a2 = 1.21)

(a) spacetimes with 0 < y < yGe2 contain:

• 2 orbits in the D-region,

• 1 orbit in the E-region.

(b) spacetimes with y ≥ yGe2 contain:

• 1 orbit in the E-region

Subclass GIIIb: (1.21 < a2 ≤ 1.69)

(a) spacetimes with 0 < y < yGe2 contain:

• 2 orbits in the D-region,

• 1 orbit in the E-region.

(b) spacetimes with y = yGe2 contain:

• 1 orbit in the D-region,

• 1 orbit in the E-region.

(c) spacetimes with y > yGe2 contain:

• 1 orbit in the E-region

Class GIV: (1.69 < a < 2.44)
These spacetimes are NS spacetimes.

(a) spacetimes with 0 < y < yGe1 contain: 1 orbit
(b) spacetimes with y = yGe1 contain: 2 orbits
(c) spacetimes with yGe1 < y < yGe2 contain: 3 orbits
(d) spacetimes with y = yGe2 contain: 2 orbits
(e) spacetimes with y > yGe2 contain: 1 orbit

Class GV: (a2 ≥ 2.44)
These spacetimes are NS spacetimes and contain 1 circular orbit with Gr = 0 for any
y > 0.

5.1.4 Schwarzschild-de Sitter and Kerr case

In the Schwarzschild-de Sitter spacetimes (a2 = 0, y > 0), we obtain from (44) that the
gravitational force is given by the relation

Gr = m
1 − r3 y

r(2 − r + r3y)
. (56)

Notice that the force vanishes at the static radius rs = y−1/3, where the gravitational
attraction of the black hole is balanced by the cosmological repulsion. The gravitational
force also changes its orientation on the circular orbit with this radius. The circular orbit
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Figure 7. Curves a2
G(r) (solid), a2

Gs(r) (dashed), a2
h (r) (dashed and dotted) enclosing dynamic area

(gray), and regions I , I I , and I I I corresponding to the classification of the Kerr spacetimes. The
intersections of a line a2 = const with the curve a2

G(r) determine the radii of the circular orbits with
Gr = 0, the intersections with the curve a2

Gs(r) determine the radii where the gravitational force Gr
has stationary points, and the intersections with the curve a2

h(r) determine the positions of black-hole
horizons in the Kerr spacetimes with the parameter a.

with the radius rs = y−1/3 has an important meaning even in the Kerr–de Sitter spacetimes.
It is the outer limit for the existence of circular geodesics where two families of the
geodesic circular stationary motion coalesce. (We can express the velocity v of the particle
from the condition of the stationary circular geodesic motion, i.e., from the condition
Gr + Cr + Zr = 0, and convince ourselves that the relation r ≤ y−1/3 is the condition for
the velocity v to be real. It means it is the necessary condition for the stationary circular
geodesic motion in the equatorial plane.)

In the Kerr spacetimes (a > 0, y = 0), we obtain from (44) that the gravitational force
is given by the relation

Gr = m
−r4 − 2r2a2 + 4ra2 − a4

r∆r [(r + 2)a2 + r3] . (57)

Clearly, in the Kerr spacetimes, this force is also defined only in the region determined by
∆r > 0, i.e., in the region determined by the condition a2 > r(2 − r). The equality in
this equation determines the function a2

h(r) (with the maximum a2
h,max = 1 at rh,max = 1),

which divides the plane (r+ × a2) into the stationary and dynamic regions (see Fig. 7). The
gravitational force vanishes on the circular orbit with radii determined by the relation

r4 + 2r2a2 − 4ra2 + a4 = 0. (58)

We denote this equation as the implicit form of the function a2
G(r), which determines the

curve in the the plane (r+ × a2) (see Fig. 7). Note that the function a2
G(r) is identical
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with the function a2
G0(r) and that the maximum a2

G,max
.= 1.69 of this function is located

at rG,max
.= 0.75. By using the condition ∂r Gr = 0, we obtain the function a2

Gs(r),
which determines the stationary points of the gravitational force (see Fig. 7). The maximum
a2

Gs,max and the minimum a2
Gs,min ≡ a2

h,max of this function are the only inflexion points
of the gravitational force. The other points determined by the function a2

Gs corresponds to
local extrema.

Using the rotational parameter, we can now give the following classification of the Kerr
spacetimes (see Fig. 7).

Class GI: (0 < a2 ≤ 1)
These spacetimes are BH spacetimes. In the inner stationary region, there is only 1 orbit
with Gr = 0. On this orbit the gravitational force also changes its orientation. In the outer
stationary region, there is no such orbit.
Class GII: (1 < a2 ≤ 1.69)
These spacetimes are NS spacetimes. There are 2 orbits with Gr = 0 for a2 < 1.69 and
there is 1 such orbit for a2 = 1.69, but on this orbit the gravitational force does not change
its orientation.
Class GIII: (a2 > 1.69)
These spacetimes are NS spacetimes. There is no orbit with Gr = 0.

5.2 Centrifugal force

5.2.1 Existence of circular orbits with Zr = 0

The relevant part of the function yZ(r; a2) must satisfy the conditions (47) for the range of
definition of forces, i.e., the relations

yZ(r; a2) < yh(r; a2), (59)
yZ(r; a2) > 0. (60)

Again, we start with the determination of the region where yZ(r; a2) < yh(r; a2). The
asymptotic behaviour of the function yZ(r; a2) is given by yZ(r → ∞; a2) → −∞ and
yZ(r → 0; a2) → ∞, whereas yZ(r → 0; a2) < yh(r → 0; a2) and yZ(r → ∞; a2) <

yh(r → ∞; a2).
The points where yZ(r; a2) = yh(r; a2) are given by the relation

a2 = a2
Zh(r) ≡ 1

2
(−2r2 +

√
8r + 1r + r), (61)

which determines the curve in the plane (r+ × a2) (see Fig. 8). Note that the function
a2

Zh(r) is identical with the function a2
Gh(r) and that the local maximum a2

Zh,max
.= 1.21 of

this function is located at rZh,max
.= 1.62. In addition, this point divides the curve a2

Zh(r)
into the “left” and “right” parts denoted by a2

Zh1(r) and a2
Zh2(r). By using the asymptotic

behaviour of the function yZ(r; a2) and (61), we can determine the region in the plane
(r+ × a2) where yZ(r; a2) < yh(r; a2) (see Fig. 8). It is also useful to introduce yZh1 and
yZh2 as the values of the function yZ(r; a2) at the points of the “left” and “right” parts of
the curve a2

Zh(r).
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Figure 9. Behaviour of functions yZ(r; a2) and yh(r; a2) for the specific value of the parameter
a2 = 1.21.

Next, we determine the region where yZ(r; a2) > 0. The points where yZ(r; a2) = 0 are
given by the relation
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r4(r − 3) + ra2[r(r − 3) + 6] − 2a4 = 0, (62)

which we denote as the implicit form of the function a2
Z0(r). Note that in the plane (r+×a2),

this function determine the curve (see Fig. 8), which consists of two parts determined by
the solution of (62), i.e., by the relation

a2 = a2
Z0±(r) ≡ 1

4
r{6 + r(r − 3) ±

√
(r − 1)[r2(r + 3) − 36]} (63)

The maximum a2
Z0,max

.= 1.37 of this function is located at rZ0,max
.= 0.81. In addition, this

point divides one part of the curve into the “left” and “right” parts denoted by a2
Z01(r) and

a2
Z02(r). We denote the other part of this curve as a2

Z03(r). The asymptotic behaviour of the
function yZ(r; a2) and (62) determine the region in the plane (r +×a2) where yZ(r; a2) > 0
(see Fig. 8).

The plane (r+ × a2) can be divided into two regions: the region Y where the function
fulfils the conditions (59) and (60), i.e., where the existence of the circular orbits with
Zr = 0 is possible, and the region N where the existence of the circular orbits with Z r = 0
is not possible. We can also divide the region Y into six subregions with respect to the
radial coordinate r : A-region (rZh2 < r < rZ03), B-region (0 < r < rZ01), C-region
(rZ02 < r < rZh1), D-region (rZ02 < r < rZ03), E-region (0 < r < rZ01), and F-region
(0 < r < rZ03) (see Fig. 8). It is useful to introduce yZ01 and yZ02 as the values of the
function yZ(r; a2) at the “left” and “right” parts of the curve a2

Z0(r). The common point of
the functions a2

Zh(r) and a2
Z0(r) takes the value a2

Zh0,int = 1 and is located at rZh0,int = 1.

5.2.2 Number of circular orbits with Zr = 0

The number of the circular orbits with Zr = 0 depends on the number of local extrema of
the function yZ(r; a2). The stationary points of the function yZ(r; a2) are determined (due
to the condition ∂r yZ(r; a2) = 0) by the relation

0 = 5a4 + 12r2a2 + 3r4 −
{√

a4r3(a2 + 3r2)[8a4 + r(16r + 1)a2 + r3(8r + 3)]
}−1

×
{

r [12a8 + r(48r + 1)a6 + 3r3(24r + 1)a4

+ 3r5(16r + 1)a2 + 3r7(4r + 3)]a2
}

, (64)

which we denote as the implicit form of the function a2
Ze(r). This function also determines

the curve in the plane (r+ × a2) (see Fig. 10a). The maximum a2
Ze,max

.= 1.81 of this
function divides the curve into the “left” and “right” parts denoted by a2

Ze1(r) and a2
Ze2(r).

The “right” part of this curve corresponds to the local maxima of the function yZ(r; a2), the
left part corresponds to the local minima, whereas these extrema coalesce at rZe,max

.= 1.33
(see Fig. 10b). Notice that in the Kerr–de Sitter spacetimes, even three circular orbits with
Zr = 0 can occur in the case of two local extrema of the function yZ(r; a2). It is also useful
to introduce yZe1 and yZe2 as the values of the function yZ(r; a2) at the points of the “left”
and “right” parts of the curve a2

Ze(r).
The common point of the functions a2

Zh(r) and a2
Ze(r) is identical with the maximum of

the function a2
Zh(r).
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Figure 10. (a) Curve a2
Ze(r). The intersections of the dashed line a2 = 1.5 with this curve determine

the stationary points of the function yZ(r; a2) for the specific value of the parameter a2 = 1.5
(compare with the next part of the figure). (b) Behaviour of function yZ(r; a2) for the specific value
of the parameter a2 = 1.5. Intersections of the dashed line y = 0.035 with the graph of the function
yZ(r; 1.5) determine radii of circular orbits with Zr = 0 in the Kerr–de Sitter spacetimes with the
parameters a2 = 1.5 and y = 0.035.

5.2.3 Classification of Kerr–de Sitter spacetimes

Using the rotational and cosmological parameters, we can give the following classification
of the Kerr–de Sitter spacetimes (see Fig. 11).

Class ZI: (0 < a2 ≤ 1)
In these spacetimes, there are 2 regions of r where the existence of the orbits with Z r = 0
is possible: A-region and B-region.

(a) spacetimes with 0 < y < yZh2 are BH spacetimes containing:

• 1 orbit in the A-region (in the outer BH region),

• 1 orbit in the B-region (in the inner BH region).

(b) Spacetimes with y ≥ yZh2 are NS spacetimes containing:

• 1 orbit in the B-region.

Class ZII: (1 < a2 < 1.21)
In these spacetimes, there are 3 regions of r where the existence of the orbits with Z r = 0
is possible: A-region, B-region, and C-region

(a) spacetimes with 0 < y < yZh1 are NS spacetimes containing:

• 1 orbit in the A-region,

• 1 orbit in the B-region,
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Figure 11. Curves a2
Zh(r) (dashed and dotted), a2

Z0(r) (solid), a2
Ze(r) (dashed), and regions I , I I ,

I I I , I V , and I V (separated by dashed lines) corresponding to the classification of the Kerr–de Sitter
spacetimes.

• 1 orbit in the C-region

(b) spacetimes with yZh1 ≤ y < yZh2 are BH spacetimes containing:

• 1 orbit in the A-region (in the outer BH region),

• 1 orbit in the B-region (in the inner BH region).

(c) Spacetimes with y ≥ yZh2 are NS spacetimes containing:

• 1 orbit in the B-region

Class ZIII: (1.21 ≤ a2 ≤ 1.37)
These spacetimes are NS spacetimes. There are 2 regions of r where the existence of
the orbits with Zr = 0 is possible: D-region and E-region. They can be divided into 2
subclasses.

Subclass ZIIIa: (a2 = 1.21)

(a) spacetimes with 0 < y < yZe2 contain:

• 2 orbits in the D-region,

• 1 orbit in the E-region

(b) spacetimes with y ≥ yZe2 contain:

• 1 orbit in the E-region

Subclass ZIIIb: (1.21 < a2 ≤ 1.37)

(a) spacetimes with 0 < y < yZe2 contain:
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• 2 orbits in the D-region,

• 1 orbit in the E-region

(b) spacetimes with y = yZe2 contain:

• 1 orbit in the D-region,

• 1 orbit in the E-region

(c) spacetimes with y > yZe2 contain:

• 1 orbit in the E-region

Class ZIV: (1.37 < a < 1.81)
These spacetimes are NS spacetimes.

(a) spacetimes with 0 < y < yZe1 contain: 1 orbit
(b) spacetimes with y = yZe1 contain: 2 orbits
(c) spacetimes with yZe1 < y < yZe2 contain: 3 orbits
(d) spacetimes with y = yZe2 contain: 2 orbits
(e) spacetimes with y > yZe2 contain: 1 orbit

Class ZV: (a2 ≥ 1.81)
These spacetimes are NS spacetimes and contain 1 circular orbit with Z r = 0 for any y > 0.

5.2.4 Schwarzschild-de Sitter and Kerr case

In the Schwarzschild-de Sitter spacetimes (a2 = 0, y > 0), we obtain from (45) that the
centrifugal force is given by the relation

Zr = m(γ v)2 (3 − r)

r(2 − r + r3y)
. (65)

Notice that the centrifugal force vanishes on the circular orbit with the radius r = 3
independently of the value of the cosmological parameter and the velocity. The centrifugal
force also changes its orientation on this orbit.

In the Kerr spacetimes (a > 0, y = 0), we obtain from (45) that the centrifugal force is
given by the relation

Zr = m(γ v)2 −r4(r − 3) + ra2[r(r − 3) + 6] − 2a4

r∆r [(r + 2)a2 + r3] . (66)

Clearly, in the Kerr spacetimes, this force is also defined only in the region determined by
∆r > 0, i.e., in the region determined by a2 > r(2 − r). The equality in this equation
determines the function (with the maximum a2

h,max = 1 at rh,max = 1), which divides the
plane (r+ ×a2) into the stationary and dynamic regions (see Fig. 12). The centrifugal force
vanishes independently of the velocity on the circular orbit with radii determined by the
relation

r4(r − 3) + ra2[r(r − 3) + 6] − 2a4 = 0. (67)
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Figure 12. Curves a2
Z(r) (solid), a2

Zs(r) (dashed), a2
h (r) (dashed and dotted) enclosing dynamic area

(gray), and regions I , I I , and I I I corresponding to the classification of the Kerr spacetimes. The
intersections of a line a2 = const with the curve a2

Z(r) determine the radii of the circular orbits with
Zr = 0, the intersections with the curve a2

Zs(r) determine the radii where the centrifugal force Zr
has stationary points, and the intersections with the curve a2

h(r) determine the positions of black-hole
horizons in the Kerr spacetimes with the parameter a.

We denote this equation as the implicit form of the function a2
Z(r) which determines the

curve in the plane (r+ × a2) (see Fig. 12). Note that the function a2
Z(r) is identical with

the function a2
Z0(r) and that the maximum a2

Z,max
.= 1.38 of this function is located

at rZ,max
.= 0.81. By using the condition ∂r Zr = 0 we obtain the function a2

Zs(r), which
determines the stationary points of the centrifugal force (see Fig. 12). The maximum a2

Zs,max
and the minimum a2

Zs,min ≡ a2
h,max of this function are the only inflexion points of the

centrifugal force. The other points determined by the function a2
Zs corresponds to local

extrema.
Using the rotational parameter, we can now give the following classification of the Kerr

spacetimes (see Fig. 12).

Class ZI: (0 < a2 ≤ 1)
These spacetimes are BH spacetimes. In the inner stationary region, there is only 1 orbit
with Zr = 0. On this orbit, the centrifugal force also changes its orientation. In the outer
stationary region, there is also only 1 such orbit.
Class ZII: (1 < a2 ≤ 1.38)
These spacetimes are NS spacetimes. There are 3 orbits with Zr = 0 for a2 < 1.38 and
there are 2 such orbits for a2 = 1.38, but on the first of these orbits, the centrifugal force
does not change its orientation.
Class ZIII: (a2 > 1.38)
These spacetimes are NS spacetimes. There is only 1 orbit with Zr = 0. On this orbit the
centrifugal force changes its orientation.
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6 CONCLUSIONS

The Kerr–de Sitter black-hole spacetimes contain two stationary regions in the equatorial
plane. The inner region is limited by the singularity (r = 0) and by the inner black-hole
horizon (r = rh−). The outer region is limited by the outer horizon (r = rh+) and by
the cosmological horizon (r = rc). For any given values of the rotational parameter a
and the cosmological parameter y, in each of these regions, there is only one circular
orbit where the gravitational force vanishes, and the only one orbit, where the centrifugal
force vanishes independently of the velocity. Both the gravitational and centrifugal forces
change their orientations on these orbits. The same situation occurs in the Kerr black-hole
spacetimes [Stuchlı́k and Hledı́k, 1999a], except the outer stationary region, where there
is no circular orbit where the gravitational force vanishes, in contrast to the Kerr–de Sitter
outer stationary region. In the only one stationary region of the Schwarzschild–de Sitter
spacetimes [Stuchlı́k and Hledı́k, 1999b], there is also only one such circular orbit.

The Kerr–de Sitter naked-singularity spacetimes contain one stationary region between
the singularity (r = 0) and the cosmological horizon (r = rc). In these spacetimes, even
three circular orbits where the gravitational force vanishes and three circular orbits where
the centrifugal force vanishes independently of the velocity can occur, indicating a relatively
complex structure of these spacetimes as a result of mixed influence of rotation of the source
and the cosmological repulsion. It is more complicated situation than in the Kerr naked-
singularity spacetimes [Stuchlı́k and Hledı́k, 1999a, de Felice, 1974], where the maximum
number of the orbits where the gravitational vanishes is only two. There are also most three
circular orbits where the centrifugal force vanishes independently of the velocity.
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the Kerr–de Sitter spacetimes. Phys. Rev. D, 69:064001.



Proceedings of RAGtime 4/5: Workshops on black holes and neutron stars, Opava, 14–16/13–15 October 2002/2003 135
S. Hledı́k and Z. Stuchlı́k, editors, Silesian University in Opava, Czech Republic, 2004, pp. 135–146
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ABSTRACT
This article deals with the numerical simulations of the astrophysical systems located
in the inner most parts of the galaxies – so called Active Galactic Nuclei (AGNs).
Our simulation we are going to describe in this paper is treated in the Monte Carlo
way and is used to solve the Fokker-Planck equation of our system to obtain its time
evolution while taking into account all the relevant physical mechanisms involved in
the system evolution. In the beginning of the paper we outline the system we would
like to study in our simulations and then we summarise the physical ingredients
involved in our model of the system. The largest part of the paper will be devoted
to the description of the simulation method used to simulate a spherical star cluster
as one part of the model of our system. Finally we present some results of such a
simulation and draw an outline of the future prospects of our research.

Keywords: Monte Carlo – numerical simulations – Active Galactic Nuclei – star
clusters – clouds

1 INTRODUCTION

The aim of this work is to develop a numerical code capable to simulate an accretion disk
surrounding a massive black hole located in the galactic nucleus taking into account the
gravitational effects caused by a stellar cluster around the galactic nucleus. The numerical
code used to simulate this system should be based on Monte Carlo numerical scheme. We
would like to concentrate on the interaction between the surrounding star cluster and the
accretion disk in order to study the behaviour of outer parts of the accretion disk. The result
of this study should be the model of so called Broad Line Regions (BLR) that were observed
in AGNs. The model we would like to prove using our simulations describes the existence
of BLRs in AGNs as the result of the fragmentation of outer parts of the accretion due to
gravitation of the surrounding stellar cluster – these regions where broad lines of AGNs
spectra are formed comprise of the fragments (clouds) of the accretion disk. Having these
clouds in the outer parts of our system it is easy to describe the formation of broad lines in
the active galactic nuclei spectra as they are observed. Thus the main aim of the work is
to simulate this system and create the fragments of the accretion disk in some reasonable
physical way.

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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2 MODEL OF THE SYSTEM

The system we are going to simulate consists of three crucial subsystems:

(i) Central black hole. This black hole is the massive one with the mass equal to 106–109

sun masses. We do not take care about the formation of such a massive black hole. But
we just suppose there is such a massive object with strong tidal gravitational field and we
take into account the effects connected with the presence of such an object in our system –
overall gravitational field, tidal disruption, growth of the central massive object due to
matter inflow from the accretion disk.

(ii) Accretion disk. We assume an axial symmetric accretion disk surrounding the central
black hole. We employ a model of thin self-gravitating accretion disk. In this paper we do not
discuss in detail the properties of accretion disk and its interaction with other subsystems.
We will focus on the third component of our system – the stellar cluster.

(iii) Stellar cluster. We consider a spherical symmetric stellar cluster surrounding the
subsystem of central black hole and the accretion disk that extends up to several parsecs
far from the centre of our system. The central cluster is rich and comprises of several 106

of stars. In addition we suppose the system is in a dynamical equilibrium – we do not want
to handle an initial phase of the system evolution when the rapid collective motions occur
frequently. The evolution of the star cluster itself is driven mainly by 2-body relaxation but
we would like to consider also another physical mechanisms like stellar collisions.

Having an idea how the system looks like we turn to the physics that is involved in our
system and to physical mechanisms we want to take into account in the system evolution.
The physical processes that influence significantly the system evolution are the following
ones [Freitag and Benz, 2001]:

• Relaxation. The relaxation drives the evolution of the stellar cluster in our system for the
significant fraction of live time (simulation time) of the system. We simulate the relaxation
as 2-body distant encounters (weak encounters) of the stars in the cluster when only the
orbital energy and angular momentum of interacting stars are redistributed. When the same
model of relaxation is applied to a standard globular cluster it leads to a gravo-thermal
catastrophe of the cluster when the central dense core and diffuse halo forms after several
billions of years.
• Stellar collisions. The collisions influence significantly the evolution of the stellar cluster
in the final phase of its evolution when the central dense core is built. The collisions
become as important as the relaxation when the velocity dispersion of the cluster is about
1000 km s−1. Thus the collisions are important only in the central parts of the cluster.
• Stellar evolution. Because we would like to simulate the system evolution during several
109 of years we must allow stars to evolve during this time. The stars lose their mass and
also change their diameter during their evolution. These changes affect the strength of other
processes we are taking into account especially stellar collisions – stars in giant phase have
higher cross section than the star remnants.
• Tidal disruptions. The tidal field generated by the massive central black hole destroys
the stars that come too close to the centre and also it causes a systematic depletion of some
stellar orbits in the cluster. These stars then become a fuel for the continuous growth of the
central black hole.
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• Growth of the central black hole. As the stars come too close to the centre they are
destroyed by the tidal field of the black hole and they become a part of an accretion disk
surrounding the black hole. So there is a continuous accretion of gas to the central black
hole leading to a continuous growth of its mass. The higher the mass of the black hole is the
deeper is the potential generated by the black hole and so the higher is the tidal disruption
rate and the higher are the stellar velocities in the cluster.

If we want to cope with all these physical processes in our simulation the code we are
going to develop must meet some important requirements. First it must be able to simulate
our system evolution for several billions of years. It implies the time step of the evolution
cannot be of order of orbital time of a star but rather of a relaxation time of the system. The
second requirement arises from the necessity to simulate the star evolution so the code must
allow an arbitrary mass distribution of stars in the cluster. Third important requirement is
the non-isotropic velocity distribution that should be handled in the simulation in order to
simulate a tidal disruption in a realistic way.

Having all these requirements and having in mind we should use a Monte Carlo approach
we turn our attention to the algorithm developed by Hénon in 1960s [Hénon, 1971]. This
algorithm was originally developed to simulate the evolution of spherical stellar system
such a globular cluster so we use it to simulate the evolution of the third part of our system –
the surrounding star cluster. The biggest advantage of this algorithm is its speed - it uses
the fraction of relaxation time as a time step and gains a lot from the spherical symmetry
of the system so the simulation of the medium size system can be performed on a standard
personal computer taking acceptable CPU time.

3 ASSUMPTIONS AND FOUNDATION STONES OF THE METHOD

Our algorithm used to simulate a stellar cluster surrounding the central black hole with
the accretion disk is based on Hénon Monte Carlo algorithm for globular clusters [Hénon,
1971].

The algorithm relies on several assumptions about the simulated system. The first as-
sumption is the spherical symmetry of the simulated system. Having the system exactly
spherical symmetric it allows us to simplify the computation of potential and of the distant
encounters significantly (see later). It also allow us to represent the system structure easily.
We will treat the stellar cluster as the set of n concentric spherical shells (so called super-
stars) where each shell consists of K stars. The individual stars in a certain shell have the
similar orbital and stellar parameters and all the processes affect them at the same time.
Parameter K is the free parameter if the proper physical units are chosen. The individ-
ual stars are randomly distributed within one superstar (on the shell surface) so the only
coordinates is the radial distance of the superstar R. Similarly the transverse velocity of
individual stars is assumed to be distributed randomly. Thus we characterise each superstar
with radial distance R, angular momentum A, energy E , radial and transverse velocities
vr, vt and mass M .

The algorithm can handle only well relaxed systems, i.e., the system must be in dynamical
equilibrium. The method can simulate only old systems where all the collective motions
from the initial evolution phase disappeared. The first advantage is that we can take a fraction
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of the system relaxation time as the simulation time step because only the relaxation drives
the evolution of the cluster (rapid motions disappeared). The relaxation time of the self-
gravitating system is given by:

tr = C1
N

ln N
tc, (1)

where tc is the system crossing time that can be computed as:

tc = C2
GM

5
2

ϵ
3
2

. (2)

ϵ is the total system energy and M is its total mass. As the time step for the simulation we
take a fraction of the relaxation time:

∆t = b
G N
ln N

M
5
2

ϵ
3
2

. (3)

where b is the small proportional constant. We take 0.005 for b in our simulations.
The second advantage of the system equilibrium is that the distribution function of the

particles has a form of discretised one-particle distribution function and depends only on
integrals of motion:

f = F(E, A, m), (4)

where E is the energy per unit mass and A is the angular momentum per unit mass

E = U(r) + 1
2
(v2

r + v2
t ), (5)

A = rvt, (6)

where U(r) is the gravitational potential at r and vr and vt are radial and transverse velocities
of a star.

The third assumption it the local approximation assumption. This assumption is based
on the simplification made to the distant encounters treatment. Because the perturbation
caused by the field star to the test star is proportional to

∼ ln
Nl
R

, (7)

the biggest perturbation comes from the star from the closest vicinity of the test star. Thus
we can say the mass and velocity distribution of field stars is everywhere the same and we
can take instead of it the local mass and velocity distribution function of the test star that
does not depend on the position of the field star (is space-independent). It allows us to select
the position of the field star in the first step independently on its mass and velocity that can
be selected in the second step of the algorithm.

The initial conditions, i.e., the initial distribution function can be arbitrary but must
fulfil the requirement of dynamical equilibrium of the system. In our simulations we use
Plummer’s model (polytrope of index 5) where the density distribution function is given
by:
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ρ(r, 0) = 3
4
π

M

R3
(

1 + ( r
R
)2) 5

2
, (8)

where M is the total system mass and R is the dimensional parameter. The corresponding
potential is then:

U(r, 0) = − GM

R
[
1 +

( r
R
)2]1/2 . (9)

The generation of initial conditions is done in Monte Carlo way using random numbers
and von Neumann’s rejection techniques to sample the given initial distribution of velocities.
The detailed description of the algorithm for generation of Plummer’s mass distribution can
be found in [Aarseth and Hénon, 1974].

4 MAIN ALGORITHM

In order to simulate a relaxation within the cluster we need a background potential of the
system in which the test star will move when it is being perturbed. The background potential
is generated by all the stars in the cluster and also there is the contribution from the central
black hole. Because the cluster is far from the central black hole we can treat the black hole
potential in a Newtonian approximation.

The potential of the stellar cluster can be computed as the potential of n spherical
concentric shells (superstars) according to our representation of the cluster. Using Newton’s
theorems we can write for the potential at any distance r from the centre between superstar
of rank k and k + 1:

U(r) = UBH + K G
(

−1
r

∑
mi −

∑ mi

ri

)
. (10)

During the simulation it is necessary to compute and store the values of potential only at
the positions of the superstars:

Uk = Uk+1 − GMk

(
1
rk

− 1
rk+1

)
, (11)

Mk = Mk − K mk, (12)
k = n, . . . , 1, (13)

Un = 0, (14)
Mn+1 = M. (15)

The potential at any other radial distance, if needed, is then computed using the stored
potential at two nearest shells and the linear interpolation.

Having the potential computed we can simulate the distant encounter of the test star
to a field star. The simulation of 2-body relaxation through distant (weak) encounters can
be done in the Monte Carlo manner, i.e., the effect of the encounter can be estimated by
sampling. But here the mean perturbation of the test star caused by the field star can be
easily computed exactly. Thus we compute the effect exactly and then we choose such a
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field star whose effect to a test star will equal to the computed one. It is correct to do so
because as we discussed above we can use local approximation assumption and select the
position of the field star independently on its mass and velocity. These latter two quantities
can be selected separately and we take them from the nearest field star.

Considering weak encounters and using a reference frame co-moving with the centre of
mass of the test and field star we can derive for the weak encounter the following equation
for the impact parameter l and deflection angle β:

l =
√

2r2∆r
(p − 1)Kw∆t ln N

, (16)

β = 2 arctan
G(m + m ′)

w2l
(17)

where w stays for the relative velocity of the field and test star, ∆r is the relative radial
distance of these two stars, m and m ′ are the masses of the test and field star and ∆t is
the time step given by (3). According to this equation we choose the second nearest star
(p = 2) as the field star. In this way we create the superstar pairs: 1-3, 2-4, 5-7 etc. and
compute the encounter for all these pairs where each star acts as a field star and then as
a test star. The result of each encounter is the redistribution of the orbital energy and the
angular momentum between test and field star, i.e., the velocities of the test star and the
field star are perturbed accordingly.

In order to compute new perturbed velocities for both stars we need to know the angle ψ
between the co-moving plane and some reference plane. We compute angle ψ as a random
number between 0 and 2π because the distribution of field stars is homogenous. Generating
random angel ψ and computing the deflection angle for a pair of superstars using (16) we
compute new perturbed relative velocity of these two superstars w∗:

w∗ = w cosβ + w1 sinβ cosψ + w2 sinβ sinψ, (18)
w1 = (

wyw

wp
,−wxw

wp
, 0), (19)

w2 = (−wxwz

wp
,−wywz

wp
, wp), (20)

wp =
√

w2
x + w2

y, (21)

where wx , wy and wz are the components of original relative velocity w.
Having new relative velocity we calculate new velocities v∗ and v′∗ of both test and field

star after encounter:

v∗ = v − m′

m + m ′ (w∗ − w), (22)

v′∗ = v′ + m
m + m ′ (w∗ − w). (23)

Finally we compute new radial velocity v∗
r , transverse velocity v∗

t , energy E∗ and angular
momentum A∗ for both stars:

v∗
r = v∗

z , (24)

v∗
t =

√
v∗2

x + v∗2
y , (25)
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E∗ = U(r) + 1
2
(v∗2

r + v∗2
t ), (26)

A∗ = rv∗
t . (27)

The second step in the simulation of the encounter between a test star and a field star is
the selection of new positions for each star according to the velocity perturbation induced
by the encounter. To select a new radial distance for the star we use orbital equation of the
star rosette orbit:

Q(r) = v2
r = 2E − 2U(r) − A2

r2 = 0, (28)

where E and A are the new perturbed energy and angular momentum of the star (test or field
star). By solving the orbital equation we obtain the minimal and maximal radial distance
rmin and rmax at which the star can occur.

The new position of the star must be selected with the probability distribution proportional
to the function that describes the dependence of a time period the star spends at the different
radii when moving on its rosette orbit. To sample this distribution f (r) = 1

|vr| we use von
Neumann’s rejection technique. Because of divergence of f (r) we introduce more suitable
sampling function g(s):

g(s) = 1
|vr|

dr
ds

, (29)

that turns to a new function for r :

r = 1
2
(rmin + rmax) + 1

4
(rmax − rmin)(3s − s3). (30)

Using this new function and normalising it we derive en empiric formula for the upper
limit F of function gs used for the rejection method:

F = 1.2 max
[

3(rmax − rmin)

Q′(rmin)
,
−3(rmax − rmin)

Q′(rmax)

]
, (31)

where Q′(r) is the derivation of (28). Computing this value we can proceed with the rejection
algorithm: we generate two random numbers X and Y and compute the pair (s0, g0):

s0 = −1 + 2X, (32)
g0 = Y F. (33)

The corresponding value of r is taken as a new position of the star if the generated pair
(s0, g0) satisfies the inequality:

g0 < g(s0), (34)

otherwise new pair (s0, g0) must be generated. The pair (s0, g0) that satisfies the inequality
is used to compute a new radial velocity vr using (29) and the new position r using (30) for
the given star. According to (28) we must select the sign of the radial velocity – it is selected
randomly with the uniform probability. Finally we compute a new transverse velocity for
the star as

vt = Ar. (35)
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This procedure is repeated for all the pairs of superstars in order to obtain a new positions
and velocities for each superstar after one time step ∆t . Having new positions we can
compute a new potential of the cluster using (11). The cycle is repeated until the given
evolution time is not reached.

5 SIMULATION RESULTS

Because of the Monte Carlo nature of the simulation method the simulation results are
never the same for the identical initial conditions. Therefore for one set of initial conditions
the simulation is repeated several times (10–100 times) and the results of all the ”sub-
simulation” are then joined and averaged in the statistical way. Thus the results of the
simulation has the statistical behaviour – the larger the number of sub-simulations is the
more smoothed, averaged and realistic results are obtained.

The basic quantity that comes from the simulation is the time evolution of radii of each
superstar. But these raw data alone are not too useful so we use them to compute better
quantities - Lagrangian radii and particle density. Lagrangian radius is defined as the radius
of the sphere that contains the given fraction of total cluster mass, e.g., Lagrangian radii
R30 is the radius within 30% of the total cluster mass is concentrated.

First we done some code testing simulations. Such a simulation does not simulate relax-
ation driven evolution of the cluster, simply we switch off the relaxation algorithm. The
only thing that the algorithm does is the re-positioning of the stars after each time step. We
expect that the cluster does not evolve in sense of continuous changes of the radial distance
of all the superstar, i.e., we suppose the Lagrangian radii remain roughly the same during
the evolution of the cluster. This could be seen at Figs 1 and 2. As discussed above the
figures show that when the relaxation is switched off the Lagrangian radii for the cluster do
not evolve merely. But you can see a small slope of all the Lagrangian radii - this slope is
caused by the spurious relaxation produced by the algorithm itself. This relaxation can be
neglected because it is really small comparing the real relaxation or it can be filtered out by
some modifications of the algorithm.

Second we performed simulations of 2 stellar clusters – one comprised of 5 000 superstars
and the second formed by 10 000 superstars. The simulation time of the system was 5 billions
years and 1 billion years respectively. The Lagrangian radii for each simulation are plotted
in Figs 3, 4, 5 and 6.

First these figures illustrate the statistical behaviour of the simulation results. The more
stars the cluster contains the more smoothed and averaged the results are and the larger the
number of simulation repetitions is the more flattened the results are. It means the greater
number of superstars is involved in the simulation the more realistic and precise the results
of the simulation are.

The second noticeable thing shown on these 4 figures is the evolution of the cluster itself.
As obtained in many other simulations the system evolves in the way it continuously forms
a central dense core and builds up the diffuse extended halo. Thus also our simulation brings
a gravo-thermal catastrophe to the cluster evolution as discussed in the beginning of this
paper.
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Figure 1. Lagrangian radii for cluster of 5000 superstars when the relaxation is switched off. The
number of simulation repetitions is 1 and the evolution time is 5 billions years.

Figure 2. Lagrangian radii for cluster of 5000 superstars when the relaxation is switched off. The
number of simulation repetitions is 10 and the evolution time is 5 billions years.

6 CONCLUSION

We developed a Monte Carlo code based on Hénon algorithm capable to treat a spherical
symmetric stellar cluster whose evolution is driven by 2-body relaxation. The code is
fast and optimised enough to perform a simulation of medium-sized cluster on a standard
computer consuming realistic amount of CPU time. The results of our test simulations are
promising because we obtained more or less realistic evolution of the cluster demonstrating
the physical effects shown in many other simulations.
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Figure 3. Lagrangian radii for cluster of 5000 superstars. The number of simulation repetitions is 1
and the evolution time is 5 billions years.

Figure 4. Lagrangian radii for cluster of 5000 superstars. The number of simulation repetitions is 10
and the evolution time is 5 billions years.
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Figure 5. Lagrangian radii for cluster of 104 superstars. The number of simulation repetitions is 1
and the evolution time is 1 billion years.

Figure 6. Lagrangian radii for cluster of 104 superstars. The number of simulation repetitions is 10
and the evolution time is 1 billion years.
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In the future we are planning to involve other physical ingredients listed in the very
beginning of this paper in order to treat the system evolution in more realistic way and
in order to inspect the influence of these physical effect on the system, especially on the
accretion disk. The big task for us will be the integration of the accretion disk into our
simulation – it means to get rid of the spherical symmetry dependence of the algorithm or
to incorporate somehow the axial symmetry into the algorithm in order to cope with the
accretion disk.
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Decaying orbits near a rotating black hole
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ABSTRACT
We consider orbits of a test body near a rotating black hole. The orbits are perturbed
by two effects which drive them away from purely geodesic motion: (i) dissipative
interaction with an accretion disc, and (ii) variable driving force, magnitude of which
depends on position of the body. The effect of dissipative interaction with the disc
medium is proportional to its density, resulting in gradual orbital decay. The origin of
the latter term, i.e., the driving force, is also linked to the presence of gas medium: it
can be seen as a second order effect modulating the orbital decay. Hence, this effect
is important when subsequent transits of the body through the disc medium occur at
(almost) the same place during short time span. This kind of a variable perturbation
is important because it adds new ingredients to the well-known properties of the
geodesic motion.

In this note we consider a toy-model for decaying forced orbits in (non-axisymmetric)
gravitational field of a rotating (Kerr) black hole [Chandrasekhar, 1992]. Geometrical
setup of the system is as follows. Firstly, a central black hole determines the gravitational
field in which motion takes place. Secondly, an accretion disc forms dissipative gaseous
environment around the black hole; a Keplerian, geometrically thin non-selfgravitating disc
is assumed. A particle in free-fall motion is followed outside the disc plane. It experiences
small kicks when passing across the disc slab. In other words, when crossing the disc
plane, instantaneous change of orbital parameters affects the trajectory and causes its
gradual evolution (energy and angular momentum losses). A dissipative force acts against
the particle velocity three-vector (v when expressed locally in the disc co-rotating frame,
“dcf”) at the moments of successive transits:

∆v = −Aeff Kv, (1)

where Aeff is effective cross-section of the body. It is only a starting motivation that Aeff
should be roughly equal to the geometrical cross-sectional area of the body in hypersonic
motion (for further details see, e.g., [Šubr and Karas, 2004] in this Volume, and references
cited therein). Function K contains other parameters on which we do not concentrate
our attention in the present discussion, e.g., density profile and geometrical height of the
disc (ρd(r), hd(r)), the orbit inclination θ⋆, mass of the body m⋆, etc. In order to draw
specific examples we use the same form for K as in ref. [Karas et al., 2002], namely,
K = ρd hd (γdcf − 1)m−1

⋆ γ−3
dcf v

−2 sin−1θ⋆. Here, the Lorentz factor, γdcf, and sine of
inclination angle, sinθ⋆(r⋆), characterise the orbit at the point of its intersection with the
disc, i.e., r = r⋆, θ = π/2.

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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Back-reaction of the disc due to transiting body can be included via secular modulation of
the term Aeff. The modulation reflects feedback due to the disturbed disc and it effectively
acts as a tiny driving force. It should be quite obvious that a simple analytical formula
can hardly describe this process. Indeed, at this stage we do not specify the exact physical
mechanism for the driving, which must depend on the detailed description of the medium
and the body. It can be interpreted either as radiation force (cf. [Chandrasekhar, 1960])
or the gravitational effect of the perturbed disc [Karas et al., 2002]. In general, points of
transition are scattered across the disc area in the whole range between the orbit pericentre
and apocentre. Under special circumstances, however, subsequent transits occur close to
each other. This assumption requires a special value of orbital parameters determining the
orbit shape and precession.

Hence, we assume that the disc medium is disturbed more at those locations where the
body transitions are repeated in a continuous sequence. When this happens? The orbit
crosses the disc at specific values of radii if the corresponding epicyclic frequency is in
rational relation to the frequency of latitudinal oscillations. The two frequencies are defined
for small oscillations of an almost circular orbit. (In case of a general orbit one may have
to use an appropriate definition of averaged values of the frequencies.) This motivates us
to adopt the effective cross-section in the form

Aeff(r⋆) = Ai cos
2πωr (r⋆)

ωz(r⋆)
, Ai = const, θ⋆ = π

2
. (2)

An exact numerical value of the constant factor, Ai, is not important for the present dis-
cussion: total time on which the orbit decays is simply proportional to Ai. Naturally, Ai
must be small enough to assure that the trajectory is only slightly perturbed on each transit
through the disc medium; i.e., the orbital decay must proceed on time-scale much longer
than the dynamical time.

We show two examples of the long-term orbital evolution in which the above-mentioned
effects are visible. In particular, the gradual orbital decay towards low-eccentricity, low-

10

100

1000

0 2 4 6 8 10

r

time

1.64

1.645

1.65

1.655

1.66

1.665

1.67

0 2 4 6 8 10

θ

time

Figure 1. Intersection of the orbit around a maximally rotating Kerr black hole (a = M). Left:
radius is measured in units of G M/c2, time is scaled by 104G M/c3. The whole time span of the
figure captures ≈ 105 orbits. Notice that radii of intersection points are scattered in a range between
pericentre and apocentre. Only occasionally, when a resonance occurs, the orbit crosses the disc plane
at few distinct values of r . Right: graph of oscillations in inclination.
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Figure 2. Left: time evolution of radius for another orbit. This case has low eccentricity (22.9M≤r ≤
24.6M) and it co-rotates with the disc (θ ≈ 30 deg). Right: oscillations in (r, θ)-projection.
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Figure 3. Left: temporal oscillations of inclination (the same orbit as in previous figure). Right: a
detail of the graph on left.

inclination trajectory can be recognised clearly. Furthermore, one can observe low-fre-
quency periodical component that originates due to Aeff dependence on orbital parameters
and modulates the orbital evolution.

Fig. 1 shows two different projections of an eccentric orbit that, initially, intersects the
disc between rmin = 40M and rmax = 700M (we set G = c = 1), and has a large (almost
polar) inclination. Intersections with equatorial plane are represented by dots. Two plots
show these points of intersection in (r, t)-plane (time evolution of the orbit radius), and
(θ, t) (time evolution of inclination), respectively. Eccentricity oscillates and decreases, as
well as the orbit inclination. Figs 2 and 3 give another example of the orbital decay. Also
in this case, the gradual decay is coupled with oscillations. However, the initial eccentricity
and inclination were both chosen rather small.

We have illustrated how an interplay between the dissipative orbital decay and the periodic
driving term can lead to oscillations at certain stages of the orbit evolution. In conclusion,
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it may be worth to repeat the motivation for the adopted prescription (2): We employed an
ad hoc term for the perturbating force, which has been inspired by the assumption than this
force arises due to collisions between the gaseous disc and the orbiter crashing on the disc
periodically. Repetitive collisions may drill a hole in the disc slab and change the interaction
if collisions happen in the same place of the disc several times after each other. Therefore,
the interaction was assumed to depend on the ratio of epicyclic and vertical oscillations.
The satellites enters into the resonant state because of its long-term orbital decay, which is
also caused by the gaseous medium of the disc.
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the 60th Birthday of Jiřı́ Bičák), pages 85–110, New Jersey, London, Singapore, Hong
Kong. World Scientific.
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ABSTRACT
We consider the effects of a cosmological constant on the dynamics of constant an-
gular momentum discs orbiting Schwarzschild–de Sitter black holes. The motivation
behind this study is to investigate whether the presence of a radial force contrasting
the black hole’s gravitational attraction can influence the occurrence of the runaway
instability, a robust feature of the dynamics of constant angular momentum tori in
Schwarzschild and Kerr spacetimes. In addition to the inner cusp near the black
hole horizon through which matter can accrete onto the black hole, in fact, a posi-
tive cosmological constant introduces also an outer cusp through which matter can
leave the torus without accreting onto the black hole. To assess the impact of this
outflow on the development of the instability we have performed time-dependent
and axisymmetric hydrodynamical simulations of equilibrium initial configurations
in a sequence of background spacetimes of Schwarzschild–de Sitter black holes with
increasing masses. The simulations have been performed with an unrealistic value
for the cosmological constant which, however, yields sufficiently small discs to be
resolved accurately on numerical grids and thus provides a first qualitative picture
of the dynamics. The calculations, carried out for a wide range of initial conditions,
show that the mass-loss from the outer cusp can have a considerable impact on the
instability, with the latter being rapidly suppressed if the outflow is large enough.

1 INTRODUCTION

Relativistic accretion tori orbiting around stellar-mass black holes have been the subject
of renewed interest over the last few years in connection with the different astrophysical
scenarios where these objects are expected to form, such as the core collapse of a massive
star leading to a “failed” supernova explosion (a collapsar), or in the catastrophic merger of
two (unequal mass) neutron stars in a close binary system. However, thick accretion discs
are probably present at much larger scales as well, surrounding quasars and other active
galactic nuclei, and feeding their central supermassive black holes. One of the major issues
about such systems concerns their dynamical stability. This has important implications on
the most favoured current models for the central engines of γ -ray bursts, either collapsars
or binary neutron star mergers, for long and short bursts, respectively (see, e.g., [Mészáros,
2002] for a recent review).

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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Discs around black holes may suffer from a number of instabilities produced either by
axisymmetric or by non-axisymmetric perturbations and further triggered by the presence
of magnetic fields. A type of instability that has been studied in a number of works and
that could take place when the discs are geometrically thick and axisymmetric is the so-
called runaway instability (see [Font and Daigne, 2002a,Zanotti et al., 2003] and references
therein). To appreciate the mechanism leading to the development of this instability, consider
an inviscid fluid torus with a vertical structure and internal pressure gradients orbiting around
a black hole (either Schwarzschild or Kerr). If the fluid is non self-gravitating, it will be
contained within isopotential surfaces which generically possess a cusp on the equatorial
plane [Fishbone and Moncrief, 1976, Kozłowski et al., 1978, Abramowicz et al., 1978]. As
a result, material from the disc can accrete onto the black hole through the cusp as the result
of small deviations from hydrostatic equilibrium.

Any amount of matter lost by the disc and captured by the black hole will increase its
mass (and angular momentum), resulting in a modification of the equipotential surfaces
which may cause the cusp to move deeper inside the torus more rapidly than the inner edge
of the torus. When this happens, additional disc material will be allowed to fall into the
black hole in an increasingly accelerated manner leading to the runaway instability.

Although this instability was first studied in the ’80s [Abramowicz et al., 1983, Wilson,
1984], time-dependent hydrodynamical simulations have been performed only recently,
either with SPH techniques and pseudo-Newtonian potentials [Masuda and Eriguchi, 1997,
Masuda et al., 1998], or with high-resolution shock-capturing (HRSC hereafter) techniques
in general relativity ( [Font and Daigne, 2002a, Zanotti et al., 2003]. These investigations
have shown that, under the (idealised) assumption of constant specific angular momentum
distributions, relativistic tori around Schwarzschild and Kerr black holes are generically
unstable to the runaway instability, if non self-gravitating. The inclusion of more generic
initial conditions, however, can disfavour the occurrence of the instability. Recently, [Font
and Daigne, 2002b] (see also [Daigne and Font, 2003]) have shown through numerical
simulations that the runaway instability is suppressed when a non-constant distribution of
the angular momentum is assumed for the torus (increasing as a power-law of the radius), a
result which is in agreement with studies based on a recent perturbative analysis [Rezzolla
et al., 2003a, Rezzolla et al., 2003b]. While a similar stabilizing effect has been shown
to be provided by the black hole if this is rotating [Abramowicz et al., 1998, Wilson,
1984], [Masuda and Eriguchi, 1997] were able to show that the inclusion of the self-gravity
of the torus effectively favours the instability. Clearly, a final conclusion on the occurrence
of this instability has not been reached yet and will have to wait for fully general relativistic
simulations. However, the increasingly realistic investigations performed recently have
addressed several important aspects and the prospects are that we may be close to reaching
a detailed description of the dynamics of the instability.

A further physical process acting against the instability and which has not been inves-
tigated so far, is provided by the existence of a repulsive force pointing in the direction
opposite to the black hole’s gravitational attraction. Such a force could disturb and even
balance the standard outflow of mass through the inner cusp, thus potentially suppressing
the runaway instability. As suggested recently by [Stuchlı́k et al., 2000], such conditions
could arise naturally in a black hole spacetime with a positive cosmological constant, i.e., in
a Schwarzschild–de Sitter spacetime. In such a spacetime, in fact, a second cusp appears in
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the outer parts of the equilibrium tori, near the so-called “static radius”. Assuming a value
for the relict cosmological constantΛ ∼ 10−56 cm−2 as deduced from recent cosmological
observations of the vacuum energy density [Krauss, 1998] and compatible with a sample
of observational estimates provided by the analysis of a large number of high redshift su-
pernovae [Perlmutter, 1999, Riess, 1998, Stuchlı́k et al., 2000] find that the location of this
outer cusp for the largest stationary discs which can be built in a Schwarzschild–de Sitter
spacetime is at about 50–100 kpc for supermassive black holes with masses in the range
∼ 108 M⊙–109 M⊙. As for the inner one, a slight violation of the hydrostatic equilibrium
at the outer cusp would induce a mass outflow from the disc and away from the black hole,
which could affect the overall dynamics of the torus.

However, this is not the only way in which a cosmological constant could modify
the dynamics of a disc orbiting around a Schwarzschild–de Sitter black hole. As argued by
[Stuchlı́k et al., 2000], in fact, a cosmological constant could produce a sensible modification
in the accretion processes onto primordial black holes during the very early stages of
expansion of the Universe, when phase transitions could take place, and the effective
cosmological constant can have values in many orders exceeding its present value [Kolb
and Turner, 1990]. Furthermore, a positive cosmological constant could also result into
strong collimation effects on jets escaping along the rotation axis of the central black
hole [Stuchlı́k et al., 2000].

The aim of this paper is to investigate one of these intriguing possibilities through
numerical simulations. More precisely, we present a comprehensive study of the nonlinear
hydrodynamics of constant angular momentum relativistic tori evolving in a sequence of
background Schwarzschild–de Sitter spacetimes with increasing black holes masses. Our
study clarifies the dynamical impact of a mass outflow on the occurrence of the runaway
instability in such relativistic tori.

The organization of the paper is as follows. In Sect. 2 we briefly review the main properties
of relativistic tori in a Schwarzschild–de Sitter spacetime. Next, in Sect. 3 we present the
hydrodynamics equations and the numerical methods implemented in our axisymmetric
evolution code. The material presented in this Section is rather limited, since the details
have previously been reported in a number of papers. The last part of this Section is devoted
to a discussion of the initial data we use for the simulations. The numerical results are then
described in Sect. 4 and, finally, Sect. 5 contains our conclusions. Throughout the paper
we use a space-like signature (−,+,+,+) and a system of geometrized units in which
c = G = 1. The unit of length is chosen to be the gravitational radius of the black hole,
rg ≡ GM/c2, where M is the mass of the black hole. Greek indices run from 0 to 3 and
Latin indices from 1 to 3.

2 STATIONARY CONFIGURATIONS IN A SCHWARZSCHILD–DE SITTER
SPACETIME

Building on a wide literature discussing equilibrium configurations of perfect fluid rela-
tivistic tori orbiting around Schwarzschild or Kerr black holes, [Stuchlı́k et al., 2000] have
recently extended these results to the case of a Schwarzschild–de Sitter black hole. In
spherical coordinates (t, r, θ,φ) the line element of this spacetime reads
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ds2 = −
(

1 − 2M
r

− y
r2

M2

)
dt2+

(
1 − 2M

r
− y

r2

M2

)−1

dr2+r2(dθ2+sin2 θ dφ2) ,(1)

where M is the mass of the black hole and the cosmological constant Λ is incorporated in
the dimensionless parameter y defined as

y ≡ 1
3
ΛM2 . (2)

This parameter has to be smaller than a critical value y < yc ≡ 1/27 in order to produce
static regions of the spacetime where equilibrium configurations can be found. We note
that a negative cosmological constant, corresponding to a Schwarzschild–anti-de Sitter
black hole, does not introduce new qualitative features in the development of the runaway
instability when compared to a Schwarzschild spacetime and will not be considered here.

Consider therefore a perfect fluid with four-velocity uµ and described by the stress-energy
tensor

T µν ≡ (e + p)uµuν + pgµν = ρhuµuν + pgµν , (3)

where gµν are the coefficients of the metric (1) in which, however, the black hole mass M
could be a function of time to account for the mass accreted onto the black hole [cf. the
discussion of Eq. (11) below]. The fluid variables e, p, ρ, and h = (e + p)/ρ are the proper
energy density, the isotropic pressure, the rest mass density, and the specific enthalpy, re-
spectively. An equation of state (EOS) of polytropic type, p = κργ = ρϵ(γ −1), completes
the thermodynamical description of the fluid. Here, κ is the polytropic constant, γ is the
adiabatic index and ϵ = e/ρ − 1 is the specific internal energy. As shown by [Kozłowski
et al., 1978] (see also [Fishbone and Moncrief, 1976]), the pressure gradients can balance
the gravitational and centrifugal forces, allowing for the existence of stationary configu-
rations of matter in non-geodesic circular motion and contained within closed “constant
pressure” equipotential surfaces. Under the conditions of hydrostatic equilibrium and of
axisymmetry (i.e., ∂t = ∂φ = 0) the relativistic Euler equations for a fluid with four-velocity
uα = (ut , 0, 0, uφ) take the simple Bernoulli-type form

∇i p
e + p

= −∇i W + Ω∇iℓ

1 −Ωℓ
, i = r, θ, (4)

where W = W (r, θ) ≡ ln(ut ) is the effective potential, ℓ ≡ −uφ/ut is the specific angular
momentum, andΩ ≡ uφ/ut is the coordinate angular velocity as measured by an observer
near the static radius, where the spacetime geometry is very close to a flat one [Stuchlı́k
et al., 2000]. Note that an explicit relation exists between the angular velocity and the
specific angular momentum, which is given by Ω = −ℓ(gt t/gφφ).

Once M andΛ have been prescribed, the explicit expression for the potential W (r, θ) in
the Schwarzschild–de Sitter spacetime is simply given by [Stuchlı́k et al., 2000]

W (r, θ) = 1
2

ln
[

(1 − 2M/r − yr 2/M2)r2 sin2 θ

r2 sin2 θ − (1 − 2M/r − yr 2/M2)ℓ2

]
. (5)

It is apparent from Eq. (4) that the simplest and indeed best studied configurations are
obtained when the distribution of specific angular momentum ℓ is prescribed to be constant.
In this case, which is also the one considered here, W (r, θ) shows three local extrema in
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Figure 1. Schematic diagram for the Keplerian specific angular momentum ℓK in a Schwarzschild–
de Sitter spacetime (left panel) and the corresponding effective potential W (right panel) once a
constant value for ℓ has been chosen. The figure reports the different radial locations that are relevant
for our discussion: the inner and outer cusp points rci, rco, the inner and outer radii for the torus
rin, rout, the inner and outer marginally stable orbits rms,i, rms,o, and the location of the maximum
pressure in the torus rmax (see text for details). Note that rci, rco and rmax are determined once a value
for the constant specific angular momentum has been chosen (this is shown with the long-dashed
line in the left panel) and that the inner and outer radii need not coincide with the corresponding
locations of the cusps but are set by the value chosen for the potential Win (this is shown with the
long-dashed line in the right panel). Reported for comparison with a short-dashed line are ℓK and W
in a Schwarzschild spacetime; the radial coordinate is shown on a logarithmic scale.

the equatorial plane, one more than in the case of a Schwarzschild spacetime (cf. Fig. 1).
Ordering these points with increasing values of r , the first extremum corresponds to the
position of the inner cusp, rci, where the equipotential surface has a self-crossing point in
the (r, θ) plane. The second extremum corresponds to the position of the “centre” of the
torus, rmax, where the internal pressure of the torus has its maximum. The third extremum,
finally, marks the position of the outer cusp, rco, which is not present in the Schwarzschild
spacetime and represents the distinctive contribution of the non-zero cosmological constant
(see Fig. 1 for a schematic diagram). Note that for a configuration with constant ℓ, a local
extremum of W is also a point of vanishing pressure gradients [cf. Eq. (4)]. As a result, the
fluid motion on a circular orbit of radius rci, rmax or rco is a purely geodetic one, with the
specific angular momentum being given by the Keplerian one ℓK for a point-like particle at
that radius. In a Schwarzschild–de Sitter spacetime this is given by

ℓ2
K
(r, y) ≡ r3 M(1 − yr3/M3)

(r − 2M − yr3/M2)2 . (6)

Once a value for the cosmological parameter and for the angular momentum have been
fixed, Eq. (4), supplemented by the polytropic EOS, can be integrated analytically for any
r ≤ rs, to yield the rest-mass density distribution inside the torus
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ρ(r, θ) =
{
γ − 1
κγ

[
exp(Win − W ) − 1

]}1/(γ−1)

, (7)

where Win ≡ W (rin,π/2) and rin is the inner edge of the torus. The latter is assumed to be
a free parameter and is effectively controlled by the potential gap ∆Wi ≡ W (rin,π/2) −
W (rci,π/2).

Hereafter, we will focus on tori built in a parameter space that is smaller than the
one discussed so far. In particular, we will consider tori with constant specific angular
momentum in the range ℓms,i ≤ ℓ ≤ ℓph < ℓms,o, where ℓ2

ph ≡ r3/(r − 2M − yr3/M2)

is the angular momentum of the unstable photon circular geodesic [Stuchlı́k et al., 2000].
Furthermore, the hydrodynamicalevolution of these tori will be followed in Schwarzschild–
de Sitter spacetimes with dimensionless cosmological constant 0 ≤ y ≤ ye = 1/118125 ∼
8.46 × 10−6, where ye corresponds to the value of y for which the minimum of ℓph is equal
to the Keplerian angular momentum of the outer marginally stable orbit [Stuchlı́k et al.,
2000].

3 NUMERICAL APPROACH AND INITIAL DATA

3.1 Numerical approach

The numerical code we use is the same employed by [Zanotti et al., 2003] to study the dy-
namics of constant angular momentum relativistic discs around a Schwarzschild black hole.
For the present investigation the code has been extended to account for the modifications
introduced by the Schwarzschild–de Sitter geometry. The general relativistic hydrodynam-
ics equations are solved by means of a HRSC scheme based on Marquina’s flux formula
(see, e.g., [Font, 2000] for a review of these methods in numerical general relativistic
hydrodynamics).

In order to cover optimally the large spatial extent of the equilibrium configurations
and yet reach a satisfactory spatial resolution in the regions closer to the two cusps where
the fluid motion needs to be calculated most accurately, we have introduced an important
technical modification in the handling of the radial-coordinate grid. More precisely, we use a
non-uniform radial grid with a logarithmic spacing, which is double-varied in the vicinities
of the inner and outer cusps. The coordinate mapping used for this purpose is reminiscent of
a tortoise coordinate mapping but it has been extended to a Schwarzschild–de Sitter metric
as

r∗ = ±
∫ (

1 − 2M
r

− y
r2

M2

)−1

dr , (8)

where the ± sign distinguishes whether the mapping is made for increasing or decreasing
values of the coordinate r , respectively.

As a result of this mapping, a radial grid of Nr = 300 zones allows to cover a spatial
domain going from rMIN = 2.1 to rMAX = 100 with a minimum radial spacing of the
innermost part of the grid ∆r = 10−4 and, correspondingly, a minimum radial spacing
∆r = 10−3 for the outermost part of the radial grid. The two grids join smoothly at
r = 48.6, where the resolution is ∆r = 2.72. The angular grid, on the other hand, is more
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straightforward to build and consists of Nθ = 70 equally spaced zones extending from 0 to
π (cf. [Zanotti et al., 2003]).

As in [Zanotti et al., 2003], a low density “atmosphere” is introduced in those parts of
the numerical domain outside the torus. The initial atmosphere model chosen corresponds
to the spherically symmetric accretion solution of non-interacting test fluid particles. The
maximum density of the atmosphere is typically 5 to 6 orders of magnitude smaller than the
density at the centre of the torus. In all of the validating tests performed, the hydrodynamical
evolution of the torus was found to be unaffected by the presence of this atmosphere, which
is evolved as the bulk of the fluid.

Finally, the mass outflows at the innermost and outermost radial points are computed
respectively as

ṁi(rMIN) ≡ −2π

∫ π

0

√−gDvr dθ
∣∣∣
rMIN

, (9)

and

ṁo(rMAX) ≡ 2π

∫ π

0

√−gDvr dθ
∣∣∣
rMAX

, (10)

where g is the determinant of the metric and
√−g = r2 sin θ .

Note that the mass outflow given by Eq. (9) corresponds effectively to the mass accretion
rate onto the black hole and is used to account for the instantaneous increase of the black
hole mass at every time step. This, in turn, provides information about the changes in the
background spacetime, fundamental for the appearance of the runaway instability [Font and

Table 1. Main properties of the tori considered in the numerical calculations. From left to right
the columns report: the name of the model, the specific angular momentum ℓ (normalised to M),
the polytropic constant κ , the inner and outer cusps of the torus, rci and rco, the radial position of
the pressure maximum rmax (all radii are in units of the gravitational radius rg), the potential gaps
∆Wi ≡ Win − Wci and ∆Wo ≡ Win − Wco, where Win is the potential at the inner edge of the disc.
The last column reports the orbital period at the centre of the torus, torb, expressed in milliseconds.
All of the models share the same value of the cosmological parameter y = 10−6, the same mass for
the black hole, M = 10M⊙, the same adiabatic index γ = 4/3, and the same torus-to-hole mass ratio
Mt/M = 0.2.

Model ℓ κ (cgs) rci rco rmax ∆Wi ∆Wo torb (ms)

A1 3.84 8.970×1014 4.419 94.866 8.822 0.010 -0.010 8.11
A2 3.84 2.568×1015 4.419 94.866 8.822 0.025 0.005 8.11
A3 3.84 4.372×1015 4.419 94.866 8.822 0.032 0.012 8.11

B1 3.94 2.295×1015 4.133 94.564 9.876 0.004 0.004 9.61
B2 3.94 3.775×1015 4.133 94.564 9.876 0.010 0.010 9.61
B2 3.94 6.740×1015 4.133 94.564 9.876 0.020 0.020 9.61

C1 4.00 3.025×1015 4.000 94.373 10.489 -0.007 0.007 10.51
C2 4.00 7.120×1015 4.000 94.373 10.489 0.007 0.021 10.51
C2 4.00 1.125×1016 4.000 94.373 10.489 0.020 0.034 10.51
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Daigne, 2002a, Zanotti et al., 2003]. As mentioned in the Introduction, since we neglect
the self-gravity of the torus, the hydrodynamics equations are solved in a sequence of
background Schwarzschild–de Sitter spacetimes with increasing black hole masses. In
practice, the spacetime evolution is achieved through a remapping of the metric functions
at each time level of the type

gµν(r, Mn , y) −→ g̃µν(r, Mn+1, y) , (11)

where Mn+1 = Mn + ∆t ṁn
i (rMIN) is the mass of the black hole at the new timelevel

tn+1. A detailed discussion on the validity of this approximation can be found in [Font and
Daigne, 2002a] and in [Zanotti et al., 2003]. The prescription (11) is justified and can be
regarded as a very good approximation when the variation of the black hole mass per unit
time, ṁn

i , is very small. This is certainly the case for the small disc-to-hole mass ratios
Mt/M considered here (cf. Table 1).

3.2 Initial Data

As shown by [Font and Daigne, 2002a, Zanotti et al., 2003], the runaway instability is a
robust feature of constant angular momentum relativistic tori in Schwarzschild and Kerr
spacetimes, if these are non self-gravitating. This result does not depend on the way the
instability is triggered, i.e., by either artificially expanding the torus over the potential
barrier at the inner cusp [Font and Daigne, 2002a], or by introducing perturbations in an
otherwise stable torus [Zanotti et al., 2003]. As discussed above, however, the presence of
an outer cusp in a Schwarzschild–de Sitter spacetime is likely to affect the robustness of
this conclusion. In order to investigate to what extent an outflow of mass can interfere with
the development of the runaway instability we have studied the behaviour of three different
classes of models, which we refer to as A, B and C . These models are distinguished on
whether the effective potential at the inner cusp, Wci, is less than, equal to, or larger than the
effective potential Wco at the outer cusp, respectively. Furthermore, for each of these classes
of models we have considered three different initial configurations, with the potential at the
inner edge of the torus, Win, being different from the potential barrier, Wci, by the adjustable
amount∆Wi.

Note that for all of the models of the class A, the hydrostatic equilibrium is always
violated at the inner cusp, i.e., Win > Wci, and a mass outflow will necessarily take place
at the inner edge of the disc once the initial data is evolved. Furthermore, a mass loss will
take place also at the outer cusp for models A2 and A3, which have Win > Wco > Wci. For
all of the models of the class B , on the other hand, the hydrostatic equilibrium is violated at
both cusps and by the same amount, i.e., Win > Wci = Wco and, again, the mass outflows
are regulated by the potential jump ∆Wi. Finally, for all of the models of the class C , the
hydrostatic equilibrium is always violated at the outer cusp, i.e., Win > Wco, and also at the
inner cusp for models C2 and C3, for which Win > Wci > Wco.

Summarised in Table 1 are the potential jumps ∆Wi and ∆Wo, as well as the the most
relevant parameters of the various initial models considered here. Note that we have used
a polytropic index γ = 4/3 and adjusted the polytropic constant so as to have a small
torus-to-hole mass ratio Mt/M = 0.2, thus minimising the error introduced by neglecting
the self-gravity of the torus.
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Figure 2. Time evolution of the inner (left panel) and of the outer (right panel) mass outflows for the
models of class A. The data is shown in units of solar masses per second, while the time is expressed
in units of the orbital period. Note that only models A1 (solid line) and A2 (dotted line) are runaway
unstable. The solid circles in the two panels indicate the time at which ṁ i > ṁo for model A2.

4 RESULTS

As mentioned above, the development of the runaway instability appears to be a robust
feature of the dynamics of non self-gravitating tori orbiting around Schwarzschild or Kerr
black holes with constant distributions of specific angular momentum. This conclusion
has been reached after numerous simulations have been performed for a large range of
torus-to-hole mass ratios Mt/M and under a number of different initial conditions [Font
and Daigne, 2002a, Zanotti et al., 2003]. In all of these simulations, the onset and full
development of the instability was observed when the spacetime geometry was suitably
modified to account for the black hole’s mass-increase due to accretion. As a result of the
instability, the torus is very rapidly accreted onto the black hole and this is most clearly
signalled by the exponential growth in time of the rest-mass accretion rate at the innermost
radial grid point. The growth-time for the instability is inversely proportional to the ratio
Mt/M and is comparable with the dynamical (i.e., orbital) timescale when Mt/M ∼ 1.

In the case of a Schwarzschild–de Sitter black hole, however, the rest-mass of the torus
can change not only because of losses through the inner cusp leading to accretion onto the
black hole, but also because of outflows from the outer cusp and away from the black hole.
While both allowed, the impact that these two mass outflows could have on the dynamics
of the torus is very different. The first one, in fact, induces changes in the black hole mass
and could therefore lead to the runaway instability. The second one, on the other hand,
does not produce changes of the background spacetime and cannot therefore produce an
instability. Nevertheless, it can affect the hydrodynamical evolution in a number of different
ways: firstly, by reducing the amount of rest-mass in the torus available for accretion and,
secondly, by producing significant alterations of the velocity field, especially in the outer
regions of the torus.
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Figure 3. Velocity field and equally spaced isocontours of the logarithm of the rest-mass density for
model A2 at an early time (left panel) and at a later time (right panel); the times reported are in units
of the orbital period. Initially the outer mass flux dominates the dynamics of the torus. However,
the gravitational attraction of the black hole eventually overcomes the effect of the cosmological
constant and the runaway instability takes place. This leads to the large inward-directed fluxes and to
the disappearance of the torus inside the black hole in a few orbital periods.

We have followed the hydrodynamical evolution of the models described in Table 1 over
a number of orbital periods sufficiently large to reveal the impact of a positive cosmological
constant on the occurrence of the runaway instability. In Figs 2 and 4 we show the two mass
outflows ṁ i and ṁo as a function of the orbital period torb = 2π/Ωmax at the centre of the
torus, and for the three classes of models listed in Table 1. The three small insets shown
in the panels for ṁ i offer a view of the evolution of the rest-mass of the torus after this
has been normalised to its initial value. The description of the dynamics of the tori is also
completed with Figs 3 and 5, which show equally spaced isocontours of the logarithm of the
rest-mass density and, superimposed, the velocity field for models A2 and B2, respectively,
at two different times during the evolution.

As it is apparent from a rapid look at these figures, the runaway instability is no longer the
only possible evolution of the system, whose dynamics is instead the result of the interplay
between the inner and the outer mass outflows. The occurrence of the runaway instability
is clearly visible in the left panel of Fig. 2 for model A1 (solid line). Model A1, in fact, has
initial conditions that resemble those encountered for a Schwarzschild black hole, with the
outer radius of the torus located far from the outer cusp (cf. Fig. 1). As a result, the right
panel of Fig. 2, shows that the outer mass outflow is in this case very small (indeed slightly
negative as a result of accretion onto the torus of the infalling atmosphere), while the mass
accretion rate onto the black hole (left panel) grows exponentially and undisturbed until
the full development of the runaway instability at t ∼ 24.2 torb. The dynamical evolution is
different for models A2 (dotted line) and A3 (dashed line), where the competition between
the two outflows at the inner and outer edges of the disc is closer to a balance and the initial
outer mass-loss is non-negligible. For model A2, in particular, this is clearly visible in the
left panel of Fig. 3, which shows that at early times (t ∼ 1.2 torb) the largest fluid velocities
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Figure 4. Same as Fig. 2 but for the models of class B.

(v ∼ 4 × 10−3) are reached in the outer regions of the torus and are outwardly directed.
However, the outer mass-loss eventually becomes insufficient to prevent the development
of the runaway instability, which takes place after t ∼ 33 torb. The corresponding velocity
field (with all vectors pointing towards the black hole) and the isocontours of the logarithm
of the rest-mass density displayed in the right panel of Fig. 3 (at time t ∼ 30.0 torb) show
the important reduction in size undergone by the torus, which is about to disappear entirely
inside the black hole after a few more orbital periods. This type of evolution does not take
place for model A3, whose dynamics is completely dominated by the mass outflow through
the outer cusp and for which the runaway instability does not develop (cf. Fig. 2).

To better interpret the dynamics behind these simulations it is useful to compare the
amount of rest-mass in the torus after the first 10 orbital periods of the evolution for the
three models of class A (see inset in the left panel of Fig. 2). The residual rest-mass of the
torus is 99%, 90%, and 55% of the initial one for the models A1, A2, and A3, respectively.
This may appear somewhat surprising given the fact that the mass outflow from the inner
cusp is smaller in the case of model A3 than it is for model A2, despite A3 having a larger
initial potential jump ∆Wi. The explanation for this comes from looking at the right panel
of Fig. 2 which shows that the mass outflow from the outer cusp is however larger for
model A3 than it is for model A2. As a result, the torus is emptied more efficiently, and this
happens mostly through the outer cusp.

It is also very instructive to compare the mass outflows at the inner and outer edges of
the disc for the three models of class A. Doing so leads to the important result that ṁ i > ṁo
at all times for model A1 and that ṁ i < ṁo at all times for model A3. In other words,
the unstable and the stable models seem to differ from each other on whether the mass
outflow from the inner edge is larger or smaller than the corresponding mass-loss from the
outer edge. In the case of model A2, on the other hand, the two mass outflows are closer
to a balance and ṁ i > ṁo only for t 18 torb, after which the runaway instability clearly
develops; the time when this happens is shown with the filled circles in the two panels of
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Figure 5. Same as Fig. 3 but for model B2. The intense mass outflow across the outer edge of the disc
removes a large fraction of its mass, and suppresses the runaway instability. The final disc reaches a
quasi-steady state.

Fig. 2. It appears, therefore, that an increasing potential gap at the outer edge of the torus
favours the outflow of mass from the outer cusp but it also disfavours (and to a larger
extent) the mass outflow from the inner cusp, with the corresponding accretion onto the
black hole being severely suppressed. As a result, the feed-back of the black hole spacetime
onto the overall dynamics of the system is considerably reduced and the runaway instability
suppressed. Stated differently, the development of the runaway instability appears to be
related to the efficiency of the mass-loss through the edges of the disc and, in particular, the
instability is effectively “extinguished” whenever the mass outflow from the outer edge of
the disc and away from the black hole is larger than the mass outflow from the inner edge
of the disc and onto the black hole. The condition ṁ i < ṁo can thus be used as a simple
sufficient condition for the suppression of the runaway instability in a thick disc orbiting
around a Schwarzschild–de Sitter black hole.

The role played by a positive cosmological constant on the dynamics of the discs and
described so far for the models of class A is present also for the models of class B and
C , although with some slight differences. As discussed in Sect. 3.2, the models of class
B are built with the outer and inner edges having the same effective potential. One would
therefore expect that this would yield to very similar mass outflows at the two boundaries
of the disc. However, the two panels of Fig. 4 show that the mass fluxes through the outer
edges of the discs to infinity are always larger than the ones towards the black hole (i.e.,
ṁi < ṁo). As a result, the models of class B are all stable to the runaway instability. This
is particularly apparent in models B2 and B3, for which the outer mass outflows are at least
a couple of orders of magnitude larger than the corresponding mass outflows onto the black
hole, and which become negligibly small (i.e., ṁ i < 10−8M⊙/s) well before 10 orbital
periods. As a result, a large amount of the matter in those discs is not accreted onto the
black hole, but escapes to infinity. This is illustrated in the small inset of the left panel of
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Fig. 4 which shows that after about 20 orbital periods more than 60% of the torus rest-mass
is lost for model B2 and more than 90% for model B3.

Once the outflows die off in the tori of class B , the remaining matter reaches a quasi-stable
equilibrium, accreting onto the black hole on a timescale which is essentially controlled
by the rate of mass-loss through the inner cusp. The importance of the mass outflow at the
outer edges of the discs of class B is also apparent from Fig. 5, which shows the velocity
field and isocontours of the logarithm of the rest-mass density of model B2 at an early
and a later stage of the evolution. Note how the left panels of Fig. 3 and 5 have velocity
fields that differ mostly in modulus but are equally oriented, while the right panels are
substantially different with velocity fields that have opposite orientations leading to the
disappearance of the torus into the black hole and to infinity, respectively. We also note that
while the difference between the inner and outer mass outflows remains large also in the
case of model B1, the dynamics is in this case much closer to an equilibrium, with the torus
being still progressively emptied to infinity, but on a much larger timescale. No runaway
instability was observed for this model over the time for which the calculations were carried
out (t ∼ 33 torb).

Finally, for models C , the dynamics of the discs is particularly simple and the final result
is rather clear to interpret. In this case, in fact, all the discs are built with an effective
potential which is larger at the outer edge and represent, therefore, initial conditions that
are conceptually the opposite of those in models A. Because of the high potential barrier
at the inner edge of the disc, the inner mass outflow is always rather minute and several
orders of magnitude smaller than the corresponding mass outflow from the outer edge. As
a result, the mass in the torus is lost very rapidly to infinity and very little is accreted onto
the black hole. In particular, in the most dramatic case of model C3, the residual rest-mass
in the torus is less than 20% after only 6 orbital periods.

5 CONCLUSIONS

We have investigated the effect of a positive cosmological constant on the dynamics of
non self-gravitating thick accretion discs orbiting Schwarzschild–de Sitter black holes
with constant distributions of specific angular momentum. The motivation behind this
investigation has been that of assessing the role played by an effective repulsive force in
the onset and development of the runaway instability, which represents a robust feature
in the dynamics of constant angular momentum tori. In addition to the inner cusp near
the black hole horizon, through which matter can accrete onto the black hole when small
deviations from the hydrostatic equilibrium are present, thick discs in a Schwarzschild de-
Sitter spacetime also possess an outer cusp through which matter can leave the torus without
accreting onto the black hole. As a result of this mass-loss to infinity, the changes in the
background metric (which are responsible for the development of the runaway instability)
may be altered considerably and the instability thus suppressed.

As a simple way to evaluate this effect we have considered a sequence of Schwarzschild–
de Sitter spacetimes differing only in their total mass and have performed time-dependent
general relativistic hydrodynamical simulations in these background metrics of thick discs
which are initially slightly out of hydrostatic equilibrium. In doing this we have adopted an
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unrealistically high value for the cosmological constant which however yields sufficiently
small discs (extending up to about a few hundred gravitational radii) to be accurately
resolved with fine enough axisymmetric numerical grids.

We have performed a number of simulations involving initial configurations of constant
specific angular momentum discs differing both for the relative amplitude of the peaks in
the effective potential and for the potential jump at the inner and outer cusps. The results
obtained indicate that the runaway instability is no longer the only possible evolution of
these systems but that their dynamics is rather the end-result of the interplay between the
inner and the outer mass outflows. On the one hand, in fact, we have evolved initial models
for which the cosmological constant has a weak influence; these models have negligible
mass outflows to infinity while maintaining large mass outflows onto the black hole, which
then lead to the development of the runaway instability. On the other hand, we have evolved
initial models which are significantly influenced by the cosmological constant; these models
develop mass outflows through the outer cusp which are much larger than those appearing
at the inner cusp and, hence, do not develop the runaway instability. Placed somewhere
between these two classes of initial configurations there exist initial models for which
the mass outflows from the inner and outer cusps are more closely balanced. In these
cases the runaway instability may or may not develop and we have noticed that a simple
comparison between the mass outflows can be used to deduce the fate of the accreting disc.
More specifically, we have found that the condition ṁ i < ṁo provides a simple sufficient
condition for the suppression of the runaway instability in a thick disc orbiting around a
Schwarzschild–de Sitter black hole.

In spite of the idealised setup used, the simulations performed here provide a first
qualitative description of the complex nonlinear dynamics of thick discs in Schwarzschild–
de Sitter spacetimes and we expect that most of the results obtained will continue to hold
also when more realistic values for the cosmological constant are used. Aa a final comment
we note that besides providing a qualitative description of the role that a cosmological
constant could play on the dynamics of relativistic tori, these calculations also offer a way
of assessing, at least qualitatively, the inertial role that the self-gravity of the torus plays
in the development of the runaway instability. This will be very useful when studying the
dynamics of relativistic tori with numerical codes solving also the full Einstein equations.
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Optical appearance of isotropically radiating
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ABSTRACT
We consider appearance of isotropically radiating sources located at a sphere at the
static radius of the Schwarzschild–de Sitter spacetimes to static observers in vicinity
of the black hole horizon and the cosmological horizon and to radially moving
observers. We expect these observers to follow geodesics starting from the static
radius. It is shown that the observed flux diverges at both the horizons for both
classes of observers. Nevertheless the frequency shift remains finite at the horizons
for the radially moving observers.

1 INTRODUCTION

Optical effects in the field of black holes are of great interest from the very beginning
of the black hole investigations [Podurets, 1964, Ames and Thorne, 1968]. Appearance of
distant sources to observers in vicinity of the black hole horizon was studied by [Bardeen,
1973, Cunningham and Bardeen, 1972, Cunningham, 1975]. Recently, the existence of
repulsive cosmological constant (Λ > 0) is indicated by many cosmological tests [Krauss
and Turner, 1995, Ostriker and Steinhardt, 1995]. Therefore, it is interesting to study the
influence of Λ > 0 on the optical effect nearly the horizons.

In this paper we compute the appearance of distant objects (sphere of isotropically
radiating sources) to an observer near the black hole or an observer near the cosmological
horizon. We will study this problem for the spherically symmetric Schwarzschild–de Sitter
spacetime with repulsive (positive) cosmological constant.

We consider two classes of observers for which we will compute the appearance of
sources in the external universe. The first class are static observers, i.e., observers who (for
example thanks to its rocket) sit at rest in the external field of the hole (with world lines of
constant r, θ,φ = const). The second class are radially moving observers, i.e., observers
who fall freely from a given radius onto the black hole or who recede from a given radius
to the cosmological horizon.

It is useful to choose the starting point for the radially moving observers at the static radius,
where the gravitational attraction of the hole is balanced by the cosmological repulsion.
Hereafter, we assume that the stationary, isotropically radiating background is generated by
sources located on the static radius.

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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2 SCHWARZSCHILD–DE SITTER GEOMETRY

The line element of the Schwarzschild–de Sitter spacetime in the standard Schwarzschild
coordinates in geometric units (c = G = 1) has the form

ds2 = −
(

1 − 2M
r

− Λ

3
r2
)

dt2 +
(

1 − 2M
r

− Λ

3
r2
)−1

dr2 + r2(dθ2 + sin2 θ dφ2), (1)

where M is mass of the central black hole, Λ ∼ 10−56 cm−2 is the repulsive cosmological
constant. It is advantageous to introduce dimensionless cosmological parameter y by the
relation

y = 1
3ΛM2. (2)

2.1 The horizons

The event horizons of the spacetime are given by condition

gt t ≡ −
(

1 − 2
r

− yr2
)

= 0. (3)

The location of events horizons is determined by the relation

y = yh(r) ≡ r − 2
r3 . (4)

In the Schwarzschild–de Sitter spacetimes there exists a critical value of the parameter y,
given by the relation ycrit = yh(r = 3) = 1/27, corresponding to the local maximum of
yh(r). For 0 < y < ycrit, there exists two events horizons. The black-hole horizon and the
cosmological horizon are located at

rh = 2√
3y

cos
π + ξ

3
, rc = 2√

3y
cos

π − ξ

3
, (5)

respectively, where

ξ = cos−1 3
√

3y. (6)

The spacetime is dynamic at r < rh and r > rc. If y = ycrit = 1/27, the horizons
coincide at rh = 3. If y > 1/27, the spacetime is dynamic at r > 0 and describes a naked
singularity [Stuchlı́k and Hledı́k, 1999].

The motion of test particles and photons is given by geodesic structure of the spacetime.
The equation of geodetical motion reads

Dpµ

dλ
= 0, (7)

where pµ ≡ dxµ/dλ is the 4-momentumof the particle (photon) andλ is an affine parameter.
It has to be completed by the condition

pµ pµ = −m2, (8)

where m is the rest mass of the test particle. (For photons m = 0.)
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It follows from the central symmetry of the geometry (1) that the geodetical motion of
test particles and photons is allowed in the central planes only. Due to the existence of
the Killing vector fields ξ(t) = ∂/∂t a ξ(φ) = ∂/∂φ, there must exist two constants of the
geodetical motion:

pt = gtµ pµ = −E , pφ = gφµ pµ = Φ. (9)

We can introduce the specific energy E , specific angular momentum L and impact
parameter l by the relations

E = E

m
, L = Φ

m
, l = Φ

E
. (10)

If we choose the plane of the motion as the equatorial plane (θ = π/2), the motion of the
test particles (m ̸= 0) will be given by the effective potential

V 2
eff(r, L, y) ≡

(
1 − 2

r
− yr2

)(
1 + L2

r2

)
. (11)

The motion is allowed in the regions where

E2 ≥ V 2
eff(r, L, y). (12)

The turning points of the radial motion are given by the condition

E2 = V 2
eff(r, L, y). (13)

Radial motion of photons (m = 0) can be determined by the generalised effective
potential related to the impact parameter l. The motion is allowed in regions where

l2 ≤ l2
R(r, y) ≡ r3

r − 2 − yr3 . (14)

The condition l2 = l2
R(r, y) holds for the turning points of the radial motion.

In the Schwarzschild–de Sitter spacetimes, V 2
eff(r, L, y) and l2

R(r, y) are well defined
between the black hole horizon and the cosmological horizon.

The circular orbits of test particles correspond to a local extreme of the effective po-
tential (∂V 2

eff/∂r = 0). Its maxima (∂2V 2
eff/∂

2r < 0) determine unstable orbits, minima
(∂2V 2

eff/∂
2r > 0) determine stable circular orbits. Specific energy a specific angular mo-

mentum of the particle on a circular geodesic are given by relation

Ec(r, y) =
(

1 − 2
r

− yr2
)(

1 − 3
r

)−1/2
, (15)

Lc(r, y) =
[
r
(

1 − yr3
)]1/2

(
1 − 3

r

)−1/2
. (16)

The circular orbits may exist only in regions restricted by the condition

3 ≤ r ≤ rs ≡ y−1/3. (17)

The lower limit of this region is connected with divergences of the functions Ec and Lc
at r = 3. The photon circular orbit, which is given by the local minimum of the function
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l2
R, exist there. This minimum is located at r = 3 for arbitrary values of dimensionless

parameter y. However the impact parameter of the photon circular orbit depends on y by
the relation

l2
c (y) = 27

1 − 27y
. (18)

The upper limit of the region, where the circular orbits may exist, is called static radius
and denoted rs. The gravitational attraction of the hole is just balanced by the cosmological
repulsion there. The static radius is given by the condition

y = ys(r) ≡ 1
r3 . (19)

The position of the particle on the static radius with specific energy

Es(y) =
(

1 − 3y1/3
)1/2

, (20)

and L = 0 is unstable relative to radial perturbations.
Stable circular orbits exist on radii simultaneously satisfying the conditions ∂V 2

eff/∂r = 0
and ∂2V 2

eff/∂
2r ≥ 0 that imply

4yr4 − 15yr3 − r + 6 ≥ 0. (21)

Marginally stable circular orbits are given by the relation

y = yms(r) ≡ r − 6
r3(4r − 15)

. (22)

The curve yms(r) has its maximum located at rcrit = 15/2 corresponding to a critical value
of the cosmological parameter for the spacetimes that permit the existence of stable circular
orbits

ycrit(ms) = 12
154 ≃ 0.000237. (23)

3 STATIC OBSERVERS

Let us consider static observers who are located at rest at r = const, θ = const, φ = const.
The observers are endowed by a proper reference system with an orthonormal tetrad of
one-forms

ω(t) = B(r, y) dt, (24)

ω(r) = 1
B(r, y)

dr, (25)

ω(θ) = r dθ, (26)

ω(φ) = r sin θ dφ, (27)

and an orthonormal tetrad of 4-vectors

e(t) = 1
B(r, y)

∂

∂t
, (28)
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e(r) = B(r, y)
∂

∂r
, (29)

e(θ) = 1
r
∂

∂θ
, (30)

e(φ) = 1
r sin θ

∂

∂φ
, (31)

where we denote

B2(r, y) ≡ 1 − 2
r

− yr2. (32)

Recall that

ω(α)
µ eµ

β = δ
(α)
(β), eµ

(α)ω
(α)
ν = δµν , (33)

where δµν is the Kronecker delta. The general relations between the locally measured
4-momentum p(α) and the coordinate 4-momentum pµ are given by

p(α) = ω(α)
µ pµ, p(α) = eµ

(α) pµ, (34)
pα = eα

(µ) p(µ), pα = ω(µ)
α p(µ). (35)

Hereafter, we consider (for simplicity) the observers located on axis of symmetry (θ = 0).
The source (a radiating sphere) will be assumed to be at rest on the static radius rs.

The source emits photons that are entrapped by the observers. The photon world line, a
null geodesic, is characterised by the impact parameter l. Covariant components of the
4-momentum of a photon in the coordinate system are (we express the motion in latitudinal
coordinate and assume φ = const) [Cunningham, 1975]

pt = −E , (36)

pr = A(r, y; l)
B2(r, y)

E , (37)

pθ = lE = Φ, (38)

where

A(r, y; l) = ±
√

1 − B2(r, y)
l2

r2 . (39)

The ‘+’ sign corresponds to photons receding from the black hole, the ‘−’ sign corre-
sponds to photons infalling into the black hole. The components of 4-momentum of the
photon measured by a static observer located at a given r (p(α) = ω

(α)
µ pµ) are given by the

relations

p(t)
obs = E

B(r, y)
, (40)

p(r)
obs = A(r, y; l)

B(r, y)
E , (41)

p(θ)
obs = lE

r
= Φ

r
. (42)
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Figure 1. The frequency shift for two types of observers, static, and receding ones. The smallest value
of r corresponds to 10 rs, the largest one to the cosmological horizon. The corresponding values of
the dimensionless parameter y are given in the figures.

Index ‘obs’ (observer) denotes the components measured by a static observer located on a
given r . The time component of the photon 4-momentum, measured by a static observer
located on the static radius rs, p(t)

em satisfies the relation

p(t)
em = E

Bs(y)
. (43)

We introduce here a new parameter

Bs(y) ≡ B(r = rs, y) = (1 − 3y1/3). (44)

The frequency shift of the photon (the ratio of observed and emitted energy) is given by
the relation

g ≡ p(t)
obs

p(t)
em

= Bs(y)

B(r, y)
. (45)

Behaviour of the frequency shift is illustrated in Figs 1 and 6.
An observer (located at r < rs) will see the photons coming from the directional angle α

related to the outward radial direction as given by the general relation

cosα = − p(r)
obs

p(t)
obs

. (46)
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In the Schwarzschild–de Sitter spacetimes we arrive at

cosα = −A(r, y; l) = ±
√

1 −
(

1 − 2
r

− yr2
)

l2

r2 . (47)

The maximum angle αmax corresponds to the geodesic with l2 = l2
c = 27/(1 − 27y). In the

area with α > αmax, the sky seems to be black. Any radiation observed in this region must
originate at a close vicinity of the black hole. The black region grows when the observer
approaches the black hole.

Very near the horizon, αmax ≈ 0, and all the radiation from the sky is concentrated into
a tiny cone around the radial axis, (see Fig. 2).

Now we determine what the observer will see. First of all we determine the relation
between the angle coordinates of the emitter (θem,φem) and angles, in which the static
observer located on the axis receives the incoming photon (α,β). We denote as β the
azimuthal angle round the radial axis in the observer’s rest system. We assume null geodesics
observed in directions (α,β), which for large distance r corresponds to angles (θem,φem),
see Fig. 3, [Cunningham, 1975]. Then the following relations must hold

θem = |∆θ − 2nπ| if (2n − 1)π < ∆θ < (2n + 1)π, (48)

αmax

O

   B.H.

r1

(a)

   O

    B.H.

    

O

αmax

B.H.

r2

(b)

Figure 2. Trapping of photons by the black hole. The unshaded area characterised by the angle
α ∈ (0, αmax), from which the radiation hits to the observer O. The area decreases when the observer
approaches the black hole (r1 > r2).
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φem = β +
{

0 if 2nπ < ∆θ < (2n + 1)π,

π if (2n − 1)π < ∆θ < 2nπ,
(49)

where the total angle∆θ , spanned by the photon trajectory between the emitter and observer,
is given by the relations

∆θ =
∫ rs

robs

pθ

pr dr =
∫ rs

robs

l
r2 A(r, y; l)

dr, (50)

with l being determined by the angle α and the location of the observer through (47). These
equations give (θem,φem) as a function of (α,β).

The radiation field travelling between a source and an observer is governed by the
Boltzmann equation which can be given in the form [Misner et al., 1973]
Iν
ν3 = const, (51)

where ν is the frequency of the photon and Iν is the specific intensity of the radiating field
corresponding to the given frequency. For a bundle of photons with nearly the same values
of constants of the motion E and l, we can express the Boltzmann equation in the form
Iνobs

ν3
obs

= Iνem

ν3
em

. (52)

For the ratio of the observed and emitted specific intensities we then obtain

Iνobs

Iνem

=
(

p(t)
obs

p(t)
em

)3

=
(

Bs(y)

B(r, y)

)3
. (53)

                       O

     

r cos

Θ

 B.H.

  r

r sin

Θ

Θ

e

β

φe

φ

er

Θe

e

α

o

Figure 3. Photon trajectory and observed angles. The schematic representation of setting angles. The
observer is located on the polar axis (θ = 0) at distance robs from the black hole. The photons, which
he observes, are characterised by a couple of angles (α,β).
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Suppose that the radiating sphere located at rs generates an isotropic radiation field with
the intensity Iem (erg cm−2 sec−1 sr−1) given by the relation

Iem =
∫

Iνem dνem. (54)

The observed energy flux F (erg cm−2 sec−1) will be given by the equation

F
4πIem

=
∫∫

Iνobs

4πIem
dνobsdΩ = 1

2

[
Bs(y)

B(r, y)

]4
(1 − cosαmax)

= 1
2

B4
s (y)

(
1 − 2

r
− yr2

)−2

×
[

1 ±
√

1 −
(

1 − 2
r

− yr2
)(

27
1 − 27y

)
1
r2

]
. (55)

Dependence of the flux on the radius of the observer is illustrated in Fig. 4 for different
values of parameter y.

It makes sense in real situation to consider only direct photons. Multiple images, created
by photons orbiting the black hole several times, will be so weak that it will be very difficult
to observe them, see [Cunningham, 1975]. Therefore we do not consider the multiple images
here.

Now we determine the flux in the limit of y → 0. Taking the first terms of the Taylor
expansion, we obtain the following results

ξ ≃ π

2
−
√

27y, (56)

and

rh ≃ 2 − y, (57)

for the black hole horizon, and

rc ≃ 1√y
(1 − √

y), (58)

for the cosmological horizon.
In this approximation the flux near the black hole horizon (r → rh) has the form

F
4πIem

≃ 27(1 − 3y1/3)2

4

(
1 − 2

r
− yr2

)−1 27
(1 − 27y)

1
(2 − y)2 . (59)

If we consider in limit for y → 0 only the linear members, we obtain

F
4πIem

≃ 1
16

(
1 − 2

r
− yr2

)−1
(1 − 6y2/3 + 28y). (60)

The situation will be different for the static observers located on r > rs. Here we consider
only the situations with r ≫ rs, when the radiating sphere at r = rs can be considered as
a small radiating spot observed at a small angle ∆θ . This approximation is possible only
in spacetimes, where rc ≫ rs. Since rc ∼ 1/

√y a rs ∼ 1/y1/3, it is clear that we have to
assume y 10−12.
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Figure 4. The flux of radiation measured by the static observer located at rh < r < rs. Extension of
the r axis corresponds to the black hole horizon rh and the static radius rs. The corresponding values
of the dimensionless parameter y are given in the figure.

The radiation flux, measured by the static observer is then given by the relation

F
4πIem

≃ 1
2

B4
s (y)

(
1 − 2

r
− yr2

)−2
∆θ . (61)

For small angles∆θ we can use approximate relation

∆θ ≃ rs

r − rs
. (62)

Dependence of the resulting flux on r is illustrated in Fig. 5. We can see that for r → rc the
observed radiation flux will diverge, since ∆θ ∼ rs/(rc − rs) is nonzero and the frequency
shift diverges nearby the cosmological horizon for the static observers.

4 RADIALLY FALLING OBSERVERS

When approaching the black hole horizon the static observers must be kept at rest by
diverging trust. Clearly, the static observers are rather unnatural observers in vicinity of
the horizons. On the other hand, as natural observers could be considered falling radially
onto the black hole, or receding to the cosmological horizon. Here we consider family of
observers freely moving from the static radius rs, with the specific energy Es =

√
1 − 3y1/3.
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Figure 5. The flux of radiation measured by the static observer located at rs < r < rc. The smallest
value at the axis r corresponds r = 0.9 rc, the largest one to the cosmological horizon rc. The
corresponding values of the dimensionless parameter y are given in the figure.

Values of physical quantities locally measured by such radially falling (or receding)
observers we will denote by index in round brackets with a tilde. First, we determine the
orthonormal tetrad of 1-forms for the radially falling observer by using relations

e(ν̃) = Λ
(µ)
(ν̃)

e(µ), ω(ν̃) = Λ
((̃ν)
(µ) ω

(µ). (63)

Λ is matrix of the Lorentz transformation between the static observer and radially moving
observer on given r

Λ
(µ)
(ν̃) =

⎛

⎜⎜⎝

coshψ sinhψ 0 0
sinhψ coshψ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ,

Λ
(µ̃)
(ν) =

⎛

⎜⎜⎝

coshψ − sinhψ 0 0
− sinhψ coshψ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ,

where coshψ , sinhψ are given by the relations

coshψ = γ = 1√
1 − v2

, (64)
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sinhψ = v√
1 − v2

, (65)

with v being the velocity of the freely falling observer as measured by the static observer.
This locally measured velocity is determined by the standard formula

v = dl
dτ

=
√

grr

gt t

dr
dt

=
√

grr

gt t

dr
dτ

dτ
dt

, (66)

where dl is an element of proper distance, dτ is an element of proper time of the static
observer and dr/dt is the radial coordinate velocity of radially falling observer. The motion
of the radially falling observer from the static radius is given by the coordinate components
of 4-momentum

pt = dt
dλ

= gt t pt = E B−2(r, y), (67)

pr = dr
dλ

= −
√

E2 − V 2
eff = −m

√
E2

m2 − B2(r, y), (68)

where E is the constant energy of the motion and λ = τ/m is an affine parameter. For the
velocity v we obtain the relation

v = − Z(r, y)
√

1 − 3y1/3
, (69)

where we introduced a new variable

Z(r, y) ≡
√

2
r

+ yr2 − 3y1/3, (70)

which characterises the observer radially falling from the static radius. Then the parameters
of the Lorentz transformation are given by

coshψ =
√

1 − 3y1/3

B(r, y)
, sinhψ = − Z(r, y)

B(r, y)
, (71)

and the orthonormal tetrad of 1-forms of the radially falling observers has the form

ω(t̃) =
√

1 − 3y1/3 dt + Z(r, y)B−2(r, y) dr, (72)

ω(r̃) = Z(r, y) dt +
√

1 − 3y1/3B−2(r, y) dr, (73)

ω(θ̃) = r dθ, (74)
ω(φ̃) = r sin θ dφ. (75)

The locally measured 4-momentum is related to the coordinate 4-momentum by

p(µ̃) = ω
(µ̃)
(ν) p(ν). (76)

The components of 4-momentum of the photons, measured locally by the observers radially
falling along the axis of symmetry are given by the relations

p(t̃)
obs = E

B2(r, y)

(√
1 − 3y1/3 + Z(r, y)A(r, y; l)

)
, (77)
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Figure 6. The frequency shift of photons emitted at rs and observed by static and radially falling
observers. The sign + for falling observers means, that they observe radiation comming from their
“own” space. For both types of observers rh < r < rs. The corresponding values of the dimensionless
parameter y are given in the figures.

p(r̃)
obs = E

B2(r, y)

(
Z(r, y) +

√
1 − 3y1/3 A(r, y; l)

)
, (78)

p(θ̃)
obs = E l

r
= Φ

r
. (79)

Again we assume the motion with φ = const.

4.1 Frequency shift

The frequency shift of the photon measured by the radially falling observer is given by the
relation

g̃ ≡ p(t̃)
obs

p(t)
em

= Bs(y)

B2(r, y)

(√
1 − 3y1/3 + Z(r, y)A(r, y; l)

)
(80)

= Bs(y)

Z(r, y) cos α̃ +
√

1 − 3y1/3
, (81)

and its dependence on r is illustrated in Fig. 6.
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4.2 Directional angles

The directional angle α̃ (related to the outward radial direction), in which the falling observer
will see the incoming photon with impact parameter l is given by the relations

cos α̃ = −

(
Z(r, y) +

√
1 − 3y1/3 A(r, y; l)

)

(√
1 − 3y1/3 + Z(r, y)A(r, y; l)

), (82)

l
r

= sin α̃(
Z(r, y) cos α̃ +

√
1 − 3y1/3

) . (83)

As in the case of the static observers, the radially falling observers will see the dark sky
at the angles α̃ > α̃max. The angle α̃max corresponds to the photons incoming from the
unstable circular photon orbit located on r = 3 with l2 ≡ l2

c = 27/(1 − 27y). It is clear
from the equation (81) that the observed frequency shift depends upon the direction, in
which the photon arrives to the observer.

4.3 Photons from the parallel region of the spacetime

Until the observer does not cross the horizon, he sees only its proper region of the space-
time. The situation will change after crossing the horizon, if we consider the extended
Schwarzschild–de Sitter spacetime with “parallel” static regions [Gibbons and Hawking,
1977], which will also influence the observer below the black hole horizon. The photons
from the “other side”, i.e., from the “parallel” region of the spacetime, have the conserved
energy pt = +E , in contrast to the photons from observer´s own space with pt = −E .
The components of the 4-momentum of the photons from the “other side”, measured by the
radially falling observer are given by the relations

p(t̃)
obs = E

B2(r, y)

(
−
√

1 − 3y1/3 + Z(r, y)A(r, y; l)
)

, (84)

p(r̃)
obs = E

B2(r, y)

(
−Z(r, y) +

√
1 − 3y1/3 A(r, y; l)

)
, (85)

p(θ̃)
obs = E l

r
= Φ

r
. (86)

In analogy with equations (80), (81), (82), (83) the following relations hold for the
photons from the “other side”

g̃ ≡ p(t̃)
obs

p(t)
em

= Bs(y)

B2(r, y)

(
−
√

1 − 3y1/3 + Z(r, y)A(r, y; l)
)

= − Bs(y)

Z(r, y) cos α̃ +
√

1 − 3y1/3
, (87)

cos α̃ =

(
A(r, y; l)

√
1 − 3y1/3 − Z(r, y)

)

(√
1 − 3y1/3 − Z(r, y)A(r, y; l)

) , (88)
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l
r

= − sin α̃(
Z(r, y) cos α̃ +

√
1 − 3y1/3

) . (89)

4.4 Energy flux

The flux of radiation from the isotropically radiating source located at rs and observed by
the freely falling observers is given by the relation

F
4πIem

= B4
s (y)

6Z(r, y)

×
[(

Z(r, y) cos α̃max +
√

1 − 3y1/3
)−3

−
(

Z(r, y) +
√

1 − 3y1/3
)−3

]

, (90)

for the radiation from the “observers side” of the spacetime (Fig. 7) and by the relation

F
4πIem

= B4
s (y)

6Z(r, y)

×
[

−
(

Z(r, y) −
√

1 − 3y1/3
)−3

−
(√

1 − 3y1/3 + Z(r, y) cos α̃min

)−3
]

. (91)

for the radiation from the “other side” (Fig. 8).

10 20 30 40
r

2.5

5

7.5

10

12.5

15

17.5

20

F
/4

πI
e

y = 0.00001

(a)

3 4 5 6 7 8 9 10
r

2.5

5

7.5

10

12.5

15

17.5

20

F
/4

πI
e

y = 0.001

(b)

2.4 2.8 3.2 3.6
r

2.5

5

7.5

10

12.5

15

17.5

20

F
/4

πI
e

y = 0.02

(c)

2.5 2.7 2.9 3.1
r

2.5

5

7.5

10

12.5

15

17.5

20

F
/4

πI
e

y = 0.03

(d)

Figure 7. The flux of radiation from the observer´s side, measured by the radially falling observer
located at rh < r < rs. Extension of r axis corresponds to the black hole horizon rh and the static
horizon rs. The corresponding values of the dimensionless parameter y are given in the figure.
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Figure 8. The flux of radiation from the “other” side, measured by the radially falling observer located
at r < rh. The smallest value at the axis r corresponds to r = 0, the largest one to the black hole
horizon rh. The corresponding values of the dimensionless parameter y are given in the figures.

5 RADIALLY RECEDING OBSERVERS

Let consider the observers freely receding from the static radius rs to the cosmological
horizon. The situation will be similar to the case of the static observer at r > rs. The
observer will see the radiation coming from an area, which (if the observer recedes on
r ≫ rs) we can be considered in a rough approximation as a spot observed under the angle
∆θ̃ . The velocity of the freely receding observer is given by (we take here pr with positive
sign)

v = Z(r, y)
√

1 − 3y1/3
. (92)

The parameters of the Lorentz transformation have the form

coshψ =
√

1 − 3y1/3

B(r, y)
, (93)

sinhψ = Z(r, y)

B(r, y)
. (94)

The tetrad of 1-forms of radially receding observer has the form

ω(t̃) =
√

1 − 3y1/3 dt − Z(r, y)B−2(r, y) dr, (95)
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ω(r̃) = −Z(r, y) dt +
√

1 − 3y1/3B−2(r, y) dr, (96)

ω(θ̃) = r dθ̃, (97)
ω(φ̃) = r sin θ̃ dφ. (98)

The photons are emitted in the outward direction from the source situated on rs, therefore
we must consider for the component of the 4-momentum pr

A(r, y; l) = +
√

1 − B2(r, y)
l2

r2 . (99)

The components of the photon’s 4-momentum, measured by the freely receding observer
located on the axis of symmetry, have the form

p(t̃)
obs = E

B2(r, y)

(√
1 − 3y1/3 − Z(r, y)A(r, y; l)

)
, (100)

p(r̃)
obs = E

B2(r, y)

(
−Z(r, y) +

√
1 − 3y1/3 A(r, y; l)

)
, (101)

p(θ̃)
obs = E l

r
= Φ

r
. (102)

For the frequency shift of the photon, we obtain

g̃ ≡ p(t̃)
obs

p(t)
em

= Bs(y)
√

1 − 3y1/3 − Z(r, y) cos∆θ̃
. (103)

The frequency shift is illustrated in Fig. 1.
Now we must express the angle ∆θ̃ , in which the radially receding observer located

on r ≫ rs sees the radiating sphere. We can estimate this angle by using the of special
relativistic transformation of the angle ∆θ ≃ rs/(r − rs) measured by the static observer.
We transfer this angle to the system, which moves relative to the static observer with
the velocity v of the receding observers as measured by the static observer. The Lorentz
transformation gives

cos∆θ̃ = cos∆θ + v

1 + v cos∆θ
, (104)

where v is given by the relation (92).
Note that this is an approximative result only; to obtain exact result, a fully general

relativistic computation is necessary taking into account the gravitational focusing. But
this needs a relatively complex computational code. Therefore, we use here the special-
relativistic estimate. For small angle we can expand cos∆θ̃ to the series and we obtain

∆θ̃2 ≃ ∆θ2 1 − v

1 + v
, (105)

whereas∆θ is given by (62).
The observed flux of the radiation has then the form
F

4πIem
= 1

2
B4

s (y)
(√

1 − 3y1/3 − Z(r, y) cos∆θ̃
)4∆θ̃ . (106)
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Figure 9. The flux of radiation measured by the radially receding observer located at rs < r < rc. The
smallest value at the axis r corresponds to r = 0.5 rc, the largest value to the cosmological horizon
rc. The corresponding values of the dimensionless parameter y are given in the figures.

Its radial dependence is presented in Fig. 9.

6 CONCLUSION

In the case of the Schwarzschild–de Sitter spacetime we discussed properties of the flux of
radiation coming from the isotropically radiating sources distributed continuously on the
sphere at the static radius rs, as observed in vicinity of the horizons of the spacetime. We
considered three families of observers: the static ones, observers radially falling from rs to
the hole, and observers radially receding from rs to the cosmological horizon rc.

For the static and receding observers located above the static radius we give only approx-
imative results, considering the radiating sphere as an radiating spot observed at a small
angle ∆θ . We assume possition of the observer r ≫ rs.

The observed flux for the static observers near the black hole and cosmological horizon
diverges. It is influenced by the gravitational blue shift and the gravitational focusing.

The observed flux for falling observers near the black hole horizon diverges, too. In
this case the gravitational focusing is important. The gravitational blue shift is finite at the
horizon. For comleteness, we investigated also the radiation coming from the “parallel”
universe of the Schwarzschild–de Sitter spacetime as observed by the radially falling
observer under the black hole horizon. In this case, the flux diverges near both the horizon
and the singularity at r = 0.
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Influence of relict vacuum energy on the
Rees–Sciama effect

Zdeněk Stuchlı́k and Jan Schee
Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava
Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

ABSTRACT
The role of the observed relict vacuum energy on the fluctuations of CMBR go-
ing through cosmological matter condensations is studied in the framework of the
Einstein–Strauss–de Sitter vakuola model. It is shown that refraction of light at the
matching surface of the vakuola and the expanding Friedman universe can be very
important during the accelerated expansion of the universe when the velocity of the
matching surface relative to static Schwarzschildian observers becomes relativistic.

1 INTRODUCTION

Temperature fluctuations of the Cosmic Microwave Background Radiation (CMBR), re-
cently measured by sophisticated observational methods (COBE, WMAP, etc.), are ob-
served on the level of ∆T/T ∼ 10−5 [Spergel et al., 2003]. These fluctuations could be
explained in two ways. First, by the Sachs–Wolfe effect [Sachs and Wolfe, 1967], i.e., as
an imprint of energy density fluctuations related to the CMBR temperature fluctuations
at the cosmological redshift z ∼ 1300 during the era of recombination, when effective
interaction of matter and CMBR is ceased [Börner, 1993]. Second, by the Rees–Sciama
effect [Rees and Sciama, 1968], i.e., as a result of influence of large-scale inhomogeneities
(both large galaxies or their clusters, and large voids) evolved in the expanding universe
due to the gravitational instability of matter at the era characterised by z 10. In the case of
spherically symmetric clusters and voids, the Rees–Sciama effect was considered in detail
by Mészáros and Molnár [Mészáros and Molnár, 1996]. They describe the clusters by the
standard Einstein–Strauss vakuola model, while the voids they model in an approximative
way that does not meet the full general-relativistic junction conditions. Further, they do
not consider the effect of refraction of light at the boundary surface matching the cluster
(void) with the expanding universe. However, this effect could be of great importance in
an accelerating universe, indicated by many of recent cosmological tests predicting present
value of the vacuum energy density ρvac ∼ 0.67ρcrit (ρcrit ≡ 3H/8πG is the critical energy
density corresponding to the flat universe predicted by the inflationary paradigm [Linde,
1990,Spergel et al., 2003]). The vacuum energy density (or energy of a quintessence field)
is related to the (effective) cosmological constant by

Λ = 8πG
c2 ρvac. (1)

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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Figure 1. A schematic picture of a cluster represented as a spherical symmetric inhomogeneity
immersed in the dust filled Friedman universe. At the centre of the cluster could be a Schwarzschild
black hole or a dust sphere described by Friedman–Robertson–Walker (FRW) metric with parameters
different then those characterising the external FRW universe. The central region is related to the
EFRW universe through the intermediate vacuum Schwarzschild–de Sitter region; χE = χb is the
comoving radius of the cluster, χI is the comoving radius of the internal dust filled universe.

Here we present a study of the influence of the relict repulsive cosmological constant,
indicated by observations to be equalΛ ≈ 10−56 cm−2, on the Rees–Sciama effect. We use
the Einstein–Strauss–de Sitter vakuola model in which the inhomogeneity is represented
by a spherically symmetric cluster which is immersed into the Friedmanian dust-filled
universe (see Fig. 1). We determine temperature fluctuations of the CMBR passing the
vakuola described by the Einstein–Strauss–de Sitter model and give estimations of the
relevance of the effect of refraction at the matching surface. We show, how the influence
of the refraction effect grows with the velocity of the matching surface. Note that in the
standard Friedman models with Λ = 0, the velocity of the matching surface falls in the
expanding universe and the refraction effects are suppressed. However, in the accelerated
universe, the velocity grows, and the refraction effect becomes significant. Such effect
could serve as another test of the presence of the cosmological constant; it could have
strong observational consequences in future, when the velocity of the matching surface
becomes to be relativistic.

Throughout our computations, we use the geometric units with c = G = 1.

2 EINSTEIN–STRAUSS–DE SITTER VAKUOLA MODEL

In the construction of the Einstein–Strauss–de Sitter model with a repulsive cosmologi-
cal constant, we remove at a fixed value of the comoving Robertson-Walker coordinate
χb a spherical ball of dust of the mass M from the dust-filled universe and replace it by



Influence of relict vacuum energy on the Rees–Sciama effect 189

the Schwarzschild–de Sitter spacetime of the same mass M . Its expanding boundary sur-
face coincides with expanding surface χ = χb = const of the Friedman universe. The
Schwarzschild–de Sitter spacetime can be completely vacuum, i.e., black-hole spacetime,
or, as used frequently, it can has a spherical source represented by a part of an internal dusty
Friedman universe with parameters different than those of the external Friedman universe
outside of the vacuum Schwarzschild–de Sitter spacetime.

The vacuum Schwarzschild–de Sitter spacetime of mass M is described in the standard
Schwarzschild coordinates by the line element

ds2 = −A2(r) dt2 + A−2(r) dr2 + r2 dΩ, (2)

where

A2(r) = 1 − 2M
r

− Λ

3
r2. (3)

The external Friedman universe is described by the Robertson–Walker geometry. In the
standard comoving coordinates its line element reads

ds2 = −dT 2 + R2(T )
[
dχ2 +Σ2

k (χ) dΩ
]
, (4)

where

Σk(χ) =

⎧
⎨

⎩

sinχ for k = +1,
χ for k = 0,

sinhχ for k = −1.
(5)

The Robertson–Walker metric describes the external Friedman universe at χ ≥ χb, while at
χ < χb it is replaced by the expanding part of the Schwarzschild–de Sitter spacetime. The
particles with χ = χb follow radial geodesics of the Schwarzschild–de Sitter spacetime.

The evolution of the Friedman universe is given by the evolution of the scale factor R
and the energy density ρ in dependence on the cosmic time T . The scale factor fulfils the
Friedman equation
(

dR
dT

)2
= 8πρ

3R
+ Λ

3
R2 − k (6)

and the energy density ρ satisfies the energy conservation equation in the form

8πρ

3
R3 = const = R0. (7)

It is necessary to synchronise the proper time of a dust particle on the matching hyper-
surface (MH hereinafter) χ = χb as measured from the both sides of the hypersurface of
junction. Therefore, the proper time of the radial geodesics τ of the particle as measured
in the Schwarzschild–de Sitter spacetime must be equal to the cosmic time T as measured
in the Friedman–Robertson–Walker spacetime. The junction conditions have the following
form [Stuchlı́k, 1983]

rb = R(T )Σk(χb), (8)
R̃ = R0Σk(χb), (9)

and
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R̃
√

R̃/2M = R0, (10)

where the parameter R̃ is related to the covariant energy of the radial geodetic Eb of the test
particles on the MH by the relation

Eb =
√

1 − 2kM
R̃

. (11)

The internal 3-geometry of the MH measured from the Friedman universe side is given by
the line element

ds2
+ = −dT 2 + R2(T )Σ2

k (χb)
(

dθ2 + sin2 θ dφ2
)

. (12)

From the side of the Schwarzschild–de Sitter spacetime it is given by the line element

ds2
− = −dT 2 + r2

b (T )
(

dθ2 + sin2 θ dφ2
)

. (13)

Both geometries are identical due to the junction conditions. One can show that the same
statement holds for the extrinsic curvature of the MH [Stuchlı́k, 1984].

3 THE GEODESICS INTERSECTING THE MATCHING HYPERSURFACE

Let us consider geodesics crossing the MH. We have to find the relation between the
directional angle as measured by the comoving Friedman observers,ψF, and the directional
angle as measured by the Schwarzschild-de Sitter static observers,ψS.

The segments of the geodesics in the Friedman and Schwarzschild–de Sitter geometry
must be smoothly connected on the MH. We are looking for the Lorentz transformation
which relates the comoving Friedman and static Schwarzschild–de Sitter observers on the
MH.

In the Robertson–Walker metric, the geodesic equations can be integrated and expressed
in the form [Stuchlı́k, 1984]

pT = dT
dλ

=
(

m2 + p2

R2

)1/2

, (14)

pχ = dχ
dλ

= ± 1
R2

(
p2 − L2

Σ2
k

)1/2

, (15)

pθ = dθ
dλ

= ± 1
R2Σ2

k

(
L2 + ℓ2

sin2 θ

)1/2

, (16)

pφ = dφ
dλ

= ℓ

R2Σ2
k sin2 θ

. (17)

where λ is an affine parameter and m is mass of the particle; the proper time τ = mλ. The
constants of motion are

ℓ = pφ, (18)
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L2 = p2
θ +

p2
φ

sin2 θ
, (19)

p2 = p2
χ + L2

Σ2
k
, (20)

where ℓ(L) represent the azimuthal (total) angular momentum. Geodesic equations in the
Schwarzschild–de Sitter spacetime are in the integrated form expressed by the formulae

pt = dt
dλ

= EA−2(t), (21)

pr = dr
dλ

= ±
(

E2 − V 2
eff

)1/2
, (22)

pθ = dθ
dλ

= ± 1
r2

(
L2 + ℓ2

sin2 θ

)1/2

, (23)

pφ = dφ
dλ

= ℓ

r2 sin2 θ
. (24)

where

V 2
eff = A2(r)

(
m2 + L2

r2

)
(25)

is the effective potential. The constants of motion ℓ and L have the same meaning as in the
Friedman case. E is the covariant energy

E = −pt . (26)

Let us consider coordinate systems with coincidentally oriented coordinate axes, moving
mutually in the direction of the radial axis. The orthonormal base vectors are related by the
standard Lorentz transformation

e(µ′) = Λ ν
µ′ e(ν) (27)

with the Lorentz matrix

Λ ν
µ′ =

⎛

⎜⎜⎝

coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ . (28)

The orthonormal basis of the static Schwarzschild-de Sitter observers is given by the
relations

e(t) = A−1(r)
∂

∂t
, (29)

e(r) = A(r)
∂

∂r
, (30)

e(θ) = r−1 ∂

∂θ
, (31)

e(φ) = (r sin θ)−1 ∂

∂φ
(32)
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while in the case of the comoving Friedmanian observers it is given by

e(T ) = ∂

∂T
, (33)

e(χ) = R−1 ∂

∂χ
, (34)

e(θ) = (RΣk)
−1 ∂

∂θ
, (35)

e(φ) = (RΣk sin θ)−1 ∂

∂φ
. (36)

We obtain the parameter of the Lorentz transformation from the fact that the 4-velocity of the
test particles comoving with the MH can be expressed in the Friedman and Schwarzschild–
de Sitter spacetimes by the relations

u(b) = ∂

∂T
= eT

= A−1(rb)Ebet +
[
E2

b − A2(rb)
]1/2

A−1(rb)er . (37)

Therefore, we arrive at the Lorentz transformation parameter in the form

coshα = Λ t
T = Λ r

χ = EbA
−1(rb)

=
√

1 − 2kM
R̃

(

1 − 2M
rb

− Λr2
b

3

)−1/2

. (38)

The velocity parameter of the Lorentz shift

V (rb) =
√

1 − A2(rb)

E2
b

(39)

specifies the speed of the expansion of the MH as measured by the static Schwarzschild–
de Sitter observers; the Lorentz factor is then given by the relation

γ = coshα =
[
1 − V (rb)

2
]−1/2

. (40)

4 REFRACTION OF LIGHT AT THE MATCHING HYPERSURFACE

Denoting the directional angles (related to the outward radial direction defined for observers
at the radius, where the MH is located momentarily) of a photon entering (leaving) the
Friedman universe from (into) the Schwarzschild–de Sitter vakuola as ψ+

F , ψ+
S (ψ−

F , ψ−
S ),

we arrive at the formulae

cosψ+
F = cosψ+

S − Vr

1 − Vr cosψ+
S

, (41)

sinψ+
F = sinψ+

S

√
1 − V 2

r

1 − Vr cosψ+
S

(42)
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for the photons entering the Friedman universe, and formulae

cosψ−
F = cosψ−

S + Vr

1 + Vr cosψ−
S

, (43)

sinψ−
F = sinψ+

S

√
1 − V 2

r

1 + Vr cosψ+
S

(44)

for the photons leaving the Friedman universe. The analysis of these formulae can be given
in a quite simple form.

4.1 Photons entering the Friedman universe

First, we discuss Eq. (41). Introducing variables

y ≡ cosψ+
F , x ≡ cosψ+

S , (45)

with x ∈ [0, 1] and Vr ∈ [0, 1), we determine y ′ ≡ dy/dx in the form

y ′ = 1 − V 2
r

(1 − Vr x)2 . (46)

Clearly, there is y ′ > 0 for x ∈ [0, 1] and Vr ∈ [0, 1). The function y(x) grows monotoni-
cally for x ∈ [0, 1]. It has its minimum ymin = −Vr for x = 0, and its maximum ymax = 1
for x = 1. We can write

dcosψ+
F

dcosψ+
S

> 0 (47)

for cosψ+
F ∈ [−Vr , 1]. For cosψ+

S = Vr , there is cosψ+
F = 0 and we can conclude that

cosψ+
F ≤ 0 (48)

for cosψ+
S ∈ [0, Vr ] and

cosψ+
F > 0 (49)

for cosψ+
S ∈ (Vr , 1]. Now,we analyse the formula (42). Introducing

ȳ ≡ sinψ+
F , x̄ ≡ sinψ+

S , (50)

we express the derivative ȳ ′ = dȳ/dx̄ in the form

ȳ ′ =
√

1 − V 2
r

1 − x̄2

(
1 − Vr

√
1 − x̄2

)√
1 − x̄2 − Vr x̄2

(1 − Vr
√

1 − x̄2)2
. (51)

Its local extrema ȳ ′ = 0 are given by the condition
(

1 − Vr
√

1 − x̄2
)√

1 − x̄2 − Vr x̄2 = 0. (52)

In the intervals x̄ ∈ [0, 1] and Vr ∈ [0, 1), we obtain solution of (52)

ȳex = 1 (53)
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Table 1. Total reflection angle ψ+
S(T), calculated for four different values of the speed parameter Vr .

Vr 0.1 0.3 0.7 0.9

ψ+
S(T) 84◦15′ 72◦32′ 45◦34′ 25◦50′

for x̄ex =
√

1 − V 2
r .

Since there is one local extremum of ȳ(x̄) for x̄ ∈ [0, 1], we can divide ȳ(x̄) into two
monotonously varying parts. There is ȳ(0) = 0 and ȳ(1) =

√
1 − V 2

r , and we conclude
that for x̄ ∈ [0, x̄ex], ȳ ∈ [0, 1], while for x̄ ∈ [x̄ex, 1], ȳ ∈ [

√
1 − V 2

r , 1].
Using equation (42), we can say that

sinψ+
F > 0 for sinψ+

S ∈ [0, 1]. (54)

Putting relations (48), (49) and (54) together, we arrive at the final statement

sinψ+
F > 0 for ψ+

S ∈ [0,π/2], (55)
cosψ+

F > 0 for ψ+
S ∈ [0, arccos Vr ], (56)

cosψ+
F ≤ 0 for ψ+

S ∈ [arccos Vr ,π/2]. (57)

Further, there is

cosψ+
F − cosψ+

S = − Vr sin2ψ+
S

1 − Vr cosψ+
S

, (58)

and this difference is always negative. With the fact that cosψ+
F ∈ [−Vr , 1], the relation

(58) implies

ψ+
F > ψ+

S for ψ+
S ∈ [0,π/2]; (59)

we can conclude that for photons crossing the MH from the Schwarzschild–de Sitter region
to the Friedman universe, the refraction angle is always larger than the impact angle. The
total reflection occurs for angles

ψ+
S > ψ+

S(T) ≡ arccos Vr (60)

In Table 1, we give the critical angles of the total refraction ψ+
S(T) for some values of the

expansion velocity of the MH. In Fig. 2, we present the dependence ψ+
F = ψ+

F (ψ+
S ; Vr )

for some representatively chosen values of the expansion velocity.

4.2 Photons entering the Schwarzschild–de Sitter region

Because the relations (43) and (44) can be transformed into the form

cosψ−
S = cosψ−

F − Vr

1 − Vr cosψ−
F

, (61)

sinψ−
S = sinψ−

F
√

1 − V 2
r

1 − Vr cosψ−
F

, (62)
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Figure 2. The refraction angle ψ+
F , for fixed speed parameter Vr , as a function of the impact angle

ψ+
S from the interval [0, π/2]. The shaded area corresponds to the total reflexion of the light.

the analysis of the relations (41) and (42) can be repeated, with the following change

ψ+
F → ψ−

S , ψ+
S → ψ−

F . (63)

We can conclude that ψ−
S > ψ−

F forψ−
F ∈ [0,π/2], i.e., for photons crossing the MH from

the Friedman region into the Schwarzschild–de Sitter region, the refraction angle is again
always larger then the impact angle, and the total reflection occurs for.

ψ−
F > ψ−

F(T) ≡ arccos Vr (64)

4.3 The expansion velocity of the matching hypersurface

We shall consider the simplest case of the expansion velocity for the hypersurface matching
the spatially flat universe (k = 0). Then [Stuchlı́k, 1984]

Vr =
√

2M
rb

+ Λr2
b

3
. (65)
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Figure 3. The behaviour of the refraction angle ψ+
F , for the impact angle ψ+

S fixed and the speed
parameter Vr from the interval [0, 1). The shaded area corresponds to the total reflection.

It is convenient to define y ≡ 1
3Λr2 and to express rb in units of M , i.e., rb/M → rb.

Then

Vr =
√

2
rb

+ yr2
b . (66)

First, we follow the dependence Vr = Vr (Λ) with rb fixed. Since

dVr

dy
= r2

b

√
rb

2M + yr3
b
, (67)



Influence of relict vacuum energy on the Rees–Sciama effect 197

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

V

Λ

Vr(rb=10M)
Vr(rb=15M)
Vr(rb=20M)
Vr(rb=40M)

Figure 4. The dependence Vr = Vr (Λ) for fixed vakuola radius rb and Λ from the interval [0,1].

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

V

rb

Vr(Λ=0.0)
Vr(Λ=0.5)
Vr(Λ=1.0)
Vr(Λ=2.0)
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The function Vr reaches its local minimum as it approaches to the static radius rs.

and assuming rb > 0, Λ ∈ [0,∞), we conclude that

dVr

dy
> 0 (68)
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and therefore, Vr = Vr (Λ) monotonically grows forΛ ∈ [0,∞) (see Fig. 4). Nevertheless,
it is more relevant to study the dependence Vr = Vr (rb) with y fixed. There is

dVr

drb
= 2(yr3

b − 1)

r3/2
b (2 + yr3

b )1/2
. (69)

The local extremum of Vr (rb) (dVr/drb = 0) is located at so called static radius of the
Schwarzschild–de Sitter region

rs ≡ y−1/3, (70)

where the gravitational attraction of the central mass condensation (or a black hole) is just
balanced by the cosmological repulsion [Stuchlı́k and Hledı́k, 1999]. We can see that Vr (rb)

falls down for rb < rs, it reaches its minimum at the static radius (rb = rs), where

Vr(min) = Vr (rb = rs) = 3
rs

= 3y1/3, (71)

and the expansion speed is accelerated at rb > rs, approaching velocity of light (Vr → 1)
when rb approaches the cosmological horizon of the Schwarzschild–de Sitter region (rb →
rc). Notice that for y ≪ 1 the cosmological horizon is approximately given by

rc ∼ y1/2. (72)

For the exact relationship between rc and rh in the Schwarzschild–de Sitter spacetimes
see [Stuchlı́k and Hledı́k, 1999].

5 INFLUENCE OF THE REFRACTION EFFECT ON TEMPERATURE
FLUCTUATIONS OF THE CMBR

Here, we shall study the influence of the refraction effect on the CMBR in the framework of
the Einstein–Strauss–de Sitter model using the simplified approach developed by Mészáros
and Molnár (for more detailed model, considering also deflection of light by the mass
condensation, see [Dyer and Roeder, 1973]). We do not consider the model of void used
in [Mészáros and Molnár, 1996], since it is not self-consistent from the point of view of
general relativity. It was shown in [Mészáros and Molnár, 1996] that the temperature fluc-
tuations are fully determined by the length of the photon ray spanned in the vakuola region,
i.e., it is determined by the angle ψS giving the impact angle of photon on the MH with the
Friedman region. Therefore, the effect of refraction can be incorporated into the model in a
very simple way, namely, by substituting the angle ψ+

S influenced by the refraction effect
directly into the formula determining the temperature fluctuation. For simplicity, we shall
consider here photon trajectories which do not enter the internal Friedman region, and, as
usual in the model, we abandon deflection of light in the Schwarzschild-de Sitter spacetime.
The impact angle ψ+

S then has to be related to the view angle β of observer through the
angle of refraction ψ+

F (see Fig. 6).
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Figure 6. Refraction of a photon ray going through the vakuola. χb is the comoving coordinate of the
vakuola boundary, χ0 is the comoving ‘radial’ distance of the observer from vakuola, χ = χb + χ0.
The ray B O, with no refraction effect considered in accord with [Mészáros and Molnár, 1996], is
included for comparison with previous results in order to clear up the relevance of the refraction on
the Rees–Sciama effect.

5.1 Temperature fluctuation formulae

The temperature fluctuation (frequency shift) of a CMBR photon due to transversing the
vakuola region is given by the relation [Mészáros and Molnár, 1996]

∆T = 2c3Y 3

H 3

{
Ω

2
sin2 ψ cosψ + 1 + 2Ω

3
cos3 ψ

}
, (73)

where ψ = ψ+
S determines the length of the ray in the vakuola; here Y = R(η)χ is the

actual physical extension of the vakuola and H = Ṙ/R is the actual value of the Hubble
parameter; R(η) is the scale factor, Ṙ ≡ dR/dT , η is the conformal time defined by
dη = dT/R.

Refraction effect will change the length of light ray spanning the vakuola region (see
Fig. 6). Influence of the refraction on the photon frequency (temperature) will be given by
the angle ψ+

F related to the viewing angle β of the Friedmanian comoving observer. For
vanishing refraction effect, there is

ψ+
S = ψ+

F (74)

in agreement with the Mészáros–Molnár model [Mészáros and Molnár, 1996].
The refraction formulae imply the relations

cosψ+
S = cosψ+

F + Vr

1 + Vr cosψ+
F

, (75)

sinψ+
S = sinψ+

F
√

1 − V 2
r

1 + Vr cosψ+
F

, (76)
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and the temperature fluctuation with refraction effect included is given by the relation

∆Tr = 2c3Y 3

H 3

[
cosψ+

F + V (rb)

1 + V (rb) cosψ+
F

]

×

⎧
⎨

⎩
Ω

2

[
sinψ+

F
γ
(
1 + V (rb) cosψ+

F
)
]2

+ 1 + 2Ω
3

[
cosψ+

F + V (rb)

1 + V (rb) cosψ+
F

]2
⎫
⎬

⎭ . (77)

The relevance of the refraction effect is given by the difference of the temperature
fluctuations∆Tr and ∆T . Using (77) and (73), we find

∆Tr − ∆T = 2c3Y 3

H 3

×

⎧
⎨

⎩
Ω

2

⎡

⎣ cosψ+
F + Vr

1 + Vr cosψ+
F

(
sinψ+

F
γ [1 + Vr cosψ+

F ]

)2

− cosψ+
F sin2ψ+

F

⎤

⎦

+ 1 + 2Ω
3

⎡

⎣
(

cosψ+
F + Vr

1 + Vr cosψ+
F

)3

− cos3 ψ+
F

⎤

⎦

⎫
⎬

⎭ (78)

In the limit of non-relativistic velocities, Vr ≪ 1, the relations (75) and (76) imply

cosψ+
S ∼ cosψ+

F + Vr sin2 ψ+
F , sinψ+

S ∼ sinψ+
F (1 − Vr cosψ+

F ), (79)

so that up to the first order of Vr , the temperature difference is given by the formula

∆Tr −∆T ∼ 2c3Y 3

H 3 Vr cos2 ψ+
F sin2ψ+

F

(
1 +Ω + Ω

2
tan2 ψ+

F

)
. (80)

Clearly, as we expected intuitively, the influence of the refraction effect vanishes linearly
with Vr → 0.

Now we have to express the relevance of the refraction effect in terms of the viewing
angle β (see Fig. 6). It follows directly from the sine rule that

sinψ+
F = χ0 + χb

χb
sin β. (81)

For the MH, relation between the Schwarzschild coordinate rb, and the Robertson–Walker
comoving coordinate χb is given by

rb = R(tb)χb = R0

1 + z
χb, (82)

where R0 is recent value of R, and z is the cosmological redshift, being the measure of the
cosmic time. Introducing new variables

A(β) =

√
1 −

(
χ0+χb

χb

)2
+ Vr

1 + Vr

√
1 −

(
χ0+χb

χb

)2
, (83)
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B(β) =
χ0+χb

χb
sinβ

γ

[

1 + Vr

√
1 −

(
χ0+χb

χb

)2
] , (84)

C(β) =
√

1 −
(
χ0 + χb

χb

)2 (χ0 + χb

χb
sinβ

)
, (85)

the temperature difference (78) can be expressed as a function of β in the form

∆Tr −∆T = 2c3Y 3

H 3

{
Ω

2

[
A(β)B2(β) − C(β)

]

+ 1 + 2Ω
3

⎡

⎢⎣A3(β) −
⎛

⎝

√

1 −
(
χ0 + χb

χb

)2
⎞

⎠
3
⎤

⎥⎦

⎫
⎪⎬

⎪⎭
. (86)

5.2 Relevance of the refraction effect

We express the relevance of the refraction effect by considering the influence of the expan-
sion velocity Vr on the temperature difference

∆ = ∆Tr −∆T . (87)

Introducing the functions and relations

A(Vr ) = cosψ+
F + Vr

1 + Vr cosψ+
F

, (88)

B(Vr ) = sinψ+
F

√
1 − V 2

r

1 + Vr cosψ+
F

, (89)

K = 2c3Y 3

H 3 , (90)

()′ = d
dVr

, (91)

we can express the temperature difference by the relation

∆ = K
{
Ω

2

[
AB2 − cosψ+

F sin2 ψ+
F

]
+ 1 + 2Ω

3

[
A3 − cos3 ψ+

F

]}
. (92)

Its derivative is given by

∆′ = K
{
Ω

2

[
A′B2 + 2B B ′A

]
+ (1 + 2Ω)A2 A′

}
, (93)

where

A′ = sin2 ψ+
F

(1 + Vr cosψ+
F )2

, (94)
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B ′ = − sinψ+
F

cosψ+
F + Vr

(1 + Vr cosψ+
F )2

√
1 − V 2

r
. (95)

Finally, we obtain

∆′ = K

{
sin2 ψ+

F

(1 + Vr cosψ+
F )4

[
Ω

2
(1 − V 2

r ) sin2 ψ+
F + (1 +Ω)(cosψ+

F + Vr )
2
]}

. (96)

Clearly, for Vr = 0, there is ∆Tr − ∆T = 0. For Vr > 0, there is ∆′ > 0 for each
sinψ+

F ̸= 0. Therefore,∆Tr −∆T grows with Vr growing.

6 CONCLUDING REMARKS

We conclude that there are two basic phenomena related to the importance of the refraction
effect in the Einstein–Strauss–de Sitter model explaining the temperature fluctuations of
CMBR.

(i) The total reflection phenomenon implies that some part of the vakuola region will
not be visible to the external observer. This part will be enlarged with expansion velocity
Vr growing.

(ii) The refraction effects on the temperature fluctuations (in the case of spatially flat
universe) will fall, if the boundary of the MH rb approaches the static radius rs of the
Schwarzschild-de Sitter region, and it starts to grow after crossing the static radius.The
effect becomes to be extremely strong when rb approaches the cosmological horizon rc and
Vr → c.

We can expect that in the accelerated universe the influence of the relict vacuum energy
on the fluctuations of CMBR due to the Rees–Sciama effect could be very important,
especially the refraction effect has the tendency to rise up the fluctuations. At present,we
make our model more precise, and we estimate conditions under which observable effect
could be expected.
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Accretion disks in the Kerr–de Sitter spacetimes

Zdeněk Stuchlı́k and Petr Slaný
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Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

ABSTRACT
We consider basic properties of both the geometrically thin and thick accretion disks
in the Kerr–de Sitter black-hole and naked-singularity spacetimes. The properties
are determined by character of the equatorial circular geodesics of these spacetimes
and by the equilibrium configurations of a perfect fluid rotating around their symme-
try axis. Transformation of a Kerr–de Sitter naked singularity into an extreme black
hole due to accretion in the thin disks is briefly discussed for both the plus-family
and minus-family disks. It is shown that such a conversion leads to an abrupt insta-
bility of the innermost parts of the plus-family accretion disks that can have strong
observational consequences.

Keywords: Accretion, accretion disks – black-hole physics – relativity – cosmolo-
gical constant – galaxies: jets, radii

1 INTRODUCTION

The energy sources of quasars and active galactic nuclei are most probably accretion
disks around central massive black holes [Abramowicz and Percival, 1997, Blandford,
1990]. Basic properties of geometrically thin accretion disks (with negligible pressure)
are determined by the circular geodesic motion in the black-hole backgrounds [Novikov
and Thorne, 1973]. Basic properties of geometrically thick disks are determined by the
equilibrium configurations of perfect fluid orbiting in the black-hole backgrounds, however,
the geodesic structure of the backgrounds is relevant also for the properties of the thick
disks [Jaroszyński et al., 1980].

Because Penrose’s cosmic censorship hypothesis [Penrose, 1969] is far from being pro-
ved, naked singularity spacetimes related to the black-hole spacetimes with a non-zero
charge and/or rotational parameter could still be considered conceivable models of quasars
and active galactic nuclei and deserve some attention. Of particular interest are those effects
that could distinguish a naked singularity from black holes.

Recent cosmological tests indicate convincingly that in the framework of the inflationary
cosmology a non-zero, although very small, repulsive cosmological constant Λ > 0 has
to be invoked in order to explain the dynamics of the recent Universe [Bahcall et al.,
1999, Kolb and Turner, 1990]. Therefore, it is relevant to clarify the influence of the
repulsive cosmological constant on the astrophysically interesting properties of black-hole
or naked-singularity backgrounds. For these purposes, analysis of the geodesic motion of

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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test particles and photons is among the most important techniques. (Moreover, it could be
noted that the optical reference geometry reflects in an illustrative and intuitive way some
hidden properties of the geodesic motion [Abramowicz and Prasanna, 1990, Stuchlı́k and
Hledı́k, 2000,Hledı́k, 2002].) Of particular interest are circular geodesics being relevant for
the accretion disks.

Properties of the geodesic motion in the Schwarzschild–(anti-)de Sitter and Reissner–
Nordström–(anti-)de Sitter spacetimes were discussed in [Stuchlı́k and Hledı́k, 1999,Stuch-
lı́k and Hledı́k, 2002]. Properties of the circular orbits of test particles show that due to the
presence of a repulsive cosmological constant the thin disks have not only an inner edge
determined (approximately) by the radius of the innermost stable circular orbit, but also
an outer edge given by the radius of the outermost stable circular orbit, located nearby so
called static radius, where the gravitational attraction of a black hole (naked singularity) is
just compensated by the cosmological repulsion.

A similar analysis of equilibrium configurations of perfect fluid orbiting in the Schwarz-
schild–de Sitter black-hole backgrounds allowing existence of stable circular orbits, which
is a necessary condition for the existence of accretion disks, shows that also thick accretion
disks has both the inner and outer edge located nearby the inner (outer) marginally bound
circular geodesic. The accretion through the inner cusp and the outflow of matter through the
outer cusp of the equilibrium configurations are driven by the Paczyński mechanism. It is a
mechanical non-equilibriumprocess when the matter of the disk slightly overfills the critical
equipotential surface with the cusp and thus violates the hydrostatic equilibrium [Stuchlı́k
et al., 2000].

In the case of Reissner–Nordström–(anti-)de Sitter backgrounds [Stuchlı́k and Hledı́k,
2002], the discussion has been enriched for the case of the naked-singularity spacetimes.
However, it is crucial to understand the role of a non-zero cosmological constant in ast-
rophysically most relevant, rotating, Kerr backgrounds. Here, attention will be focused on
the circular equatorial motion of test particles in the Kerr–de Sitter backgrounds, which is
relevant for geometrically thin disks, and on the equilibrium configurations of perfect fluid
rotating in the background, which are relevant for thick accretion disks.

2 KERR–DE SITTER BLACK-HOLE AND NAKED-SINGULARITY
SPACETIMES

In the standard Boyer–Lindquist coordinates (t, r, θ,φ) and the geometric units (c = G =
1), the Kerr–(anti-)de Sitter geometry is given by the line element

ds2 = − ∆r

I 2ρ2 (dt − a sin2 θdφ)2 + ∆θ sin2 θ

I 2ρ2

[
adt −

(
r2 + a2

)
dφ
]2

+ ρ2

∆r
dr2 + ρ2

∆θ
dθ2, (1)

where

∆r = −1
3
Λr2

(
r2 + a2

)
+ r2 − 2Mr + a2, (2)

∆θ = 1 + 1
3
Λa2 cos2 θ, (3)
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I = 1 + 1
3
Λa2, (4)

ρ2 = r2 + a2 cos2 θ . (5)

The parameters of the spacetime are: mass (M), specific angular momentum (a), cosmolo-
gical constant (Λ). It is convenient to introduce a dimensionless cosmological parameter

y = 1
3
ΛM2. (6)

For simplicity, we put M = 1 hereafter. Equivalently, also the coordinates t, r , the line
element ds, and the parameter of the spacetime a being expressed in units of M become
dimensionless.

We focus our attention to the case y > 0 corresponding to the repulsive cosmological
constant; then (1) describes a Kerr–de Sitter spacetime.

The event horizons of the spacetime are given by the pseudosingularities of the line
element (1), determined by the condition ∆r = 0. The loci of the event horizons are
determined by the relation

a2 = a2
h(r; y) ≡ r2 − 2r − yr4

yr2 − 1
. (7)

The asymptotic behaviour of the function a2
h(r; y) is given by a2

h(r → 0, y) → 0, a2
h(r →

∞, y) → −∞. For y = 0, the function a2
h(r) = 2r − r2 determines loci of the horizons of

Kerr black holes. The divergent points of a2
h(r; y) are determined by

y = yd(h)(r) ≡ 1
r2 , (8)

its zero points are given by

y = yz(h)(r) ≡ r − 2
r3 , (9)

and its local extrema are determined by the relation

y = ye(h)±(r) ≡ 2r + 1 ±
√

8r + 1
2r3 . (10)

The function ye(h)−(r) has its maximum at rcrit = (3 + 2
√

3)/4, where the value of the
cosmological parameter takes a critical value

yc(KdS) = 16
(3 + 2

√
3)3

.= 0, 05924; (11)

for y > yc(KdS), only naked-singularity backgrounds exist for a2 > 0. A common point of
the functions yz(h)(r) and ye(h)−(r) is located at r = 3, where is the maximum of yz(h)(r)
taking a critical value

yc(SdS) = 1
27

.= 0.03704, (12)

which is the limiting value for the existence of Schwarzschild–de Sitter black holes [Stuchlı́k
and Hledı́k, 1999]. In the Reissner–Nordström–de Sitter spacetimes, the critical value of
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the cosmological parameter limiting the existence of black-hole spacetimes is [Stuchlı́k and
Hledı́k, 2002]

yc(RNdS) = 2
27

.= 0.07407. (13)

If y = yc(KdS), the function a2
h(r; y) has an inflex point at r = rcrit, corresponding to a

critical value of the rotation parameter of the Kerr–de Sitter spacetimes

a2
crit = 3

16
(3 + 2

√
3)

.= 1, 21202. (14)

Kerr–de Sitter black holes can exist for a2 < a2
crit only, while Kerr–de Sitter naked singu-

larities can exist for both a2 < a2
crit and a2 > a2

crit.
For y > 0, the function ye(h)−(r) determines two local extrema of a2

h(r; y) at y < yc(KdS),
denoted as a2

max(h)(r1, y), a2
min(h)(r2, y), with r1 < r2. If y < yc(SdS), a2

min(h)(r2, y) < 0,
and the minimum is unphysical. The function a2

h(r) diverges at rd = 1/
√y, and it is

discontinuous there. The function ye(h)+(r) determines a maximum of a2
h(r; y) at a negative

value of a2 which is, therefore, physically irrelevant (see Fig. 1 giving typical behaviour of
a2

h(r; y)).

0 1 2 3 4 5
r

-1

0

1

2

3

4

5

a
h2
(
r
;
y
)

Figure 1. Horizons of the Kerr–de Sitter spacetimes. They are given for five typical values of the
cosmological parameter y by the function a2

h(r; y). For y > yc(KdS)
.= 0.05924 (y = 0.08) the

function has no local extrema and only naked-singularity spacetimes are allowed (the only horizon
is the cosmological horizon). For y = yc(KdS), the function has an inflex point where the black-
hole and the cosmological horizons coincide. For yc(SdS) = 1/27 < y < yc(KdS) (y = 0.045)
the function has two local extrema in positive values and the black-hole spacetimes exist for a2

between those extrema. For y = yc(SdS) the local minimum resides on axis a2 = 0. The critical value
yc(SdS) represents the limiting value of cosmological parameter for which the Schwarzschild–de Sitter
black holes can exist; the Kerr–de Sitter black holes again exist for a2 between those extrema. For
0 < y < yc(SdS) (y = 0.03) the local minimum resides in the non-physical region a2 < 0 and
the black holes exist for a2 up to the local maximum. For completeness, we present the gray curve
determining horizons of the Kerr (y = 0) black holes. In all cases, the local extrema correspond to
the extreme black holes. (Taken from [Stuchlı́k and Slaný, 2004].)
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Figure 2. Classification of the Kerr–de Sitter spacetimes. The space of parameters a2 and y is
separated into six regions. Dashed curves separate regions of black holes and naked singularities.
Full curves divide the parametric space into spacetimes differing by properties of the stable circular
orbits relevant for Keplerian accretion disks. For large values of a2 both the full lines tend to
the a2–axis. I black-hole spacetimes with both co-rotating and counter-rotating stable or bound
circular orbits, II black-hole spacetimes with no counter-rotating stable or bound circular orbits, III
black-hole spacetimes with no co-rotating and counter-rotating stable or bound circular orbits, IV
naked-singularity spacetimes with no co-rotating and counter-rotating stable or bound circular orbits,
V naked-singularity spacetimes with both co-rotating and counter-rotating stable or bound circular
orbits, VI naked-singularity spacetimes with no counter-rotating stable or bound circular orbits of the
minus-family. Dashed-dotted curve defines the subregion of the naked-singularity spacetimes, where
the plus-family circular orbits could be stable and counter-rotating (from the point of view of a locally
non-rotating observer), shaded is the subregion allowing stable circular orbits with E+ < 0! (Taken
from [Stuchlı́k and Slaný, 2004].)

If 0 < y < yc(SdS), the black-hole spacetimes exist for a2 ≤ a2
max(h)(y), and the naked-

singularity spacetimes exist for a2 > a2
max(h)(y). If yc(SdS) < y ≤ yc(KdS), the black-hole

spacetimes exist for a2
min(h)(y) ≤ a2 ≤ a2

max(h)(y), while the naked-singularity spacetimes
exist for a2 < a2

min(h)(y) and a2 > a2
max(h)(y). The functions a2

min(h)(y), a2
max(h)(y) are

implicitly given by Eqs (7) and (10); the separation of the Kerr–de Sitter black-hole and
naked-singularity spacetimes in the parameter space y–a2 is shown in Fig. 2. In the black-
hole spacetimes, there are two black-hole horizons and the cosmological horizon, with
rh− < rh+ < rc. In the naked-singularity spacetimes, there is the cosmological horizon rc
only.

The extreme cases, when two (or all three) horizons coalesce, were discussed in detail for
the case of Reissner–Nordström–de Sitter spacetimes [Brill and Hayward, 1994, Hayward
and Nakao, 1994]. In the Kerr–de Sitter spacetimes, the situation is analogical. If rh− =
rh+ < rc, the extreme black-hole case occurs, if rh− < rh+ = rc, the marginal naked-
singularity case occurs, if rh− = rh+ = rc, the “ultra-extreme” case occurs corresponding
to a naked singularity.
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3 EQUATORIAL MOTION

Basic properties of thin accretion disks are determined by equatorial circular motion of test
particles. Note that due to the dragging of inertial frames any tilted disk has to be driven to
the equatorial plane of the rotating spacetimes [Bardeen and Petterson, 1975].

The motion of a test particle with rest mass m is given by the geodesic equations. In a
separated and integrated form, the equations were obtained by Carter [Carter, 1973]. For
the motion restricted to the equatorial plane (dθ/dλ = 0, θ = π/2) the Carter equations
take the following form

r2 dr
dλ

= ±R1/2(r), (15)

r2 dφ
dλ

= −I Pθ + a I Pr

∆r
, (16)

r2 dt
dλ

= −a I Pθ + (r2 + a2)I Pr

∆r
, (17)

where

R(r) = P2
r −∆r

(
m2r2 + K

)
, (18)

Pr = IE
(

r2 + a2
)

− IaΦ, (19)
Pθ = I (aE − Φ), (20)
K = I 2(aE −Φ)2. (21)

The proper time of the particle τ is related to the affine parameter λ by τ = mλ. The
constants of motion are: energy (E ), related to the stationarity of the geometry, axial angular
momentum (Φ), related to the axial symmetry of the geometry, ‘total’ angular momentum
(K ), related to the hidden symmetry of the geometry. For the equatorial motion, K is
restricted through Eq. (21) following from the conditions on the latitudinal motion [Stuchlı́k,
1983]. Notice that E and Φ cannot be interpreted as energy and axial angular momentum
at infinity, since the spacetime is not asymptotically flat.

The equatorial motion is governed by the constants of motion E , Φ. Its properties can be
conveniently determined by an “effective potential” given by the condition R(r) = 0 for
turning points of the radial motion. It is useful to define specific energy and specific angular
momentum by the relations

E ≡ IE
m

, L ≡ IΦ
m

. (22)

Solving the equation R(r) = 0, we find the effective potential in the form

E(±)(r; L, a, y) ≡
[(

1 + ya2
)

r
(

r2 + a2
)

+ 2a2
]−1

×
{

a
[

yr
(

r2 + a2
)

+ 2
]

L

± ∆
1/2
r

{
r2L2 + r

[(
1 + ya2

)
r
(

r2 + a2
)

+ 2a2
]}1/2

}
. (23)

In the stationary regions (∆r ≥ 0), the motion is allowed where
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E ≥ E(+)(r; L, a, y), (24)

or

E ≤ E(−)(r; L, a, y). (25)

Conditions E = E(+)(r, L, a, y) (or E = E(−)(r; L, a, y)) give the turning points of the
radial motion; at the dynamic regions (∆r < 0), the turning points are not allowed. In
the region between the outer black-hole horizon and the cosmological horizon, the motion
of particles in the positive-root states, i.e., particles with positive energy as measured by
local observers, being future-directed (dt/dλ > 0) and having a direct “classical” physical
meaning, is determined by the effective potential E(+)(r; L, a, y). The character of the
motion in the whole Kerr–de Sitter background, and relevance of the effective potential
E(−)(r; L, a, y), determining the motion of particles in the negative-root states between
the black-hole and cosmological horizons, is qualitatively the same as discussed in [Bičák
et al., 1989]. In the following we restrict attention to the positive-root states determined by
the effective potential E(+)(r; L, a, y).

It is convenient to redefine the axial angular momentum by the relation

X ≡ L − a E; (26)

for an analogous redefinition in the case of equatorial photon motion see [Stuchlı́k and
Hledı́k, 2000]. With the constant of motion X , instead of L, the effective potential takes the
simple form

E(+)(r; X, a, y) ≡ 1
r2

[
a X +∆

1/2
r

(
r2 + X2

)1/2
]

. (27)

4 EQUATORIAL CIRCULAR ORBITS

The equatorial circular orbits can most easily be determined by solving simultaneously the
equations

R(r) = r4 E2 − 2ar2 E X +
(

a2 −∆r

)
X2 − r2∆r = 0, (28)

dR
dr

= 4r3 E2 − 4ar E X −∆′
r X2 −∆′

rr2 − 2r∆r = 0, (29)

where ∆′
r ≡ d∆r/dr . Combining the Eqs (28) and (29), we arrive at a quadratic equation

A(r)

(
X
E

)2
+ B(r)

(
X
E

)
+ C(r) = 0, (30)

with

A(r) = 2∆r

(
a2 −∆r

)
+ a2∆′

rr, (31)

B(r) = −2a∆′
rr3, (32)

C(r) = r4 (∆′
rr − 2∆r

)
. (33)

Its solution can be expressed in the following relatively simple form
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(
X
E

)

±
(r; a, y) = r2 (r − a2 − yr4)

ar
[
r − 1 − yr

(
2r2 + a2

)]
±∆r

[
r
(
1 − yr3

)]1/2 . (34)

Assuming now

X+ = E+

(
X
E

)

+
, X− = E−

(
X
E

)

−
, (35)

substituting into Eq. (28) and solving for the specific energy of the orbit, we obtain

E±(r; a, y) =
1 − 2

r −
(
r2 + a2) y ± a

(
1
r3 − y

)1/2

[
1 − 3

r − a2y ± 2a
(

1
r3 − y

)1/2
]1/2 . (36)

The related constant of motion X of the orbit is then given by the expression

X±(r; a, y) =
−a ± r2

(
1
r3 − y

)1/2

[
1 − 3

r − a2y ± 2a
(

1
r3 − y

)1/2
]1/2 , (37)

while the specific angular momentum of the circular orbits is determined by the relation

L±(r; a, y) = −
2a + ar

(
r2 + a2) y ∓ r

(
r2 + a2)

(
1
r3 − y

)1/2

r
[

1 − 3
r − a2y ± 2a

(
1
r3 − y

)1/2
]1/2 . (38)

The relations (36)–(38) determine two families of the circular orbits. We call them plus-
family orbits and minus-family orbits according to the ± sign in the relations (36)–(38).
Typical behaviour of the functions E±(r; a, y) and L±(r; a, y) giving the specific energy
and specific angular momentum is illustrated in Fig. 3 and Fig. 4, respectively, for Kerr–
de Sitter black-hole spacetimes with appropriately taken parameters. Fig. 5 shows typical
behaviour of these functions for some Kerr–de Sitter naked-singularity spacetimes.

In the limit of y → 0, the relations (36) and (38) reduce to the expression given
by Chandrasekhar (in units of M) [Chandrasekhar, 1983] for circular orbits in the Kerr
backgrounds

E±(r; a) =
1 − 2

r ± a
r3/2

[
1 − 3

r ± 2a
r3/2

]1/2 , (39)

L±(r; a) = ±r1/2 1 + a2

r2 ∓ 2a
r3/2

[
1 − 3

r ± 2a
r3/2

]1/2 . (40)

In the limit of a → 0 we arrive at the formulae determining the specific energy and the
specific angular momentum of circular orbits in the field of Schwarzschild–de Sitter black
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Figure 3. Specific energy of the equatorial circular orbits in the Kerr–de Sitter black-hole spacetimes.
The spacetimes are specified by the cosmological parameter y and the rotational parameter a (a2

varies from 0.0 to 1.0 in steps of 0.2). The left column corresponds to the plus-family orbits, the right
column corresponds to the minus-family orbits. The local extrema of the curves correspond to the
marginally stable orbits, the rising parts correspond to stable orbits, the descending parts correspond
to unstable ones. Behaviour of the curves for the spacetimes with y < 10−5 is similar to the case of
y = 10−5. (Taken from [Stuchlı́k and Slaný, 2004].)

holes [Stuchlı́k and Hledı́k, 1999]:

E(r; y) = r − 2 − yr3

[r(r − 3)]1/2 , (41)

L(r; y) = r
(
1 − yr3)1/2

(r − 3)1/2 ; (42)

here, we do not give E and L for the minus-family orbits as these are equivalent to the
plus-family orbits in spherically symmetric spacetimes.

Inspecting expressions (36) and (38), we find two reality conditions on the circular orbits.
The first restriction on the existence of circular orbits is given by the relation

y ≤ ys ≡ 1
r3 , (43)
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Figure 4. Specific angular momentum of the equatorial circular orbits in the Kerr–de Sitter black-hole
spacetimes. The spacetimes are specified by the cosmological parameter y and the rotational parameter
a (a2 varies from 0.0 to 1.0 in steps of 0.2). The left column corresponds to the plus-family orbits,
the right column corresponds to the minus-family orbits. The local extrema of the curves correspond
to the marginally stable orbits, the rising parts of L+ and the descending parts of L− correspond to
the stable orbits, the descending parts of L+ and the rising parts of L− correspond to the unstable
ones. Behaviour of the curves for the spacetimes with y < 10−5 is similar to the case of y = 10−5.
(Taken from [Stuchlı́k and Slaný, 2004].)

which introduces the notion of the “static radius”, given by the formula rs = y−1/3 indepen-
dently of the rotational parameter a. It can be compared with formally identical result in the
Schwarzschild–de Sitter spacetimes [Stuchlı́k and Hledı́k, 1999]. A “free” or “geodetical”
observer on the static radius has only U t component of 4-velocity non-zero. The position on
the static radius is unstable relative to radial perturbations, as follows from the discussion
on stability of the circular orbits performed below.

The second restriction on the existence of the circular orbits is given by the condition

1 − 3
r

− a2y ± 2a
(

1
r3 − y

)1/2
≥ 0; (44)

the equality determines radii of photon circular orbits, where both E → ∞ and L → ±∞.
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Figure 5. Specific energy and specific angular momentum of the equatorial circular orbits in the Kerr–
de Sitter naked-singularity spacetimes. The plus-family curves are plotted for the rotational parameter
a2 = 10, 20, 30, 50, 100, 300, the minus-family curves are plotted for a2 = 2, 5, 10, 20, 30. Meaning
of particular parts of the curves is the same as in the black-hole spacetimes. (Taken from [Stuchlı́k
and Slaný, 2004].)

The photon circular orbits of the plus-family are given by the relation

a = a(+)
ph(1,2)(r; y) ≡

(
1 − yr3)1/2 ±

(
1 − 3yr2)1/2

yr3/2 , (45)

while for the minus-family orbits they are given by the relation

a = a(−)
ph(1,2)(r; y) ≡ −

(
1 − yr3)1/2 ±

(
1 − 3yr2)1/2

yr3/2 . (46)

A detailed discussion of the photon circular orbits can be found in [Stuchlı́k and Hledı́k,
2000, Stuchlı́k and Slaný, 2004].

The behaviour of circular orbits in the field of Kerr black holes (y = 0) suggests that
the plus-family orbits correspond to the co-rotating orbits, while the minus-family circular
orbits correspond to the counter-rotating ones. However, this statement is not generally
correct even in some of the Kerr naked-singularity spacetimes, namely in the spacetimes
with the rotational parameter low enough, where counter-rotating plus-family orbits could
exist nearby the ring singularity [Stuchlı́k, 1980]. In the Kerr–de Sitter spacetimes, the
situation is more complicated and we cannot identify the plus-family circular orbits with
purely co-rotating orbits even in the black-hole spacetimes. Moreover, in the rotating
spacetimes with a nonzero cosmological constant it is not possible to define the co-rotating
(counter-rotating) orbits in relation to stationary observers at infinity, as can be done in the
Kerr spacetimes, since these spacetimes are not asymptotically flat.
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Natural way of defining the orientation of the circular orbits in the Kerr–de Sitter space-
times is to use the point of view of locally non-rotating frames that is used in the asympto-
tically flat Kerr spacetimes too. The tetrad of 1-forms corresponding to these frames in the
Kerr–de Sitter backgrounds is given by [Stuchlı́k and Hledı́k, 2000]:

ω(t) ≡
(
∆r∆θϱ

2

I 2 A

)1/2

dt, (47)

ω(φ) ≡
(

A sin2 θ

I 2ϱ2

)1/2

(dφ −Ωdt), (48)

ω(r) ≡
(
ϱ2

∆r

)1/2

dr, (49)

ω(θ) ≡
(
ϱ2

∆θ

)1/2

dθ, (50)

where

A ≡ (r2 + a2)2 − a2∆r , (51)

∆θ ≡ 1 + ya2cos2θ, (52)

and the angular velocity of the locally non-rotating frames

Ω ≡ dφ
dt

= a
A

[
−∆r + (r2 + a2)∆θ

]
. (53)

Note that ∆θ = 1 in the equatorial plane.
Locally measured components of 4-momentum are given by the projection of a particle’s

4-momentum onto the tetrad

p(α) = pµω(α)
µ , (54)

where

pµ = m
dxµ

dτ
≡ mẋµ = dxµ

dλ
(55)

are the coordinate components of particle’s 4-momentum, the affine parameter λ = τ/m,
m denotes the rest mass of the particle, and τ is its proper time.

In the equatorial plane, θ = π/2, the azimuthal component of the 4-momentum measured
in the locally non-rotating frames is given by the relation

p(φ) = m A1/2

Ir
(
φ̇ −Ω ṫ

)
, (56)

where the temporal and azimuthal components of the 4-momentum, determined by the
geodesic equations, can be expressed in the form containing the specific constants of
motion E, X :

ṫ = I
r2

[
a X + (r2 + a2)(r2 E − a X)

∆r

]
, (57)

φ̇ = I
r2

[
X + a

∆r
(r2 E − a X)

]
. (58)
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A simple calculation reveals

p(φ) = mr
A1/2 (a E + X) (59)

and using Eq. (26) we obtain intuitively anticipated relation

p(φ) = mr
A1/2 L . (60)

We can see that the sign of the azimuthal component of the 4-momentum measured in the
locally non-rotating frames is given by the sign of the specific angular momentum of a
particle on the orbit of interest. Therefore, the circular orbits with p(φ) > 0, (L > 0), we
call co-rotating, and the circular orbits with p(φ) < 0, (L < 0) we call counter-rotating, in
agreement with the approach used in the case of asymptotically flat Kerr spacetimes.

The circular geodesics can be astrophysically relevant, if they are stable with respect to
radial perturbations.

The loci of the stable circular orbits are given by the condition

d2 R
dr2 ≥ 0 (61)

that have to be satisfied simultaneously with the conditions R(r) = 0 and dR/dr = 0
determining the specific energy and the specific angular momentum of the circular orbits.
Using the relations (36) and (37), we find that radii of the stable orbits of both families are
restricted by the condition

r
[
6 − r + r3(4r − 15)y

]
∓ 8a

[
r
(

1 − yr3
)3
]1/2

+ a2
[
3 + r2 y

(
1 − 4yr3

)]
≥ 0. (62)

The marginally stable orbits of both families can be described together by the relation

a2 = a2
ms(1,2)(r; y) ≡

[
3 + r2y

(
1 − 4yr3

)]−2
r
{ [

r − 6 − r3(4r − 15)y
]

×
[
3 + r2y

(
1 − 4yr3

)]
+ 32

(
1 − yr3

)3
± 8

(
1 − yr3

)3/2 (
1 − 4yr3

)1/2

×
{

r
[
3 − ry

(
6 + 10r − 15yr 3

)]
− 2

}1/2
}

. (63)

The (±) sign in Eq. (63) is not directly related to the plus-family and the minus-family
orbits. The function a2

ms(1), corresponding to the + sign in Eq. (63), determines marginally
stable orbits of the plus-family, while the function a2

ms(2), corresponding to the − sign in
Eq. (63), is relevant for both the plus-family and minus-family orbits. The reality conditions
for the functions a2

ms(1,2)(r; y) are directly given by the Eq. (63). The standard condition
y ≤ ys(r) ≡ 1/r3, is guaranteed by the first relevant condition

y ≤ yms(r) ≡ 1
4r3 . (64)

The other two conditions can be given in the form

y ≤ yms−(r) or y ≥ yms+(r), (65)

where the functions yms±(r) are given by the relation
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Figure 6. Reality conditions for the existence of the stable circular orbits. Black and gray solid
curves correspond to the functions yms(r) and ys(r), respectively, dashed-dotted and dashed curves
correspond to the functions yms+(r) and yms−(r), respectively. Stable orbits can exist only in the
shaded region, where the local maximum corresponds to the critical value of the cosmological
parameter ycrit(ms+)

.= 0.06886. (Taken from [Stuchlı́k and Slaný, 2004].)
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Figure 7. Marginally stable circular orbits in the Kerr–de Sitter spacetimes. The relevant functions
are given for some typical values of the cosmological parameter y. (a) The black-hole region of
the Kerr–de Sitter spacetimes. For y < 12/154 there exist spacetimes containing four marginally
stable (ms) orbits. For a given spacetime, the innermost and the outermost ms-orbits belong to the
plus-family, the two orbits in between belong to the minus-family orbits. (b) In the naked-singularity
region there exist spacetimes with no stable orbits for a fixed value of y (spacetimes with a2 greater
than the global maximum of function a2

ms(r; y) for a given y). Stable counter-rotating (minus-family)
orbits exist only in shaded regions of presented spacetimes. But some naked-singularity spacetimes
contain counter-rotating plus-family orbits, for more details see the text. The dashed line corresponds
to the radius (10y)−1/3 where both maxima of a2

ms(r; y) are located. (Taken from [Stuchlı́k and
Slaný, 2004].)

yms±(r) = 3 + 5r ±
(
60r − 20r2 + 9

)1/2

15r3 . (66)

The behaviour of the functions ys(r), yms(r) and yms±(r) is illustrated in Fig. 6. The
function yms(+)(r) is irrelevant, the relevant function yms(−)(r) intersects the function ys(r)

at r = 3, where y = yc(SdS) = 1/27, and the function yms(r) at r = (3 + 2
√

3)/4, where
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y = yi = 16/(3+2
√

3)3. The critical value of the cosmological parameter for the existence
of the stable (plus-family) orbits, corresponding to the local maximum of yms(−)(r), is given
by

ycrit(ms+) = 100
(5 + 2

√
10)3

.= 0.06886. (67)

The related critical value of the rotational parameter is

a2
crit(ms+) = 955 + 424

√
10

1620
.= 1.41716. (68)

The plus-family stable circular orbits are allowed for y < yms(r), if y < yi, and for
y < yms(−)(r), if yi < y < ycrit(ms+).

The condition determining the local extrema of a2
ms(1,2)(r; y)

∂a2
ms(1,2)(r; y)

∂r
= 0 (69)

implies very complicated relations, however, they lead to one simple relevant relation

y = ye(ms)(r) ≡ 1
10r3 (70)

determining important local extrema of both a2
ms(1,2)(r; y) simultaneously, both located on

the radius

r = re(ms)(y) ≡ 1
(10y)1/3 . (71)

The critical value of the cosmological parameter for the existence of the minus-family
stable circular orbits, determined by the condition a2

ms(2)(re(ms); y) = 0, is given by

ycrit(ms−) = 12
154 . (72)

It coincides with the limit on the existence of the stable circular orbits in the Schwarzschild–
de Sitter spacetimes [Stuchlı́k and Hledı́k, 1999].

Properties of the functions a2
ms(1,2)(r; y) can be summarised in the following way.

(i) y > ycrit(ms+)

No stable circular orbits are allowed for any value of the rotational parameter.
(ii) ycrit(ms+) > y > ycrit(ms−)

At r = re(ms), the function a2
ms(1)(r; y) has a local maximum (a2

ms(max)), and the function
a2

ms(2)(r; y) has a local minimum (a2
ms(min)). For a2

ms(min) < a2 < a2
ms(max), the equation

a2 = a2
ms(1,2)(r; y) determines two marginally stable plus-family circular orbits (the inner

one and the outer one). For 0 < a2 < a2
ms(min) and a2 > a2

ms(max), no stable circular orbits
are allowed.

(iii) y < ycrit(ms−)

There are two zero points of the function a2
ms(2)(r; y) corresponding to its local mi-

nima, while it has a local maximum a2
ms(max2) at r = re(ms), where the maximum of the

function a2
ms(1)(r; y) is located too. For a2 > a2

ms(max), there is no stable circular orbit. For
a2

ms(max2) < a2 < a2
ms(max), there are two marginally stable plus-family circular orbits. For
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a2 < a2
ms(max2), there are four marginally stable orbits. The innermost and the outermost

orbits belong to the plus-family, the two orbits in between belong to the minus-family.

The functions a2
ms(1,2) are illustrated for typical values of the cosmological parameter in

Fig. 7. In the parameter space y–a2, separation of the Kerr–de Sitter spacetimes according
to the existence of stable circular orbits, determined by the functions a2

ms(1,2)(r; y) and
ye(ms)(r), is given in Fig. 2.

In theory of thick accretion disks, another type of circular orbits plays a very important
role.

Behaviour of the effective potential (27) enables us to introduce the notion of the mar-
ginally bound orbits, i.e., unstable circular orbits where a small radial perturbation causes
infall of a particle from the orbit to the centre, or its escape to the cosmological horizon.
For some special value of the axial parameter X , denoted as Xmb, the effective potential
has two local maxima related by the condition

E(+)(rmb(i); Xmb, a, y) = E(+)(rmb(o); Xmb, a, y), (73)

and corresponding to both the inner and outer marginally bound orbits, see Fig. 8. For com-
pleteness, the figure include the effective potentials defining both the inner and outer mar-
ginally stable orbits (corresponding to special values of the parameter X : Xms(i), Xms(o)).
The search for the marginally bound orbits in a concrete Kerr–de Sitter spacetime must be
realized in a numerical way and can be successful only in the spacetimes admitting stable
circular orbits. Clearly, in the spacetimes with y ≥ 12/154, the minus-family marginally
bound orbits do not exist. Fig. 2 offers insight into the possibility of existence of both the
stable and bound circular orbits of both the families. The limiting (full) curves are obtained
from the conditions (63), (70) that have to be solved simultaneously.

Location of the astrophysically important circular orbits (photon orbits, marginally stable
and marginally bound orbits) in dependence on the rotational parameter a is given in Fig. 9
for three appropriately chosen values of the cosmological parameter y. The values of y
reflect the dependence of existence of stable minus-family orbits on y. The stable plus-
family orbits exist for all of the chosen values of y in the relevant range of the parameter
a. Spacetimes without stable circular orbits or without any circular orbits are discussed
in [Stuchlı́k and Slaný, 2004].

In comparison with the asymptotically flat Kerr spacetimes, where the effect of space-
time rotation vanishes for asymptotically large values of the radius, in the Kerr–de Sitter
spacetimes the properties of the circular orbits must be treated more carefully, because the
rotational effect is relevant in whole the region where the circular orbits are allowed and it
survives even at the cosmological horizon.

The minus-family orbits have specific angular momentum negative, L− < 0, in every
Kerr–de Sitter spacetime and such orbits are counter-rotating from the point of view of
locally non-rotating frames.

In the black-hole spacetimes, the plus-family orbits are co-rotating in almost all radii
where the circular orbits are allowed except some region in vicinity of the static radius,
where they become to be counter-rotating, as their specific angular momentum L is slightly
negative there. However, these orbits are unstable. In the naked-singularity spacetimes,
the plus-family orbits behave in a more complex way. They are always counter-rotating
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Figure 8. Effective potential of the equatorial radial motion of test particles in an appropriately
chosen Kerr–de Sitter black-hole spacetime (y = 10−4, a2 = 0.36) allowing stable circular orbits
for co-rotating particles. Marginally bound (mb) orbits are given by the solid curve corresponding
to the angular momentum parameter X = Xmb+

.= 2.38445. The curve has two local maxima
of the same value, Emb

.= 0.93856, corresponding to the inner (mb(i)) and the outer (mb(o))
marginally bound orbits. The dashed effective potential defines the inner marginally stable orbit
(ms(i)) by coalescing the local minimum and the (inner) local maximum. It corresponds to the
parameter X = Xms(i)+

.= 2.20307 with specific energy Ems(i)+
.= 0.90654. In an analogous

manner, the dashed-dotted potential defines the outer marginally stable orbit (ms(o)) with specific
energy Ems(o)+

.= 0.94451 corresponding to the parameter X = Xms(o)+
.= 2.90538. (Taken

from [Stuchlı́k and Slaný, 2004].)

in vicinity of the static radius. Moreover, in the naked singularity spacetimes, with the
rotational parameter low enough, the stable counterrotating plus-family circular orbits
exist.

The specific angular momentum of particles located at the static radius, where the plus-
family orbits and the minus-family orbits coalesce, is given by the relation

L(rs; y, a) = Ls ≡ −a
3y1/3 + a2y

(
1 − 3y1/3 − a2y

)1/2 , (74)

and their specific energy is

E(rs; y, a) = Es ≡ (1 − 3y1/3 − a2y)1/2. (75)

The motion along the stable plus-family circular geodesics counter-rotating relative to
locally non-rotating frames is discussed in detail in [Stuchlı́k and Slaný, 2004]. A special
attention is focused on stable circular orbits with negative energy which could exist in
Kerr–de Sitter naked-singularity spacetimes with the rotational parameter sufficiently close
to unity.
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5 BASIC PROPERTIES OF THIN DISKS

Both the black-hole and naked-singularity Kerr–de Sitter spacetimes can be separated into
three classes according to the existence of stable (and, equivalently, marginally bound)
circular orbits (see Fig. 2). The stable orbits of both the plus-family and minus-family exist
in the spacetimes of class I (black holes) and class V (naked singularities). Solely stable
orbits of the plus-family exist in the spacetimes of classes II (black holes) and VI (naked
singularities). No stable orbits exist in the spacetimes of classes III and IV. In dependence on
the cosmological parameter, there are three qualitatively different types of the behaviour of
the loci of the marginally stable, marginally bound, and photon circular orbits as functions
of the rotational parameter. These functions are illustrated for three representative values
of y in Fig. 9 enabling to make in a straightforward way separation of the Kerr–de Sitter

0 0.5 1 1.5 2
a1/2

0

2

4

6

8

10

r

y=10-3

BH NS

static radius

0 0.5 1 1.5 2 2.5 3
a1/2

0

5

10

15

20

r

y=10-4

BH NS

static radius

0 0.5 1 1.5 2 2.5 3 3.5
a1/2

0

10

20

30

40

r

y=2·10-5

BH NS

static radius

Figure 9. Mutual positions of the astrophysically important circular orbits in the Kerr–de Sitter
spacetimes. The figures are constructed for three representative values of y. The radii of the special
equatorial circular orbits are plotted as functions of the rotational parameter a. Widely dashed line
is given by the value of rotational parameter corresponding to the extreme black hole and it splits
up the Kerr–de Sitter spacetimes into the black-hole (BH) and naked-singularity (NS) regions. Thin
curves are used for the plus-family orbits (in the most cases they correspond to the co-rotating orbits
from the point of view of the locally non-rotating observers, but there are exceptions described in
the text). Bold curves are used for the minus-family orbits (in all spacetimes under consideration:
counter-rotating orbits). Full curves determine the inner and the outer black-hole horizons. Dotted
curves determine the photon circular orbits, dashed curves determine the marginally bound (mb)
circular orbits, there is a disconnection between BH and NS regions for the plus-family orbits. Lower
gray dashed curves determine the marginally bound orbits hidden under the inner black-hole horizon,
the upper one, approaching the static radius for small a, is its outer analogy. Dashed-dotted curves
determine the marginally stable (ms) orbits. For y ≥ 12/154 there are no minus-family mb and ms
orbits. (Taken from [Stuchlı́k and Slaný, 2004].)
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Figure 10. Specific energy of the marginally stable minus-family orbits ((a)–inner, (b)–outer) and
(c) the accretion efficiency η− ≡ Ems(o)− − Ems(i)− given as a function of the rotational parameter
for three representative values of the cosmological parameter. For the Kerr spacetimes, y = 0, we
assume Ems(o)− = 1. (Taken from [Stuchlı́k and Slaný, 2004].)

spacetimes into the classes I–VI. In the special case of the Kerr spacetimes (y = 0), these
functions can be found in [Bardeen, 1973, Stuchlı́k, 1980].

The marginally stable circular orbits are crucial in the context of Keplerian (geometrically
thin) accretion disks as these orbits determine the efficiency of conversion of rest mass into
heat energy of any element of matter transversing the disks from their outer edge located on
the outer marginally stable orbit to their inner edge located on the inner marginally stable
orbit:

η ≡ Ems(o) − Ems(i). (76)

The accretion disks constituted from the minus-family orbits are everywhere counter-
rotating relative to the locally non-rotating frames. For the minus-family disks, the specific
energy of both the outer and inner marginally stable circular orbits, and the efficiency
parameter η− = Ems(o)− − Ems(i)−, are given for three typical values of y as functions
of a in Fig. 10. In the limit of a → 0 with y being fixed, we obtain the known values of
the specific energy Ems(o), Ems(i), and the efficiency parameter of the accretion process η
for the Schwarzschild-de Sitter black holes [Stuchlı́k and Hledı́k, 1999]. Both the specific
energy parameters Ems(o)−(a), Ems(i)−(a) and the efficiency η−(a) vary smoothly at values
of the rotational parameter corresponding to the extreme black holes.



224 Z. Stuchlı́k and P. Slaný
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Figure 11. Specific energy of the marginally stable plus-family orbits ((a)–inner, (b)–outer) and (c) the
accretion efficiency η+ ≡ Ems(o)+ − Ems(i)+ (right column) as a function of the rotational parameter
for three representative values of the cosmological parameter. Gray line corresponds to the extreme
black hole. We can see a strong discontinuity of the specific energy of the inner marginally stable
orbits and the accretion efficiency when black holes and naked singularities approach the extreme
black-hole state. For the Kerr spacetimes, y = 0, we assume Ems(o)+ = 1. (Taken from [Stuchlı́k
and Slaný, 2004].)

The accretion disks constituted from the plus-family orbits behave in much more complex
way in comparison with those of the minus-family orbits. First, usually these disks could
be considered as co-rotating relative to the locally non-rotating frames; recall that in the
asymptotically flat Kerr black-hole spacetimes the plus-family disks are co-rotating at
all radii down to the marginally stable orbit, while in the field of naked singularities
with a/M < 3

4
√

3 the stable circular orbits co-rotating at large distances are transformed
into counter-rotating orbits in vicinity of the marginally stable orbit [Stuchlı́k, 1980]. A
similar behaviour occurs in the Kerr–de Sitter spacetimes, however, in the spacetimes with
y → yc(KdS), the stable plus-family orbits can be counter-rotating even at all allowed
radii [Stuchlı́k and Slaný, 2004]. Moreover, there are always counter-rotating plus-family
orbits in vicinity of the static radius, where the plus-family orbits and the minus-family
orbits coalesce; these orbits are, however, unstable relative to radial perturbations and
cannot be related to accretion disks.

Second, the specific energy Ems(i)+(y, a) of the inner marginally stable plus-family orbit
can be negative. Recall that Ems(i)+ < 0 in the asymptotically flat Kerr naked-singularity
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spacetimes with the rotational parameter a/M < 4
3

√
2
3 , indicating the efficiency of the

accretion process η+ = Ems(o)+ − Ems(i)+ > 1, because in the asymptotically flat Kerr
spacetimes the outer edge of the accretion disks can be at arbitrarily large radii implying thus
Ems(o)+ = 1. In the Kerr–de Sitter spacetimes allowing Ems(i)+ < 0, the efficiency of the
accretion process can be both η > 1 and η < 1, as it depends strongly on Ems(o)+, which for
y ∼ yc(KdS) can be even negative. For three typical values of y, the functions Ems(o)+(a),
Ems(i)+(a), η+(a) are illustrated in Fig. 11. The specific energy function Ems(i)+(a) falls
for a growing in the black-hole region, and for a descending in the naked-singularity
region. The specific energy function Ems(o)+(a) has a local minimum at some value of the
rotational parameter a strongly dependent on the cosmological parameter y. For y being
fixed, the accretion efficiency η+(a) grows for a growing in the black-hole sector up to the
critical value corresponding to the extreme black-hole spacetime, and it also grows for a
descending in the naked-singularity sector down to the critical value.

Third, there is a strong discontinuity of the specific energy function Ems(i)+(a) for
the spacetimes approaching the extreme black hole state from the black-hole and the
naked-singularity sectors. For the extreme Kerr black holes (y = 0, a/M = 1), there is
the limiting value of the specific energy Ems(bh) = 1/

√
3, while for naked singularities

approaching the extreme hole states (a/M → 1 from above), there is Ems(ns) = −1/
√

3.
For the extreme Kerr–de Sitter spacetimes, the dependence of the specific energy of the
inner marginally stable orbit on the cosmological parameter is shown in Fig. 12a. Clearly,
there is Ems(ns)(y) = −Ems(bh)(y), where, for a given cosmological parameter y the
rotational parameter a of the corresponding extreme black hole is determined by the upper
branch of the limiting line separating black-hole and naked-singularity states in Fig. 2. For
y → yc(KdS), there is Ems(bh)(y) → 0. For the specific energy function Ems(o)+(y, a) of
the outer marginally stable orbits there is no discontinuity at the states corresponding to the
extreme black-hole spacetimes (see Fig. 12b). The accretion efficiency η+(y) in the field of
extreme black holes (ηbh(y)) and in the field of the naked singularities infinitesimally close
to the extreme hole states (ηns(y)) is shown in Fig. 12c. For y = 0 their difference takes
the maximum (ηns = 1 + 1/

√
3, ηbh = 1 − 1/

√
3), while at y = yc(KdS) the difference

vanishes (ηns = 0, ηbh = 0).

6 EQUILIBRIUM CONFIGURATIONS OF PERFECT FLUID

The stress-energy tensor of perfect fluid is given by the relation

T µ
ν = (p + ϵ)UµUν + p δµν (77)

where ϵ and p denote total energy density and pressure of the fluid, U µ is its four velocity.
We shall consider test perfect fluid rotating in the φ direction, i.e., U µ = (

U t , Uφ, 0, 0
)
.

The rotating fluid can be characterised by the vector fields of the angular velocity Ω (r, θ)
and the angular momentum density ℓ (r, θ), defined by

Ω = Uφ

U t , ℓ = −Uφ

Ut
. (78)

The vector fields are related by the metric coefficients of the Kerr–de Sitter spacetime



226 Z. Stuchlı́k and P. Slaný
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Figure 12. Specific energy of the marginally stable orbits and accretion efficiency near the extreme
black-hole states. (a) Specific energy of the inner marginally stable plus-family orbit in the extreme
black-hole and the related limiting naked-singularity spacetimes approaching the extreme hole states
as a function of the cosmological parameter y. Solid curve corresponds to the extreme black holes,
dashed curve corresponds to the limiting naked singularities. The curves are symmetric around the
zero-energy-axis and tend to zero for y = yc(KdS). In the extreme Kerr spacetimes (y = 0), the
specific energy in the black-hole and naked-singularity cases are 1/

√
3 and −1/

√
3, respectively.

(b) Specific energy of the outer marginally stable plus-family orbit in the extreme Kerr–de Sitter
black-hole spacetimes is the same as for the naked-singularity spacetimes approaching the extreme
hole state, i.e., there is no discontinuity in this case. The specific energy tends to zero for y → yc(KdS).
(c) Accretion efficiency for the extreme black holes ηbh (the solid curve) and for the limiting naked
singularities ηns (the dashed curve). For y = 0 (pure Kerr spacetimes) we obtain the maximum value
0.42 for black holes and 1.58 for naked singularities. For y → yc(KdS) the efficiency tends to zero
for both black holes and naked singularities. (Taken from [Stuchlı́k and Slaný, 2004].)

Ω = − gtφ + ℓgt t

gφφ + ℓgtφ
. (79)

Projecting the energy-momentum conservation law T µν
;ν = 0 onto the hypersurface

orthogonal to the four velocity Uµ by the projection tensor hµν = gµν + UµUν , we obtain
the relativistic Euler equation in the form

∂µ p
p + ϵ

= −∂µ(ln Ut ) + Ω ∂µℓ

1 −Ωℓ
, (80)

where

(Ut )
2 =

g2
tφ − gt t gφφ

gφφ + 2ℓgtφ + ℓ2gt t
. (81)

For barytropic perfect fluid, i.e., the fluid with an equation of state p = p(ϵ), the solution
of the relativistic Euler equation can be given by Boyer’s condition determining the surfaces
of constant pressure through the “equipotential surfaces” of the potential W (r, θ) by the
relations [Abramowicz et al., 1978]
∫ p

0

d p
p + ϵ

= Win − W, (82)

Win − W = ln(Ut )in − ln(Ut ) +
∫ ℓ

ℓin

Ω dℓ
1 −Ωℓ

; (83)
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the subscript “in” refers to the inner edge of the disk. For an alternative definition of Boyer’s
condition see [Abramowicz et al., 1978,Fishbone and Moncrief, 1976,Fishbone, 1977]. The
equipotential surfaces are determined by the condition

W (r, θ) = const, (84)

and in a given spacetime can be found from Eq. (83), if a rotation law Ω = Ω(ℓ) is given.
Equilibrium configurations of test perfect fluid are determined by the equipotential surfa-

ces which can be closed or open. Moreover, there is a special class of critical, self-crossing
surfaces (with a cusp), which can be either closed or open. The closed equipotential sur-
faces determine stationary toroidal configurations. The fluid can fill any closed surface
– at the surface of the equilibrium configuration pressure vanishes, but its gradient is
non-zero [Kozłowski et al., 1978]. On the other hand, the open equipotential surfaces are
important in dynamical situations, e.g., in modelling of jets [Lynden-Bell, 1969,Blandford,
1987]. The critical, self-crossing closed equipotential surfaces Wcusp are important in the
theory of thick accretion disks, because accretion onto the black hole through the cusp of
the equipotential surface located in the equatorial plane is possible due to the Paczyński
mechanism.

According to Paczyński, the accretion into the black hole proceeds in the vicinity of the
cusp due to a little overcoming of the critical equipotential surface, W = Wcusp, by the
surface of the disk. The accretion is thus driven by a violation of the hydrostatic equilibrium,
rather than by viscosity of the accreting matter [Kozłowski et al., 1978].

It is well known that all characteristic properties of the equipotential surfaces for a
general rotation law are reflected by the equipotential surfaces of the simplest configurations
with uniform distribution of the angular momentum density ℓ – see [Jaroszyński et al.,
1980]. Moreover, these configurations are very important astrophysically, being marginally
stable [Seguin, 1975]. Under the condition

ℓ(r, θ) = const, (85)

holding in the rotating fluid, a simple relation for the equipotential surfaces follows from
Eq. (83):

W (r, θ) = ln Ut (r, θ), (86)

with Ut (r, θ) being determined by ℓ = const, and the metric coefficients only.
The equipotential surfaces are described by the formula θ = θ(r), which can be given

by the differential equation

dθ
dr

= − ∂p/∂r
∂p/∂θ

, (87)

which for the configurations with ℓ = const reduces to

dθ
dr

= − ∂Ut/∂r
∂Ut/∂θ

. (88)

In the Kerr–de Sitter spacetimes there is
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Ut (r, θ; ℓ) = ρ

I
· ∆

1/2
r ∆

1/2
θ sin θ

[
∆θ sin2 θ

(
r2 + a2 − aℓ

)2 −∆r
(
ℓ− a sin2 θ

)2]1/2 (89)

and

W (r, θ) = ln

⎧
⎪⎨

⎪⎩
ρ

I
· ∆

1/2
r ∆

1/2
θ sin θ

[
∆θ sin2 θ

(
r2 + a2 − aℓ

)2 −∆r
(
ℓ− a sin2 θ

)2]1/2

⎫
⎪⎬

⎪⎭
. (90)

The best insight into the ℓ = const configurations is given by properties of W (r, θ) in the
equatorial plane (θ = π/2).

The reality conditions of W (r, θ = π/2) can be put in the following way.
a) ∆r > 0; naturally, we have to consider stationary parts of the Kerr–de Sitter geometry,
b) for∆r > a2 (outside the ergosphere), the condition

ℓph− < ℓ < ℓph+ (91)

must be satisfied. For a2 > ∆r (inside the ergosphere), the condition

ℓ < ℓph− or ℓ > ℓph+ (92)

must be satisfied, where the functions ℓph± (r; a, y), given by

ℓph± (r; a, y) ≡ a
[
∆r −

(
r2 + a2)]± r2∆

1/2
r

∆r − a2 , (93)

determine the photon geodesic motion (see [Stuchlı́k and Hledı́k, 2000,Stuchlı́k and Slaný,
2004]). Notice that for the photon motion, it is useful to redefine the impact parameter by

ℓ → X = ℓ− a. (94)

The “effective potential” of the equatorial photon motion then takes the simple form

Xph± (r; a, y) = r2

a ±∆
1/2
r

. (95)

The functions ℓph± are finite on the horizons. However, ℓph− diverges on the surface
of static limit: ℓph− (r → rs. l. +) → −∞, ℓph− (r → rs. l. −) → +∞, while the function
ℓph+ (r = rs. l.) = a + r2

s. l./2a, being continuous there.
Condition for the local extrema of the potential W (r, θ = π/2) is identical with the

condition of vanishing of the pressure gradient (∂Ut/∂r = 0 = ∂Ut/∂θ). Since in the
equatorial plane there is ∂Ut/∂θ = 0, independently of ℓ = const, the only relevant
condition is
∂Ut

∂r
= 0, (96)

which implies the relation

ℓ = ℓK±(r; a, y) (97)

with ℓK± being the angular momentum density of the geodetical Keplerian orbits

ℓK± (r; a, y) ≡ (r2 + a2)(1 − yr3)1/2 ∓ ar1/2[2 + yr(r2 + a2)]
r3/2[1 − y(r2 + a2)] − 2r1/2 ± a(1 − yr3)1/2 . (98)
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The closed equipotential surfaces and surfaces with a cusp allowing the outflow of mat-
ter from the disk, are permitted in those parts of the functions ℓK± (r; a, y) enabling the
existence of stable circular geodesics corresponding to the centre of the equilibrium confi-
gurations.

We present some typical sequences of equipotential surfaces in both the Kerr–de Sitter
black-hole and naked-singularity spacetimes. In the black-hole spacetimes, both the Boyer–
Lindquist (Fig. 13) and Kerr–Schild (Fig. 14) coordinates could be used, giving similar
picture of the behaviour of the equipotential surfaces due to restriction to the region above
the outer horizon. In the naked-singularity spacetimes, however, the Kerr–Schild coordinate
system is more suitable, because it enables to describe the region very close to the ring
singularity in proper way, see Fig. 15.

Influence of a repulsive cosmological constant on the structure of thick accretion disks
consists in two main features: the existence of the outer cusp and the collimation of the
open equipotential surfaces near the rotational axis being evident in the vicinity of the
static radius and further. Outer cusp, also located near the static radius, gives an upper limit
on the extension of accretion disks due to the violation of hydrostatic equilibrium when
a matter overfills the critical equipotential surface with a cusp. However, these features
were known from the analysis of equilibrium configurations of a perfect fluid orbiting in
the Schwarzschild–de Sitter backgrounds. Influence of the rotation of a spacetime remains
in the fact that the collimation is stronger and the disks can be larger than in non-rotating
backgrounds. Comparison of the shapes of marginally bound thick accretion disks in the
Schwarzschild–de Sitter and Kerr–de Sitter black-hole background of the same central
mass M reveals that the corotating disk is thicker and its funnel is narrower than the
Schwarzschild–de Sitter case which is thicker with narrower funnel than the counterrotating
disk. More detailed analysis of the structure of equilibrium disk-like configurations of
perfect fluid orbiting in the Kerr–de Sitter background is prepared for the original paper
[Slaný and Stuchlı́k, 2004].

7 CONCLUDING REMARKS

Due to accretion in a plus-family or a minus-family Keplerian disk, a hypothetical naked sin-
gularity can be converted into an extreme black hole. In the case of Kerr naked singularities
their evolution into an extreme hole state was discussed in [Calvani and Nobili, 1979,Stuch-
lı́k, 1981, Stuchlı́k et al., 2002]. Such a conversion can be a rather dramatic process in the
case of the plus-family accretion disks because of the discontinuity of the plus-family orbits
at the extreme black-hole state. We can understand this process, if we show how the stable
circular orbits are distributed in the naked-singularity spacetimes approaching the extreme
black-hole state (Fig. 16). We can see that all the orbits with the specific energy ranging from
Ems(ns)(y) up to Ems(bh)(y) are distributed at an infinitesimally small range of the radial
coordinate in vicinity of the radius corresponding to the event horizon of the extreme black
hole. Of course, it is well known that at these radii the physically relevant proper radial
length, along which the accretion disk is distributed, becomes very (almost infinitely) long
(see [Bardeen, 1973]). If the conversion of a hypothetical naked singularity into an extreme
black hole is realized, the part of the accretion disk located under the marginally stable
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Figure 13. Behaviour of the potential in the equatorial plane and the meridional sections through
the structure of equipotential surfaces in the cases corresponding to accretion disks in the black-hole
backgrounds described in Boyer–Lindquist (B–L) coordinates. (a) Typical behaviour for the angular
momentum density ℓms(i) < ℓ < ℓmb leading to the system of closed equipotential surfaces where the
last one contains the (inner) cusp enabling the accretion onto the central black hole (the gray surface).
(b) Marginally bound accretion disk corresponding to the angular momentum density ℓ = ℓmb. The
critical closed equipotential surface contains both the cusps. The inner one enables an accretion onto
the black hole, the outer one makes possible an outflow from the disk.
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Figure 14. The same situation as in Fig. 13 described in Kerr–Schild coordinates now. The black-
hole case is almost identical with the picture in Boyer–Lindquist coordinates. Behaviour of the open
equipotential surfaces near the rotational axis demonstrates the strong collimation effect of a repulsive
cosmological constant.

circular orbit of the created black hole becomes unstable relative to radial perturbations and
will be immediately swallowed by the black hole. It can be expected that the collapse of
the unstable internal part of the disk with the specific energy ranging from Ems(ns)(y) up to
Ems(bh)(y) could be observationally important, leading to an abrupt fall down of observable
luminosity of the accretion disk.

In the case of thick accretion disks around Kerr–de Sitter naked singularities we expect
a similar dramatic process. Moreover, the inner edge of an accretion disk is located very
close to the ring singularity and the outer edge can be extended almost up to the static radius
(even closer than in any black-hole case). A gravitational pit, the difference of energies
on the inner edge and in the centre of an accretion disk around a naked singularity can
be many times deeper than in the disks orbiting black holes. A collimation effect, which
could play an important role in the formation and propagation of jets, is much stronger
in the naked-singularity backgrounds in accordance with the geodesic collimation in Kerr
naked-singularity spacetimes discovered by Bičák et al. [Bičák et al., 1993]. However, in
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Figure 15. Behaviour of the potential in the equatorial plane and the meridional sections through the
structure of equipotential surfaces in the cases corresponding to accretion disks in naked-singularity
backgrounds described in Kerr–Schild (K–S) coordinates. (a) Typical behaviour for the angular
momentum density ℓms(i) < ℓ < ℓmb leading to the system of closed equipotential surfaces where
the last one contains the (inner) cusp enabling the accretion onto the central ring singularity (the
grey point in the equatorial plane). (b) Marginally bound accretion disk corresponding to the angular
momentum density ℓ = ℓmb. The critical closed equipotential surface contains both the cusps. The
inner one enables an accretion onto the ring singularity, the outer one makes possible an outflow from
the disk. Behaviour of the open equipotential surfaces near the rotational axis demonstrates the strong
collimation effect of a repulsive cosmological constant.
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Figure 16. Distribution of the specific energy and the specific angular momentum of the equatorial
circular orbits in the naked-singularity spacetimes approaching the extreme black-hole state. The
orbits with the specific energy in the interval Ems(ns) < E < Ems(bh) are located in an extremely
small interval of the radial coordinate having, however, an extremely long proper length [Bardeen,
1973]. After conversion of a hypothetical naked singularity into an extreme black hole all these circular
orbits become unstable relative to radial perturbations and will be immediately swallowed by the black
hole. The figures are drawn for a = a0(1+ δ) and y = y0(1− δ), where y0 = 10−4 and a0 = 1.0001
are chosen to correspond to an extreme black hole, and, subsequently, δ = 10−3, 10−4, 10−6. (Taken
from [Stuchlı́k and Slaný, 2004].)

Kerr–de Sitter backgrounds the collimation is stronger than in corresponding Kerr spacetime
because of the existence of the static radius where a cosmological repulsion starts to
dominate.

We can give to our results proper astrophysical relevance by presenting numerical es-
timates for observationally established current value of the cosmological constant. Wide
range of recent cosmological observations give strong “concordance” indication [Krauss,
1998] that the observed value of the vacuum energy density is

ϱvac(0) ≈ 0.66ϱcrit (0) (99)

with present values of the critical energy density ϱcrit (0) , and the Hubble parameter H0
given by

ϱcrit (0) = 3H 2
0

8π
, H0 = 100h km s−1 Mpc−1. (100)

Taking value of the dimensionless parameter h ≈ 0.7, we obtain the “relict” repulsive
cosmological constant to be

Λ0 = 8πϱvac(0) ≈ 1.1 × 10−56 cm−2. (101)

Having this value of Λ0, we can determine the mass parameter of the spacetime corre-
sponding to any value of y, parameters of the equatorial circular geodesics and basic
characteristics of both the thin and thick accretion disks. For extreme black holes (we have
chosen some typical values of the black-hole mass), dimensions of the static radius and the
outer marginally stable circular orbit of the plus-family accretion disk are given in Table
1. For more detailed information in the case of thick disks around Schwarzschild–de Sitter
black holes see [Stuchlı́k et al., 2000], where the estimates for primordial black holes in
the early universe with a repulsive cosmological constant related to a hypothetical vacuum
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Table 1. Mass parameter, the static radius and radius of the outer marginally stable circular orbit
determining the outer edge of corotating Keplerian disks in extreme Kerr–de Sitter black-hole spa-
cetimes are given for the relict repulsive cosmological constant indicated by recent cosmological
observations: Λ0 ≈ 1.1 × 10−56 cm−2. Outer edge of the corotating marginally bound thick accre-
tion disk is determined by the outer marginally bound circular orbit which is located very close to,
and for presented values of y almost at the static radius of a given spacetime. (Taken from [Stuchlı́k
and Slaný, 2004].)

y M rs rms(o)+
[M⊙] [kpc] [kpc]

10−46 1.1 0.1 0.07
10−44 11.1 0.2 0.15
10−42 111.4 0.5 0.3
10−40 1.1 × 103 1.1 0.7
10−34 1.1 × 106 11.4 7.2
10−32 1.1 × 107 24.5 15.5
10−30 1.1 × 108 52.8 33.3
10−28 1.1 × 109 113.8 71.7
10−26 1.1 × 1010 245.2 154.5
10−24 1.1 × 1011 528.3 332.9
10−22 1.1 × 1012 1138.4 717.1

energy density connected with the electroweak symmetry breaking or the quark confinement
are presented.

It is well known (see, e.g., [Carroll and Ostlie, 1996]) that dimensions of accretion disks
around stellar-mass black holes (M ∼ 10M⊙) in binary systems are typically 10−3 pc,
dimensions of large galaxies with central black-hole mass M ∼ 108M⊙, of both spiral and
elliptical type, are in the interval 50–100 kpc, and the extremely large elliptical galaxies of
cD type with central black-hole mass M ∼ 3 × 109M⊙ extend up to 1 Mpc. Therefore, we
can conclude that the influence of the relict cosmological constant is quite negligible in the
accretion disks in binary systems of stellar-mass black holes as the static radius exceeds
in many orders dimension of the binary systems. But it can be relevant for accretion
disks in galaxies with large active nuclei as the static radius puts limit on the extension
of the disks well inside of the galaxies. Moreover, the agreement (up to one order) of
the dimension of the static radius related to the mass parameter of central black holes at
nuclei of large or extremely large galaxies with extension of such galaxies suggests that
the relict cosmological constant could play an important role in formation and evolution
of such galaxies. Of course, the first step in confirming such a suggestion is modelling
of the influence of the repulsive cosmological constant on self-gravitating accretion disks.
Some hints on this way could be given by recent results of Rezzolla et al. [Rezzolla et al.,
2003], based on sophisticated numerical hydrodynamic methods developed by Font [Font
and Daigne, 2002a,Font and Daigne, 2002b], who showed that mass outflow from the outer
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edge of thick accretion disks, induced by the relict cosmological constant, could efficiently
stabilise the accretion disks against the runaway dynamical instability.

ACKNOWLEDGEMENTS

The present work was supported by the grants GAČR No. 205/03/1147, IGS SU No. 2/2003
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Acta Astronom., 30:1.

[Kolb and Turner, 1990] Kolb, E. W. and Turner, M. S. (1990). The Early Universe.
Addison-Wesley, Redwood City, California. The Advanced Book Program.

[Kozłowski et al., 1978] Kozłowski, M., Jaroszyński, M., and Abramowicz, M. A. (1978).
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Marginally stable thick discs with gradient
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discs?
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ABSTRACT
[Aschenbach, 2004] has shown that in Kerr black-hole spacetimes with rotation
parameter a > 0.9953, the Keplerian orbital velocity measured in locally non-
rotating frames (LNRF) has a positive radial gradient in a small region in the vicinity
of the event horizon and proposed that excitation of oscillations in Keplerian thin
discs can be related to this fact. Similarly, we show that in the equatorial plane of
marginally stable thick discs (with uniformly distributed specific angular momentum
ℓ(r, θ) = const) the orbital velocity relative to the LNRF has a positive radial gradient
in the vicinity of black holes with a > 0.99979. The change of sign of the velocity
gradient occurs just above the centre of the thick toroidal discs, in the region where
stable circular geodesics of the Kerr spacetime are allowed. Therefore, the same
mechanism as in the Keplerian discs could trigger oscillations in thick discs, but the
rotational parameter of the Kerr spacetime must be much closer to the extreme-hole
state with a = 1. The global character of the phenomenon is given in terms of
topology changes of the von Zeipel surfaces (equivalent to equivelocity surfaces in
the tori with ℓ(r, θ) = const). Toroidal von Zeipel surfaces exist around the circle
corresponding to the minimum of the equatorial LNRF velocity profile, indicating a
possibility of development of some vertical instabilities in those parts of marginally
stable tori with positive gradient of the LNRF velocity.

Keywords: accretion, accretion discs – QPOs – black hole physics – relativity

1 INTRODUCTION

High frequency (kHz) quasi-periodic oscillations (QPOs) with frequency ratios 3:2 (and
sometimes 3:1) are observed in microquasars (see, e.g., [van der Klis, 2000, McClintock
and Remillard, 2004]). The same frequency ratios of QPOs in mHz are observed in the
Galactic Centre black hole Sgr A∗ [Genzel et al., 2003,Aschenbach, 2004]. It is commonly
accepted now that the QPOs are related to the parametric or forced resonance [Landau and

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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Lifshitz, 1973] of the radial and vertical epicyclic oscillations in accretion discs [Nowak and
Lehr, 1998, Kluźniak and Abramowicz, 2000, Abramowicz and Kluźniak, 2000, Kluźniak
and Abramowicz, 2001, Abramowicz and Kluźniak, 2003].

In the Kerr black-hole spacetimes, the frequencies of the radial and latitudinal (vertical)
epicyclic oscillations around an equatorial Keplerian circular orbit at given r are given by
the formulae (e.g., [Nowak and Lehr, 1998])

ω2
r = Ω2

K(1 − 4ax−3/2 + 3a2x−2), (1)
ω2

θ = Ω2
K(1 − 6x−1 + 8ax−3/2 − 3a2x−2), (2)

where

ΩK =
(

GM
r3

g

)1/2

(x3/2 + a)−1 (3)

is the Keplerian angular frequency of the Keplerian orbit; x ≡ r/rg, rg ≡ GM/c2, a ≡
Jc/GM2 with M, J being the mass and internal angular momentum of the black hole.
Then x and a are dimensionless radius and black-hole rotational parameter.

The oscillations could be related to both the thin Keplerian discs [Abramowicz et al.,
2003,Kato, 2001] or the thick, toroidal accretion discs [Rezzolla et al., 2003,Kluźniak et al.,
2004]. The parametric resonance of the radial and vertical oscillations in the thin discs can
explain the QPOs with the ωθ/ωr = 3 : 2 frequency ratio observed in all the microquasars
and can put strong limits on the rotational parameter of their central black holes related to
the limits on their mass [Török et al., 2004].

[Aschenbach, 2004] conjectured relation between the 3:2 and 3:1 resonance orbits by
relating their Keplerian orbital velocities at r3:2 and r3:1 to be ΩK(r3:1; a) = 3ΩK(r3:2; a),
fixing thus the rotational parameter of black holes at the value of a = af = 0.99616.
Further, he proposed that excitation of the oscillations at r = r3:1 can be related to two
changes of sign of the radial gradient of the Keplerian orbital velocity as measured in the
LNRF that occurs in vicinity of r = r3:1 for black holes with a > 0.9953 (see Fig. 1).

While the assumption of frequency commensurability of Keplerian orbits at r3:1 and
r3:2 seems to be rather artificial because distant parts of the Keplerian disc have to be
related, we consider the positive radial gradient of orbital velocity in LNRF nearby the r3:1
orbit around black holes with a > 0.9953 to be a physically very interesting phenomenon
that could be related to a mechanism for triggering the excitation of radial and vertical
epicyclic oscillations. (By an accident, the physical mechanism starts to work for values of
a close to the number of a = af = 0.99616 given by the assumption of commensurability
of Keplerian orbits.) Therefore, we consider that it is important to investigate further the
proposed mechanism based on the existence of a small region of radii where the gradient of
locally defined orbital velocity is positive, as it could lead to locally triggered instabilities
and disc oscillations1. Because the accretion-disc regime will vary from thin Keplerian
disc to thick toroidal disc with variations of accretion flow, we shall study here, without
addressing details of the mechanism, whether the orbital velocity in LNRF can have positive

1 Of course, details of the proposed mechanism are not known at present and have to be carefully treated in future.
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(a) (b)

Figure 1. The Keplerian orbital velocity as measured in the LNRF, Eq. (29), for two illustrative cases.
(a) For a < 0.9953, the curve is monotonic everywhere above the event horizon. (b) For a > 0.9953,
two local extrema exist above the marginally stable orbit. Dashed line denotes the location of 3:1
resonance orbit. We choose the value of a in accordance with [Aschenbach, 2004]. Note that in this
case ∆V(φ)

K = V(φ)
max − V(φ)

min ≈ 0.001. For values of a much closer to the extreme-hole state a = 1,
∆V(φ)

K is much higher reaching values of ∼ 0.07.

gradient also for matter orbiting black holes in marginally stable thick discs with uniform
distribution of the specific angular momentum (ℓ(r, θ) = const), leading to a possibility to
excite oscillations in the thick-disc accretion regime. Note that the assumption of uniform
distribution of the specific angular momentum can be relevant at least at the inner parts of
the thick disc and that matter in the disc follows nearly geodesic circular orbits nearby the
centre of the disc and in the vicinity of its inner edge determined by the cusp of its critical
equipotential surface, see [Abramowicz et al., 1978, Kozłowski et al., 1978].

Indeed, we will show that the positive gradients of the LNRF velocity exist for thick discs
around black holes with rotational parameter a > ac(thick)

.= 0.99979 which is remarkably
higher than the critical value of the rotational parameter ac(thin)

.= 0.9953 when the positive
gradients occur in Keplerian discs. In thick tori, it is necessary to have information about
the character of the phenomenon also outside the equatorial plane. We shall obtain such
information by introducing the notion of von Zeipel radius R, analogical to the radius of
gyration ρ̃ introduced for the case of Kerr spacetimes in the framework of optical geometry
by [Abramowicz et al., 1995], generalising in one special way the definition used for static
spacetimes [Abramowicz et al., 1993]. The von Zeipel radius is defined in such a way that
for the marginally stable tori the von Zeipel surfaces, i.e., the surfaces of constant values of
R, coincide with surfaces of constant orbital velocity relative to the LNRF.

In Section 2, we summarise basic relations characterising marginally stable thick discs. In
Section 3, the orbital velocity relative to the LNRF is given and its properties are determined.
In Section 4, the notion of von Zeipel radius is introduced and properties of the von Zeipel
surfaces are analysed. In Section 5, we present discussion and some concluding remarks.

2 TOROIDAL MARGINALLY STABLE ACCRETION DISCS

In general, stationary and axially symmetric spacetimes with the line element

ds2 = gt t dt2 + 2gtφ dtdφ + gφφ dφ2 + grr dr2 + gθθ dθ2, (4)
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the stationary and axisymmetric toroidal discs with stress-energy tensors

T µν = (ϱ + p)UµU ν + pgµν (5)

are characterised by 4-velocity field

Uµ = (U t , 0, 0, Uφ) (6)

with U t = U t (r, θ), Uφ = Uφ(r, θ), and by the distribution of specific angular momentum

ℓ = −Uφ

Ut
. (7)

The angular velocity of orbiting matter, Ω = U φ/U t , is then related to ℓ by the formula

Ω = − ℓgt t + gtφ

ℓgtφ + gφφ
. (8)

The marginally stable toroids are characterised by the uniform distribution of specific
angular momentum

ℓ = ℓ(r, θ) = const (9)

and they are fully determined by the spacetime structure through equipotential surfaces of
the potential W = W (r, θ) defined by the relation [Abramowicz et al., 1978]

W − Win = ln
Ut

(Ut )in
(10)

with

(Ut )
2 =

g2
tφ − gt t gφφ

gt tℓ2 + 2gtφℓ+ gφφ
; (11)

the subscript “in” refers to the inner edge of the disc.
In the Kerr spacetimes with the rotational parameter assumed to be a > 0, the relevant

metric coefficients in the standard Boyer–Lindquist coordinates read:

gt t = −∆− a2 sin2 θ

Σ
, (12)

gtφ = −2ar sin2 θ

Σ
, (13)

gφφ = A sin2 θ

Σ
, (14)

where

∆ = r2 − 2r + a2, (15)
Σ = r2 + a2 cos2 θ, (16)
A = (r2 + a2)2 −∆a2 sin2 θ . (17)

The geometrical units, c = G = 1, together with putting the mass of the black hole equal to
one, M = 1, are used to obtain completely dimensionless formulae hereafter. The relation
(8) for the angular velocity of matter orbiting the black hole acquires the form
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Ω = Ω(r, θ; a, ℓ) = (∆− a2 sin2 θ)ℓ+ 2ar sin2 θ

(A − 2ℓar) sin2 θ
(18)

and the potential W , defined in Eq. (10), has the explicit form

W = W (r, θ; a, ℓ) = 1
2

ln
Σ∆ sin2 θ

(r2 + a2 − aℓ)2 sin2 θ −∆(ℓ− a sin2 θ)2 . (19)

3 THE ORBITAL VELOCITY IN LNRF

The locally non-rotating frames are given by the tetrad of 1-forms (see, e.g., [Bardeen et al.,
1972, Misner et al., 1973])

e(t) =
(
Σ∆

A

)1/2
dt, (20)

e(r) =
(
Σ

∆

)1/2
dr, (21)

e(θ) = Σ1/2 dθ, (22)

e(φ) =
(

A
Σ

)1/2
sin θ(dφ − ω dt) (23)

where the angular velocity of LNRF, ω = −gtφ/gφφ , is given by the relation

ω = 2ar
A

. (24)

The azimuthal component of 3-velocity in LNRF reads

V(φ)
LNRF = Uµe(φ)

µ

U νe(t)
ν

= A sin θ
Σ

√
∆

(Ω − ω). (25)

Substituting for the angular velocitiesΩ andω from the relations (18) and (24), respectively,
we arrive at the formula

V(φ)
LNRF = A(∆− a2 sin2 θ) + 4a2r2 sin2 θ

Σ
√
∆(A − 2aℓr) sin θ

ℓ. (26)

We focus our investigation to the motion in the equatorial plane, θ = π/2, where (26)
reduces to

V(φ)(r, θ = π/2; a, ℓ) = r
√
∆

r(r2 + a2) − 2a(ℓ− a)
ℓ. (27)

Formally, this velocity vanishes for r → ∞ and r → r+ = 1 +
√

1 − a2, where the
event horizon is located, i.e., there must be a change of its radial gradient for any case
of values of the parameters a and ℓ, contrary to the case of Keplerian orbits where the
azimuthal component of the 3-velocity in LNRF, after substituting of the angular velocity
formula [Bardeen et al., 1972]

Ω = ΩK(r; a) = 1
(r3/2 + a)

(28)
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into Eq. (25), and restricting on the equatorial plane, θ = π/2, reads

V(φ)
K (r; a) = (r2 + a2)2 − a2∆− 2ar(r3/2 + a)

r2(r3/2 + a)
√
∆

(29)

that formally diverges at r = r+. The profile of Keplerian specific angular momentum in
the thin discs is given by

ℓK(r; a) = r2 − 2ar1/2 + a2

r3/2 − 2r1/2 + a
. (30)

This function is very important in the theory of thick discs too, as it determines both the inner
edge of the disc on its part with negative radial gradient (corresponding to unstable circular
geodesics), and the centre of the disc on its part with positive radial gradient (corresponding
to stable circular geodesics). The minimum of ℓK(r; a) corresponds to the marginally stable
circular geodesic.

Of course, for both thick tori and Keplerian discs we must consider the limit on the disc
extension given by the innermost stable orbit. For Keplerian discs this is the marginally
stable geodetical orbit, while for the thick tori this is an unstable circular geodesic kept stable
by pressure gradients and located between the marginally bound and the marginally stable
geodetical orbits, with the radius being determined by the specific angular momentum
ℓ = const ∈ (lms, lmb) through the equation ℓ = ℓK(r; a); ℓms (ℓmb) denotes specific
angular momentum of the circular marginally stable (marginally bound) geodesic.

The radial gradient of the equatorial orbital velocity of thick discs reads

∂V(φ)

∂r
= [∆+ (r − 1)r ][r(r 2 + a2) − 2a(ℓ− a)] − r(3r 2 + a2)∆

[r(r2 + a2) − 2a(ℓ− a)]2
√
∆

ℓ, (31)

so that it changes its orientation at radii determined for a given ℓ ∈ (lms, lmb) by the
condition

-3 -2 -1 1 2
-100
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✻ ✻
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Figure 2. Reality condition for the existence of local extrema of the function ℓex(r; a). The extrema
are allowed, if D(r) > 0. Clearly, the physically relevant extrema, located above the outer horizon,
can exist in the interval r ∈ (1, r4).



A mechanism for excitation of oscillations in accretion discs 245

0.9 1.1 1.2 1.3

0.999

0.9995

1.0005

1.001

1.0015

a2
ex−(r)

r

✻I

(a)

0.8 1.2 1.4 1.6

1.2

1.4

1.6

1.8

2.2

a2
ex+(r)

r

❄
II

(b)

Figure 3. Loci of local extrema of the function ℓex(r; a). They are determined by the functions
a2

ex±(r). (a) The function a2
ex−(r) is relevant for both black holes and naked singularities; its local

minimum is denoted I. (b) The function a2
ex+(r) is relevant for naked singularities only; its local

maximum is denoted II.

ℓ = ℓex(r; a) ≡ a + r2[(r2 + a2)(r − 1) − 2r∆]
2a[∆+ r(r − 1)] . (32)

We have to discuss properties of ℓex(r; a) above the event horizon r+ taking into account
the limits on the inner boundary of the tori. The local extrema of ℓex(r; a) are given by the
relation

a2 = a2
ex±(r) ≡ r

3 + 18r − 7r 2 ± √
D(r)

2(3r + 2)
, (33)

with

D(r) = 9 − 108r + 150r 2 − 12r3 − 23r4 = −23(r − r1)(r − r2)(r − r3)(r − r4), (34)

where

r1
.= −3.11363, r2

.= 0.09602, r3
.= 0.74939, r4

.= 1.74648. (35)

The situation is illustrated in Fig. 2 which implies that only the interval r ∈ (r3, r4) is
relevant for the region outside of the black-hole event horizon. Behaviour of the functions
a2

ex±(r) is given in Fig. 3. Clearly, only a2
ex−(r) is relevant for black holes. The minimum

of a2
ex−(r), denoted I, is located at radius rmin

.= 1.19466 and the critical value of the
rotational parameter is

ac(bh)
.=

√
0.99928 .= 0.99964. (36)

Note that both the functions a2
ex±(r) are relevant for Kerr naked singularities. The maximum

of a2
ex+(r), denoted II, is located at radius rmax

.= 1.43787 and the critical value of the
rotational parameter is

ac(ns)
.=

√
2.26289 .= 1.50429. (37)

Therefore, the possibility to have three changes of the sign of ∂V (φ)/∂r in marginally stable
thick discs is limited from bellow for black holes, and from above for naked singularities.
Here we restrict our attention to the Kerr black holes.
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Figure 4. Kerr spacetimes with the change of sign of the gradient of LNRF velocity. In the ℓ–a plane,
the functions ℓex(max)(a) (upper solid curve), ℓex(min)(a) (lower solid curve), ℓms(a) (dashed curve)
and ℓmb(a) (dashed-dotted curve) are given. For pairs of (a, ℓ) from the shaded region, the gradient
of the orbital velocity changes its sign twice inside the marginally stable tori. Between the points A,
B, the ℓex(max)(a) curve determines an inflex point of V(φ)(r; a, ℓ). The inflex points determined
by the curve ℓex(min)(a) are irrelevant being outside of the definition region for marginally stable
toroids, ℓ ∈ (ℓms(a), ℓmb(a)). The point I corresponds to the inflex point of ℓex(r; a); cf. Fig. 3a.

Now, we have to compare the local extrema of the function ℓex(r; a), determined by
the condition (33), with the functions characterising the marginally stable, ℓms(a), and the
marginally bound, ℓmb(a), circular geodesics as these determine the limits of allowance
of accreting toroidal structures in the Kerr spacetimes [Abramowicz et al., 1978]. For
each given value of a, location of both the marginally stable and marginally bound ci-
rcular geodesics is uniquely given by the functions rms = rms(a), rmb = rmb(a) (see,
e.g., [Bardeen et al., 1972]), and ℓms(a), ℓmb(a) can then be determined using the formulae
for ℓK(r; a) and rms(a), rmb(a), respectively. In Fig. 4, behaviour of the local extrema
ℓex(min)(a), ℓex(max)(a) and the functions ℓms(a), ℓmb(a) is illustrated. It is clear immedi-
ately that the sign’s change of ∂V(φ)/∂r is relevant only for thick discs orbiting the Kerr
black holes with the rotational parameter

a > ac(thick)
.= 0.99979, (38)

which is much higher than the critical value ac(thin)
.= 0.9953 determined by Aschenbach

for thin Keplerian discs [Aschenbach, 2004]. For a > ac(thick) the relevance of ℓex(r; a) is
limited from bellow by ℓms(a). There is another critical value of the rotational parameter,
a = ac(mb)

.= 0.99998, where ℓmb(a) = ℓex(max)(a); for a > ac(mb) the relevance of
ℓex(r; a) is limited from above by ℓmb(a).

The character of the region, where ∂V(φ)/∂r changes sign, can be properly illustrated by
considering the functions ℓex(r; a) and ℓK(r; a) simultaneously. First, we show that there
is no common point of those functions in black-hole spacetimes with a < 1. Indeed, the
condition ℓex(r; a) = ℓK(r; a) implies an equation quartic in a, which has four solutions

a = a1(r) ≡ r
√

r, a = a2(r) ≡ −
√

r(2 − r),
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a = ah(r) ≡
√

r(2 − r), a = aph+(r) ≡
√

r
2

(3 − r). (39)

The solution a1(r) > 1 at r > 1, i.e., it corresponds to naked singularities at r > 1, the
solution a2(r) is negative everywhere, the solution a3 = ah(r) determines radius of the
event horizon, while the solution a4 = aph+(r) determines the radius of the corotating
photon circular geodesic. None of the solutions is relevant for the accretion discs. We can
conclude that above the photon circular orbit there is always ℓK(r; a) > ℓex(r; a); therefore,
the innermost local maximum of V(φ)(r; a) for a > ac(bh), and the only local maximum of
V(φ)(r; a) for a < ac(bh), is always physically irrelevant in marginally stable thick tori.

For black-hole spacetimes, behaviour of the functions ℓex(r; a) and ℓK(r; a) can then be
classified into six classes which are illustrated in Fig. 5:

(i) 0 < a < ac(bh): No extrema of ℓex(r; a) (Fig. 5a).
(ii) a = ac(bh): An inflex point of ℓex(r; a) (Fig. 5b).
(iii) ac(bh) < a < ac(thick): Two local extrema of ℓex(r; a) present, but out of the region

allowing the existence of thick discs (Fig. 5c).
(iv) ac(thick) < a < ac(mb): Two local extrema of ℓex(r; a) allowed in the region of

ℓ ∈ (ℓms, ℓex(max)) (Fig. 5d).
(v) ac(mb) < a < 1: Two local extrema of ℓex(r; a) allowed in the region ℓ ∈ (ℓms, ℓmb)

(Fig. 5e).
(vi) a = 1: The minimum of ℓex(r; a) coincides with the marginally bound geodesic

with ℓmb = 2 at rmb = 1. The curves ℓex(r; a = 1) and ℓK(r; a = 1) intersect at r = 1
(Fig. 5f).

Clearly, two changes of sign of ∂V(φ)/∂r can occur for Kerr black holes with the rotational
parameter a > ac(thick)

.= 0.99979. The interval of relevant values of the specific angular
momentum ℓ ∈ (ℓms(a), ℓex(max)(a)) grows with a growing up to the critical value of
ac(mb)

.= 0.99998. For a > ac(mb), the interval of relevant values of ℓ ∈ (ℓms(a), ℓmb(a))
is narrowing with growing of the rotational parameter up to a = 1, which corresponds to a
singular case where ℓms(a = 1) = ℓmb(a = 1) = 2. Notice that the situation becomes to be
singular only in terms of the specific angular momentum; it is shown (see [Bardeen et al.,
1972]) that for a = 1 both the total energy E and the axial angular momentum L differ
at rms and rmb, respectively, but their combination, ℓ ≡ L/E , giving the specific angular
momentum, coincides at these radii.

4 VON ZEIPEL SURFACES

It is useful to obtain global characteristics of the phenomenon that is shown to be manifested
in the equatorial plane as the existence of a small region with positive gradient of the LNRF
velocity.

It is well known that rotational properties of perfect fluid equilibrium configurations
in strong gravity are well represented by the radius of gyration ρ̃, introduced in the case
of spherically symmetric Schwarzschild spacetimes by [Abramowicz et al., 1993], as the
direction of increase of ρ̃ defines a local outward direction of the dynamical effects of
rotation of the fluid.
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Figure 5. Classification of the Kerr black-hole spacetimes according to the properties of the functi-
ons ℓex(r; a) (solid curves) and ℓK(r; a) (dashed curves). The functions are plotted for six cases
corresponding to the classification. The marginally stable tori can exist in the shaded region only
along ℓ = const lines. Their inner edge (centre) is determined by the decreasing (increasing) part
of ℓK(r; a). The local extrema of the orbital velocity relative to LNRF relevant for thick discs are
given by the intersections of ℓ = const line with the curve of ℓex(r; a) in the shaded region. Notice
that the region corresponding to the allowed values of ℓ for the discs is narrowing with a → 1, it is
degenerated into the ℓ = 2 line for a = 1 as ℓms = ℓmb = 2 in this case. In the case (e), the gradient
∂V(φ)/∂r changes sign for all values of ℓ ∈ (ℓms, ℓmb) allowed for the tori, while in the case (d), it is
allowed for a region restricted from above by the value ℓex(max)(a). In the cases (a)–(c), the change
of sign of ∂V(φ)/∂r cannot occur in the disc. It is directly seen from cases (d)–(f) that the gradient
∂V(φ)/∂r changes the sign closely above the centre of the disc.
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Figure 6. Von Zeipel surfaces (meridional sections). For a < ac(bh) and any ℓ, only one surface with
a cusp in the equatorial plane and no closed (toroidal) surfaces exist. The cusp is, however, located
outside the toroidal equilibrium configurations of perfect fluid. For a > ac(bh) and ℓ appropriately
chosen, two surfaces with a cusp, or one surface with both the cusps, together with closed (toroidal)
surfaces, exist located always inside the ergosphere (dashed surface) of a given spacetime. Moreover,
if a > ac(thick), both the outer cusp and the central ring of closed surfaces are located inside the
toroidal equilibrium configurations corresponding to marginally stable thick discs (light-gray region;
its shape is determined by the critical self-crossing equipotential surface of the potential W given
by (19)). The cross (+) denotes the centre of the torus. Dark region corresponds to the black hole.
Figures illustrating all possible configurations of the von Zeipel surfaces are presented in [Stuchlı́k
et al., 2004]. Here we present the figure plotted for the parameters a = 0.99998, ℓ = 2.0065.
Critical value of the von Zeipel radius corresponding to the inner and the outer self-crossing surface
is Rc(in)

.= 3.429 and Rc(out)
.= 3.804, respectively, the central ring of toroidal surfaces corresponds

to the value Rcenter
.= 3.817. Interesting region containing both the cusps and the toroidal surfaces

is plotted in detail at the left lower figure. Right lower figure shows the behaviour of the von Zeipel
radius in the equatorial plane. The resonance between the radial and vertical epicyclic oscillations is
possible in the region where stable circular geodesics are allowed – right to the centre of the disc.
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A physically reasonable way of defining a global quantity characterising rotating fluid
configurations in terms of the LNRF orbital velocity is to introduce, so-called, von Zeipel
radius defined by the relation

R ≡ ℓ

V(φ)
LNRF

(40)

which generalises the Schwarzschildian definition of gyration radius. For more details
see [Stuchlı́k et al., 2004], where full discussion of the properties of the von Zeipel surfaces
is presented and illustrated.

In the case of marginally stable tori with ℓ(r, θ) = const, the von Zeipel surfaces,
i.e., the surfaces of R(r, θ; a, ℓ) = const, coincide with the constant velocity surfaces
V(φ)

LNRF(r, θ; a, ℓ) = const. For the tori in the Kerr spacetimes, there is

R(r, θ; a, ℓ) = Σ
√
∆(A − 2aℓr) sin θ

A(∆− a2 sin2 θ) + 4a2r2 sin2 θ
. (41)

Topology of the von Zeipel surfaces can be directly determined by the behaviour of the von
Zeipel radius (41) in the equatorial plane

R(r, θ = π/2; a, ℓ) = r(r2 + a2) − 2a(ℓ− a)

r
√
∆

. (42)

The local minima of the function (42) determine loci of the cusps of the von Zeipel surfaces,
while its local maximum (if it exists) determines a circle around which closed toroidally sha-
ped von Zeipel surfaces are concentrated (see Fig. 6). Notice that the minima (maximum) of
R(r, θ = π/2; a, ℓ) correspond(s) to the maxima (minimum) of V (φ)

LNRF(r, θ = π/2; a, ℓ),
therefore, the inner cusp is always physically irrelevant being located outside of the toroidal
configuration of perfect fluid, cf. Fig. 5. Behaviour of the von Zeipel surfaces nearby the cen-
tre and the inner edge of the thick tori orbiting Kerr black holes with a > ac(thick)

.= 0.99979,
i.e., the existence of the von Zeipel surface with an outer cusp or the surfaces with toroidal
topology, suggests possibility of strong instabilities in both the vertical and radial direction
and a tendency for development of some vortices crossing the equatorial plane. We plan
studies of these expected phenomena in future.

5 DISCUSSION AND CONCLUSIONS

It is useful to discuss both the qualitative and quantitative aspects of the phenomenon of the
positive gradient of the LNRF orbital velocity. In the Kerr spacetimes with a > ac(thick),
changes of sign of the gradient of V(φ)(r; a) must occur closely above the centre of relevant
toroidal discs, at radii corresponding to stable circular geodesics of the spacetime, where
the radial and vertical epicyclic frequencies are well defined2 (cf. Fig. 5).

2 It is a question, to which an extent the notion of the epicyclic frequencies, basically related to Keplerian,
geodetical circular orbits, and usually considered in the framework of Keplerian, thin discs, can be used for
marginally stable toroidal discs. Nevertheless, we expect that the epicyclic frequencies could be, to some extent,
relevant at least for marginally stable tori having ℓ ℓms, with their structure being close to the one of Keplerian
discs.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Profiles of the equatorial orbital velocity of marginally stable tori in LNRF in terms of the
radial Boyer–Lindquist coordinate. The profiles are given for typical values of a corresponding to
the classification of the Kerr black-hole spacetimes. For comparison, the profiles are given for the
orbital velocity of Keplerian discs in Kerr spacetimes with the same rotational parameter a. For thick
discs, values of ℓ = const are appropriately chosen; commonly, ℓ = ℓms is used giving the maximal
value of the velocity difference in between the local extrema, and representing the limiting case of
marginally stable thick discs.
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(a) (b) (c)

Figure 8. (a) Positions of local extrema of V(φ)
LNRF (in B-L coordinates) for the marginally stable

discs with ℓ = ℓms in dependence on the rotational parameter a of the black hole. (b) Velocity
difference ∆V(φ) = V(φ)

max − V(φ)
min as a function of the rotational parameter a of the black hole

for both the thin (Keplerian) disc and the marginally stable (non-Keplerian) disc with ℓ = ℓms.
(c) Orbital-velocity curves in the limiting case of the extreme black hole. At r = 1, the Keplerian
orbital velocity V(φ)

K has a local minimum, whereas the orbital velocity V(φ)
ℓms

of the marginally stable
disc has an inflex point. In both cases, the velocity difference ∆V(φ) reaches its maximal values:
∆V(φ)

K
.= 0.06986, ∆V(φ)

ℓms

.= 0.02241.

For a = ac(bh), an inflex point of V(φ)(r; ac(bh)) occurs at rmin
.= 1.19466 for the disc

with ℓ .= 2.01471. With rotational parameter growing (a > ac(bh)), the local maximum of
V(φ)(r; a, ℓ) is successively shifted up to values of r ∼ 1.4, while the local minimum of
V(φ)(r; a, ℓ) is shifted down to r = 1 in the limit of a = 1. Of course, the local extrema of
V(φ)(r; a, ℓ) become to be relevant till for the rotational parameter a > ac(thick), when the
specific angular momentum, ℓ = const, enters the interval corresponding to the marginally
stable tori, ℓ ∈ (ℓms, ℓmb). The loci of these extreme points can be directly inferred from
Fig. 5, where the regions corresponding to marginally stable tori are shaded.

For all the relevant cases of the classification of Kerr spacetimes given in the previous
section, behaviour of V(φ)(r; a, ℓ) is illustrated in Fig. 7, which enables us to make some
conclusions on the quantitative properties of the orbital velocity and its gradient. For
comparison, profiles of the Keplerian velocity V (φ)

K (r; a) are included. With a growing in
the region of a ∈ (ac(thick), 1), the difference ∆V(φ) ≡ V(φ)

max − V(φ)
min grows as well as

the difference of radii, ∆r ≡ rmax − rmin, where the local extrema of V(φ)(r; a, ℓ) occur,
see Figs 8a, b. Recall that the innermost local maximum of V (φ)(r; a, ℓ) must be located,
necessarily, under the disc structure. The value of V (φ)(r = rin; a, ℓ) at the inner edge
of the toroid (where ℓ = ℓK(r; a)) is located closer and closer to the local minimum of
V(φ)(r; a, ℓ) when a → 1. For a = 1, there is an inflex point of V (φ)(r; a = 1, ℓ) at r = 1
where the local minimum and the “forbidden” local maximum of V (φ)(r; a, ℓ) for ℓ = 2
coincide, Fig. 8c.

We can conclude that the changes of sign of gradient of the LNRF orbital velocity of
marginally stable thick discs occur for discs orbiting Kerr black holes with the rotational
parameter a > ac(thick)

.= 0.99979. In terms of the redefined rotational parameter, 1 − a, its
value of 1−ac(thick)

.= 2.1×10−4 is more than one order lower than the value 1−ac(thin)
.=

4.7×10−3 found by Aschenbach for the changes of sign of the gradient of orbital velocity in
Keplerian, thin discs. Moreover, the velocity difference,∆V (φ) = V(φ)

max − V(φ)
min, is smaller

but comparable in the thick discs in comparison with thin discs (see Fig. 8b). In fact, we
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(a) (b) (c)

Figure 9. Critical “oscillatory”frequency for excitation of epicyclic oscillations, introduced by [As-
chenbach, 2004], as a function of the rotational parameter of the black hole in terms of both the B–L
coordinate radius (Ωr

crit) and the proper radial distance (Ω R̃
crit). (a) Keplerian discs. (b) Marginally

stable (non-Keplerian) discs with constant specific angular momentum ℓ = ℓms. (c) Comparison of
critical frequencies for Keplerian ΩK

crit and non-Keplerian Ωℓms
crit discs in terms of the proper radius.

can see that for a → 1, the velocity difference in the thick discs ∆V (φ)
(thick) ≈ 0.02, while

for the Keplerian discs it goes even up to ∆V (φ)
(thin) ≈ 0.07, Fig. 8c. These are really huge

velocity differences, being expressed in units of c.
Moreover, we can conclude that in constant specific angular momentum tori, the effect

discovered by Aschenbach is elucidated by topology changes of the von Zeipel surfaces.
In addition to one self-crossing von Zeipel surface existing for all values of the rotational
parameter a, for a > ac(thick) the second self-crossing surface together with toroidal surfaces
occur. Toroidal von Zeipel surfaces exist under the newly developing cusp, being centred
around the circle corresponding to the minimum of the equatorial LNRF velocity profile.
Further, the behaviour of von Zeipel surfaces in marginally stable tori orbiting Kerr black
holes with a > ac(thick) strongly suggests a possibility of development of both the vertical
and vortical instabilities because of the existence of the critical surface with a cusp, located
above the centre of the torus and the toroidal von Zeipel surfaces located under the cusp.

As [Aschenbach, 2004], we can define the typical frequency of the mechanism for
excitation of oscillations by the maximum slope of the positive gradient of ∂V (φ)/∂r in
between the changes of its sign,

Ωr
crit = 2π

∂V(φ)

∂r

∣∣∣∣∣
max

. (43)

The “oscillatory” frequency has to be determined numerically. We have done it for both
Keplerian discs and the marginally stable discs with ℓ = ℓms = const, see Fig. 9. However,
it is more appropriate to consider the gradient of ∂V (φ)/∂ R̃ where R̃ is the proper radial
distance defined by

dR̃ = √
grr dr =

√
Σ

∆
dr, (44)

as R̃, giving the physically relevant distance (coordinate-independent), is more convenient
for estimation of physically realistic characteristic frequencies related to local physics in
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(a) (b)

Figure 10. (a) Positive parts of the “coordinate” and “proper” radial gradient ∂V(φ)/∂r and ∂V(φ)/∂ R̃
for given value of the rotational parameter a. (c) Proper radial distance of the loci of (∂V(φ)/∂ R̃)max
measured from the marginally bound orbit for both the Keplerian disc ( R̃K

crit) and the marginally stable
(non-Keplerian) disc with ℓ = ℓms (R̃ℓms

crit ). Dashed curve corresponds to the loci of marginally stable
equatorial circular geodesic determining, in this case, the inner edge of both types of discs.

the disc3. In terms of the proper radial distance, the critical frequency for possible excitation
of oscillations is given by the relation

Ω R̃
crit = 2π

∂V(φ)

∂ R̃

∣∣∣∣∣
max

. (45)

Because the velocity gradients related to the proper distance are suppressed in compari-
son with those related to the coordinate (unphysical) distance, there is Ω R̃

crit < Ωr
crit. The

situation is illustrated in Fig. 9. Moreover, Fig. 10a shows mutual behaviour of the “coor-
dinate” and “proper” radial gradient ∂V (φ)/∂r and ∂V(φ)/∂ R̃ in region between the local
minimum and the outer local maximum of the orbital velocity V (φ) for an appropriately
chosen value of the rotational parameter a. Location of the orbit R̃crit corresponding to the
maximal positive value of the orbital velocity gradient, in terms of its proper radial distance
from the marginally bound orbit, is depicted for both the thin discs and the marginally stable
toroidal configurations with ℓ = ℓms in Fig. 10b. Note that in marginally stable tori with
constant specific angular momentum ℓ = ℓms, the inner edge is located at the marginally
stable equatorial circular geodesic, like in thin (Keplerian) discs. Fig. 10b enables to give
an idea on the mutual positions of the critical orbit R̃crit in the disc and the inner edge of
the disc R̃ms.

The effect of “velocity gradient sign changes” can be very important as a trigger instability
mechanism for oscillations observed in QPOs. Of course, further studies directed both to
the theoretically well founded, detailed physical mechanisms for triggering of oscillations

3 Of course, such a locally defined “oscillatory” frequency, confined to the orbiting disc, should be further related
to distant observers by an appropriate coordinate transformation involving the time metric coefficient and the
motion of the disc.
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in the equilibrium tori with general specific angular momentum distribution, and the link to
observations, are necessary and planned for the future.

Finally, we would like to call attention to the fact that signs’ changes of the radial
gradient of orbital velocity in LNRF occur nearby the r = r3:1 orbit, while in the vicinity
of the r = r3:2 orbit, ∂V(φ)

LNRF/∂r < 0 for all values of a for both the Keplerian discs and
the marginally stable toroidal discs with all allowed values of ℓ. Clearly, the parametric
resonance, which is the strongest one for ratios of the epicyclic frequenciesΩV/ΩR = 3/2
works at the r = r3:2 orbit, while its effect is much smaller at the radius r = r3:1 with
ΩV/ΩR = 3/1 [Abramowicz et al., 2003]. Therefore, the forced resonance, triggered by
the changes of ∂V(φ)

LNRF/∂r , will be important for the 3:1 resonance. Notice that the forced
resonance at r = r3:1 can generally result in observed QPOs frequencies with 3:2 ratio
due to the beat frequencies allowed for the forced resonance [Abramowicz et al., 2004];
however it seems to be irrelevant in the case of microquasars, as all observed frequencies
lead to the values of the rotational parameter a < ac(thick) as shown in [Török et al., 2004].
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Authors are supported by the GAČR grants 202/02/0735, 205/03/1147 and 205/03/H144.
The main parts of the work were done at the Department of Astrophysics of Chalmers
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ABSTRACT
Extremely compact objects (9G M/4c2 < R < 3G M/c2) contain trapped null
geodesics that cannot escape the objects. Certain part of neutrinos produced in
their interior will therefore be trapped, thus influencing neutrino luminosity of the
objects and consequently their thermal evolution. The existence of trapped neutrinos
also indicates possibility of “two-temperature” cooling regime of extremely compact
objects. It is shown that the trapping of neutrinos can be relevant even for moderately
extremely compact stars.

1 INTRODUCTION

It is well known that in the internal Schwarzschild spacetimes of uniform energy den-
sity [Schwarzschild, 1916] with radius R < 3GM/c2, bound null geodesics must exist be-
ing concentrated around the stable circular null geodesic [Stuchlı́k et al., 2001,Abramowicz
et al., 1993]. It follows immediately from the behaviour of the effective potential of null
geodesics in the exterior, vacuum Schwarzschild spacetimes, determining the unstable null
circular geodesics at the radius rph = 3GM/c2 (see, e.g., [Misner et al., 1973]), that any
spherically symmetric, static non-singular interior spacetime with radius R < rph admits
existence of bound null geodesics. We call objects (stars) satisfying this condition – ex-
tremely compact objects (stars). The equations of state admitting existence of the extremely
compact objects were investigated, e.g., in [Nilsson and Ugla, 2000, Stuchlı́k and Hledı́k,
2001, Hledı́k et al., 2004].

The existence of bound null geodesics in extremely compact objects has interesting as-
trophysical consequences. For example, trapped modes of gravitational waves were studied
extensively by M. Abramowicz and his collaborators [Abramowicz et al., 1997,Abramow-
icz, 1999] using the optical reference geometry which brings a new insight into the properties
of extremely compact objects. Clearly, the existence of trapped gravitational waves could
influence some instability modes in these objects.

We shall consider another interesting problem related to the existence of bound null
geodesics – namely, the problem of neutrinos trapped by the strong gravitational field of
extremely compact objects. The trapped neutrinos can be important at least for two reasons.
First, they will suppress the neutrino flow from extremely compact stars; such a suppression

80-7248-242-4 c⃝ 2004 – SU Opava. All rights reserved.
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could have observable consequences. Second, trapped neutrinos, being restricted to a layer
extending from some radius, depending on details of the structure of extremely compact
stars, up to their surface, can strongly influence cooling of the extremely compact stars.
Moreover, the cooling process could be realized in a “two-temperature” regime, when the
temperature profile in the interior of the star with no trapped neutrinos differs from the
profile established in the external layer with trapped neutrinos. For the neutrino dominated
period of the cooling process, one can even speculate that some part of the external layer
will reach a higher temperature than its interior near the radius of the stable null circular
geodesic, where the trapping of neutrinos reaches highest efficiency. This effect can lead to
an inflow of heat from the “overheated” external layer to the interior of the star through other
“agents” than the neutrino flows. Such a heat flow could influence the structure of extremely
compact stars, maybe, even some special “self-organized” structures could develop due to
the assumed heat flow. Then properties of the extremely compact stars could be modified
substantially.

Of course, all of these ideas deserve very detailed and sophisticated analytical estimates
and numerical simulations. Here, we restrict our attention to the first step in considering
the role of trapped neutrinos in extremely compact stars. We shall estimate the relative
number of trapped neutrinos in comparison to all neutrinos produced in the extremely
compact objects, giving this estimate in both local and global relations. For simplicity, we
shall consider the internal Schwarzschild spacetime with uniform distribution of energy
density (but a nontrivial pressure profile) when all the calculations can be realized in
terms of elementary functions only and the geometric units can be effectively used. We
would like to recall that this spacetime can well represent spacetime properties of realistic
extremely compact stars [Glendenning, 2000]. It is important that the trapping of neutrinos
is shown to be relevant even for the internal Schwarzschild spacetimes with radius only
moderately smaller than rph = 3GM/c2. Therefore, it is worth to continue in detailed
studies of trapped neutrinos in realistic models of extremely compact neutron stars or
quark stars, when we usually expect radii R moderately smaller than rph. (Of course, some
models admit existence of objects with radii R close to the critical value of 9GM/4c2, see,
e.g., [Nilsson and Ugla, 2000].) Recently, we extend the estimates of the trapping process to
the cases of the polytropic and adiabatic spherical objects and realistic models of extremely
compact neutron stars and quark stars.

2 INTERNAL SCHWARZSCHILD METRIC

In the standard Schwarzschild coordinates and the geometric units with c = G = 1, the
line element for the internal Schwarzschild spacetime of uniform energy density ρ reads

ds2 = −e2Φ(r) dt2 + e2Ψ (r) dr2 + r2(dθ2 + sin2 θ dφ2). (1)

The temporal and radial components of the metric tensor are given by the formulae

(−gt t)
1/2 = eΦ = 3

2 Y1 − 1
2 Y (r), (grr )

1/2 = eΨ = 1/Y (r), (2)

where
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Y (r) =
√

1 − r2

a2 , Y1 ≡ Y (R) =
√

1 − R2

a2 , (3)

1
a2 = 8

3
πρ = 2M

R3 , (4)

R is the radius of the internal spacetime, M is the mass parameter of the internal spacetime,
which coincides with the mass parameter of the external, vacuum Schwarzschild spacetime.
It can be shown that the internal Schwarzschild spacetimes are allowed for R > 9M/4 only,
see, e.g., [Stuchlı́k et al., 2001] for details.

The metric (1) in terms of the tetrad formalism reads

ds2 = −[ω(t)]2 + [ω(r)]2 + [ω(θ)]2 + [ω(φ)]2, (5)

where

ω(t) = eΦ dt, ω(r) = eΨ dr, ω(θ) = r dθ, ω(φ) = r sin θ dφ. (6)

Tetrad of 4-vectors eµ
(α) =

[
ω

(α)
µ

]−1
is then given by

e⃗(t) = 1
eΦ

∂

∂t
, e⃗(r) = 1

eΨ

∂

∂r
, e⃗(θ) = 1

r
∂

∂θ
, e⃗(φ) = 1

r sin θ
∂

∂φ
. (7)

Tetrad components of 4-momentum of a test particle or a photon are determined by projec-
tions p(α) = pµeµ

(α).

3 NULL GEODESICS AND EFFECTIVE POTENTIAL

We assume the period of cooling of extremely compact stars when their temperature falls
down enough that the motion of neutrinos can be considered free, i.e., geodetical. This
period starts at the moment when mean free path of neutrinos becomes to be comparable to
the radius R. Weak interaction of ultrarelativistic neutrinos thus implies their motion along
null geodesics obeying the equations (λ is affine parameter):

Dpµ

dλ
= 0, pµ pµ = 0. (8)

Due to the existence of two Killing vector fields: the temporal ∂/∂t one, and the azimuthal
∂/∂φ one, two conserved components of the 4-momentum must exist:

E = −pt (energy), L = pφ (axial angular momentum). (9)

Moreover, the motion plane is central. For a single-particle motion, one can set θ = π/2 =
const, choosing the equatorial plane.

The null-geodetical motion can conveniently be described in terms of the impact param-
eter

ℓ = L
E

. (10)

Then (8) yields the equation governing the radial motion in the form
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Figure 1. Effective potential (M = 1) for R = 2.5 (left) and for several values of R (right). The inner
bound geodesics exist for R < 3 only.
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Figure 2. Segment of 3D plot of V int
eff (M = 1) for 9/4 < R < 2.3 and 0 ≤ r ≤ 2.5. The maximum

of the effective potential diverges when R → 9M/4 and shifts to r = 0.

(pr )2 = e−2(Φ+Ψ ) E2
(

1 − e2Φ ℓ
2

r2

)
. (11)

The radial motion is restricted by an effective potential defined by the relations

ℓ2 ≤ Veff =

⎧
⎪⎪⎨

⎪⎪⎩

V int
eff = 4a2[1 − Y 2(r)]

[3Y1 − Y (r)]2 for r ≤ R

V ext
eff = r3

r − 2M
for r > R

(12)

Notice that V ext
eff is the effective potential of the null-geodetical motion in the vacuum

Schwarzschild spacetime [Misner et al., 1973].
Circular null geodesics are given by local extrema of the effective potential (∂Veff/∂r =

0), which in the internal spacetime yields for their radius and their impact parameter the
relations
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Y (rc) = 1
3Y1

, ℓ2
c(i) = 4a2

9Y 2
1 − 1

. (13)

Typical behaviour of Veff is illustrated in Figs 1 and 2.

4 TRAPPING OF NEUTRINOS

In the case of extremely compact objects (R < 3), stable bound null geodesics exist (see,
e.g., [Stuchlı́k et al., 2001]) that prevent some part of produced neutrinos from escaping
these static objects. The relation (13) reduces for unit mass M = 1 (we shall assume that in
the following) to

ℓ2
c(i) = R4

4R − 9
, (14)

which corresponds to the local maximum of the effective potential V int
eff at rc(i), where the

stable circular null geodesics of the internal spacetime are located. The local minimum
of V ext

eff at rc(e) = 3 corresponds to the unstable circular null geodesics of the external
spacetime, with ℓ2

c(e) = 27 (see Fig. 3).

4.1 Regions of trapping

Bound neutrinos (depicted by the shaded area in Fig. 3) may generally appear outside the
extremely compact object, but they are trapped by the strong gravitational field of these
objects and they enter them again. Therefore, we divide the trapped neutrinos into two
families:

r

interior exterior

✻❄
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R

V e
ff

ℓ2
c(i)

ℓ2
int (R)
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40
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1 2 3 4 5

0
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Figure 3. Detailed behaviour of Veff (M = 1) for R = 2.5.
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Figure 4. The dependence of rb(e) and rb(i) on the radius R. The relations for the variable Y (r) are
converted into relations for r .

• “Internal” bound neutrinos (upper (shaded) part of the shadow area with impact parameter
between ℓ2

int(R) and ℓ2
c(i)): their motion is restricted inside the object.

• “External” bound neutrinos (lower part of the shadow area with impact parameter between
ℓ2

c(e) and ℓ2
int(R)): may leave the object, but they re-enter the object.

Pericentra for both the marginally bound (rb(e)) and “internal” marginally bound neutrinos
(rb(i)) can then be expressed in the form

Y±(rb(e)) =
81
√

1 − 2
R ± 2R

√
R4 − 108R + 243

2R3 + 27
(15)

Y (rb(i)), =
√

1 − 2
R

(
9 − 2R
2R − 3

)
, (16)

see Fig. 4 for graphical representation.
Bound neutrinos with mean free path ≫ R (this condition can be fulfilled in a few days

old neutron star, see [Shapiro and Teukolsky, 1983, Weber and Glendenning, 1992]) will
slow down the cooling although they will be re-scattered due to finiteness of the mean
free path. An eventual scattering of trapped neutrinos will cause change of their impact
parameter, therefore, some of them will escape the extremely compact star, suppressing
thus the slow down of the cooling process. Moreover, the “external” bound neutrinos have
certain portion of their orbit outside the configuration without any interaction; this fact the
other hand “suppress the suppression” of the cooling timescale retardation. Clearly, the re-
scattering effect on the trapped neutrinos is a very complex process deserving sophisticated
numerical code based on the Monte Carlo method. Only neutrinos produced above or at
rb(e) are subject to this effect; those produced below rb(e) freely escape to infinity.
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4.2 Directional angles

Considering (without loss of generality, as stated just above Eq. (10)) an equatorial motion,
we can define the directional angle relative to an outward pointed radial direction measured
in the emitor system by the standard relations

sinψ = p(φ)

p(t) , cosψ = p(r)

p(t) , (17)

where

p(α) = pµω(α)
µ , p(α) = pµeµ

(α). (18)

Besides conserving components (9), and pθ = 0, Eq. (11) implies

pr = ±EeΨ−Φ

(
1 − e2Φ ℓ

2

r2

)
. (19)

For the directional angles we thus obtain relations

sinψ = α(r, R)
ℓ

r
, cosψ = ±

√
1 − sin2ψ, (20)

where

α(r, R) = 3
2

√
1 − 2

R
− 1

2

√
1 − 2

R

( r
R

)2
. (21)

The directional angle limit for the bound neutrinos is determined by the impact parameter
ℓ2

c(e) = 27. We arrive at relations

sinψe(r, R) = α(r, R)
3
√

3
r

, cosψe(r, R) = ±
√

1 − 27α2(r, R)

r2 . (22)

The directional angle limit for the “internal” bound neutrinos is determined by Eq. (14) and
yields the relations

sinψi(r, R) = α(r, R)
R3/2

r
√

R − 2
, cosψi(r, R) = ±

√

1 − α2(r, R)R3

(R − 2)r2 (23)

Apparently, the condition ψi > ψe holds at any given radius r < R.

4.3 Escaped to produced neutrinos ratio

We assume that neutrinos are locally produced by isotropically emitting sources. Then
escaped-to-produced-neutrinos ratio depends on a geometrical argument only. It is deter-
mined by the solid angle 2Ω corresponding to escaping neutrinos (also inward emitted
neutrinos must be involved because even these neutrinos can be radiated away), see Fig. 5.

Let Np, Ne and Nb denote, respectively, the number of produced, escaped and trapped
neutrinos per unit time of an external static observer at infinity. In order to determine the
global correction factors
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Figure 5. Overview of the geometry of neutrino radiation.
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E(R) ≡ Ne(R)

Np(R)
, B(R) ≡ Nb(R)

Np(R)
= 1 − E(R) (24)

it is necessary to introduce the local correction factor for escaping neutrinos (notice that we
consider production and escaping rates at a given radius r , but the radius R of the compact
object enters the relation as it determines the escaping directional angle)

ϵ(r, R) = dNe(r)

dNp(r)
= 2Ω(ψe(r, R))

4π
= 1 − cosψe(r, R) (25)

and the complementary factor for trapped neutrinos

β(r, R) = 1 − ϵ(r, R) = dNb(r)

dNp(r)
= cosψe(r, R). (26)

The coefficient β(r, R), determining local efficiency of the neutrino trapping, i.e., the ratio
of the trapped and produced neutrinos at any given radius, is shown for some representative
values of R in Fig. 6.

4.4 Neutrino production rates

Generally, the neutrino production is a very complex process depending on detailed structure
of an extremely compact object. We can express the neutrino production rate in the form

I(r{A}) = dN(r{A})
dτ (r)

, (27)

where dN is the number of interactions at radius r , τ is the proper time of the static observer
at the given r, {A} is the full set of quantities relevant for the production rate. We can write
that

dN(r) = n(r)Γ (r)dV (r), (28)

where n(r), Γ (r) and dV (r) are the number density of particles entering the neutrino
production processes, the neutrino production rate and the proper volume element at the
radius r , respectively. Both n(r) and Γ (r) are given by detailed structure of the extremely
compact stars, dV (r) is given by the spacetime geometry.

Here, considering the uniform energy density Schwarzschild stars (for requirements of
more realistic model see, e.g., [Østgaard, 2001]), we shall assume the local production rate
to be proportional to the energy density, i.e., we assume uniform production rate as measured
by the local static observers; of course, from the point of view of static observers at infinity,
the production rate will not be distributed uniformly. (According to [Glendenning, 2000],
such toy model could be reasonable good starting point for more realistic calculations.)

Therefore. we write the local neutrino production rate in the form

I(r) ∝ ρ = const (29)

or

I = dN

dτ
,

dN (r)

dτ
∝ n(r) ∝ ρ(r) ∝ const. (30)
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The local neutrino production rate related to the distant static observers is then given by
the relation including the time-delay factor

I = dN
dt

= IeΦ(r). (31)

Now, the number of neutrinos produced in a proper volume dV per unit time of a distant
static observer is

dNp(r) = I (r) dV (r) = 4πIeΦ(r)+Ψ (r)r2 dr. (32)

Integrating through whole the compact object (from 0 to R) and using (2), we arrive to the
global neutrino production rate in the form

Np(R) = 4πI

∫ R

0

[
3R

√
R − 2√

R3 − 2r2
− 1

]
r2 dr . (33)

In an analogical way, we can give the expressions for the global rates of escaping and
trapping of the produced neutrinos:

Ne(R) = 4πI

∫ R

0
(1 − cosψe(r, R))

[
3R

√
R − 2√

R3 − 2r2
− 1

]
r2 dr, (34)

Nb(R) = 4πI

∫ R

rb(e)

cosψe(r, R)

[
3R

√
R − 2√

R3 − 2r2
− 1

]

r2 dr. (35)

The coefficients giving the global efficiency of trapping (escaping) of neutrinos generated
in whole the compact object are hence given by the relations

B(R) =
∫ R

rb(e)
γ (r, R)

√
1 − 27α2(r,R)

r2 r2 dr
∫ R

0 γ (r, R)r2 dr
, (36)

E(R) = 1 − B(R), (37)

where

γ (R, r) = 3R
√

R − 2√
R3 − 2r2

− 1, (38)

and α(r, R) is given by (21).
We can, moreover, define other global characteristic coefficients. For the “internal”

neutrinos, we introduce

Q = Ni

Np
=
∫ R

rb(i)
γ (r, R)

√
1 − α2(r, R) R3

(R−2)r2 r2 dr
∫ R

0 γ (r, R)r2 dr
(39)

and for the “external” neutrinos, we can use a complementary coefficient

X = Next

Np
= B − Q (40)

Numerical results for the coefficients E , B, Q and X in dependence on R are depicted in
Fig. 7.
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Figure 7. Dependence of E , B, Q and X on total radius R.
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Figure 8. Behaviour of the coefficient Ba. It is explicitly shown that Ba ∼ 10 % for R = 2.87M .

It can also be useful to have an information on the global efficiency of the trapping
process related to the “active” zone of the extremely compact objects. This efficiency is
expressed by the global efficiency coefficient defined by the relation

Ba(R) =
∫ R

rb(e)
γ (r, R)

√
1 − 27α2(r,R)

r2 r2 dr
∫ R

rb(e)
γ (r, R)r2 dr

(41)

(42)

Behaviour of the function Ba(R) is depicted in Fig. 8. In fact, the coefficient Ba(R) yields
better intuitive insight into the influence of the trapped neutrinos on the cooling process
than the coefficient B(R) can, because it is restricted purely to the active zone, where the
trapping occurs.
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5 CONCLUSIONS

Efficiency of the neutrino trapping in the extremely compact objects described by the
internal Schwarzschild spacetime grows with radius R descending from R = 3M down to
the limiting critical value of R = 9M/4. The local efficiency factor β(r, R) has its maximum
at the radius of the stable null circular geodesic. Notice that βmax(R = 2.9M) ∼ 0.1, and it
grows strongly with descending R, asβmax(R = 2.5M) ∼ 0.5 andβmax(R → 9M/4) → 1.
Therefore, the trapping can be locally important at even slightly extremely compact objects
with R ∼ 2.9M .

The global efficiency factor of the trapping B(R) grows almost linearly with R descend-
ing from the limiting value of R = 3M . We can see that the value of the global trapping
factor B = 0.1 is reached for R ∼ 2.8M , and B > 0.2 for R < 2.7M . We can conclude
that globally the trapping of neutrinos becomes relevant for moderately extreme compact
objects. Moreover, considering the active zone of the trapping only, we obtain even higher
values of the global trapping factor. For example, we deduce from Fig. 8 that Ba > 0.1 for
R < 2.87M .

Because the effect of trapping of neutrinos is a cumulative one, we can expect its relevance
in realistic models of extreme compact objects. It is under study now, how the trapping will
really influence the cooling process in some simple models of quark stars with a relatively
simple “bag” equation of state, and how the cooling of such a quark star will be modified
by cumulation of neutrinos in the zone of trapping.
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aus inkompressibler Flussigkeit nach der Einsteinschen Theorie. Sitzber. Deut. Akad.
Wiss. Berlin, Kl. Math.-Phys. Tech., pages 424–434.

[Shapiro and Teukolsky, 1983] Shapiro, S. L. and Teukolsky, S. A. (1983). Black Holes,
White Dwarfs and Neutron Stars: The Physics of Compact Objects. John Wiley & Sons,
New York.

[Stuchlı́k and Hledı́k, 2001] Stuchlı́k, Z. and Hledı́k, S. (2001). Bound neutrinos in ex-
tremely compact stars. In preparation.

[Stuchlı́k et al., 2001] Stuchlı́k, Z., Hledı́k, S., Šoltés, J., and Østgaard, E. (2001). Null
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ABSTRACT
We further examine orbits of satellite stars in the gravitational field of a dark super-
massive compact body, which is surrounded by a self-gravitating accretion disc or a
massive molecular torus. The disc extends to several hundred gravitational radii from
the core and its mass can reach a significant fraction of the central mass, causing a
non-negligible perturbation of the orbits. We demonstrate that resonances occur for
orbits exhibiting epicyclic and latitudinal oscillations whose periods are in rational
ratios. As a result, episodic changes of orbital eccentricity and inclination take place.
Some of the satellite stars may populate highly eccentric orbits with an increased
chance of being damaged by tidal forces at the moment of their close approach to the
central black hole, or they may be even set on an unstable trajectory and captured by
the hole. This effect influences the long-term evolution of the system which would
otherwise exhibit only very slow orbital decay and gradual sinking of the satellites
toward the core. It may be therefore relevant for the structure of an inner cluster
residing in galactic nuclei.

1 INTRODUCTION

Active galactic nuclei (AGN) and quasars are fed by accretion process onto a super-massive
black hole [Kato and Fukue, 1980]. An accretion disc is essential ingredient of the model,
however, the role of stars is also crucial and cannot be neglected in a picture of the
system which aims to be astrophysically realistic. Both sub-systems, i.e., stars and diluted
interstellar environment, are mutually interconnected and they influence each other. Very
near the centre, stars move under dominating influence of the central black hole, but its
attraction is less prominent further out. If the interstellar gas is sufficiently dense, which is
the case of luminous AGN, then it provides dissipative environment causing a long-term
orbital decay of satellite orbits towards the centre, jointly with action of dynamical friction.
In the end, satellites are captured and destroyed by the hole.

In early papers on this subject (e.g., [Syer et al., 1991]), when the effect of stellar transits
across the disc was taken into account, it was found that gradual circularisation takes place
and stellar satellites are eventually brought into the disc plane after ∼ 104–107 orbits,
depending on the stellar type of the satellite and surface density of the disc [Karas et al.,
2002]. However, it was argued [Vokrouhlický and Karas, 1998] that the disc self-gravity
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should not be ignored, because taking the disc mass into consideration may significantly
change the orbit evolution even if the disc is very light, i.e., Md ≪ M•.

Galactic nuclei host central dark objects with the mass in range 106M⊙ M• 108M⊙.
They are very compact and traditionally interpreted in terms of a super-massive black hole
(e.g., [Kormendy and Richstone, 1995]). Relevant length-scale is therefore the black hole
gravitational radius, Rg = GM•/c2 ∼ 1.5 × 1013 M8 cm (where M8 ≡ M•/108 M⊙).
A compact nuclear cluster can be also present in nuclei of some galaxies [Lauer et al.,
1998,Schinnerer et al., 2001], where its members must inevitably undergo mutual interaction
with the central mass and with gas in the accretion disc. In its innermost region, the
cluster structure should reflect the presence of the massive black hole which eventually
dominates the gravitational field of the centre. Hereby we will discuss the region of its
dynamical influence, Rh = GM•σ−2

c ∼ 0.5M8 (σc/[103km/s])−2 pc, where σc denotes
velocity dispersion in the core.

Although we concentrate our attention on AGN, assuming a sufficiently large accretion
rate in this paper, there is also an interesting possibility of a cold disc residing even in
the centre of the Milky Way [Levin and Beloborodov, 2003, Nayakshin, 2004]. Similar
approach could be thus applied to the discussion of stellar motion in Sagittarius A∗. Former
interaction between the disc and stars could be essential for the present structure of the
Galactic centre, although its existence is still questionable. On the other hand, it is worth
noting that the mass ratio Md/M• need not be much less than unity, i.e., the disc mass can
reach the value comparable with the black hole mass in systems like NGC 1068 [Greenhill
et al., 1996, Huré, 2003]. Gravitation of the disc medium manifests itself in several ways
which we discuss below.

2 MOTION OF SATELLITE STARS IN A GALACTIC NUCLEUS

We examine stellar orbits by means of dissipative dynamics in an axially symmetric grav-
itational field. Stars are treated as test-mass orbiters, which form a family of satellites
encircling the super-massive black hole in its region of dominance. We want to explore how
the mutual action of gravity (due to the centre plus the disc) and dissipation (due to gaseous
environment) may set satellites on eccentric trajectories with a small pericentre, bringing
them this way near the core.

We employ Newtonian description of the gravitational field, which is constructed as a
superposition of the field of two main components, i.e., the central mass and the gaseous
disc. Several models of the disc gravity were used. We start from an analytical potential for
a ring of radius Rd and mass Md:

Σd(R) = Md

2πRd
δ(R − Rd) , Vd(R, z) = −2GMd

π

K (k)

B
, (1)

where K is the complete elliptic integral of the first kind, B2(R, z) ≡ z2 + (R + Rd)
2

and k(R, z) ≡ 4RRd/B2(R, z). We further considered analytical potential of razor-thin
Kuzmin’s disc:

Σd(R) = Md

2π

κ

(κ2 + R2)3/2 , Vd(R, z) = − GMd√
R2 + (κ + |z|)2

, (2)
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Figure 1. Comparison of the gravitational potential of a ring, Kuzmin’s disc (κ = 0.5Rd), and one
of the numerical models of a self-gravitating disc (see the text). Equipotentials are shown (with a
logarithmic a step) in a meridional section across the disc, which is located in z = 0 plane.

where κ is a constant. This disc has infinite radius but finite mass Md (55% of the total mass
is concentrated within the distance R = 2κ).

Finally, we proceed to more complicated numerical solutions for axially symmetric
accretion discs. In particular, we calculate the gravitational field corresponding to a gas-
pressure dominated standard-type model [Shakura and Sunyaev, 1973] with opacity due to
free–free scattering, and radiation pressure dominated disc with electron scattering opacity.
In outer regions of the system we employ a marginally unstable solution for a self-gravitating
disc with either zero or solar metalicity [Huré, 1998, Huré, 2000, Goodman, 2003]. In both
cases gaseous discs are geometrically thin and their density distribution can be described by
means of vertically integrated quantities. The particular model used in this paper consists
of radiation pressure dominated standard model switched to marginally unstable solution
with solar metalicity at ∼ 103 Rg.

Even if the gravitational field of the disc is treated as a perturbation in comparison to the
dominating central field, the vertical component of the disc field may successfully compete
with that of the centre in certain regions. This fact is known to be essential for the structure of
self-gravitating discs, but here we demonstrate its importance also for the satellite long-term
motion. We demonstrate structure of the gravitational potential of different axi-symmetric
sources in Fig. 1. One can see that gravitational potential of a self-consistent (numerical)
model is approximated by Kuzmin’s potential rather accurately. On the other hand, the
potential of a narrow ring provides less satisfactory approximation at small radii.

We used a Runge–Kutta integrator with adaptable step-size for tracking individual orbits.
The field components for a ring and for Kuzmin’s potential can be evaluated analytically,
however, in other cases which we considered, evaluation requires to compute one- or two-
dimensional integrals numerically (with a diverging integrand in some cases). Therefore, in
order to reduce time consumption to an acceptable level, we have pre-computed the potential
and the field at a discrete grid. We found the values among mesh points by interpolation.

Oscillatory evolution of the orbital radius r from the centre (spherical coordinate) and
height z above equatorial plane (vertical coordinate) is shown in Fig. 2. We present this
case as an exemplary orbit evolving in the gravitational field of the central mass M• and a
narrow ring (Md = 0.1M•). Here we see that the power spectra have non-trivial profiles.
We thus introduce frequencies of radial and vertical oscillations ωr and ωz in a usual way.
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Figure 2. Satellite motion in the superposed gravitational field of a central mass and an infinitesimally
thin ring of radius Rd = 5000Rg and mass Md = 0.1M•. Left: a short piece of orbital oscillations
(radial and vertical) in time domain; time unit is normalised to the orbital period. Right: corresponding
Fourier power spectra of the oscillations, which consist of narrow peaks located at frequencies ωr and
ωz (indicated by arrows), and their harmonics. The radial epicyclic and the corresponding vertical
frequencies come out almost identical. They are the basic oscillations in this case. Frequencies are
scaled with respect to the mean orbital frequency.

The two frequencies correspond to maxima in the Fourier power spectrum. It should be
quite obvious that, in the non-spherical field of a ring, these two frequencies may differ
from each other. For a ring or, more generally, a disc-type field, the vertical frequency is
typically higher than the radial one (although we have also found trajectories with ωz/ωr
considerably smaller than unity, depending on details of the orbit and density distribution
in the disc).

When the time domain is extended over several hundreds of revolutions, we observe
slow periodic variations in both r and z coordinates. Corresponding frequencies Ωr and
Ωz can be also identified in the power spectrum but their nature is distinct from epicyclic
oscillations. In contrary toωr andωz , the long-term amplitude oscillations stay in ratio 1 : 2,
and this feature can be understood by energy conservation arguments: the amplitudes tell us
how the total energy is periodically interchanged between radial and vertical oscillations.
It derives from the energy conservation that these long periods are interconnected to each
other. Twice as long period of vertical amplitude oscillations arises from the fact that these
oscillations switch between two states, symmetric with respect to the equatorial plane. This
feature is clearly visible in Fig. 3 where we show the evolution of radius and altitude over
several hundreds of revolutions for the same initial conditions as in Fig. 2. Although this
feature appears quite generic, the long-term oscillations may be difficult to distinguish in
the power spectrum. Either their amplitude is considerably suppressed or the frequency
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Figure 3. Similar to previous figure, the long-term orbital evolution is shown in the combined field
of the centre and the ring. Parameters of the system and initial conditions of the orbit are the same
as in Fig. 2, but time span is longer by two orders of magnitude. Frequency domain is shown in the
logarithmical scale in order to emphasise low frequency oscillations Ωr and Ωz .

is hidden in a complicated spectrum. On the other hand, Ωr and/or Ωz may eventually
dominate in the power spectra, which makes mechanical identification of resonances rather
complicated.

An increasing complexity of the gravitational field leads to additional structure of the
Fourier spectrum. Fig. 4 represents example of an orbit evolving in the gravity of a centre
and rather massive self-consistent disc with Md = 0.77M• and Rd = 4 × 104 Rg. Now, we
show orbit with remarkably different values of radial and vertical oscillations, in particular,
13ωr ≈ 15ωz . We remark, that such a low ratio of ωz : ωr is exceptional. Already on a
short time-scale we notice remarkable differences with respect to the motion in the central
potential, which would be characterised by a unique value of oscillation frequency,ωr = ωz ,
common for both directions. Compared to the previous case, amplitude oscillations are much
faster, however, their frequencies are still locked at the same constant ratio of 1 : 2.

For the purpose of further analysis, it is useful to parametrise trajectories by a set of
three parameters (implied by the number of integrals of motion). We found it convenient
to define the orbit semi-major axis and eccentricity by means of the trajectory geometrical
properties:

a ≡ lim
t→∞

1
2 (rmax + rmin) and e ≡ lim

t→∞
rmax − rmin

rmax + rmin
. (3)

Orbital elements defined in this way stand as unchanging parameters of individual orbits
(which would not be the case of definition emerging from instantaneous position and
velocity, i.e., in terms of Laplace’s vector). Moreover, in the case of eccentricity, its value is
ensured to lie within the interval (0, 1). Let us remark that, according to Eqs (3), semi-major
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Figure 4. Left: satellite trajectory in the field of the central body and the massive self-gravitating
disc. Difference in the periods of radial and vertical oscillations, ωr and ωz , are clearly visible in
this case. Furthermore, frequencies Ωr and Ωz get considerably closer to ωr and ωz . Right: Fourier
power spectrum is shown and the corresponding frequencies are indicated.

axis and eccentricity are equal to 3.63Rg and 0.93 in Figs 2 and 3. Considering only a limited
interval of time would lead to eccentricity values oscillating periodically. In particular, at
the initial phase, covered by Fig. 2, we would obtain eccentricity e ≈ 0.43.

Due to considerable distortion of the orbital trajectory, it is not possible to define the
orbital inclination directly on basis of its geometrical shape; the perturbation cannot be
assumed to be small. Hence, we define cosine of the inclination in terms of the mean of the
ratio of z-component and total angular momentum:

x ≡ lim
t→∞

1
t

∫ t

0

Lz

L
dt ′ . (4)

Definition (4) also ensures that the cosine of inclination stays always within interval ⟨−1, 1⟩.

3 THE HYDRODYNAMICAL DRAG

In order to simulate a long-term orbital evolution, we further considered the impact of
hydrodynamical interaction between the satellite and the disc medium. For this purpose we
adopted approximation of instantaneous changes of the orbiter’s velocity components after
each crossing the equatorial plane:

δv ≡ v′ − v = − A
A + 1

(v − vd) , (5)

where vd is the disc local velocity and



Stellar orbits in the field of a massive torus near a galactic centre 277

A ≡ πR2
∗Σd

M∗

vrel

|vϑ | . (6)

This approach is adequate in the situation when the disc is geometrically thin (H ≪ R)
and the relative velocity of satellite and the disc medium exceeds speed of sound in the
surrounding environment. Under these assumptions we can work with vertically integrated
quantities.

The disc column density influences the pace of evolution, while its rotation law determines
the satellite trajectory in the phase space of osculating elements. Neglecting the disc gravity
and assuming Keplerian rotation, one can show that the drag of the disc causes a gradual
decay towards circular orbit co-rotating with the disc at radius af = 1

4 a0(1 − e2
0)(1 + x0)

2

(see e.g., [Šubr and Karas, 1999]). Taking the disc gravity into consideration, it appears
that the overall tendency to low eccentricity is retained, however, new significant features

0.6

0.7

0.8

0.9

1.0

S
em

i-m
aj

or
 a

xi
s

(a)

0.2

0.3

0.4

E
cc

en
tri

ci
ty

(b)

7:8

9:10

1:1

5:4

3:2

0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5  6  7  8

In
cl

in
at

io
n

(c)

Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 0  1  2  3  4  5  6  7  8

ω
z :

 ω
r

(d)

Time

Figure 5. Long-term evolution of three orbital (osculating) elements is shown (panels a–c) for a
satellite star under the influence of a self-consistent disc plus the central super-massive body. The
evolution is driven by repetitive collisions with the disc. Jumps occur at various resonances between
vertical and radial frequencies of epicyclic oscillations. In panel (b) we mark major resonances with
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Rapid oscillations of the orbital elements are present in the numerical integration of the orbit, but they
were filtered out for better clarity of the graph. Here we use time units of τ ≡ 1012 M8 ∼ 16 Myr as
a fiducial time-scale of our problem.
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in the form of occasional jumps of osculating elements are observed. Again, we found that
these jumps are related to resonances between radial and vertical excursions.

An example of a typical trajectory is presented in Fig. 5. For the sake of better comparison,
we employed the same type of a massive disc as previously in Fig. 4 (Md = 0.77M•, Rd =
4 × 104 Rg). The trajectory was integrated numerically in a superposed gravitational field
of central mass and the disc. According to the prescription (5) velocity was changed after
each passage through the equatorial plane. In equally spaced time intervals, the collisional
interaction with the disc was switched off and the orbit was integrated for several hundreds
of revolutions in order to obtain orbital parameters and the frequencies ωr and ωz . Fig. 4
represents a snapshot resulting from this procedure, providing the starting point of trajectory
shown in Fig. 5.

As we have already mentioned above, the osculating elements exhibit sudden jumps
when ωz/ωr reaches a rational number. The effect of resonance is the strongest for ratios
satisfying empirical relation

ωz

ωr
= 2N ± 1

2N
, (7)

preferably with small natural values of N . The single (and important) exception from
this rule is represented by the resonance 1 : 1, which is clearly visible in our example.
The relative strength of three different resonances is compared in Fig. 6 by means of the
eccentricity evolution. We found it convenient to demonstrate the effect of resonances on
eccentricity which appears to be the most sensitive parameter. While the first two cases
comply with the rule (7), in the case of 2 : 1 ratio the jump is considerably smaller and
comparable to the resonance 7 : 6.
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Figure 6. Detailed plots of eccentricity jumps which occur in three different resonances. In order to
give a true picture of relative magnitudes of the steps, we set equal ranges on horizontal axes and, in
the case of eccentricity, also on the vertical axes of the individual frames.
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4 CONCLUSIONS

The problem of stellar motion near a galactic centre is very timely because its understanding
can help in finding super-massive black holes and measuring their parameters. It is however
a demanding problem that poses various challenges; here we tackled the question of long-
term orbital evolution in a combined gravitational field of a central compact mass surrounded
by a massive disc or a torus. The relevant length-scale is of the order of ∼ 103 Rg, and hence
it is in sub-parsec region near the black hole, which is difficult to resolve with present-day
techniques in distant galaxies. However, these scales are perfectly accessible in the case of
Milky Way centre, and they will be resolved also in other galaxies in future. We were able
to show how a massive disc can induce variations and jumps in orbital parameters of the
satellite star. Notice that the assumed ratio Md/M• was a fraction of unity, a sensible value
as far as the mass of molecular tori is concerned.

In conclusion, it may be worth mentioning various issues that need to be addressed in
future work. First of all it is hydrodynamics of hypersonic stellar transitions across the disc
medium which should be explored in more detail. The disc affects passing satellites either
directly at the point of their transitions through the disc, or indirectly, via induced waves
and gap formation in the disc. Case of crossing as well as embedded trajectories need to be
considered.

Further, gravitational interaction due to occasional grazing encounters of satellites should
be taken into account (only rather simplistic approaches have been considered so far) and
also the drag force due to dynamical friction. These effects should act selectively on
different stellar types present in the nuclear cluster, resulting in their growing segregation.
For example, very massive satellites tend to open a gap in the disc. Once this happens,
a qualitatively different mode of radial motion takes place, which is typically orders of
magnitude slower than the orbital decay proceeding under the regime of density waves.
The latter case is relevant for low-mass satellites. Introducing the distribution of satellite
masses in the cluster, one can observe how the initial (Salpeter-type) mass function changes
its slope in the course of evolution (see [Šubr et al., 2004]).

Finally, the problem of orbital decay of stellar satellites near a black hole is relevant
for forthcoming gravitational wave experiments, because the effect of gas-dynamical drag
needs to be taken into account in order to compute predicted waveforms with sufficient
accuracy. [Narayan, 2000] estimated that this effect can be safely ignored at late stages,
before the satellite plunges into the hole, if accretion takes place in the mode of a (very
diluted) advection dominated flow. However, the situation is rather different in the case of
massive and dense gaseous discs [Šubr and Karas, 1999].

Normally, non-gravitational forces, such as hydrodynamical drag, tidal forces, radiation
pressure and gravitational waves, exert only mild influence on individual stellar trajectories
inside the sphere of black hole gravitational dominance. However one should not neglect
them when exploring the overall cluster evolution on long time scales. Here we assumed
that most of gas is concentrated in the disc, but we expect that a less flat distribution will
have similar impact as far as the gaseous system maintains the assumed toroidal geometry.
Nevertheless, details of star-disc interaction should leave their imprints in the system. It
is most likely that non-standard dissipation operates in self-gravitating regions of the disc.
Therefore, disc models should switch to a different viscosity prescription near ∼ 0.01 pc,
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thereby creating additional features in the distribution function of a stellar cluster interacting
with the disc. Last but not least, the modified structure of the nuclear cluster is relevant for
studies of the relationship between black hole masses and velocity dispersions in AGN, for
estimating the ratio of the black hole mass to the bulge mass, and it may be even pertinent
for the discussion of black-hole feeding problem.
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