
Proceedings of.

RAGtime 6/7:
Workshops 

on black holes
and 

neutron stars
16–18/18–20 September ’04/’05

Opava, Czech Republic

Editors 
S. Hledík 

Z. Stuchlík

ISBN 80-7248-334-X

P
ro

c
e

e
d

in
g

s o
f

R
A

G
tim

e
6/7: W

o
rksh

o
p

s o
n

 b
la

c
k h

o
le

s a
n

d
 n

e
u

tro
n

 sta
rs

S. H
le

d
ik a

n
d

 Z. Stu
c

h
lik, e

d
ito

rs



SILESIANUNIVERSITY INOPAVA

Publications of the Institute of Physics No. 4



http://uf.fpf.slu.cz/rag/time6/

Relativistic Astrophysics Group
at the Institute of Physics
Faculty of Philosophy & Science
Silesian University at Opava
Bezručovo nám. 13, CZ- 74601
Opava, Czech Republic

WORKSHOP ON BLACK
HOLES AND NEUTRON
STARS, 16–18TH SEPT 2004

time 6
R

A G

http://www.physics.cz/rag/time7/

Relativistic Astrophysics Group
at the Institute of Physics
Faculty of Philosophy & Science
Silesian University in Opava
Bezručovo nám. 13, CZ-74601
Opava, Czech Republic

WORKSHOP ON BLACK
HOLES AND NEUTRON
STARS, 18–20TH SEPT 2005

time 7

R

A G

• Statutory City of Opava

• Ing. J. Ricka — Turnkey Interiors

• Mr. Milan Čajan Property Owner

• Ing. Vít Škrobánek — Cargo Design
Conversions, extensions and
adaptations of lorries

Sponsored by
http://www.opava-city.cz/

http://www.czechcontact.com/CARGO DESIGN SKROBANEK



Proceedings of RAGtime 6/7:
Workshops on black holes and neutron stars

16–18/18–20 September 2004/2005
Opava, Czech Republic

S. Hledík and Z. Stuchlík, editors

Opava 2005



Editorial Board: prof. RNDr. Zdeněk Stuchlík, CSc.
prof. Marek Abramowicz
RNDr. StanislavHledík, Ph.D.

Annotation: In thisProceedings, the talkspresentedduringworkshopsRAGtime6/7:Work-
shops on black holes and neutron stars, Opava, 16–18/18–20 September 2004/2005 are
collected.

Copyright © 2005 SilesianUniversity inOpava

ISBN80-7248-334-X



PREFACE

Relativistic Astrophysics Group (RAG) at the Institute of Physics, the Faculty of Philosophy
and Science of the Silesian University in Opava, started a series of Workshops on Black
Holes and Neutron Stars called RAGtime in 1999. The purpose of the workshops was
to provide an opportunity for the presentation and discussion of recent developments in
the field of relativistic astrophysics related to accretion processes onto black holes and
neutron stars, and to general physical phenomena connected to the properties of black
holes and their vicinity, and the internal structure of neutron stars or quark stars, as they
were obtained by collaborating research groups at the Silesian University in Opava, the
Faculty of Mathematics and Physics of Charles University in Prague, the International
School forAdvancedStudies inTrieste, the Institute ofAstrophysics atUniversity ofOxford,
the Department of Astrophysics of Göteborg University, the Institute of Physics at the
University of Bergen, the Institute of Astronomy of the Polish Academy of Science, and
other remarkable institutes.
The RAGtime workshops are also vitally important for students of theoretical physics

and/or astrophysics at the SilesianUniversity in Opava, because they have a unique oppor-
tunity to be regularly in direct contactwith themost recent results of relativistic astrophysics
and they also have a possibility to discuss problems with leading astrophysicists of world-
wide reputation likeMarekAbramowicz, JohnMiller, JeffMcClintock, RonRemillard, Shoji
Kato, LucianoRezzolla, VladimírKaras, Petr Hadrava, Jiří Grygar and others.
We would like to thank all the authors for careful preparation of their contributions. We

are also indebted to Mayor of the Statutory City of Opava Ing. Zbyněk Stanjura, Deputy
Mayor doc. RNDr. Ing. Jan Mrázek, CSc., and all other sponsors for providing financial
support for the successful course of the last RAGtimemeeting.

Opava, December 2005 S. Hledík and Z. Stuchlík
editors
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A note on the slope-shift anticorrelation in the
neutron star kHzQPOs data

Marek A. Abramowicz,1,2,3,4 Didier Barret,5
Michal Bursa,1,6 Jiří Horák,1,6 Włodek Kluźniak,1,4,7
Paola Rebusco1,8 and Gabriel Török1,3,5

1Nordita, Blegdamsvej 17, 2100 Copenhagen,Denmark
2Department of Physics, GöteborgUniversity, S 412 96 Göteborg, Sweden
3Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity inOpava,
Bezručovo nám. 13, CZ-746 01Opava, Czech Republic

4Copernicus Astronomical Centre,Warszawa, Poland
5Centre d’Etude Spatiale des Rayonnements,CNRS/UPS, 9 Avenue du Colonel Roche,
31028 Tolouse Cedex 04, France

6Astronomical Institute, Czech Academy of Sciences, Boční II 1401, CZ-141 31 Praha 4,
Czech Republic

7ZielonaGóraUniversity, Lubuska 2, 65-265 ZielonaGóra, Poland
8Max-Planck-Institute für Astrophysik, D-85741 Garching,Germany

ABSTRACT
Observations show that the upper νU and lower νL of the “twin peak” high frequency
QPOs inneutron star sources vary along linesνU = AνL+B in a frequency-frequency
plot, and that their ratios νU/νL cluster near the value 3/2. This behaviour is well
consistent with the predictions of the non-linear resonance model for QPOs. In
this Note, we further explore our recent finding that the coefficients A, B of the
frequency-frequency lines for individual sources are anticorrelated. In the (A, B)

plane, they occupy rather a narrow region along the line A = 3/2 − B/600 Hz.
We show that this observational property of QPOs also follows from the resonance
model.

Keywords: LMXRB– neutron stars –X-ray variability – observations – theory

1 THEBURSALINE

The Fourier power spectra of X-ray variability from Galactic neutron star and black hole
sources often reveal twin peaks corresponding to two physically connected frequencies –
upper νU and lower νL. These twin peak frequencies are rather high – from hundreds
to thousands of Hertz – i.e., in the range of ISCO frequencies. Thus, most likely, the
oscillations, which produce them, occur very near the central compact source, in the strong
Einstein gravity.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Figure 1. The behaviour of individual sources in a frequency-frequency plot. The two Z-sources
(Sco X-1, GX 17+2), one atoll source (4U 1636) and the millisecond pulsar XTE J1807 are shown.
The slopes and shifts A and B of their best linear fits are listed in the Table 1. Note that all the Bursa
lines come close to the point [600 Hz, 900 Hz] shown as the intersection of two dotted lines.

In black hole sources, νU and νL appear to be fairly fixed, and in addition to have a well
defined rational ratio νU/νL = 3/2 (pointed out in Abramowicz and Kluźniak, 2001). In
neutron star sources νU and νL vary by hundreds of Hertz, along “Bursa lines,”1

νU = AνL + B . (1)

It was demonstrated by Abramowicz et al. (2003b); Rebusco (2004); Horák (2004) that
variations of νU and νL along the line (1) can be explained within the Kluźniak& Abramow-
icz non-linear resonancemodel for QPOs, aswe shortly recall in Section 3.
The four examples shown in Fig. 1 illustrate another important general observational

feature of the neutron star QPOs. The sectors occupied by data points on the individual
lines typically cross the “3/2” straight line. This underlines in another way the relevance of
the 3/2 ratio not only for the black hole QPOs but for the neutron star QPOs as well – the
clustering around 3/2 value (and less often around other rational ratios) was examined by
Abramowicz et al. (2003a) and later also by Belloni et al. (2005) andBulik (2005).

1 It was first shown by Psaltis et al. (1998), although in a different context, that frequency pairs of all sources
cluster along a single line. Its importance was later noticed by Bursa (2002), unpublished, who also pointed that
each source follows a slightly different line.
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2 THESLOPE-SHIFTANTICORRELATION

Recently, Abramowicz et al. (2005) discovered another interesting feature of the frequency-
frequency plots. They noticed that for individual lines (best linear fits through frequency
points) νU = A νL + B the coefficients A, B are anticorrelated.
Here, we follow our previous analysis and add six more sources, including Z-sources

and a millisecond pulsar. All twelve sources are listed in Table 1, where we also give the
resulting A and B. Table 2 compares the relation between A and B obtained by the least
squares method for a coherent set of six sources analysed in Abramowicz et al. (2006) and

Table 1. Best linear fits and their errors for the frequency-frequency correlation for several atoll and
Z sources (A andZ, respectively) and for themillisecond pulsar (P). The references: 1–6: Abramowicz
et al. (2006), 7: Boirin et al. (2000), 8: Linares et al. (2005), 9: Homan et al. (2002), 10: Jonker et al.
(2000), 11: Jonker et al. (2002), 12: Belloni et al. (2005).

Source Type A ∆A B [Hz] ∆B [Hz]
(1) 4U 0614 A 1.04 0.11 286.8 69.6
(2) 4U 1728 A 0.92 0.04 399.4 30.4
(3) 4U 1820 A 0.90 0.08 346.7 65.0
(4) 4U 1608 A 0.76 0.03 451.9 18.8
(5) 4U 1636 A 0.70 0.01 520.1 9.7
(6) 4U 1735 A 0.61 0.05 593 39

(7) 4U 1915 A 1.13 0.03 266 16
(8) XTE J1807 P 1.11 0.11 181 26
(9) GX 17+2 Z 0.86 0.04 364 28

(10) GX 34+0 Z 0.84 0.07 391 26
(11) GX 5-1 Z 0.83 0.04 386 14
(12) Sco X-1 Z 0.786 0.002 432.5 1.5

Table 2. Anticorrelation between the slope and shift for 12 sources. The first two lines compare best
linear fits A(B) separately for coherent set of sources (Table 1: 1–6) analysed in Abramowicz et al.
(2006) and for six other sources (Table 1: 7–12) examined by different authors. The second pair
of lines cover all the sources and compare the A(B) best linear fit vs. fit with intercept 1.5 shown in
Fig. 2. Note that these two fits have almost the same quality (see also Fig. 3 for conjunctions).

Sources Best fit A(B) χ2/dof

1–6 A = 1.46(±0.17) − 0.0015(±0.0003)B 0.28
7–12 A = 1.58(±0.09) − 0.0018(±0.0002)B 0.60

1–12 A = 1.45(±0.07) − 0.0015(±0.0002)B 1.33
1–12 A = 1.5 − 0.0016B 1.51
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Figure 2. The anticorrelation between slopes and shifts. The points correspond to the individual
sources listed in the Table 1; sources 1–6 (7–12) are denoted by filled (open) circles. We also show the
best fit for the line going through the point [0, 1.5] and the corresponding value of χ 2.

for six other sources analysed by different authors using different methods, as well as the
best linear fit for the whole set of 12 sources. This comparison shows that these 12 sources
lie in the (A, B) plane close to the line

A = 1.5 − 0.0016B , (2)

which is illustrated in Fig. 2.

3 APOSSIBLE THEORETICALEXPLANATION INTHE FRAMEWORKOFTHE
RESONANCEMODEL

The frequency and the amplitude of a non-linear oscillator are not independent. In the
lowest order with respect to the small amplitudeα, the actual (observed) frequency ν differs
from the eigenfrequency ν0 of the oscillator by a correction∆ν proportional to the squared
dimensionless amplitude, ν − ν0 = ∆ν ∼ ν0a2. Consider a very general system that has
two coupled oscillation modes, whose eigenfrequencies are ν0

L and ν0
U. The frequencies of
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non-linear oscillationsmay be written in the form

νL = ν0
L +∆νL , νU = ν0

U +∆νU , (3)
∆νL = ν0

L (κLa2
L + κUa2

U) , ∆νU = ν0
U(λLa2

L + λUa2
U) , (4)

where κL, κU, λL andλU are constants depending on non-linearities in the system and aL and
aU are amplitudes of the oscillators.

neutron starsmicroquasars
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Figure 3. The 1/M scaling and the slope-shift anticorrelations. The characteristic frequencies scale
inversely with the neutron star mass. On the other hand, the ratio ν̃U/ν̃L should be close to the
particular value A0 = 3/2 for the resonance. The shaded regions give us the spread of the neutron
star masses and expected region of black hole sources (see the text). We consider three cases:
A0 = 3/2 (top), 2.0 (bottom-left) and 1.2 (bottom-right). Note the rather unrealistic ratio between
expectedmaximumandminimumneutron starmasses in the sample for the values A0 ! 1.2.
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It is natural to suppose that due to an interplay between the resonance excitation mech-
anism and the dissipation of the energy in the system, the two amplitudes aL and aU are
correlated, i.e., one may consider the amplitudes as functions of a single parameter s,

aL = aL(s) , aU = aU(s) . (5)

Expanding with respect to s, we obtain from Eq. (3)

νL = ν̃L + s F , ν̃L = ν0
L

(
1 + α̃2

L

)
, F = f0 + f1s + · · · , α̃2

L ≪ 1 , (6)

νU = ν̃U + sG , ν̃U = ν0
U

(
1 + α̃2

U

)
, G = g0 + g1s + · · · , α̃2

G ≪ 1 , (7)

Isolating the parameter s from the two last equations, we get the Bursa line, i.e., a linear
correlation between the observed frequencies νU = AνL + B, with the slope A and the shift
B given by,

A = ν̃U

ν̃L
X , B = ν̃U(1 − X) , X ≡ G

F
. (8)

Any particular value of X leads to particular values of the slope and the shift. By solving
Eqs (8) for the parameter X , one gets

A = ν̃U

ν̃L
− 1
ν̃L

B = A0 − 1
ν̃L

B . (9)

Note that for a given type of resonance A0 = const + O(a2), as it depends only on the
ratio of the amplitude corrected eigenfrequencies. Of course, ν̃L ̸= const even for a given
resonance, as the eigenfrequencies themselves may differ from a system to system. Note
also that if one includes more terms in expansions (6) and (7), the Bursa lines will deviate
from straight lines.
Therefore, Eq. (9) predicts that the slope A and the shift B are anticorrelated. For a given

type of resonance, the individual pairs A, B should be located on lines inside a triangle with
a quite well determined vertex at [0, A0], and with the size of its base proportional to the
scatter in ν̃L. In particular, for the 3 :2 resonance the vertex should be very close to the point
[0, 1.5], which indeed seems to be the case, as Fig. 3 shows.

4 MASSESANDROTATIONRATESOFNEUTRONSTARS

The neutron star masses M must enter the discussion because of the 1/M scaling of QPOs
frequencies predicted by the Kluźniak & Abramowicz resonance model, and by all models
that assume strong gravity origin ofQPOs. Indeed, in a strong gravity, a typical size is of the
order of the gravitational radius, rG ∼ M , a typical velocity is of the order of the light speed
c and therefore typical frequency is ν ∼ c/rG ∼ 1/M . So QPOs frequencies should scale
inversely with the mass if amass is the main difference between neutron stars.
Accordingly, the ν̃L frequency of Eq. (9) should roughly scale inversely with the mass

of individual neutron stars corresponding to an individual A, B point. If all neutron star
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masses were equal, all the ν̃L frequencies would be equal as well, and individual frequency-
frequency lineswould cross at one point. However, themasses of neutron stars are not equal
and therefore this intersection spreads into a region with the size proportional to the range
of masses of the neutron star sources involved – the smaller the range, the more point-like
the region is.
It is easy to see that the slope-shift anticorrelation line is steeper or softer formoremassive

or less massive sources respectively. Assuming the frequencies ν̃U and ν̃L are connected to
the generic mass M0 and scale inversely with the mass M , we can rewrite the Eq. (9) in the
form

A = A0 − 1
ν̃L

M
M0 B . (10)

This is illustrated in Fig. 3. The issue is more complicated because the 1/M scaling is
not exact – it is also affected by rotation and by the internal structure of neutron stars.
For this reason, the anticorrelation has a potential to provide observational constrains for
masses, rotation rates, and multipole momenta for neutron stars. At the moment, the
theory does not predict the exact form of F(S), G(S). The hope is that more accurate
frequency-frequency fits may determine these functions better.

5 BLACKHOLE SOURCES

Our theory is also applicable to the case of black holeQPOs. The apparently steady frequen-
cies reported in these systems can be attributed to smaller eigenfrequencies and amplitudes
of oscillations. In our view the oscillation modes of an accretion disk are the same for black
holes and neutron stars. Therefore, the dimensionless coefficients λL, λU, κL and κU in
Eqs (4) are of the same order. The frequencies observed from black holes differ from the
typical ones of neutron stars by a factor of ≈ 2. The same can be applied to the eigenfre-
quencies.2 If the amplitudes of black hole QPOs were smaller than those of the neutron
stars by a factor of ∼ 5, the range of observed frequencies would be shorter by a factor
of ∼50with respect to the range of the neutron stars, since it is proportional to the squares
of the amplitudes.
The reported rms amplitudes of black hole QPOs are only a few per cent, contrary to

neutron star QPOs rms amplitudes that usually exceed ten percent. The question is, how
the observed rms amplitudes of QPOs in X-ray flux relate to the intrinsic amplitudes of
oscillations. This is obviously connected to the modulation mechanism that may be dif-
ferent in the two classes of objects. If, similarly, the intrinsic amplitudes differ by such a
large factor, it should not be surprising that the QPOs frequencies appear stable, since the
predicted range of their variations correspond to a few Hertz. Such small variations can
not be ruled out, more to the contrary, Miller et al. (2001) reported systematic motion of
the upper high-frequency peak towards lower frequencies in the sourceXTE J1550-564. At

2 Thedirect application of the 1/M scaling rule gives a factor of ∼5. However, large differences in spins between
black holes and neutron stars influence strongly the simple scaling, the five times heavier black hole may have
QPOs frequencies only twice lower than a typical neutron star (see Fig. 7 in Török and Stuchlík, 2005).
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this general level, the black hole QPOs can be understood as rescaled version of the neutron
star QPOs and the corresponding region (180–450 Hz for microquasars) in the slope-shift
plot is also denoted in Fig. 3.

6 DISCUSSIONANDCONCLUSIONS

Wehave examined carefully the sources 1–6 fromTable 1 and obtained good linear fit in the
(A, B) plane. Rough comparison with not so coherent data for six other sources indicates
that the trend would be valid as well.
The fact that observations of the neutron stars QPOs show both the Bursa line and

the slope-shift anticorrelation, which are generic (and very general) consequences of non-
linearity and coupling of oscillation modes, supports the clue that the QPOs are due to
non-linear, coupled oscillations. Another observational clue is that the eigenfrequency ratio
is close to the rational ratio, ν0

U/ν0
L = 3/2, which suggests a 3 :2 resonance. At themoment,

it is not possible to firmly conclude anything more than that from the observational data.
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ABSTRACT
We describe a new method to developing a realistic fully general relativistic model
and computer code of optical projection in a strong, spherically symmetric gravit-
ational field. Classical theoretical analysis of optical projection for an observer in
the vicinity of a Schwarzschild black hole was extended to black hole spacetimes
with a repulsive cosmological constant (Schwarzschild–de Sitter spacetimes). In
our simulation we consider both null geodesics beyond and ahead of the turning
point. Simulation takes care of frequency shift effects, as well as the amplification
of intensity. Our code generates static images of sky for static observers and movie
simulation for free-falling observers. We use techniques of parallel programming to
get high performance and fast run of our code.

1 INTRODUCTION

This work is devoted to the following “virtual astronomy” problem: What is the view of dis-
tant universe for an observer in the vicinity of a black hole (neutron star) like? Nowadays,
this problemcan be hardly tested by real astronomy, however, it gives an impressive illustra-
tion of differences between optics in a strong gravity field and between flat spacetime optics
as we experience it in our everyday life.
In this paper we compute and display the appearance of distant universe to an ob-

server near the black hole. We will study this problem for the spherically symmetric
Schwarzschild–de Sitter spacetime with a repulsive (positive) cosmological constant. We
consider twoclasses of observers forwhichwewill compute the appearanceof sources in the
distant universe. The first class are static observers, i.e., observers who (for example thanks
to its rocket) sit at rest in the external field of the hole (with world lines of r, θ,φ = const).

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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The second class are radially falling observers, i.e., observers who fall freely from a given
radius onto the black hole.
In pure Schwarzschild casewe assume free-fall observers falling from infinity and distant

source located in infinity too (Cunningham, 1975). In Schwarzschild–de Sitter case it is
useful to choose the starting point for the radially moving observers at the static radius,
where the gravitational attraction of the hole is balanced by the cosmological repulsion
(Stuchlík andHledík, 1999; Stuchlík and Plšková, 2004). Hereafter, in this case we assume
distant sources located at the static radius.

2 SCHWARZSCHILD–DESITTERGEOMETRY

The line element of the Schwarzschild–de Sitter spacetime in the standard Schwarzschild
coordinates in geometric units (c = G = 1) has the form

ds2 = −
(

1 − 2M
r

− Λ

3
r2
)

dt2 +
(

1 − 2M
r

− Λ

3
r2
)−1

dr2 +r2(dθ2 + sin2 θ dφ2) , (1)

where M is mass of the central black hole, Λ ∼ 10−56 cm−2 is the repulsive cosmological
constant. It is advantageous to introduce dimensionless cosmological parameter y by the
relation

y = 1
3ΛM2 . (2)

The event horizons of the spacetime are given by condition

gt t ≡ −
(

1 − 2
r

− yr2
)

= 0 . (3)

The location of events horizons is determined by the relation

y = yh(r) ≡ r − 2
r3 . (4)

In the Schwarzschild–de Sitter spacetimes there exists a critical value of the parameter y,
given by the relation ycrit = yh(r = 3) = 1/27, corresponding to the local maximum of
yh(r). For 0 < y < ycrit, there exists two events horizons. The black-hole horizon and the
cosmological horizon are located at

rh = 2√
3y

cos
π + ξ

3
, rc = 2√

3y
cos

π − ξ

3
, (5)

where

ξ = cos−1 3
√

3y . (6)

The static radius, the hypersurface where the gravitational attraction of the hole is balanced
by the cosmological repulsion, is given by the condition

y = ys(r) ≡ 1
r3 . (7)
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The spacetime is dynamic at r < rh and r > rc. If y = ycrit = 1/27, the horizons and
static radius coincide at rh = 3. If y > 1/27, the spacetime is dynamic at r > 0 and
describes a naked singularity (Stuchlík and Hledík, 1999). We consider only spacetimes
with possibility of static observers existence, consequently with y < 1/27.
It follows from the central symmetry of the geometry (1) that the geodeticalmotion of test

particles and photons is allowed in the central planes only.The existence of Killing vector
fields ξ(t) and ξ(φ) of the SdS spacetime implies the existence of two constants of motion

pt = gtµ pµ = −E , pφ = gφµ pµ = Φ , (8)

but the motion is determined by the impact parameter

b ≡ Φ

E
. (9)

The 4-momentum of the photon reads

pt = −E , pr = ±

√
1 − b2

r2

(
1 − 2

r − yr2
)

(
1 − 2

r − yr2
) E , pφ = bE = Φ . (10)

The “+” sign corresponds to photons receding from the black hole, the “−” sign corres-
ponds to photons infalling into the black hole.

3 TETRADSANDDIRECTLYMEASUREDQUANTITIES

In order to calculate directlymeasured quantities, one has to transform the 4-momentum of
the photon into local coordinate system of the observer. Local components of 4-momentum
for the observer located at a given r can be obtained using appropriate tetrad of 1-form
p(α) = ω

(α)
µ pµ. An observer (located at r < rs) will see the photons coming from the

directional angleα related to the outward radial direction as given by the general relation

cosα = − p(r)
obs

p(t)
obs

, (11)

and frequency shift g of the photon (the ratio of observed and emitted energy) is given by
the relation

g = p(t)
obs

p(t)
source

. (12)

Indexes “obs” (observer) and “source” denote the components locally measured by a ob-
server or a source located on a given robs or rsource, respectively.
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3.1 Static observers

Let us consider static observers who are located at rest at r = const, θ = const, φ = const.
The observers are endowed by a proper reference system with an orthonormal tetrad of
one-forms (Stuchlík and Plšková, 2004)

ω(t) = B(r, y) dt , (13)
ω(r) = B(r, y)−1 dr , (14)
ω(θ) = r dθ , (15)
ω(φ) = r sin θ dφ , (16)

where we denote

B2(r, y) ≡ 1 − 2r−1 − yr2 . (17)

If we will consider motion of photons in the equatorial plane only, the components of
4-momentum of the photon measured by a static observer located at a given robs are given
by the relations

pt = −E , pr = A(robs, y; b)

B2(robs, y)
E , pφ = bE = Φ , (18)

where

A(r, y; b) = ±
√

1 − B2(r, y)
b2

r2 . (19)

The directional angle and frequency shift are given by formulas

cosαstat = −A(robs, y; l) = ±
√

1 − b2

r2
obs

(
1 − 2

robs
− yr2

obs

)
, (20)

gstat =
√

gt t (rsource)

gt t (robs)
. (21)

3.2 Radially falling observers

The orthonormal tetrad of 1-forms of the radially falling observers has the form (Stuchlík
and Plšková, 2004)

ω(t̃) =
√

1 − 3y1/3 dt + Z(r, y)B−2(r, y) dr , (22)

ω(r̃) = Z(r, y) dt +
√

1 − 3y1/3B−2(r, y) dr , (23)

ω(θ̃) = r dθ , (24)
ω(φ̃) = r sin θ dφ , (25)
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where we introduced a new variable

Z(r, y) ≡
√

2
r

+ yr2 − 3y1/3 . (26)

The components of 4-momentum of the photon measured by a radially falling observers at
a given robs are given by the relations

p(t̃)
obs = E

B2(robs, y)

(√
1 − 3y1/3 + Z(robs, y)A(robs, y; b)

)
, (27)

p(r̃)
obs = E

B2(robs, y)

(
Z(r, y) +

√
1 − 3y1/3 A(robs, y; b)

)
, (28)

p(φ̃)
obs = Eb

robs
= Φ

robs
. (29)

The directional angle and frequency shift will be given by formulas

cos α̃ = − Z(robs, y) +
√

1 − 3y1/3 A(robs, y; b)
√

1 − 3y1/3 + Z(robs, y)A(robs, y; b)
, (30)

g̃ ≡ p(t̃)
obs

p(t)
source

= B(rsource, y)

Z(robs, y) cos α̃ +
√

1 − 3y1/3
. (31)

4 FORMULATIONOF THEPROBLEM

As shown in Fig. 1, projections of virtual images on the observer sky are given by tangential
vectors of correspondinggeodesics. The vantage choice of tangential vector is the spacepart
of 4-momentum of photons on the geodesic. Due to the spherical symmetry of the problem
we can consider (only for simplicity of calculations) and sources located on equatorial plane
(θ = π/2) and the observers with (φ = 0). In this case space coordinates of sources are
(rsource,φsource,π/2) and∆φ along the geodesics is given by

∆φ = φsource + 2kπ , (32)

where the parameter k takes values of 0, 1, 2, . . . ,+∞ for geodesics orbiting clockwise,
−1,−2, . . . ,−∞ for geodesics orbiting counter-clockwise. First direct image corresponds
to k = 0, first indirect one corresponds to k = −1 case. Infinite values of k correspond
to a photon captured on the circular photon orbit. Direction of space part of the photon
4-momentum is given only by impact parameter b, so we need b as the function of locations
of source and observer. In order to calculate proper impact parameter b for given∆φ and
rsource wewill start from following “Binet formula” for Schwarzschild–de Sitter spacetime:
dφ
du

= ± du
√

b−2 − u2 + 2u3 + y
, u = r−1 . (33)

Required positivity of term under the square root defines motion condition for photons,
which can be written as

C(b, u, y) ≡
(

b−2 − u2 + 2u3 + y
)

≥ 0 . (34)
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Figure 1. Simulated situation.

5 CONSEQUENCESOFMOTIONCONDITION

As shown in Fig. 2, there exist two types of geodesics. The first one corresponds with
the positive motion condition satisfied in whole range of u. Photons going from infinity
along these geodesics must fall to the central singularity. The second type corresponds to
restricted interval of u allowed for the motion. The boundary of the interval of allowed
radii defines the turning point rturn for photons going from infinity and it is clear that
geodesic with turn point at the observer’s position (robs = rturn) must have the highest
value bmax(robs) of impact parameters for given robs. Geodesics with b > bmax never
achieve robs. Straightforward calculation yields the relation

rturn = 2
√

3(y + b−2)
cos

[
1
3

arccos
(

−3
√

3(y + b−2)

)]
, (35)

and

bmax = 1
√

u2
obs − 2u3

obs − y
. (36)
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Figure 2.Motion condition as a function of u.

The limit case is the geodesic with the motion condition touching the the zero level at one
point only. This case corresponds to the photon capture on the circularphoton orbit and the
impact parameter of the circular photon geodesic will be called “critical impact parameter.”
The circular photon orbit corresponds to the minimum of the motion condition function
C(b, u, y). Using conditions dC(b, u, y)/du = 0 and C(b, u, y) = 0 simultaneously we
obtain formula for limit impact parameter bc and location of circular photon orbit rph. The
circular photon orbit is located at r = 3 for arbitrary value of the dimensionless parameter
y. However the critical impact parameter depends on y by the relation

bc(y) =
√

27
1 − 27y

. (37)

For observers located under circular photon orbitwe have to consider geodesicswith b < bc
only, because all turning points are located above the circular photon orbit. For observers
located above the circular photon orbit one have to consider both types of geodesics.

6 THREEKINDSOFNULLGEODESICS

Finally, due the character of the motion condition, we have to consider three types of null
geodesics passing an observer’s position. The first one has impact parameter b < bc.
Photons going from infinity along these geodesics finish in the singularity. The second one
has b < bc, and the observer is located above the turning point of the geodesics. For both
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these types of null geodesics we can write the integral form of the “Binet formula” in the
form

∆φ(uobs) = ±
∫ uobs

usource

du
√

b−2 − u2 + 2u3 + y
. (38)

The last one has b < bc and the observer is located under the turning point. Therefore, we
can express the integral form of the “Binet formula” in the form

∆φ(uobs) = ±
∫ uobs

uturn

du
√

b−2 − u2 + 2u3 + y
∓∆φ(uturn) , (39)

where

∆φ(uturn) =
∣∣∣∣∣

∫ uturn

usource

du
√

b−2 − u2 + 2u3 + y

∣∣∣∣∣ . (40)

Integral equations (39) and (40) provide an expression for ∆φ along the photon path as a
function F(b, uobs, usource, y). Therefore, we can rewrite the Eq. (32) for observers with
space coordinates (robs, 0,π/2) in the following way :

F (b, uobs, usource, y) − φsource − k2π = 0 . (41)

Final equation expresses b as an implicit function of the boundary conditions and cos-
mological constant. The function F(b, uobs, usource, y) can be given in term of elliptic
integrals. However, here we shall use a direct numerical methods to solve Eq. (41). We
used Romberg integration and trivial bisection method. Faster root finding methods (e.g.,
Newton–Raphson method) may unfortunately fail here.

7 SIMULATIONS

Our code computes a view of the distant universe, which is represented by a nondistorted
picture of an object on the observer sky in the flat spacetime. We assume that the image
is a parallel mapping of hemisphere of sky toward the black hole. The code generates
two images, parallel mappings of both hemispheres of the observer sky, because optical
projection in strong gravity field can shift images of sources from a hemisphere of the sky to
the opposite one. For this simulation we used a picture of M104 Sombrero galaxy provided
by VLT (Very LargeTelescope Interferometry Array) ESOCerro Paranal, Chile downloaded
fromwww site (Katedra fyziky, Fakulta elektrotechnická,ČVUT Praha, 2005).

7.1 Simulation for the static observer above the photon orbit

For observers above the photon orbit we have to consider both type of null geodesics,
with and without turning points. The left panel of Fig. 4 shows impact parameter b and
a directional angle αstat as a functions of ∆φ along the geodesic line. The geodesics with
∆φ < ∆φ(bmax) have no turning points ahead of observer position, some of them with
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Figure 3.Optical appearance of the Sombrero galaxy as seen from the Earth.
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Figure 4. Impact parameter and directional angle as a function of∆φ for different values of cosmolo-
gical constant. Left panel: Above the photon orbit. Right panel: Under the photon orbit.
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Figure 5. Sombrero observed from robs = 25M in pure Schwarzschild case.

Figure 6. Sombrero observed from robs = 25M with the cosmological constantΛ = 10−5 cm−2.
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Figure 7. Sombrero observed from robs = 5M . Left panel: Without the cosmological constant. Right
panel: With the cosmological constantΛ = 10−5 cm−2.

b < bc will finish in the central singularity, other ones have turning points beyond the
observer position. All geodesics with ∆φ > ∆φ(bmax) have a turning point ahead of
the observer’s position and escape to infinity. Geodesics with ∆φ = ∆φ(bmax) have
turning points just at the observer’s radius and, of course escape to infinity too. The impact
parameter b increases with ∆φ up to bmax, after which it decreases and asymptotically
approaches bc from above. The directional angle αstat monotonically increases with∆φ up
to itsmaximumvalue,whichdefines theblack regionon theobserver’s sky. Theblack region
increases with decreasing radial coordinate of the observer. Simulation outputs in Figs 5, 6
and 7 illustrate these effects for different values of robs and the cosmological constant.

7.2 Simulation for the static observer under the photon orbit

The situation is qualitatively different for observer position under the photon orbit. There
exist only geodesics without turning points finishing in the central singularity, therefore
those with b < bc. The right panel of Fig. 4 shows the impact parameter b and the
directional angle αstat as a functions of ∆φ along the geodesic. The impact parameter
b increases with ∆φ and asymptotically approaches to bc from below. The angle αstat
monotonically increases with∆φ up to its maximumvalue, which defines a black region on
the observer sky. The black region occupies a more than half of the observer sky. Due to
the strong gravity field the images are strongly blueshifted. In case of an observer near the
event horizon, the whole universe is displayed as a small spot around the intersection point
of the observer sky and the optical axis, the straight line defined by an observer’s position
and the central singularity. Simulation outputs in Fig. 8 illustrate those effects for different
values of the cosmological constant.
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Figure 8. Sombrero observed from robs = 2.8M – outward direction view. Left panel: Without the
cosmological constant. Right panel: With the cosmological constantΛ = 10−5 cm−2.

7.3 Simulation for the free-falling observer

Simulation for free-falling observer generates a sequence of images with defined frame rate
per second. The sequence can be merged in a demonstration movie. The left side of the
movie screen is the view of the hemisphere of the observer sky toward the black hole, the
right panel is the view of the opposite hemisphere. The movie also displays the proper time
and the radial coordinate of the free-falling observer. This movie can be downloaded from
our www site (Silesian University in Opava, 2005–2009). Some time cuts of the movie for
pure Schwarzschild case are shown in Fig. 9. The main difference in comparison with the
static observer is dependency of frequency shift on φ coordinate of the source.

7.4 Other properties of the optical projection

7.4.1 Einstein rings

A source on the optical axis, straight line defined by the observer’s position and the central
singularity, has no defined plane of the photon motion and it is displayed as infinitesimally
thin rings. As in case of standard images, there is an infinite number of Einstein rings
generated as borders between the images of different order, but all higher order rings and
images merge in the one bright ring on the border of the black region in the observer sky
(Nemiroff, 1993). The physical reason for this is an infinite number of equivalent null
geodesics.

7.4.2 Intensity changes

The strong gravity field makes time, frequency and space redistribution of radiation flux
from the whole observer sky (Cunningham, 1975). Intensity of higher order images de-
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robs = 200M robs = 100M

robs = 75M robs = 50M

robs = 40M robs = 30M

robs = 20M robs = 15M

Figure 9. Simulation for radially free-falling observer in pure Schwarzschild case. View of Sombrero
galaxy on different radiuses of free-fallingobserver.
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creases very rapidly, except for the Einstein rings where intensity theoretically (in our
geometrical approach) goes to infinity (Ohanian, 1987). Therefore, Einstein rings will be
well detectable and observable.

7.4.3 Geometry of the optical projection

The optical projection conserves spherical symmetry. The rings in the imaginary sky with
centre on optical axis in the flat spacetime is transformed into rings with centre on the
optical axis and different radii. But all images generated by counter-clockwise orbiting
geodesics are inverted in both angular coordinates φ and θ .

8 INFLUENCEOF COSMOLOGICAL CONSTANT

It is possible to define an apparent angular size of the black hole as an angular size of the
black region on the observer sky. This angular size depend on the value of the cosmological
constant and it is useful as an illustration of the influence of the cosmological constant on
the geometry of the optical projection. For observers above the circular photon orbit the
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maximumdirectional angleαmax corresponds to the outgoing geodesicswith the directional
angle

αmax = lim
b→b+

c

αstat(b, y, robs) . (42)

For observers under the circular photon orbit the maximum directional angle αmax corres-
ponds to the ingoing geodesics with the directional angle

αmax = lim
b→b−

c

αstat(b, y, robs) , (43)

see Fig. 4 and Eqs (20) and (30). In the area with α > αmax, the sky seems to be black.
Any radiation observed in this region must originate at close vicinity of the black hole. The
dependency of the apparent angular size of the black hole is different above and under the
circular photon orbit. Above the photon orbit the cosmological constant causes downsizing
of the black region on the sky. The biggest black region exists in pure Schwarzschild
case. Situation is opposite under the photon orbit. For observers under the photon orbit
cosmological constant causes upsizing of the black region on the observer sky. In the limit
case, for observer on the circular photon orbit, the apparent angular size of the black hole
is independent on the cosmological constant, and it is invariably π, always one half of the
observer sky. This interesting behaviour is shown in Fig. 10. Of course, the cosmological
constant has the influence onto the frequency shift too, see Eqs (21) and (31).

9 SOFTWAREIMPLEMENTATION

The code BHC is developed in C language, compiled under the gcc and mpicc compilers
on GNU/Linux operating system. Libraries Numerical Recipes (Press et al., 2002) and
MPI were used. The simulation runs on SGI ALTIX 350 with eight Itanium II CPUs and
IBM Blade Server with six Xeon CPUs. Only the first three images are generated by the
simulation. Intensity of higher order images rapidly decrease and its positions merge with
the second Einstein ring. However, the intensity ratio between images with different orders
is nonrealistic. Computer displays have no required bright resolution. For modelling of
frequency shift we used software routine from LightSpeed! (Daniel, 2005) special relativity
simulator.
Simulation for free-falling observer requires a great deal of computational time. There-

fore, parallelization is essential. For parallelization BHC was selected library Message
Passing Interface (MPI), commonly used on most multiprocessor platforms and suppor-
ted by most manufacturers like HP, IBM, SUN, etc. The main advantage of MPI is great
scalability and great portability. TheMPI library contains functions for sending and receiv-
ing messages in blocked and non blocked modes between processes, namely MPI_Send,
MPI_Receive and MPI_Wait. For scattering and gathering messages from or to multiple
processes are available functions MPI_Scatterand MPI_Gather. For process synchroniz-
ation is used Function MPI_Barrier. Those functions are used in parallelization described
below. Let assume, that hardware platform contain k processors. Each process belongs to
one processor is denoted by index k and identification ID = (k − 1). We have also Video
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Figure 11. Parallelization ofBHC code.

(AVI) frame rate given in Frame Rate per Second (FPS) and front undistorted image in
BMP format. Dimension of front image can be up to 1024x1024 pixels. Parallelization of
BHC routine is shown in Fig. 11 The algorithm consists of following steps:

• Front image is read and distributed via function MPI_Send to other 1, . . . , k processes.
• Process with ID = 0 determine Parameters R_Obs and Lambda for CalculationStep 1 for
all processes.
• R_Obs and Lambda for each k are distributed by function MPI_Scatter to all processes
and Images Calculations are initiated.
• Images with parameters R_Obs and Lambda are calculatedwith usingBHC routine.
• Resulting images from all processes are collected by process with ID = 0 using Function
MPI_Gatherand fed into compression codec.
• Simulation is finished by execution m steps. The final AVI file is stored on HDD. The
shutdown signal is initiated and all processes are terminated.

The result is AVI filewith number of framesm ×k and frame rate FPS. Execution ofBHC
Simulation is initiated by command:

mpirun -np k impact R_Observer_Start FPS
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where k is number of processors on HW Platform, Impact is name of code binary File,
R_Observer_Start is starting radial coordinate of free-falling observer, FPS is frame rate
in final AVI file.

10 CONCLUSIONS

In this work we present first studies of computer modelling and simulation of optical effects
in the Schwarzschild–de Sitter spacetimes. Our results shows different influence of the
cosmological constant on the geometry of the optical projection for observers located above
and under the circular photon orbit. This influence vanishes for observers located just at
the circular photon orbit. In future we plan to extend our method and the code in order
to include the influence of the black hole rotation. In future we also assume extension our
studies onto the influence of the cosmological constant onto quasi periodical oscillation
and related optical phenomena in the vicinity of supermassive black holes in active galactic
nuclei (Török, 2005b,a; Bursa, 2004). For these kinds of extensions it will be useful to
solve parallelization BHC code on huge supercomputer systems, which contain units with
different computational parameters andHWandOS platforms.
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ABSTRACT
The current paradigm of high energy spectroscopy tells us that light emitted from
a wide variety of objects has its origin close to the black hole event horizon. As
such, these photons are subject to general relativistic effects such as light-bending,
gravitational lensing and redshift, time-dilation, etc. These gravitational effects
are well-understood from a theoretical standpoint and therefore provide a natural
mechanism to test the properties of strong gravitational fields. To this end, we
have developed a new (semi-analytic) strong gravity code, capable of describing the
contribution of photons that perform multiple orbits of the hole. We apply this
code to a simple Keplerian accretion disk in order to understand the role played by
the angular emissivity, black hole spin and higher order images in forming the line
profile.

1 INTRODUCTION

Black holes are the ultimate test of strong gravity, spacetime so warped that not even light
can escape. By definition they have no emission (apart from Hawking radiation), yet their
immense gravitational potential energy can be tapped by any infalling material. This can
power a luminous accretion flow where the emission has its origin close to the black hole
event horizon, as is seen in many objects including Active Galactic Nuclei, Galactic black
hole binaries, Ultra-Luminous X-ray Sources and Gamma Ray Bursts. Photons emitted
in this region are subject to general relativistic effects such as light-bending, gravitational
lensing and redshift, as well as special relativistic effects as the emitting material will be
moving rapidly (e.g., Fabian et al., 2000). These are well-understood from a theoretical
standpoint, so accreting objects provide a natural laboratory to test the properties of strong
gravitational fields.
Calculations of the relativistic corrections to photon properties have been ongoing for

nearly three decades, starting with the classic work of Cunningham (1975) who calculated
the distortions expected on the spectrum of a geometrically thin, optically thick, Keplerian
accretion disc orbiting a Kerr black hole. Interest in these calculations dramatically in-
creased with the realisation that the accretion disc could emit line as well as continuum
radiation. Iron Kα fluorescence resulting from X-ray irradiation of the accretion disc can
give a narrow feature, on which the relativistic distortions are much more easily measured
than on the broad accretion disc continuum (Fabian et al., 1989). Since then, several

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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groups have developed numerical codes that are capable of determining these effects both
for standard discs (Dovčiak et al., 2004) and alternative emission geometries (Bursa et al.,
2004).
Observationally, evidence for a relativistically smeared iron line first came from theASCA

observation of the active galactic nuclei (AGN)MCG-6-30-15 (Tanaka et al., 1995). Further
observations showed evidence for the line profile being so broad as to require a maximally
spinning black hole (Iwasawa et al., 1996). More recent data from XMM are interpreted
as showing that the line is even wider than expected from an extreme Kerr disk, requiring
direct extraction of the spin energy from the central black hole as well as the immense
gravitational potential (Wilms et al., 2001).
Such results are incredibly exciting, but X-ray spectral fitting is not entirely unambigu-

ous. There is a complex reflected continuum as well as the line (Nayakshin et al., 2000;
Ballantyne et al., 2001). For an ionised disk (as inferred for MCG-6-30-15) the current
models in general use (pexriv in the XSPEC spectral fitting package) are probably highly
incomplete (Ross et al., 1999). Complex ionised absorption also affects AGN spectra (see,
e.g., Kaspi et al., 2002) and the illuminating continuum itself can have complex curvature
rather than being a simple power law.
However, in MCG-6-30-15 these issues have been examined in detail, and the results on

the dramatic line width appear robust (Fabian and Vaughan, 2003; Reynolds et al., 2004).
Thus there is a clear requirement that the extreme relativistic effects are well modelled.
There are two models which are currently widely available to the observational community,
within the XSPEC spectral fitting package, diskline (based on Fabian et al., 1989) and
laor (Laor, 1991). The analytic diskline code models the line profile from an accretion
disc around a Schwarzschild black hole (so of course cannot be used to describe the effects
in a Kerr geometry). Also, it does not include the effects of lightbending (although Fabian
et al. (1989) outline a scheme for incorporating this) andhencedoes not accurately calculate
all the relativistic effects for r < 20rg (where rg = GM/c2). By contrast, the laormodel
numerically calculates the line profile including lightbending for an extreme Kerr black
hole, but uses a rather small set of tabulated transfer functionswhich limit its resolution and
accuracy (Beckwith andDone, 2004a).
In response to these limitations, we have developed a fast, semi-analytic code to calculate

relativistic corrections to photons properties in the gravitational field of the Kerr black hole
(Beckwith andDone, 2004a,b). Here, we briefly introduce the method implemented by the
code to perform these calculations and apply this technique to a simple Keplerian accretion
disk in order to understand the role played by the angular emissivity, black hole spin and
higher order images in forming the line profile.

2 CALCULATINGRELATIVISTIC LINE PROFILES

Line emission from a patch of disc with rest energy E int subtends a solid angle dΞ =
r−2

o dαdβ on the observers sky at an energy Eo. This observer thenmeasures the amount of
flux at the energy Eo to be:

Fo(Eo) = r−2
o

∫∫
g4ϵ(re, µe)δ(Eo − gEint) dαdβ , (1)
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where g = Eo/Eint is the redshift factor and dαdβ is the solid angle subtended by each
small patch of the disc in the observers frame of reference. The total amount of flux at an
energy Eo is then found by summing all dαdβ that fall within some dE of Eoand the overall
line profile is then generated by scanning over all possible Eo.
An additional complication to this calculation is due to the dependence of the observed

radiation pattern on the emissivity law ϵ(xi) (i = 1, . . . , n). Here, we choose the emissivity
law to have a two parameter dependence, (i) the radial coordinate from which the photon
is emitted, re and (ii) the initial direction of the photon with respect to the z-axis of the
local disc frame, µe (see Fig. 1). We assume that the dependence of the emissivity law is
separable, that is we can write ϵ(re, µe) = E(re) f (µe). We choose E(re) ∝ r−q

e and take

Figure 1. Top panel: The coordinate system used for the disc. The emission is defined in the rest
frame of the disc material. The polar and azimuthal emission anglesΘ,Φ are obtained by taking the
dot-products of the photon four-momentumwith the basis vectors of this frame, whereµe = cosΘ .
This disc frame can be connected to the frame which co-rotates with the black hole spacetime via a
simple boost which depends on the velocity. Bottom panel: Diagram showing the link between the
observers frame of reference and the global coordinate systemdefined by the black hole. Photons that
are emitted from the disc at some distance re from the hole are seen at coordinates α,β on the image
of the disc at the observer.
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q = 3, consistent with gravitational energy release within the disc (Życki et al., 1999). The
choice of the angular dependence is far more complex however, as it depends on the (poorly
understood) vertical structure of the accretion disc, in particular the ionization state of the
material and so the choice of this dependence is not unique.

3 THEROLEOFANGULAREMISSIVITY&BLACKHOLE SPIN

Different angular emissivity laws can have striking effects on the form of the relativistic
line profile, which we illustrate in Fig. 2 for a maximal Kerr black hole (a = 0.998)
viewed at an inclination θo = 30◦. The line profiles here all implement the stand-
ard radial emissivity law of r−3

e and we show the line profiles generated by three dif-
ferent angular emissivities, (i) f (µe) = 1 (solid lines), corresponding to an optically
thick disk; (ii) f (µe) ∝ (1 + 2.06µe) (long dashed lines) corresponding to an optically
thick, limb-darkened disk (Laor, 1991); (iii) f (µe) ∝ µ−1

e (short dashed lines) corres-
ponding to an optically thin, limb-brightened disk (the limiting case of ionized material).
In the left-hand panel of the figure, the disc extends from the marginally stable orbit,
rms = 1.235rg to rout = 20rg. There is a ∼ 35% difference in the height of the blue peak
depending of the form of the angular emissivity used.
However, such a limited range of radii is probably not very realistic. The disc should

extend out to much greater distances from the black hole, where the relativistic effects
(including lightbending) are less extreme. However, realistic emissivities strongly weight
the contribution from the innermost regions, so the effective dilution of the relativistic
effects by including the outer disc is not overwhelming. The centre panel of Fig. 2 shows
the line profiles generated using the same angular emissivity laws for a disc extending from
1.235–400rg, againwith θo = 30◦. There are still significant differences in the line profiles,
with a ∼ 25% difference in the height of the blue peak while the red wing slope changes
from Fo(Eo) ∝ E3.5

o (limb darkened) to ∝ E2.5
o (limb brightened).

Despite the expectation of an extended disc, some recent observational studies (e.g.,
Reynolds et al., 2004) have tentatively suggested that the disc is very small, from ∼ 1.235–
6rg. This enhances the importance of lightbending. The right-hand panel of Fig. 2 shows
the line profiles for a disc extending from 1.235–6rg. The blue peak height differences
are ∼ 40%, and the red wing slopes are different. For comparison we also show a limb
darkened profile obtained from a very different radial emissivity of r −4.5

e (dotted line). This
is very similar to the extreme limbbrightenedprofile obtained from the r −3

e radialweighting.
We caution that uncertainties in the angular distribution of the line emissivity can change
the expected line profile due to lightbending effects even at low/moderate inclinations, and
that this can affect the derived radial emissivity.
Currently, the only availablemodels in XSPEC have either zero or maximal spin. A zeroth

order approximation to spacetimes with different spins is to use the maximal Kerr results
but with a disc with inner radius given by the minimum stable orbit for the required value
of a (e.g., Laor, 1991). We test this for the most extreme case of a = 0 modelled by a
maximal Kerr spacetime with rmin = 6rg. Figure 3 (left-hand panel) compares this with
a true Schwarzschild calculation for a disc extending from 6–400rg with θo = 30◦ for a
range of angular emissivities. The differences between the spacetimes (for a given angular
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Figure 2. Comparison of the relativistic line profiles generated for a maximal Kerr black hole (a =
0.998) viewed at an inclination θo = 30◦ with the inner edge of the disc located at rms = 1.235rg.
The line profiles here all implement the standard radial emissivity law of r −3

e and we show the line
profiles generated by three different angular emissivities, (i) f (µe) = 1 (solid lines); (ii) f (µe) ∝
(1 + 2.06µe) (long dashed lines); (iii) f (µe) ∝ µ−1

e (short dashed lines). In the left-hand panel,
the outer edge of the disc is located at 20rg and there is a ∼ 35% difference in the height of the blue
peak. In the centre panel, the outer edge of the disc is located at 400rg, which reduces the difference
in the height of the blue peak to ∼ 25%. Finally, in the right-hand panel, the outer edge of the disc is
located at 6rg, (the formal best fit to theMCG-6-30-15 data set), resulting in a difference in the height
of the blue beak of ∼ 40%. For comparison we also show a limb darkened profile obtained from a
very different radial emissivity of r−4.5

e (dotted line), which is very similar in characteristic to the r −3
e

optically thin, limb-brightened case (short dashed line).

Figure 3. As in Fig. 2 for maximal Kerr (a = 0.998, black lines) and Schwarzschild (a = 0, grey
lines) black holes. Here, the disc extends from the minimum stable orbit for the Schwarzschild black
hole, rms = 6rg to 400rg (left-hand panel) and 20rg (right-hand panel). For the extended disc, the
differencesbetween the line profiles produced for the same sized disc in different assumed spacetimes
is of order ∼5% for a given angular emissivity. Reducing the radial extent of the disc enhances these
differences to ∼15% (left-hand panel).
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emissivity) are atmost ∼5%. This is roughly on the sameorder as the effect of changing the
angular emissivity, which is much reduced here compared to Fig. 2 due to the larger rmin.
Assumptions about both spin and angular emissivity become somewhatmore important for
smaller outer disc radii. Figure 3 (right-hand panel) shows this for a disc between 6–20rg.

4 THECONTRIBUTIONOFHIGHERORDER IMAGES

The contribution of higher order images to the observed flux is dependent both on the
location of the observer and the angular momentum of the hole itself, together with the
assumed geometry and emissivity of the accretion flow. For an optically thick accretion disc
then any photons which re-intersect the disc after emission will be either absorbed (and
then re-emitted) or reflected by the material. Figure 4 shows the contributions of both the
direct (N = 0) and higher order (N = 1, 2) images of a geometrically thin disc extending

Figure 4. The contribution of orbiting photons (higher order images) to a distant observers image
of a geometrically thin, optically thick, Keplerian accretion disc around Schwarzschild (top row)
and extreme Kerr (bottom row) black holes. In both cases the observer is located at radial infinity
with θo = 85◦, the disc extends from the marginally stable orbit (6rg for Schwarzschild, 1rg for
extreme Kerr) to 20rg and the images are coloured by the associated value of the redshift parameter,
g = Eo/Ee. From left to right, the panels show the contributions from (i) the direct (N = 0) image,
(ii) the first order (N = 1) image and (iii) the second order (N = 2) image.
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from rms to 20rg, viewed at θo = 85◦ for both Schwarzschild andmaximal Kerr black holes.
The principle effect of black hole spin for the accretion disk dynamics is tomove the location
of the marginally-stable orbit, rms and hence the location of the inner edge of the accretion
disc. In the case of the Schwarzschild hole, the inner edge of the accretion disc is located
at 6rg, above the radius of the unstable photon orbits (3rg) so higher order image photons
which cross the equatorial plane below 6rg are not absorbed by the disc and may be able to
freely propagate to the observer. This contrastswith the extremeKerr hole behaviour,where
the accretion disc extends down to 1rg, intersecting the allowed radial range of the unstable
photon orbits (1rg ≤ rc ≤ 4rg) and hence a large fraction of these orbiting photons return
to the disc in the case of a rotating black hole.
To understand how the astrophysical properties of the accretion flow couple to the grav-

itational field of the black hole, we generate relativistically smeared line profiles, applying
the same emissivity laws that were described in the preceding section (Fig. 5). The top and
bottom rows of the figure again correspond to the Schwarzschild and extreme Kerr cases,
respectively with the image order running from N = 0 → 2, left to right.
Turning our attention to the Schwarzschild case, we see that, for the direct image, limb

darkening boosts the effects of gravitational lensing, enhancing the flux from the far side

Figure 5.Relativistic line profiles generated from the images shown in Fig.4 using the emissivity laws
described in Fig. 2. As in Fig. 4, lines generated by the Schwarzschild black hole are shown on the top
row, extreme Kerr on the bottom and from left to right the panels show the contributions from the
N = 0, . . . , 2 images. Line profiles generated by the zeroth order photons have the standard skewed,
double peaked structure. Those generated by the first order photons have a similar structure, whilst
those from the second order photons are farmore complex.
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of the hole. This is because these photons are strongly bent, i.e., are emitted from a lower
inclination angle than that at which they are observed, so a limb darkening lawmeans that
the flux here is higher (Beckwith and Done, 2004a). The Dopper shifts are rather small
for this material, so this lensing enhances the flux in the middle of the line. Since the line
profiles are normalized to unity, this means that the blue wing is less dominant.
The first order spectra retains the characteristic double peaked and skewed shape, and

again the principle effect of the different angular emissivities is to alter the balance between
the blue wing and lensed middle of the line. However, there is some new behaviour for
the limb brightened emissivity. This has the largest change in emissivity with angle, and
this combined with the exquisite sensitivity of lensed paths means that this picks out only a
small area on the disc, leading to a discrete feature in the spectrum. The profile also shows
enhancement of the extreme red wing of the line, as the photons which orbit generally are
emitted from the very innermost radii of the disc.
The discrete features are completely dominant for all emissivities at second order. These

are images of the top of the disc where the photons have orbited the black hole, so the paths
are evenmore sensitive to small changes than first order. Thus the profiles are significantly
more complex in structure, being dominated by lensing. There are blue and red features at
the extreme ends of the line profilewhich are picking out themaximumprojected velocity of
the innermost radii of the disc. These have the standard blue peak enhancement. However,
the two strong features redward of this are a pair of lensed features, from the near and far
side of the disc.
For the direct image of the extreme Kerr hole, the line exhibits the characteristic triangu-

lar shape previously reported by, e.g., Laor (1991), with the variation in angular emissivity
acting to alter the balance between the different regions of the line on a ∼5% level. The line
associated with the first order image exhibits a marked difference in comparison to those
associated with the Schwarzschild black hole, being both broader and resembling a skewed
Gaussian combined with a narrow line (due to caustic formation) at g ≈ 1.0. Here the
principle effect of changes in the angular emissivity is to alter the height of the blue wing,
relative to the rest of the line. Again, the line profile associated with the second order image
are completely dominated by discrete features, as in the Schwarzschild case.

5 CONCLUSION

Recent observational studies have provided evidence for highly broadened fluorescent iron
Kα lines. While there are a variety of line profiles seen (e.g., Lubiński and Zdziarski, 2001),
there are some objects where the line implies that there is material down to the last stable
orbit in amaximally spinningKerr spacetime (most notablyMCG-6-30-15: seeWilms et al.,
2001). However, the strong gravity codes generally used tomodel these effects are nowover
a decade old. Increased computer power means that it is now possible to improve on these
models. We describe our new code to calculate these effects, which uses uses fully adaptive
gridding to map the image of the disc at the observer using the analytic solutions of the
light travel paths. This is a very general approach, so the code can easily be modified to
incorporate different emission geometries.
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Relativistically smeared line profiles are generated by convolving the observed area of the
disc (at a given energy) with an emissivity law describing energy release in the rest frame of
the emitter. This emissivity law is not only dependent on the location of the emitter within
the disc, but also the initial direction that a photon is emitted in. Lightbending means that
a range of initial photon directions contribute to the observed radiation spectrum at a given
inclination. As such, the emissivity law convolves together the effects of strong gravity and
the astrophysics of the accretion flow, which in the most extreme case can play a ∼ 40%
role in shaping the internal structure of the line profile. By contrast, black hole spin plays
at most a ∼ 15% role in shaping the internal structure (keeping the inner edge of the disc
fixed).
Our code is capable of calculating both the imaging and spectral contributions of higher

order images to the standard picture of relativistically smeared line profiles. As has long
been known, the major amplification effects of gravitational lensing are for the first order
paths from the far side of the underneath of the disc viewed at high inclination, i.e., photons
initially emitted downwards on the far side of the black hole, which are bent by gravity up
above the disc plane. For a disc viewed edge-on, the spectral signature of these first order
photons retains the characteristic skewed, double-peaked shape in the Schwarzschild case,
whilst in the extreme Kerr case, the line resembles a skewed Gaussian. By contrast, the
spectra of the second order image is dominated by discrete spectral features in both cases.
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ABSTRACT
A class of resonance models has been proposed to explain the high-frequency quasi-
periodic oscillations observed fromGalactic black-hole sources. The spin predictions
given by thesemodels are comparedwith the recent angularmomentumestimate for
GRO J1655−40. It is found that none of the present resonance models is con-
sistent with the value of the spin obtained by spectral fits of the X-ray continuum.
Instead, observational constraints seem to favour another, so far not considered
resonance between the vertical epicyclic frequency and the periastron precession
frequency.

1 INTRODUCTION

The spectral and timingX-ray observations ofGalactic black-hole binary systemsprovide us
with informationaboutphysical processes that occur inaccretiondisksnearblackhole event
horizons. Oneof themaingoalsof these studies is to obtainconstraints onblackholemasses
and spins using predictions of general relativity in the regime of strong gravity. RXTE
observations of some microquasars have revealed an interesting kind of quasi-periodic
modulation of the incoming X-ray flux at frequencies ranging from 100 to 450 Hz. These
high-frequency quasi-periodic oscillations (HFQPOs) are the fastest QPOs that have been
confirmed in black-hole systems. Their properties are in some aspects similar to the kHz
QPOs observed in neutron stars: they appear in the range of frequencies that Keplerian
orbits very close to compact stars would have, they come in pairs. Other properties differ
from kHz QPOs: they always stay at fixed positions, the ratio of the two frequencies is
sharply ν2 : ν1 = 3 : 2, the signal modulation is much weaker. See a comprehensive review
byMcClintock andRemillard (2004) for details.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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2 HIGH-FREQUENCYQPO’S ASANON-LINEARRESONANCE

The rational ratio of the frequencies originally lead Kluźniak and Abramowicz (2000) to
an idea of a resonance that may be responsible for generating HFQPOs. In the resonance
model (see a recent review in Abramowicz and Kluźniak, 2004, and references therein)
a non-linear coupling in the motion of accreting fluid is made responsible for the twin
QPOs. At particular radii in the disk, commensurabilities between certain combinations
of epicyclic and orbital frequencies can lead to an excitement of a resonance between the
particular types of motions. In this way, general relativity itself picks up certain frequencies
at preferred radii in the disk regardless of properties of the source.
Unlike Newtonian 1/r gravity, general relativity predicts independent frequencies for

different types of periodic motion in the strong gravitational field of a rotating compact
object (Nowak and Lehr, 1998; Merloni et al., 1999). The condition νK > νz > νr is
always satisfied for the Keplerian orbital, vertical epicyclic and radial epicyclic frequencies,
respectively. The radial epicyclic frequency νr reaches amaximumat a particular radius and
goes to zero at the marginally stable circular orbit (Kato, 2001). This allows for two of the
three frequencies (or a combination) to be in a ratio of small natural numbers somewhere
in the disk.
A whole class of relativistic resonance models has been be constructed with different

combinations of frequencies (see, e.g., Abramowicz andKluźniak, 2004; Abramowicz et al.,
2004b for a detailed description of possible models). The most natural is the parametric
resonance between the vertical and radial epicyclic frequency: ν2 = νz , ν1 = νr , 2νz = 3νr
(3 : 2 resonance). Another possibility is a forced resonance between the epicyclic modes,
which gives two solutions: ν2 = νz , ν1 = νz − νr , νz = 3νr (3 : 1 resonance) and
ν2 = νz + νr , ν1 = νz , νz = 2νr (2 : 1 resonance). Finally, models with coupling between
the orbital Keplerian motion and the radial epicyclic motion can be considered: ν2 = νK,
ν1 = νr , 2νK = 3νr (Keplerian 3 : 2 resonance); ν2 = νK, ν1 = νK − νr , νK = 3νr
(Keplerian 3 : 1 resonance) and ν2 = νK + νr , ν1 = νK, νK = 2νr (Keplerian 2 : 1
resonance).

3 SPINESTIMATES

For each resonance model Török et al. (2005) have made fits to the observational data for
the three microquasars with knownmasses in order to constrain values of their spins. They
compare the observed upper QPO frequency of each source with frequencies predicted by
individual resonance models. Based on the knowledge of mass they calculate the range
for the black hole angular momentum required by each model to work. Their results are
summarized in Table 1.
The observational data already excludes the Keplerian 3 : 2 resonance in the case of two

sources. If it is assumed that the HFQPOs are produced by the same type of resonance in
all black-hole sources, then this model can be ruled out as incompatible with observations.
Other models discussed in their paper are so far consistent with measured masses, but as
they note, future observations or developments in accretion theory can narrow down the
choice. In this context, direct measurements of black-hole spins may especially be useful to
limit the selection.
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Table 1. Summary of angular momentum estimates as they are predicted by different resonance
models for the threemicroquasarswith knownmasses. The uncertainty in the spin estimates is due to
uncertainties in the black-holemassmeasurements. [Adopted from (Török, 2005).]

Resonance XTE 1550−564 GRO J1655−40 GRS 1915+105

Standard:
3 :2 +0.89 –+0.99 +0.96 –+0.99 +0.69 –+0.99
2 :1 +0.12 –+0.42 +0.31 –+0.42 −0.41 –+0.44
3 :1 +0.32 –+0.59 +0.50 –+0.59 −0.15 –+0.61

Keplerian:
3 :2 – – +0.79 –+1.0
2 :1 +0.12 –+0.43 +0.31 –+0.42 −0.41 –+0.44
3 :1 +0.29 –+0.54 +0.45 –+0.53 −0.13 –+0.55

4 THESPINOFGRO J1655−40 AND IMPLICATIONS FORRESONANCE
MODELS

Shafee et al. (2005) have recently published an analysis of X-ray spectral data from ASCA
and RXTE of the two black hole candidates, GRO J1655−40 and 4U 1543−47, where they
estimate the angularmomenta of these sources. Here, GRO J1655−40 (hereafter J1655) is
of a high interest, because it also shows the twinHFQPOs.
Their analysis is based on fitting the X-ray thermal continuum spectra using a fully

relativistic model of a thin accretion disk around a Kerr black hole (Li et al., 2005). The
model includes all relativistic effects as well as self-irradiation of the disk, limb-darkening
effects and the spectral hardening factor. It, however, strongly relies on the assumed value
of the spectral hardening factor, which cannot be obtained from the data and must be
estimated independently. The state-of-the-art non-LTE disk atmosphere model of Davis
et al. (2005) is used to estimate the factor.
The spin of J1655, according to Shafee et al. (2005), is a ≃ 0.65–0.75. It can be

compared with the predictions of the resonance theory given by Török et al. (2005) and
listed in Table 1. We find that it is not compatible with any of the “basic” six models (3 : 2,
2 : 1, 3 : 1; see Fig. 1), as well as with models with “higher” resonances 5 : 1, 5 : 2, 5 : 3. The
models predict spins either too high (> 0.96) or too low (< 0.6). The one with the closest
approach is the 3 :1 forced resonance, which predicts spin in the range 0.50–0.59.

5 THEVERTICAL-PRECESSIONRESONANCE

A new model can be assumed to satisfy the observational evidence, which has not been
considered so far: the resonance between the vertical epicyclic frequency and the periastron
precession frequency. These two frequencies are in the 3 : 2 ratio typically very near the
marginally stable orbit. For a black hole with spin a = 0.75 it occurs around r = 4.3 rg,
while marginally stable orbit is at rms = 3.16 rg. The occurrence of HFQPOs may then
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Figure 1. Possible combinations of mass and angular momentum predicted by individual resonance
models for the HFQPO frequencies observed fromGRO J1655−40. Thin lines represent predictions
of the standard 3 : 2, 3 : 1 and 2 : 1 resonances. The thick line shows the prediction of the vertical-
precession resonance. Shaded regions indicate the likely ranges for the mass (inferred from optical
measurements of radial curves) and the dimensionless angular momentum (inferred from the X-ray
spectral data fitting) of J1655.

correspond to a formation of an slightly eccentric fluid slender torus at the end of the
accretion flow. This torus would oscillate in the vertical direction either rigidly or in a
“snake-like”mode (Abramowicz et al., 2005). It has been shown (Bursa et al., 2004; Bursa,
2005) that strong gravity effects can cause sufficient modulation of the radiation produced
in a vertically oscillating torus. It is, however, not clearwhat physical situationwould couple
the vertical and the precessionmodes to the 3 :2 ratio.
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Figure 1 shows the predictions of the standard resonance models and of the vertical-
precession model in the mass-spin plane. It shows possible combinations of mass and spin
of J1655 as they are predicted by individual resonance models. It is clear that the only
model, whichmatches the observational constraints, is the vertical-precession resonance.

6 APPLICATIONSTOMICROQUASARSANDSGRA∗

Based on the measured HFQPO frequencies and mass of J1655, the vertical-precession
model predicts the spin of the black hole to be a = 0.64–0.76, which is an excellent match
with the estimated value 0.65–0.75. For the other two microquasars with known masses,
no spin estimates are yet available, mainly because large uncertainties in their distances.
The model predicts spins to be in the range 0.41–0.77 for XTE 1550−564 and in the range
−0.09 to 0.78 for GRS 1915+105. The predicted spin values are summarized in Table 2.
In the case of Sgr A∗ – the super massive black hole in the centre of our Galaxy – three

QPO periodicities 700 s, 1150 s and 2250 s have been reported by Aschenbach et al. (2004)
in the two brightest X-ray flares from the Galactic centre. Although the quality of the
used light curves is very low and the results have not been so far independently confirmed,
the ratio of the reported periodicities is 3.21 : 1.96 : 1, i.e., the “Keplerian” frequencies
found in Sgr A∗ are close to form a commensurable sequence 3 : 2 : 1, similar to 3 : 2
HFQPOs in microquasars (Abramowicz et al., 2004a,b; Aschenbach, 2004). Assuming
the mass of SgrA∗ 3.6 × 106 M⊙,1 Török et al. (2005) give its spin a ≃ 0.8–0.9, whereas
3 : 2 parametric resonance models (both standard and Keplerian) are not consistent with
observed frequencies. The vertical-precession model does not match these observations
as well.

1 From the analysis of orbits of proximate stars within 10–1000 light hours of Sgr A∗, the current best estimate
of the central mass is (3.7 ± 0.2) × 106 (R∗/8 kpc)3 M⊙ (Ghez et al., 2005), where the uncertainty in theGalactic
centre distance adds an additional 19% error. This gives the mass of the black hole in Sgr A∗ most likely to be in
the interval (2.8–4.6) × 106 M⊙.

Table 2. Summary of angular momentum estimates as they are predicted by the vertical–precession
model for the threemicroquasarswith knownmasses. QPO frequencies observed fromSgrA∗ are not
consistentwith themodel.

Measured Measured Predicted
Source mass [M⊙] spin spin

XTE 1550−564 8.4 – 10.8 – 0.41 – 0.77
GRO 1655−40 6.0 – 6.6 0.65 – 0.75 0.64 – 0.76
GRS 1915+105 10 – 18 – −0.09 – 0.78

SgrA∗ (2.8 – 4.6) × 106 – –
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7 CONCLUSIONS

None of the resonance models listed in Abramowicz and Kluźniak (2004) and Török et al.
(2005) predicts the spin of J1655 to be in the range given by Shafee et al. (2005) This
could mean that none of these models is able to explain the origin of HFQPOs in black
hole sources.
Although the spectral fitting analysis has been done very carefully, it has some weak

points. The assumed value of the spectral hardening factor is one of them. Next, the
analysis assumes that the disk terminates at the marginally stable orbit in the thermal
dominant state and that it has zero torque at the inner edge. However, in face of these
points themethod is very reliable and gives good results. Improved disk atmospheremodels
may change the estimated value of spin, but not significantly. Relaxing the assumption of
the zero torque and the disk terminal radius may, as argued by Shafee et al. (2005), only
decrease the spin estimate.
Observational constraints seem to favour a newly proposed resonance model, where the

upper and lower QPO frequencies correspond to the vertical epicyclic frequency and the
periastron precession frequency, respectively. We have checked that the measured spin of
J1655 is consistentwith the prediction of themodel. In the case of the other twomicroquas-
ars with known masses, we have given the likely ranges of their spins. Unfortunately,
current knowledge of their distances and large errors in mass measurements do not allow
to accurately use the spectral fitting method to constrain the angular momenta of those
black holes.
We have also noted that the vertical-precession model does not match with the QPO

frequencies reported from SgrA∗. This may put some doubt about whether the QPOs from
the Galactic centre have the same origin as the HFQPOs inmicroquasars.
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ABSTRACT
The effects of strong gravity on the polarization of the Compton reflection from an
X-ray illuminated accretion disc are studied. The gravitational field of a rotating
black hole influences Stokes parameters of the radiation along the propagation to
a distant observer. Assuming the lamp-post model, the degree and the angle of
polarization are examined as functions of the energy, observer’s inclination angle,
height of the primary source and inner radius of the disc emitting region.

1 INTRODUCTION

In this contribution we show that polarimetric studies in the X-ray domain could provide
additional information about accretion discs in a strong gravity regime, which may be
essential to discriminate between different possible geometries of the source. The idea of
using polarimetry to gain additional information about accreting compact objects is not
a new one. In this context it was proposed by Rees (1975) that polarized X-rays are of
high relevance. Pozdnyakov et al. (1979) studied spectral profiles of iron X-ray lines that
result frommultiple Compton scattering. Later on, various processes affecting polarization
(due to magnetic fields, absorption as well as strong gravity) were examined for black-
hole accretion discs (Agol and Blaes, 1996). Temporal variations of polarization were also
discussed, in particular the case of orbiting spots near a black hole (Connors et al., 1980;
Bao et al., 1996). With the promise of new polarimetric detectors (Costa et al., 2001),
quantitative examination of specific models becomes timely.
Since the reflecting medium has a disc-like geometry, a substantial amount of linear po-

larization is expected in the resulting spectrumbecause of Compton scattering. Polarization
properties of the disc emission are modified by the photon propagation in a gravitational
field, providing additional information on its structure. Here we calculate the observed
polarization of the reflected radiation assuming the lamp-post model for the stationary
power-law illuminating source (Martocchia andMatt, 1996; Petrucci and Henri, 1997).

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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2 ASSUMPTIONS

Weassume a rotating (Kerr) black hole as the only source of the gravitational field, having a
commonsymmetry axiswith anaccretiondisc. Thedisc is also assumed tobe stationary and
we restrict ourselves to the time-averaged analysis. In other words, we examine processes
that vary at a much slower pace than the light-crossing time at the corresponding radius.
Intrinsic polarization of the emerging light can be computed locally, assuming a plane-
parallel scattering layerwhich is illuminated by light radiated from the primary source. This
problem was studied extensively in various approximations (e.g., Chandrasekhar, 1960;
Sunyaev and Titarchuk, 1985). Here we employ the Monte Carlo computations (Matt
et al., 1991; Matt, 1993) to determine the intrinsic emissivity of an illuminated disc. The
exact form of the local Stokes parameters can be found in (Dovčiak et al., 2004a, section
describing the kyl1crmodel). We integrate contributions to the total signal across the disc
emitting region using a general relativistic ray-tracing technique described in (Dovčiak,
2004;Dovčiak et al., 2004a) andwe compute the polarization angle and degree asmeasured
by a distant observer. We show the polarization properties of scattered light as a function
of energy and model parameters, namely, the height z = h of the primary source on the
symmetry axis, the dimensionless angular momentum a of the black hole, and the viewing
angle θo of the observer.

3 RESULTS

In the first set of figures (Figs 1 and 2) we show the energy dependence of the polarization
angle and degree due to reflected and reflected-plus-direct radiation for different inclination
angles and different heights of the primary source. One can see that the polarization of
reflected radiation can be as high as thirty percent or even more for small inclinations
and small heights. Polarization of the reflected radiation does not depend on energy very
much except for the region close to the iron edge at approximately 7.2 keV, where it either
decreases for small inclinations or increases for large ones.
In order to compute observable characteristics onehas to combine the primarypower-law

continuum with the reflected component. The polarization degree of the resulting signal
depends on the mutual proportion of the two components and also on the energy range
in which the signal is integrated. The net degree of polarization increases with energy
(see bottom panels in Figs 1 and 2) due to the fact that the intensity of radiation from the
primary source decreases exponentially, the intensity of the reflected radiation increases
with energy (in the energy range 3–15 keV) and the polarization of the reflected light alone
is more or less constant. In our computations we assumed that the irradiating source emits
isotropically and its light is affected only by gravitational redshift and lensing, according
to the source location at z = h on axis. This results in a dilution of primary light by
factor ∼ g2

h(h, θo) lh(h, θo), where gh = [1 − 2h/(a2 + h2)]1/2 is the redshift of primary
photons reaching directly the observer, lh is the corresponding lensing factor. Here, the
redshift is the dominant relativistic term, while lensing of primary photons is a few percent
at most and it can be safely ignored. Anisotropy of primary radiationmay further attenuate
or amplify the polarization degree of the final signal, while the polarization angle is rather
independent of this effect as long as the primary light is itself unpolarized.
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Figure 1. Energy dependence of polarization angle (top panels) and polarization degree (middle
panels) due to reflected radiation for different observer’s inclination angles (θo = 30◦, 60◦ and
80◦) and for different heights of the primary source (h = 2, 6, 15 and 100). Polarization degree
for reflected-plus-direct radiation is also plotted (bottom panels). The emission comes from a disc
within rin = 6 and rout = 400. Isotropic primary radiation with photon index Γ = 2 and angular
momentumof the central black hole a = 0.9987 were assumed.

The polarization of scattered light is also shown in Fig. 3, where we plot the polarization
degree and the change of the polarization angle as functions of h. Notice that in the
Newtonian case only polarization angles of 0◦ or 90◦ would be expected for reasons of
symmetry. The two panels in the figure correspond to different locations of the inner disc
edge: rin = 6 and rin = 1.20, respectively. The curves are strongly sensitive to rin and h,



50 M.Dovčiak et al.

 40

 50

 60

 70

 80

 90

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
an

gl
e

Energy [keV]

θo=30°, rin=rms, rout=400

Height
2
6

15
100

-90

-60

-30

 0

 30

 60

 4  6  8  10  12  14
P

ol
ar

iz
at

io
n 

an
gl

e

Energy [keV]

θo=60°, rin=rms, rout=400

Height
2
6

15
100

-150

-120

-90

-60

-30

 0

 30

 60

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
an

gl
e

Energy [keV]

θo=80°, rin=rms, rout=400

Height
2
6

15
100

 0

 0.1

 0.2

 0.3

 0.4

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
de

gr
ee

Energy [keV]

θo=30°, rin=rms, rout=400

reflected Height
2
6

15
100

 0

 0.04

 0.08

 0.12

 0.16

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
de

gr
ee

Energy [keV]

θo=60°, rin=rms, rout=400

reflected Height
2
6

15
100

 0

 0.03

 0.06

 0.09

 0.12

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
de

gr
ee

Energy [keV]

θo=80°, rin=rms, rout=400

reflected Height
2
6

15
100

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
de

gr
ee

Energy [keV]

θo=30°, rin=rms, rout=400

reflected+directHeight
2
6

15
100

 0

 0.02

 0.04

 0.06

 0.08

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
de

gr
ee

Energy [keV]

θo=60°, rin=rms, rout=400

reflected+directHeight
2
6

15
100

 0

 0.01

 0.02

 0.03

 4  6  8  10  12  14

P
ol

ar
iz

at
io

n 
de

gr
ee

Energy [keV]

θo=80°, rin=rms, rout=400

reflected+directHeight
2
6

15
100

Figure 2. Same as in the previous Fig. 1 but for disc starting at rin = 1.20.

while the dependence on rout is weak for a large disc (here rout = 400). Sensitivity to rin is
particularly appealing if one remembers the practical difficulties in estimating r in by fitting
spectra. The effect is clearly visible up to h ∼ 10 for polarization degree and even higher for
polarization angle (for larger inclination angles of the observer). Graphs corresponding to
rin = 6 and a = 0.9987, resemble, in essence quite closely, the non-rotating case (a = 0)
because dragging effects aremost prominent near the horizon.
Figure 4 shows the polarization degree and angle as functions of the observer’s inclina-

tion. Again, by comparing the two cases of different rin one can clearly recognize that the
polarization is sensitive to details of the flow near the inner disc boundary.
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Figure 3. Polarization degree and angle due to reflected radiation integratedover thewhole surface of
the disc and propagated to the point of observation. Dependence on height h is plotted. Left panel:
rin = 6. Right panel: rin = 1.20. In both the panels the energy range was assumed 9–12 keV, the
photon index of incident radiation Γ = 2, the angular momentum a = 0.9987. The figure is taken
from (Dovčiak et al., 2004b).
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Figure 4. Polarization degree and angle as functions of µo (cosine of observer inclination, µo = 0
corresponds to the edge-on view of the disc). The samemodel is shown as in the previous Fig. 3. The
figure is similar to Fig. 2 in (Dovčiak et al., 2004b) but computedwith higher resolution.
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Figure 5. Net polarization degree of the total (primary plus reflected) signal as a function of h. Left
panel: rin = 6. Right panel: rin = 1.20.

 0

 0.03

 0.06

 0.09

 0.12

 0.15

      
 

 

 

 

 

 
rin=6, rout=400

P
ol

ar
iz

at
io

n 
de

gr
ee

h=23-6keV

6-9keV

9-12keV

12-15keV

 0

 0.03

 0.06

 0.09

 0.12

      
 

 

 

 

 
h=8

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1
 

 

 

 

µo

h=100

 0

 0.03

 0.06

 0.09

 0.12

 0.15

      
 

 

 

 

 

 
rin=rms, rout=400

P
ol

ar
iz

at
io

n 
de

gr
ee

h=23-6keV

6-9keV

9-12keV

12-15keV

 0

 0.03

 0.06

 0.09

 0.12

      
 

 

 

 

 
h=8

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1
 

 

 

 

µo

h=100

Figure 6.Net polarization degree of the total (primary plus reflected) signal as a function ofµo. The
samemodel is shown as in the previous Fig. 5.
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The dependence of the polarization degree of overall radiation (primary plus reflected)
on the height of the primary source and the observer inclination in different energy ranges
is shown in Figs 5 and 6.

4 CONCLUSIONS

We examined the polarimetric properties of X-ray illuminated accretion discs in the lamp-
post model. From the figures shown it is clear that observed values of polarization angle
and degree are rather sensitive to the model parameters. The adopted approach provides
additional information with respect to traditional X-ray spectroscopy and so it has great
potential for discriminating between differentmodels. It offers an improvedway ofmeasur-
ing rotation of the black hole because the radiation properties of the inner disc region most
likely reflect the value of the black-hole angular momentum. One should stress here, that
firstly, the estimation of the black hole spin in spectroscopy is usually based on assuming
that the innermost line- or continuum-emitting orbit coincides with the innermost stable
orbit, and secondly, there are always several unknown variables at play. Therefore it would
be better to get the value of the inner edge of the disc and the spin of the black hole on the
base of both the spectroscopy and polarimetry.
While our calculations have been performed assuming a stationary situation, in reality

it is likely that the height of the illuminating source changes with time, and indeed such
variations have been invoked by Miniutti et al. (2003) to explain the primary and reflected
variability patterns of MCG-6-30-15. A complete time-resolved analysis (including all
consequences of the light travel time in curved space-time) is beyond the scope of this
contribution and we defer it to future work, assuming that the primary source varies on a
time-scale longer than light-crossing time in the system. This is also a well-substantiated
assumption from a practical point of view, since feasible techniques will anyway require
sufficient integration time (i.e., order of several ksec). Once full temporal resolution is
possible, the analysis described above can be readily extended. Here, it suffices to note
that a variation of h implies a variation of the observed polarization angle of the reflected
radiation. As it is hard to imagine a physical and/or geometrical effect giving rise to the
same effect, time variability of the polarization angle can be considered (independently of
the details) a very strong signature of strong-field general relativity effects at work.
New generation photoelectric polarimeters (Costa et al., 2001) in the focal plane of large

area optics (such as those foreseen for Xeus) can probe polarization degrees of the order
of one percent in bright AGNs, making polarimetry, along with timing and spectroscopy, a
tool for exploring the properties of the accretion flows in the vicinity of black holes.
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Kineticmodel of quasiperiodic oscillations
of gaseous rings
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ABSTRACT
In context of 3 : 2 resonant quasiperiodic oscillations, a method of “1 + 1

2 ”-di-
mensional non-ideal gas-dynamics is used to model axisymmetric oscillations of an
orbiting ring. It is shown that the characteristic frequencies of the oscillations are
influenced by the degree of freedom in the inner shear of the ring and by the rate of
relaxation.

1 INTRODUCTION

One of theoretical models explaining the quasiperiodic oscillations (QPOs) in high-energy
sources has been suggested byKluźniak andAbramowicz (2001). It is based on assumption
of non-linear resonant oscillations (mostly in ratio of frequencies 3 : 2) in accretion disks
around a central compact object (for a recent review cf. Abramowicz et al., 2004; Török
et al., 2005). The resonance occurs at a particular radius of axially symmetric potential of
the central body (mirror symmetry with respect to the equatorial plane is also assumed)
between the orbital frequency of vertical perturbations and epicyclic frequency of radial
perturbations of the gas motion. To explain the quasiperiodicity and frequency variations
of the oscillations a non-linear coupling of the oscillation modes is required. This can be
due to different effects. One of them is the non-linearity caused by the higher terms in
Taylor expansion of the effective potential. Another one, investigated here, may consist in
relaxation processes in the gas itself. In reality both these and possibly also someother (e.g.,
electromagnetic) processes may take place simultaneously.
In the present contribution a kind of the so called “1+ 1

2”-dimensional hydrodynamic
models will be used to study axially symmetric oscillations of a gaseous ring shaped as cir-
cular torus with elliptical cross-section, which orbits in an axially symmetric potential. This
method is based on the kinetic theory of the gas so that it is convenient to treat a non-ideal
gas and its viscosity. The problem of QPOs requires only a modest generalization (namely
to replace a spherically symmetric by axially symmetric potential) of example chosen for
its simplicity to illustrate the method when it was originally introduced (Hadrava, 1983,
Paper I henceforth). Because of numerous mistypes in Paper I, the method will be briefly
summarized here again, first for the linear case of collisionless particles (Section 2) and

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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then for the non-linear problem of relaxation in a gas (Section 3). Finally, the method will
be applied to the study of ring oscillations (Section 4).

2 EVOLUTIONOFACLOUDOFNON-INTERACTINGPARTICLES

Let us treat a cloud of non-interacting particles; the motion of each particle being given
by the same one-particle Hamiltonian H with an external potential and let the cloud be
described by a distribution function F in one-particle phase space with coordinates ξ . The
evolution of F in time t is then given by Boltzmann equation

∂

∂t
F + [F, H ] = ∂

∂t
F(ξ, t) + ξ̇

∂

∂ξ
F(ξ, t) = 0 . (1)

Our method is based on the assumption that F can be approximated in the form of
6-dimensional Gaussian function

F(ξ, t) = F0 exp
[
−(ξ − ξ0(t))T A(t)(ξ − ξ0(t))

]
. (2)

This assumption is motivated by the fact that it generalizes the Maxwellian distribution in
the momentum subspace, which can be, e.g., for a free expansion in vacuum, imprinted on
the density distribution in space also. Tidal forces may result in an anisotropic expansion
and, for inefficient energy redistribution, also in an anisotropic cooling. This is why the
shape of F is given by a general symmetric matrix A.
It follows from Boltzmann equation (1), that the maximum of F moves along a phase

trajectory ξ0(t) satisfying the equations of Hamiltonianmotion
d
dt
ξ(t) = [ξ, H ] (3)

and consequently (following the Liouville theorem) that the maximum value F0 along this
trajectory is constant. Next, it can be shown (cf. Paper I) that to keep the second derivatives
∂2/∂ξ2 of F along ξ0(t) consistent with (1), the matrix Amust satisfy differential equation
d
dt

A(t) = −CTA − AC , (4)

where the matrix C corresponding to tidal forces is given by second-order derivatives of H

C =
[
∂ξ̇

∂ξ

]

ξ0

= [ξ, ∂ξ H ] . (5)

Solving (either numerically or, in simpler cases, also analytically) the set of ordinary
differential equations (4) along with the equation (3) of motion of the centre of a cloud of
particles, we get within the assumption (2) complete information about the distribution
of the particles. Obviously, in the course of evolution the higher order derivatives of F ,
which we do not solve explicitely, will generally violate the Gaussian form (2) of F even if
it is satisfied by the initial conditions. However, because most of the particles are grouped
within the characteristic width of this distribution and only a negligible part of them forms
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a high-energy tail of the Maxwellian distribution in momentum space and an outer halo
of the dense core of the cloud, we can expect that this method gives a good insight into
the behaviour of the cloud core provided its size does not exceed the characteristic scale of
inhomogeneities of the external field.
If we split the space andmomentum components of ξ and A

ξ − ξ0 =
(

x
p

)
, A =

(
c bT

b a

)
, (6)

C can be expressed in a block form as

C =
(

γ δ
β α

)
=
(

∂2 H
∂p∂x

∂2 H
∂p∂p

− ∂2 H
∂x∂x − ∂2 H

∂x∂p

)

, (7)

where obviously γ = −αT, and Eq. (4) can be written as

d
dt

a = −αTa − aα − δTbT − bδ , (8)

d
dt

b = −aβ − αTb + bαT − δTc , (9)

d
dt

c = −βTb − bTβ + αc + cαT . (10)

Provided the parameters F0, ξ0 and A of distribution function F in the form (2) are
known, the distribution of macroscopic characteristics of the cloud in space can be calcu-
lated by integration on the momentum space. The density is given by

ρ = m F0 det1/2(πā) exp
[
−xT c̄x

]
, (11)

the velocity by

v = −b̄x (12)

and the stress tensor by

τ = ρ

2m
ā , (13)

where the matrices

ā = a−1 , b̄ = a−1b , c̄ = c − bTa−1b (14)

are nonlinear functions of submatrices a, b and c. It is thus obvious from Eq. (11) that
the assumption (2) allows to describe a cloud with Gaussian density profile of the shape
of triaxial ellipsoid. This ellipsoid may also be elongated to a tube with elliptic cross-
section or to a plane-parallel structure if the matrix c̄ is singular in one or two directions.
According to Eq. (12), the cloud may have an internal velocity field linear in space, i.e.,
an anisotropic expansion with constant gradient and constant rotation and shear. Finally,
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following Eq. (13) the stress tensor is constant in the whole cloud, but generally anisotropic
and non-diagonal.
The dynamics of non-interacting particles is linear, whichmeans Eq. (4) determining the

evolution of matrix A is linear. Consequently, its solution for any initial conditions can be
written in the form

A(t) = BT(t)A(0)B(t) , (15)

where1

B(t) = exp
[
−
∫ t

0
C(t ′) dt ′

]
(16)

is matrix satisfying equation

d
dt

B = −BC , B(0) = 1 . (17)

3 EVOLUTIONOFACLOUDWITHARELAXATION

As the matrices ā, b̄ and c̄ are of our direct interest rather than a, b and c, we can solve
differential equations

d
dt

ā =
(
δ ā
δt

)

c
+ α ā + āαT + b̄δā + āδTb̄T

, (18)

d
dt

b̄ = −β − α b̄ + b̄αT + b̄δb̄ − āδTc̄ , (19)

d
dt

c̄ = α c̄ + c̄αT + c̄δb̄ + b̄T
δT c̄ , (20)

instead of Eqs (8), (9) and (10). It is not surprising that these equations are non-linear,
because Eq. (14) is also non-linear.
In addition to the direct consequence of Eqs (8), (9), (10) and (14) we have added now

the first so called collisional term on the right-hand side of Eq. (18), which accounts for
relaxation of non-equilibrium components of the stress tensor. Even with the very simple
BGK-model
(
δ ā
δt

)

c
= ā0 − ā

τ
, ā0 = Tr(ā)

3
1 , (21)

of this collisional term, which assumes an exponential damping of deviation of the distribu-
tion function from equilibrium with relaxation time2 τ and which is a linear function of ā,

1 Cf. Paper I for calculation of this integral bymeans of Jordan’s decomposition for constant C .
2 Different relaxation times for non-diagonal components and for differences between the diagonal components
of the stress-tensor can be also assumed.
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the complete problembecomes to be inherently non-linear.3 The equivalent set of equations
for matrices a, b and c reads

d
dt

a = −a
(
δ ā
δt

)

c
a − αTa − aα − δTbT − bδ , (22)

d
dt

b = −a
(
δ ā
δt

)

c
b − aβ − αTb + bαT − δTc , (23)

d
dt

c = −bT
(
δ ā
δt

)

c
b − βTb − bTβ + αc + cαT , (24)

i.e., the collisional term is non-linear in this representation.
In the approximation of a nearly ideal gas we can assume that the relaxation is suffi-

ciently efficient to diminish the non-equilibrium components of the stress tensor to a small
perturbations of the isotropic equilibrium one, and we can write (up to the higher order
terms)

a = a1 + δa + a−1δaδa + o(δa)3 , ā = a−11 − a−2δa , (25)

where δa is a trace-free matrix, and in the BGK-approximation (21)
(
δ ā
δt

)

c
= 1
τa2 δa . (26)

Substituting this collisional term into Eq. (22), it gets the form

d
dt

a = − 1
τ

(
δa + 2

a
δaδa + · · ·

)
− αTa − aα − δTbT − bδ . (27)

Regarding Eq. (25) and neglecting the terms quadratic and higher-order in δa, we get from
the trace of this equation an equation for pressure (temperature)

d
dt

a = −1
3

Tr
(
αTa + aα + δTbT + bδ

)
. (28)

If the relaxation time τ ismuch shorter than the characteristic dynamical time of the studied
problem, Eq. (27) gives an exponential relaxation of δa to the instantaneous value

δa = −τ
(
αTa + aα + δTbT + bδ

)
. (29)

In analogywith Eq. (27) we get from Eqs (23) and (24) differential equations

d
dt

b = − 1
τa

(
δa + 1

a
δaδa + · · ·

)
b − aβ − αTb + bαT− δTc , (30)

d
dt

c = − 1
τa2 bTδab − βTb − bTβ + αc + cαT . (31)

3 General consequences of non-linear coupling of resonant modes in context of QPOs have been discussed, e.g.,
by Horák (2004).
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4 DYNAMICSOFANORBITINGGASEOUSRING

Let us investigate now in the framework of Newtonian mechanics evolution of a cloud of
particles with Hamiltonian given in cylindrical coordinates r , ϕ and z as

H = 1
2 (p2

r + r−2 p2
ϕ + p2

z ) +Φ(r, z) . (32)

If we choose a circular orbit pr = pz = 0, p2
ϕ = r3∂rΦ, as the pivoting trajectory of the

centre of our cloud (torus), the correspondingmatrix C

C = ∂(ṙ, ϕ̇, ż, ṗr , ṗϕ, ṗz)

∂(r,ϕ, z, pr , pϕ, pz)
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
−χ 0 0 0 r−2 0
0 0 0 0 0 1

−ω2 0 0 0 χ 0
0 0 0 0 0 0
0 0 −ψ2 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (33)

where

χ = 2r−3/2
[
∂Φ

∂r

]1/2
, ω = r−3/2

[
∂

∂r

(
r3 ∂Φ

∂r

)]1/2
, ψ =

[
∂2Φ

∂z2

]1/2

, (34)

is constant. Its exponential B = exp(−Ct) thus reads

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosωt 0 0 − sinωt
ω

χ(1−cosωt)
ω2 0

χ sinωt
ω 1 0 −χ(1−cosωt)

ω2

(
χ2

ω2 − 1
r2

)
t − χ2 sinωt

ω3 0

0 0 cosψt 0 0 − sinψ t
ψ

ω sinωt 0 0 cosωt −χ sinωt
ω 0

0 0 0 0 1 0
0 0 ψ sinψt 0 0 cosψt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

It is obvious from this matrix that for non-interacting particles the motion in vertical
direction z is separated from the motion in the orbital plane and that it corresponds to
simple harmonic oscillations with frequency ψ . Similarly, the perturbations of motion in
r -direction have characteristic frequencies ω, however, due to angular-momentum con-
servation, they are coupled with perturbations in φ-direction. This degree of freedom
complicates a bit the analogy between a simple non-linear coupling of two harmonic oscil-
lators andQPOs of an orbiting ring. The term B25 ≡ Bϕpϕ diverges linearly in time (unless
the potential Φ ∼ r 2) what means that a cloud initially limited in ϕ (A22(t = 0) ̸= 0)
cools in pϕ (A55(t) → ∞). It can be shown that the term c̄22 ≡ c̄ϕϕ ∼ t−2 → 0, i.e., the
cloud expands along its central circular trajectory (cf. Fig. 1 in Paper I) and asymptotically
reaches the shape of axially symmetric ring (torus). It is important to note that even if we
choose this shape ab initio (A22 = 0, as we shall assume in the following), in which case
the coordinate ϕ can be suppressed, this degree of freedom still influences the oscillations
in direction of coordinate r due to coupling with variations of the radial gradient of orbital
velocity (shear) in the flow. The oscillations are no more sinusoidal, what means that the
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observed resonances need not correspond necessarily to the ratio of frequencies ω and ψ,
but alsomultiples ofω can cause the resonance.
In the opposite approximation of ideal gas, i.e., the extremely strong relaxation with

τ → 0, the orbiting ring can be described bymatrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

X 0 0 R S 0
0 0 0 0 0 0
0 0 Z 0 0 T
R 0 0 P 0 0
S 0 0 0 P 0
0 0 T 0 0 P

⎞

⎟⎟⎟⎟⎟⎟⎠
. (36)

The corresponding Eqs (28), (30) and (31) read

Ṗ = 2
3 (R + T ) , (37)

Ṙ = X − ω2 P , (38)
Ṡ = χR , (39)
Ṫ = Z − ψ2 P , (40)
Ẋ = 2ω2 R , (41)
Ż = 2ψ2T . (42)

This linear set of equations has eigenvalues λ satisfying the relation

0 = det
(
∂(Ṗ, Ṙ, Ṡ, Ṫ , Ẋ , Ż)

∂(P, R, S, T, X, Z)
− λ1

)
= λ2(2ω2 − λ2)

(
4
3
ψ2 − λ2

)
. (43)

The first two roots λ = 0 correspond to the stationary ring with radial and vertical dimen-
sions given by X = ω2 P and Z = ψ2 P. The other roots λ = ±

√
2ω and λ = ±√

4/3ψ

t

Z̄

X̄

Figure 1. Oscillations of radial (X̄) and vertical
(Z̄) widths of a gaseous torus with a weak relax-
ation in a potential withψ :ω = 3 :2.

t

Z̄

X̄

Figure 2. Oscillations of radial (X̄) and vertical
(Z̄) widths of a gaseous torus with a strong re-
laxation.
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correspond to the ring oscillations with these frequencies. Possible resonance of these os-
cillations occurs at different ratio ω :ψ and hence at a different radius of the ring than for
the gas of non-interacting particles.
In the general non-linear case of moderately interacting particles we get a smooth trans-

ition between the two above described cases. In addition to the oscillations, the ring un-
dergoes a secular enlargement in the radial direction due to angular-momentum transport,
by which it approaches the shape of accretion disk with a small inner and large outer edge.
Examples of results obtained by numerical integration of equations of the type of (18)–(20)
are shown in Figs 1 and 2.
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On polarization of light scattered on hot electron
clouds

Jiří Horák
Astronomical Institute, Czech Academy of Sciences, Boční II 1401, CZ-141 31 Praha 4,
CzechRepublic

ABSTRACT
In this note we study polarization properties of radiation scattered on relativistic
electrons in a hot cloud. The electron distribution is considered isotropic in the
cloud comoving frame. We derive simple formulae for frequency-integrated Stokes
parameters I , Q and U of the scattered radiation. The last parameter V vanishes
because the resulting polarization is linear. The Stokes parameters are evaluated in
the polarization frame comoving with the cloud, whose one basis vector is pointed
along the direction of the scattered radiation and the two other basis vectors lie in
the perpendicular observation plane. The incident unpolarized radiation comes into
the formulae as components of the stress-energy tensorwith respect to this reference
frame. Our results are illustrated on a simple example of a cloud illuminated by a
single beamof radiation.

1 INTRODUCTION

Electron scattering is an important phenomenon that influences observed radiation as well
as dynamics of electrons in different types of astrophysical objects. Between ‘classical’
systems of interest are relativistic jets in active galactic nuclei. Many authors have studied
an effect of Thomson scattering on jet velocity profiles (see, e.g., Noerdlinger, 1974; O’Dell,
1981; Sikora and Wilson, 1981; Phinney, 1982 for pioneering papers). The deceleration
by ambient radiation field (also called radiation drag) has been recognized as an important
factor that determines terminal speeds of jets (Sikora et al., 1996; Fukue, 2005). These ideas
were more recently reconsidered in a connection with jets emerging from several galactic
X-ray binaries (e.g., Renaud andHenri, 1998).
In some sources, light scattered by fast moving jets represent an important component

of observed radiation. The scattering on relativistic electrons increases the photon energy
up to X-rays or γ -rays and contributes to a non-zero linear polarization. Because of a
small optical depth τ ≪ 1, one usually considers only single scattering. One of the first
calculations of thepolarizationdue toThomson scattering inblazarswasgivenbyBegelman
and Sikora (1987). The relative importance of the synchrotron and Compton scattered
radiation in the polarized radiation from blazars was discussed by Poutanen (1994). The
polarimetry may be important also in the case of radiation from gamma-ray bursts since it
can help to discriminate between various geometries of their sources (Lazzati et al., 2004).

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Here, we consider intensity and polarization of light scattered on a hot optically thin
cloud. The scatterers are relativistic electrons moving randomly in the cloud reference
frame. This problem was extensively studied by Nagirner and Poutanen (1993), who
considered scattering in an isotropic electron gaswithMaxwellianor power-law energy dis-
tribution. Their rigorous formalism uses Klein–Nishina cross-section formula and allows
to consider highly energetic as well as polarized incident radiation. On the other hand, in
some astrophysical applications a single Thomson scattering provides sufficient approxim-
ation. The main results of the work presented here are three very simple formulae for the
frequency-integrated Stokes parameters of the scattered radiation. The incident radiation
field is included in terms of the relativistic stress-energy tensor T µν . The derivation of the
formulae is described in Section 2. Section 3 is devoted to a particular example of scatter-
ing on a cloud with monoenergetic electron distribution. Discussion and some concluding
remarks follow in Section 4.

2 STOKESPARAMETERSOF THESCATTEREDLIGHT

We consider Thomson scattering in electrons of a warm cloud. The cloud is assumed to
be optically thin so that it is sufficient to consider only single scattering. The Compton
optical depth is τ = nσT R, where n is the electron number density, σT is the total Thomson
cross-section and R is the size of the cloud. Electrons aremoving with random velocity and
their distribution is isotropic in the rest frame of the cloud (referred to as CF). The frame is
defined by the orthonormal tetrad {u, X, Y , Z}, where the time-like four-vector u denotes
cloud four-velocity. The observer is located along the Z-vector that is introduced as a spatial
projection of the four-momentum p of scattered photons, Z = u − p/ν, where ν = − p · u
is the frequency of the scattered radiation in CF.1 The remaining two four-vectors, X andY
can be chosen arbitrary in the calculations. They form the polarization basis with respect to
which the Stokes parameters of the scattered radiation are calculated. Spatial components
of vectors and tensors with respect to CF are denoted by capital letters and indices are
raised/lowered using the special-relativisticmetric tensor ηαβ = diag(−1, 1, 1, 1).
The Lorentz factor γ and the relative velocity β of an electron with a four-velocity ũ

measured by an observer in CF are given by γ = −ũ · u and β = u − ũ/γ . Because β is a
projection of ũ onto the three-space perpendicular to u, its time component vanishes in CF.
The non-vanishing components can be expressed as

βX = β sin θ cosφ , βY = β sin θ sinφ , β Z = β cos θ , (1)

where θ and φ are referred to as the polar and azimuthal angle. One can easily check that
γ = (1 − β2)−1/2, where β2 ≡ β · β.
The isotropic electrondistribution in the cloud frame is described by the electron distribu-

tion function n(β) = n f (γ ), where n is the electron number density and the function f (γ )

is normalized to unity. Due to their additivity, the total Stokes parameters2 S = I, Q, U

1 Weuse units where c = h = 1.
2 We remove the circularity V-parameter from our discussion because the Thomson scattering produces strictly
linear polarization for which V = 0.
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can be expressed as an integral

S =
∫

γ
f (γ )

∫

φ

∫

θ
s(γ ,φ, θ) dγ dφ dθ , (2)

where s(γ ,φ, θ) are Stokes parameters (s = i, q, u) of the radiation scattered by a swarm
of electrons moving with the Lorentz factors from the interval ⟨γ , γ + dγ ⟩ in the direction
described by the azimuthal and polar angles in the intervals ⟨φ,φ + dφ⟩ and ⟨θ, θ + dθ⟩.
The Stokes parameters are measured in CF and the swarm has electron number density n
(the same as the density of the whole cloudlet).
For the swarm we introduce a comoving frame with the orthonormal tetrad {ũ, X̃, Ỹ , Z̃}

(referred to as swarm frame, SF), where the time-like four-vector ũ is the electron four-
velocity and Z̃ is projected four-momentum p onto the three-space perpendicular to ũ,
Z̃ = ũ − p/ν̃. The frequency of the scattered radiation measured in SF is ν̃ = − p · ũ. In
addition, we chose the Ỹ -vector so that it is perpendicular to all three fourvectors u, ũ, p.
The Stokes parameters of the scattered radiation ı̃, q̃, ũ with respect to SF can be ex-

pressed in terms of the stress-energy tensor of the incident radiation field as (Sobolev, 1963;
Beloborodov, 1998; see also Horák and Karas, 2005)

ı̃ = A
(

T̃ t t + T̃ Z Z
)

, q̃ = A
(

T̃ Y Y − T̃ X X
)

, ũ = A
(

T̃ XY + T̃ Y X
)

, (3)

where A ≡ 3τ/16π and T̃ µν denotes components of the stress-energy tensor in SF.
They can be expressed in terms of the CF-components T µν using a Lorentz transform
Λ

µ
ν (γ , θ,φ) between CF and SF. With the aid of the transformation, Eqs (3) can be uni-

formly written as

s̃ = A M̃(s)
ρσ T ρσ (4)

with

M̃(i)
ρσ = Λt

ρΛ
t
σ +ΛZ

ρΛ
Z
σ , M̃(q)

ρσ = ΛY
ρΛ

Y
σ −ΛX

ρΛ
X
σ , M̃(u)

ρσ = ΛX
ρΛ

Y
σ +ΛY

ρΛ
X
σ . (5)

Let us consider a special case when the relative velocity of the electron swarm β lies in
the X-Z plane in CF (the azimuthal angle φ = 0). The Y -vector is perpendicular to all
three four-vectors u, ũ and p so that the Y -axes of the both reference frames are aligned,
Ỹ = Y . In that case all three Stokes parameters are transformed in the same way as the
integrated intensity, keeping the fraction s/ν4 invariant (Cocke and Holm, 1972). In a
general case, when the velocity β has non-zero Y -component in CF, we perform a rotation
of the frame about the Z -axis by angle φ. Applying the well known transformation rules of
Stokes parameters under rotations (e.g., Rybicki and Lightman, 1979), we find that

i = δ4 ı̃ , q = δ4 (q̃ cos 2φ − ũ sin 2φ) , u = δ4 (q̃ sin 2φ + ũ cos 2φ) , (6)

where δ ≡ ν/ν̃ = [γ (1 − β cos θ)]−1 is Doppler factor.
The above transformations are valid if the source moves as a whole with respect to the

observer. In our case, however, the source is stationary in the sense that it contains electrons
with fast individualmotions in randomdirections and a direction of motion of an individual
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electron is frequently changed. Hence, photons are essentially radiated from the constant
place. In the former case, the Lorentz transformation contains also a contribution of the
aberration effect. The Stokes parameters are expressed per time of observation dt in CF and
per time of emission dt̃ in SF. These two time intervals are related by dt̃ = γ dt if the source
is stationary and radiates essentially from the same point or by d t̃ = γ (1 − β cos θ)dt if the
source is in a bulkmotion and its distance from the observer is changing as ct (1 − β cos θ).
For this reason, we complete the Lorentz transformation by an extra factor (1 − β cos θ) =
1/(γ δ) (see also Begelman and Sikora, 1987; Blumenthal and Gould, 1970; and Rybicki
and Lightman, 1979, sec. 4.8).
The expressions for the transformed Stokes parameters i , q and u can be written as

s = AM(s)
ρσ T ρσ (7)

with matricesM (s) defined as

M (i) = δ3

γ
M̃

(i)
, (8)

M (q) = δ3

γ

(
M̃

(q)
cos 2φ − M̃

(u)
sin 2φ

)
, (9)

M (u) = δ3

γ

(
M̃

(q)
sin 2φ + M̃

(u)
cos 2φ

)
, (10)

and the matrices M̃
(s)

defined in Eq. (5).
The total Stokes parameters I , Q, U can be obtained by substituting Eq. (7) into the

expression (2). The dependence of the Stokes parameters s on the Lorentz factor γ and
direction of motion (angles φ and θ) is hidden in the matrix M (s) in Eq. (7). Hence, the
stress-energy tensor of the incident radiation can be put outside the integral and knowing
the distribution function f (γ ) the rest can be integrated. The Lorentz transformation
Λαβ(γ , θ,φ) is derived in the Appendix A.
By integratingM (i), we find

∫

γ

∫

φ

∫

θ
f M (i) dθ dφ dγ =

⎛

⎜⎜⎝

1 + A 0 0 −A
0 B 0 0
0 0 B 0

−A 0 0 1 + A − 2B

⎞

⎟⎟⎠ , (11)

where we define quantities

A ≡ 4
3

〈
γ 2β2

〉
, B ≡ 1 −

〈
ln[γ (1 + β)]

βγ 2

〉
, (12)

with notation ⟨x⟩≡∫ x f (γ ) dγ for averagingover the electron Lorentz factor γ . According
to Eq. (2), the total intensity scattered into the direction Z in CF can be expressed as

I = A
[
(1 + A)

(
T t t + T Z Z

)
+ B

(
T t t − 3T Z Z

)
− 2AT t Z

]
, (13)
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where we use the identity T X X + T Y Y = T t t − T Z Z .
Similar calculations lead to the formulae for two other Stokes parameters,

Q = A
(

T Y Y − T X X
)

and U = −2 A T XY . (14)

These are, however, same as if the radiationwas scattered by a cold cloud.

3 EXAMPLE: AMONOENERGETICELECTRONDISTRIBUTION

We illustrate our results on a simple example. The electron distribution function in CF is
monoenergetic, f (γ ) = δ(γ −γ0). All electrons have the same energy γ0me, withme being
the electron rest mass. The averaging in expressions (12) is trivial. We obtain

A = 4
3
(γ 2

0 − 1) , B = 1 −
ln
[
γ0 +

√
γ 2

0 − 1
]

γ0

√
γ 2

0 − 1
. (15)

We consider a narrow beam of incident radiation that propagates in the direction n in
the cloud reference frame.3 This four-vector and the direction of observation Z make the
angle ϑ . Obviously, all properties of the scattered radiation depend only on this angle and
we can assume without any loss of generality that nY = 0. The two other components are
nX = sinϑ and nZ = cosϑ . The integrated intensity of the incident radiation is I0 and the
nonzero components of the stress-energy tensor of the incident radiation are

T t t = I0 , T t Z = I0 nZ , T Z Z = I0 nZ nZ , T X X = I0 nX nX . (16)

The total amount of radiation scattered on the cloud is proportional to τ I0. We use
it to introduce normalized Stokes parameters I⋆ and Q⋆ of the scattered radiation. The
remaining parameter U is zero because of the symmetry with respect to the X − Z plane.
Using Eqs (13), (14) and (16) we find

I⋆ ≡ I
τ I0

= 3
16π

[
(1 + A − 3B) cos2 ϑ − 2A cosϑ + (1 + A + B)

]
, (17)

Q⋆ ≡ Q
τ I0

= − 3
16π

sin2 ϑ . (18)

The angular dependence of the scattered intensity I⋆ on the angle of observation ϑ for
different values of γ0 is shown in the left panel of Fig. 1. In the case of a cloud containing
cold electrons (γ0 = 1) bothA andB are zero and the angular dependence of the scattered
intensity reduces to I ∝ 1 + cos2 ϑ – the same as for Thomson scattering on a single
electron. The scattering ona cold cloud is symmetricwith respect to the planeperpendicular
to the direction of the incident radiation beam. On the other hand, if the cloud contains

3 The fourvector n is a projection of the incident photon four-momentum onto the three-space perpendicular to
the four-velocity u.
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Figure 1. Left: the normalized scattered intensity I⋆ as a function of the scattering angle ϑ between
the direction of the incident radiation beam and the direction of observation. The scattering occurs on
the hot electron cloud. Different curves corresponds to different values of the electron Lorentz factor
measured in the blob reference frame. The case of cold electron corresponds to γ0 = 1. Right: the
magnitude of transversal polarizationΠ as a function of the scattering angle for several values of the
electron Lorentz factor. The depolarization effect of the electronmotions and the shift of the angle of
maximal polarization are apparent.

ultrarelativistic electrons with γ0 ≫ 1, we have A ≈ 4/3γ 2
0 , B ≈ 1 and Eq. (13) gives

the angular dependence I ∝ γ 2
0 (1 − cosϑ)2, which is highly asymmetric. Most of the

radiation is scattered in the backward direction. This is important regarding a dynamics of
the cloud: the scattered radiation transportsmomentum from the electrons in the backward
direction so that the hot clouds aremore strongly accelerated by the incident radiation. This
effect called Compton rocket, was firstly studied by O’Dell (1981) and later reconsidered by
Phinney (1982).
The direction of polarization of the scattered radiation is parallel to the Y -vector in CF

because Q⋆ < 0 (see a discussion of the polarization direction in Horák and Karas, 2005).
The polarizationmagnitude is given as a ratioΠ = |Q⋆|/I⋆, because bothU and V vanish.
The angular dependence of the polarizationmagnitude is shown in the right panel of Fig. 1.
In the case of the cold cloud, the expression for the polarization is identical with the well
known expression for the scattering on a single electron, Π = (1 − cos2 ϑ)/(1 + cos2 ϑ)
giving the maximal value of unity for a completely polarized radiationwhen ϑm,cold = π/2.
However, the polarization is reduced by a factor ∼ γ 2

0 if the cloud contains relativistic
electrons. Themaximal polarization occurs closer to the direction of the incident radiation,
because of the asymmetric profile of the scattered intensity. Simple algebra gives the angle
ϑm along which an observer receives radiationwith the highest polarization

cosϑm = 1
A

[
1 + A − B −

√
(1 − B)(1 + 2A − B)

]
. (19)

This angle approaches zero as the electron Lorentz factor increases. However, the polariza-
tion is strongly reduced in that case.
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4 CONCLUSIONS

In this note we studied polarization properties of the Thomson-scattered radiation on the
cloud with relativistic electrons. The frequency-integrated Stokes parameters are given
by Eqs (13) and (14). The incident unpolarized radiation comes into the formulae as
components T αβ of the stress-energy tensor with respect to the comoving polarization
frame. The same quantity determines also a dynamics of the cloud (see, e.g., Phinney,
1982). Our results are useful when one considers the polarization effect on the scattered
radiation together with the dynamical effects on the cloud (see, e.g., Horák and Karas,
2005).
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APPENDIXA: LORENTZTRANSFORM

Here, we derive the Lorentz transformΛαβ(θ,φ) between CF and SF. First, let us consider
the case φ = 0. The Y -axes of both frames are aligned (Y = Ỹ ) as it was discussed
in Section 2. The remaining tetrad four-vectors X , X̃ , Z and Z̃ of both frames can be
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expressed as linear combinations of u, ũ and p. The components of the Lorentz transform
matrix can be expressed as scalar products

Λαβ = ẽ(α) · e(β) , (A1)

of corresponding covariant and contravariant basis four-vectors ẽ(α) = {ũ, X̃, Ỹ , Z̃} and
e(α) = {−u, X, Y , Z}, respectively. We find

Λαβ(θ) =

⎛

⎜⎜⎝

γ −γβ sin θ 0 −γβ cos θ
−k 1 0 k

0 0 1 0
l −γβ sin θ 0 m

⎞

⎟⎟⎠ (A2)

with

k = γ δβ sin θ , l = γ 2βδ(β − cos θ) , m = δ − γβ cos θ . (A3)

In the more general case when the three-velocity β⃗ and Y -vector make nonzero azimuthal
angle φ, we make the rotation about the Z-axis through angle φ. The final Lorentz trans-
form is given byΛ(θ,φ) = Λ(θ)RZ (φ). We find

Λαβ(φ, θ) =

⎛

⎜⎜⎝

γ −γβ sin θ cosφ −γβ sin θ sin φ −γβ cos θ
−k cosφ sinφ k

0 − sinφ cosφ 0
l −γβ sin θ cosφ −γβ sin θ sin φ m

⎞

⎟⎟⎠ . (A4)
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ABSTRACT
This lecture summarizes basic equations of relativistic magnetohydrodynamics
(MHD). The aim of the lecture is to present important relations and approxima-
tions that have been often employed and found useful in the astrophysical context,
namely, in situations when plasma motion is governed by magnetohydrodynamic
and gravitational effects competingwith each other near a black hole.

1 INTRODUCTION

Different arguments can be put forward in order to demonstrate that magnetohydro-
dynamic effects dominate the behaviour of cosmic plasma and must be taken into account.
Near compact bodies, black holes in particular, the gravitational terms cannot be ignored,
and so the general-relativityMHDneeds be employed. This is a daunting task. As a starting
point in this lecturewedescribe basic equations that havebeendevelopedby various authors
during past three to four decades. The main intention is to give premises and to suggest
selected references that would help entering the complex subject. Only axially symmetric
and stationary flows will be considered here.
The field of astrophysical MHD has been covered in textbooks and review articles (see,

e.g., Cowling, 1976; Melrose, 1980; Zel’dovich et al., 1983; Lynden-Bell, 1994). The ap-
plications relate to entire astrophysics, ranging from solar physics to accretion discs; in
our case, the original motivation comes from the studies of partical acceleration near neut-
ron stars where strong electromagnetic fields and inertial effects are present (Pacini, 1968;
Goldreichand Julian, 1969;Michel, 1982). Strengthof themagnetic intensity ismaintained
and considerably increased near an accreting object. Magnetic fields can be amplified by the
dynamo action in the disk (Balbus and Hawley, 1992; Krause et al., 1992; Balbus, 2003).
It is quite understandable that complications arising from the inclusion of electromagnetic
effects can be accommodated only under various simplifying assumptions.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Maxwell’s and Euler’s equations are the relevant prerequisites for this paper. They adopt
the following form. Maxwell’s equations (i.e., Ampere’s law and Faraday’s law) are written
here in the form of non-vacuum equations:

∇ × B = 4π

c
j + 1

c
∂D
∂t

, ∇ · B = 0 , (1)

∇ × E = −1
c
∂B
∂t

, ∇ · E = 4πρe , (2)

with ρe and j being density of all electric charges and currents. Euler’s equation adopts the
appropriate form:

ρ
∂v

∂t
+ ρ v · ∇v = −∇P + f (3)

with

f = f L + f g = ρe E + c−1 j × B − ρg (4)

being the Lorentz and gravitational terms, respectively. Finally, for the sake of simplifica-
tion, the assumptions about axial symmetry and stationarity are imposed. The above is the
“usual” form of the equations (i.e., without general relativity taken into account), however,
reformulation is possible in which the look of these equations remains familiar also when
strong gravitational fields are present (Thorne et al., 1986).
The primary distinction between the models with and without a black hole consists in

different boundary conditions imposed upon the electromagnetic field, which threads the
black hole horizon. The relevant Maxwell equations describing the field outside the black
hole horizon can be solved by introducing appropriate imaginary currents flowing on the
surface of the horizon. These are defined in such a way that the boundary conditions
are satisfied. Currents flowing along the field lines can thus close a circuit and the energy
extraction is thendescribed in ananalogouswayas in our previousdiscussionofmagnetized
disks or as in the theory of pulsar emission (Blandford, 1976; Camenzind, 1986a).

2 FORCE-FREEAXISYMMETRICMHD

Let us first start by employing the traditional three-vector formalism. The equations given
above are further simplified by assuming the force-free approximation, which adopts a
simplemathematical formulation:

ρe E + c−1 j × B = 0 . (5)

The physical interpretation and consequences of the above relation require a thorough dis-
cussion. Equation (5) tells us that inertia of the material is neglected. In other words,
the influence of the Lorentz force acting on plasma in the comoving frame gets neutral-
ized immediately by induced electric currents; perfect conductivity is thus assumed. (A
dimension-less condition for the validity of the force-free approximation isρΓ v2/B2 ≪ 1.)
This is similar to the assumption of idealMHD,

E′ ≡ E + c−1v × B = 0 (6)
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(where E′ is the electric field in the system attached to plasma). Both approximations are
equivalent if the current density is proportional to the velocity of the medium, j = ρev.
(A more general formula for the current density that still satisfies the force-free assumption
Eq. (5) has a form j = ρev + µB; µ is a scalar function to be determined.) Both the
force-free and the perfect MHD fields are degenerate, i.e., E · B = 0. The approximation
of idealMHDcan be understood as an assumption about perfect electric conductivity of the
material. Substituting

j = σ E′ (7)

for the vector of electric field from Ohm’s law (σ designates specific conductivity of the
medium) and assuming perfect conductivity (σ → ∞), we find

∇ × (v × B) = ∂B
∂t

. (8)

Equation (8) expresses the freezing of the magnetic field in plasma material. The reason
for this denomination is evident upon realizing that the magnetic flux across an imaginary
loopL flowing together with the medium can be written as a sum of two terms, the first one
being determined bymotion of the loop,
∫

S
∇ × (v × B) · dS =

∮

L
(v × B) · dL = −

∮

L
B · (v × dL) . (9)

The term ∂B/∂t on the right-hand side of (8) corresponds to the change of the magnetic
flux due to the explicit time-dependence of B,
∫

S

∂B
∂t

· dS . (10)

Equation (8) thus expresses the fact that the magnetic flux across any arbitrary closed loop
remains constant. As we have seen before, one can also understand this equation as a
condition for the electric field to vanish in the rest frame of plasma. The validity of the above
approximations must always be verified separately in each given situation.
We will now examine the basic relations valid for axially symmetric magnetohydro-

dynamic equilibriumconfigurations under forces of gravity. It should be noted that relevant
equations are capable of describing, for example, aligned rotators of the pulsar theory, mag-
netized disks or magnetized outflows and inflows of matter as special cases (Camenzind,
1986b; Lovelace et al., 1986). Again, we adopt the assumption of axial symmetry and sta-
tionarity and we set ∂/∂φ = 0, ∂/∂t = 0 in all formulae. Starting equations are: mass
conservation law (the continuity equation); momentum conservation law – the Euler equa-
tion (supplemented by the relation for the external force f = c−1 j × B−ρg; we assume an
electrically neutral plasma, ρe = 0); Maxwell’s equations; perfect MHDcondition; formula
for gravitational acceleration g (e.g., in the form of Poisson’s equation<Φ = 4πGρ); the
first law of thermodynamics; and the equation of state.
It follows fromFaraday’s lawand conditions of axial symmetry and stationarity (∇× E =

0) that the toroidal part ET of electric field (the component in the azimuthal direction, the
value of which is given by E2

φ = ET · ET) vanishes:

Eφ = 0 . (11)
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Perfect MHDcondition implies the relation for the poloidal flow velocity

vP = ξBP , (12)

where ξ(R, z) is a (yet undetermined) scalar function. It is advantageous at this point
to introduce into the Maxwell equations the vector potential A and the scalar magnetic
flux function, Ψ (R, z) ≡ R Aφ . Components of BP in terms of Ψ read BR = −Ψ,z/R,
Bz = Ψ,R/R, where the coma denotes partial differentiation. It is now evident from
Eq. (12) that

4πρξ = F1(Ψ ) , (13)

where F1(Ψ ) is an arbitrary function to be specified by the boundary conditions and sym-
metries of the required solution. (Wehave applied theMaxwell equation∇·B = ∇·BP = 0
and the continuity equation.) We will see that there is a set of such functions of Ψ that de-
termine a specific solution. Each function can be identified with some conserved quantity
(derivation of F1 utilizes the mass conservation equation). The existence of flux func-
tions, which remain constant on magnetic surfaces Ψ = const, is crucial in investigating
axisymmetric hydromagnetic flows (Chandrasekhar, 1961).
It follows from vP = ξBP [Eq. (12)] that

v × B = vT × BP + vP × BT = vφ − ξBφ
R

∇Ψ . (14)

Curl of the last equation vanishes in accordance with the perfect MHD condition and
Faraday’s law so that another stream function, F2, can be introduced in the following
way:

vφ − ξBφ
R

= F2(Ψ ), E = −c−1 F2(Ψ )∇Ψ . (15)

Further relations are obtained by projections of the Euler equation and can be derived via
straightforward but lengthymanipulations. The toroidal part reads

BP · ∇(RBφ − F1 Rvφ) . (16)

For analogous reasons as those that have been presented with Eq. (12), the term in par-
entheses is also a function of Ψ only, say F3(Ψ ). Other two independent relations can be
obtained by projecting the Euler equation into the poloidal plane. The projection along BP
yields the Bernoulli equation

1
2
v2 +

∫

Ψ=const

dP
ρ

+Φ − RvφF3 = F4(Ψ ) . (17)

Compared to the hydrodynamical form of Bernoulli integral, in which electromagnetic
effects are not been considered, the additional term RvφF3 corresponds to the electromag-
netic (Poynting) energy transport. The projection of the poloidal component of the Euler
equation to the direction parallel to∇Ψ (the third independent projection) is known as the
Grad–Shafranov equation (Beskin and Kuznetsova, 2000; Ioka and Sasaki, 2003). This is
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a non-linear differential equation forΨ , the explicit form of which naturally depends on the
equation of state and on stream functions Fk . For example, we set F1 = 0 if no poloidal
flow of material is required a priori (the case of disks). Force-free approximation to the
Grad–Shafranov equation is equivalent to the self-consistent form of the pulsar equation
from the astrophysical literature (Cohen et al., 1973; Scharlemann and Wagoner, 1973).
Within the general relativity framework, its applications to rotating compact stars and
black holes have been discussed recently examined by Kim et al. (2005). On the other hand,
laboratory plasma is often described within the approximation of a vanishingmaterial flow,
F1 = F2 = 0, and negligible gravity,Φ = 0 (tokamaks).
Electromagnetic forces act on charged particles and may substantially modify the struc-

ture of accretion disks (Michel, 1982, 1983). The inclusion of electromagnetic effects
makes the disk theory much more complex. A simplified approach is possible in terms of
self-similar solution of axially symmetric MHD equations (Königl, 1989). Here we will
illustrate the basic assumptions of simple analytical models, which are not realistic but can
train our intuition. The procedure for constructing magnetized disk solutions can go as
follows: (i) Choose cylindrical polar coordinates {R,φ, z}. (ii) Assume a steady electric
current j = jφeφ at z = 0 (the equatorial plane) with a corresponding structure of mag-
netic induction – BR, Bz ̸= 0, and Bφ = 0. The distribution of jφ(R) then determines the
structure of the magnetic field lines. The system under discussion is axially symmetric and
stationary, and thus emits no electromagnetic radiation.
Consider a magnetized disk in the equatorial plane and assume that the magnetic field is

frozen into the disk. The toroidal part of the field arises from the dragging of the magnetic
field by the disk material. It follows that BT = Bφeφ , BP = B − BT = BReR + Bzez .
One proceeds analogously in deriving the electric intensity E but in this case ET = 0
[cf. Eq. (11)].
Basic relations adopt the following form: TheMaxwell equation∇ · B = 0 together with

the consequence of axial symmetry, ∇ · BT = 0, yield ∇ · BP = 0. This means that both
the poloidal and the toroidal components can be separately associated with unending field
lines. The value of EP follows from the force-free condition:

0 = E′ = EP + c−1(Ω × r) × B , (18)

where Ω = ΩFeφ means the angular velocity of each field line and r is the radius vector.
Charged particlesmove along field lines. Using∇ × EP = 0 and∇ · BP = 0we find

BP · ∇ΩF = 0 . (19)

In other words, the angular velocity of each field line remains constant along its curve;
thus ΩF does not change along poloidal field lines. This result is called Ferraro’s law of
iso-rotation (Ferraro and Plumpton, 1961).
The light surface is the locus of points where the velocity of the field lines approaches the

speed of light. Charged particles cannot corotate with field lines beyond the light surface;
instead, they are forced to move away and this is the basis of particle acceleration around
pulsars and possibly formation of jets in extragalactic sources. The disk itself can serve as a
source of particles. Assuming the perfect MHD condition inside the disk, we obtain for the
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particle density

n = 1
4πqe

∇ · E = − 1
4πqec

∇ · (v × B) = − 1
2c
ΩBφ . (20)

Non-zero charge-density generates an electric field, which pulls charged particles out of
the disk.
Magnetic field lines threading the disk exert a torque on its material

G = R × ( j × B) , (21)

and are thus a source of effective viscosity. Such a disk does not radiate (remember that we
are considering axisymmetric stationary configurations) but it can still transmit energy in a
direct-current flux.
Consider now a circle of radius R centred on the symmetry axis. Ampere’s law yields

BT = 2J
cR

. (22)

We have already mentioned that in the force-free region currents flow along magnetic sur-
faces, but in the disk and in the far region the force-free condition is violated and dissipation
occurs. The density of the electromagnetic energy flowing through the force-free region is
given by

P = cE × B ≈ cEP × BT . (23)

Substituting for EP from Eq. (18) we estimate the magnitude of this vector as

P ≈ ΩRBP BT . (24)

BP and BT are to be determined in accordancewith the boundary conditions.

3 MHD INTHEGENERALRELATIVITY FRAMEWORK

The following discussion is a general relativistic generalization of axially symmetric MHD
flows that have been treated in previous chapters. We will employ the standard notation of
general relativity with geometrized units, c = G = 1, and the signature of metric− + ++
in this chapter. The set of equations of perfectmagnetohydrodynamics can be written in the
following form (Anile and Choquet-Bruhat, 1989; Lichnerowitz, 1967).
Conservation of the particle number:

(
ρ0uα

)
;α = 0 , ρ0 = mn ; (25)

m is the particle rest mass, n numerical density, uα four-velocity. Here we do not consider a
possibility of creation of pairs, which would break this conservation law.
Normalization condition for four-velocity:

uαuα = −1 . (26)
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Energy-momentumconservationand thedefinitionof energy-momentumtensor in terms
ofmaterial density ρ, pressure P, and electromagnetic field tensor Fµν :

T αβ ;β = 0 , (27)
T αβ = T αβmatter + T αβEMG , (28)
T αβmatter = (ρ + p)uαuβ + pgαβ , (29)

T αβEMG = 1
4π

(
Fαµ Fβµ − 1

4
FµνFµνgαβ

)
, (30)

Fµν = Aν,µ − Aµ,ν . (31)

In the fluid rest frame, electric field is assumed to vanish completely:

Fαβuβ = 0 . (32)

The axial symmetry and stationarity guarantee the existence of two Killing vectors,
kα = δαt andmα = δαφ , which satisfy relations

0 = kαT αβ ;β =
(
kαT αβ

)
;β , (33)

0 = mαT αβ ;β = (
mαT αβ

)
;β . (34)

Let us now turn to the consequences of the above Eqs (25)–(34), which are particularly
relevant for the theory of black holemagnetospheres (Blandford andZnajek, 1977;Hirotani
et al., 1992; Znajek, 1976). Equation (32) has four components that can be written in
explicit way:

At,r ur + At,θuθ = 0 , (35)
At,r ut + Aφ,r uφ + Frθuθ = 0 , (36)
At,θut + Aφ,θuφ + Fθr ur = 0 , (37)
Aφ,r ur + Aφ,θuθ = 0 . (38)

It follows fromEqs (35) and (38) that

At,r

Aφ,r
= At,θ

Aφ,θ
≡ −ΩF , (39)

and therefore

ΩF
,r

ΩF
,θ

= Aφ,r

Aφ,θ
. (40)

Equation (39) is an exact analogy toEq. (18) andΩF has thus again the interpretationof the
angular velocity ofmagnetic field lines (a deep and pedagogical exposition of these relations
can be found in Phinney, 1983). The last two equations imply that the Jacobians

∂(At , Aφ)
∂(r, θ)

= 0 ,
∂(ΩF, Aφ)
∂(r, θ)

= 0 (41)
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vanish, and thus At ≡ At (Aφ) andΩF ≡ ΩF(Aφ). The flow stream-lines and themagnetic
field-lines lie in the level surfaces of Aφ , i.e., u · ∇ Aφ = B · ∇ Aφ = 0, where B = (∗F) · u.
The arrow denotes two-component space-like vectors defined in the (r, θ)-plane.
One can define the stream function k(r, θ) ≡ k(Aφ) satisfying

ur

Aφ,θ
= − uθ

Aφ,r
≡ k(r, θ)

4π
√−g ρ0

. (42)

Equations (36), (39) and (42) can be solved with respect to the azimuthal component of
velocity,

uφ = ΩFut + k
4πR2ρ0

BT , (43)

where R2 = g2
tφ− gt t gφφ , BT = −(∗F)φt . Equation (43) describes towhat degree particles

fail to corotatewith field lines. Two additional stream functions can be obtained by inserting
the explicit form of T αβ into Eqs (33)–(34). Axial symmetry thus yields a relation for the
specific angularmomentum at infinity,L:

0 = ρ0uβ
(
ρ + p
ρ0

uφ
)

,β

+ 1√−g

(√−g T βφ EMG

)

,β
, (44)

(kL),r Aφ,θ − (kL),θ Aφ,r = 0 , (45)

where

L = ρ + P
ρ0

uφ − BT

k
≡ L(Aφ) . (46)

After a completely analogous derivation, stationarity gives the relation for the specific en-
ergy at infinity:

e = −ρ + P
ρ0

ut − BTΩ
F

k
≡ e(Aφ) . (47)

Discussion proceeds now analogously to the analysis, which we have carried out within
the non-relativistic limit when projections of the Euler equations in different direction were
employed (for the original derivation and for further discussion, see Lovelace et al., 1986;
Phinney, 1983; Nitta et al., 1991). The above derived stream functions are not completely
independent – they must satisfy boundary conditions.
Finally, we are still left with the two equations, T rβ ;β = 0 and T θβ ;β = 0, but also these

relations are not independent. We have already imposed a restriction on projection by uα –
the first law of thermodynamics T αβ ;βuα = 0, which is included in the equation of state
for P(ρ0). The last required equation can thus be obtained by contracting T αβ ;β = 0 with
any poloidal four-vector which is linearly independent of poloidal projection of uα. The
result is a non-linear second-order differential equation which is a generalization of the
Grad–Shafranov equation within general relativity (Kim et al., 2005).
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Our discussion has been restricted to weak, electromagnetic test-fields in a given, fixed
background spacetime; we have neglected the influence of the electromagnetic field on the
spacetime metric. This approach was employed by a number of authors to address the
problem of electromagnetic effects near a rotating (Kerr) black hole (Takahashi et al., 1990;
Thorne et al., 1986;Wagh andDadhich, 1989). On the other hand, self-consistent solutions
of coupled Einstein–Maxwell equations for black holes immersed in electromagnetic fields
have been studied only within stationary, axially symmetric, vacuum models (Díaz and
Baez, 1989; Dokuchaev, 1987; Gal’tsov, 1986; Ernst andWild, 1976; Hiscock, 1981; Karas
and Vokrouhlický, 1991e.g.,). It appears that the test electromagnetic field approximation
is fully adequate for modelling astrophysical sources, however, the long-term evolution of
magnetospheres of rotating black holes, consequences of non-ideal MHD and the effects
of oscillatory motion of the central body are still open to further work (Okamoto, 1992;
Park and Vishniac, 1989; Rezzolla et al., 1991; Rezzolla and Ahmedov, 2004; Kudoh and
Kaburaki, 1996).
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ABSTRACT
Embedding diagrams of the equatorial plane of the Kerr–de Sitter black-hole or
naked-singularity spacetimes are constructed for the optical reference geometry. The
embedding diagrams do not coverwhole stationary parts of theKerr–de Sitter space-
times. Hence, limits of embeddability are discussed. The Kerr–de Sitter spacetimes
are then classified according to the number of embeddable regions and the number
of the turning points of the diagrams.

1 INTRODUCTION

The optical reference geometry introduced by Abramowicz et al. (1988, 1993, 1995) en-
ables to introduce the concept of inertial forces in the framework of general relativity in
a natural way. It provides a description of relativistic dynamics in accordance with our
natural Newtonian intuition. The optical reference geometry results from an appropriate
conformal (3 + 1) splitting, reflecting some hidden properties of spacetimes under con-
sideration through its geodesic structure. The geodesics of the optical geometry related
to the static spacetimes coincide with trajectories of light, thus being “optically straight.”
Moreover, the geodesics are “dynamically straight,” because test particles moving along
them are kept by a velocity independent force. Many important properties of relativistic
dynamics can be then effectively illustrated by the properties of embedding diagrams of the
optical geometry, because the centrifugal force is closely related to the diagrams (Stuchlík
et al., 2000). The radii of turning points of the diagrams coalesce with the radii where
the centrifugal force vanishes independently of the velocity and also with the radii of gyr-
ation (Stuchlík et al., 2000). Unfortunately, some spacetimes cannot be entirely embed-
ded into the 3-dimensional Euclidean space, therefore the limits of embeddability must
be established.
We present the embedding diagrams of the optical geometry in the case of physically

relevant stationary and axially symmetric spacetimes around rotating black holes or naked
singularities in the universe with recently indicated repulsive cosmological constant, i.e.,

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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in the Kerr–de Sitter (KdS) spacetimes. We use the standard approach enabling a sys-
tematic treatment of the turning points and embeddability limits of the diagrams (Hledík,
2002). In Section 2, we briefly summarize features of the KdS geometry and classify the
KdS spacetimes into black-hole and naked-singularity spacetimes. This way we introduce
the “Chinese box” technique, which is used later in a more complicated classification. In
Section 3, the definition of the optical reference geometry in the case of the general sta-
tionary spacetimes is introduced and applied to the KdS spacetimes. Section 4 turns to the
embedding diagrams of the optical geometry of these spacetimes. There is detailed dis-
cussion concerning the limits of embeddability of the optical geometry and the number of
turning points of the embedding diagrams, concludedwith the full classification of the KdS
spacetimes according to the properties of the optical geometry. Examples of some typical
embedding diagrams are also included. Some concluding remarks are given in Section 5.

2 KERR–DESITTERSPACETIMES

KdS spacetimes are stationary and axially symmetric solutions of Einstein’s equations
with a non-zero cosmological constant Λ. In the standard Boyer–Lindquist coordinates
(t, r, θ,φ) and geometric units (c = G = 1), the line element of the KdS geometry is given
by the relation

ds2 = − ∆r

I 2ρ2 (dt − a sin2 θ dφ)2 + ∆θ sin2 θ

I 2ρ2 [a dt − (r2 + a2) dφ]2

+ ρ2

∆r
dr2 + ρ2

∆θ
dθ2 , (1)

where

∆r = r2 − 2Mr + a2 − 1
3Λr2(r2 + a2) , (2)

∆θ = 1 + 1
3Λa2 cos2 θ , (3)

I = 1 + 1
3Λa2 , (4)

ρ2 = r2 + a2 cos2 θ (5)

and the mass M , specific angularmomentum a, and cosmological constantΛ are paramet-
ers of the spacetime. Using the dimensionless cosmological parameter

y = 1
3ΛM2 (6)

and putting M = 1, the coordinates t , r , the line element ds, and the parameter a are
expressed in units of M and become dimensionless.
Stationary regions of the KdS spacetimes, determined by the relation∆r (r; a2, y) ≥ 0,

are limited by the inner andouter black-hole horizons atrh− and rh+ andby the cosmological
horizon at rc. Spacetimes containing three horizons are black-hole spacetimes, while
spacetimes containing one horizon (the cosmological horizon exists for any choice of the
spacetime parameters) are naked-singularity spacetimes (Stuchlík and Slaný, 2004). It
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follows from the relation ∆r (r; a2, y) = 0 that for given values of the rotational and
cosmological parameters a2 and y, the loci of horizons are given by solutions of the equation

y = yh(r; a2) ≡ r2 − 2r + a2

r2(r2 + a2)
, (7)

whereas, because of the repulsive cosmological constant, the solutions are restricted by the
condition

yh(r; a2) > 0 . (8)

The investigation of the function yh(r; a2), following the “Chinese box” method, leads
to the classification of the KdS spacetimes into the black-hole and naked-singularity space-
times (see Fig. 1). The asymptotic behaviour of yh(r; a2) is given by yh(r → ∞; a2) → +0
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Figure 1. Classification of the KdS spacetimes by using the “Chinese box” method. (a) The charac-
teristic function a2

he(r) governing the location of extrema of the function yh(r; a2). For given a2, the
extrema of yh(r; a2) are determined by the solutions of a2 = a2

he(r) (note the dashed line a2 = 1.06
and compare with Fig. 1b). (b) The function yh(r; a2) determining the loci of event horizons of the
KdS spacetimes and limiting the dynamic regions (gray). The function is given for a2 = 1.06. For
given y and a2, the horizons are determined by solutions of y = yh(r; a2). In the parameter line (y)
of the spacetimes, the extrema of yh(r; a2) separate regions corresponding to the black-hole (BH)
spacetimes and naked-singularity (NS) spacetimes for given values of the rotational parameter a2.
(c) The functions yh(r; a2) in three specific cases a2 = 0.9 (with one positive and one negative
extrema), a2 = 1.05 (with two positive extrema) and a2 = 1.4 (with no extrema). (d) Functions
yh,min(a2) and yh,max(a2) separating the parametric plane (a2, y) into two regions corresponding to
the BH andNS spacetimes.
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and yh(r → 0; a2) → ∞. The local extrema of yh(r; a2) are determined (due to the
condition ∂r yh(r; a2) = 0) by the relation

a2(r) = a2
he(r) ≡ 1

2

(
−2r2 +

√
8r + 1 r + r

)
, (9)

whereas the maximum of the function a2
he(r) is located at r .= 1.6160 and takes the value

a2
he,max

.= 1.2120 (see Fig. 1a).
We can distinguish three different types of the behaviour of the function yh(r; a2) (see

Fig. 1c).

• For a2 < a2
he,max, yh(r; a2) has two local extrema yh,min(a2) and yh,max(a2) determined

by relations (7) and (9) (see Fig. 1b). The black-hole spacetimes exist for yh,min(a2) ≤ y <

yh,max(a2) and y > 0, while the naked-singularity spacetimes exist for 0 < y < yh,min(a2)
or y ≥ yh,max(a2).
• For a2 = a2

he,max, the extrema yh,min(a2) and yh,max(a2) coincide at yh,crit = 0.0592,
which is the limiting value for the black-hole spacetimes.
• For a2 > a2

he,max, yh(r; a2) has no extrema and there are only the naked-singularity
spacetimes (Stuchlík and Slaný, 2004).

The parameter plane (a2, y) separated by the functions yh,min(a2) and yh,max(a2) into the
regions corresponding to the black-hole and naked-singularity spacetimes is illustrated in
Fig. 1d.

3 OPTICALREFERENCEGEOMETRY

3.1 General case

In stationary spacetimes described by a metric gik (with signature +2), the definition of
the optical reference geometry requires introducing of family of special observers with the
timelike, unit, and hypersurface orthogonal 4-velocity field n i and with its 4-acceleration
field equal to the gradient of a scalar function. Such a vector field, satisfying the mentioned
conditions

nknk = −1 , ni∇i nk = ∇kΦ , n[i∇j nk] = 0 , (10)

can be found in the form

ni = e−Φ ιi , Φ = 1
2 ln (−ιi ιi ) , (11)

whereas it corresponds to the unit 4-velocity field of stationary observers parallel to a time-
like Killing vector field ιi , which exists due to the spacetime stationarity. Note that the
scalar functionΦ is called gravitational potential and eΦ is the norm coefficient here. The
equations (10) also implies

ni∇iΦ = 0 , (12)

i.e., the special observers with the 4-velocity n i observe no change in the gravitational
potential as their proper time passes, thus they are fixed with respect to the gravitational
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field. The local instantaneous 3-dimensional (n i orthogonal) space of the observers is
described by the metric

hik = gik + ni nk , (13)

the so-called directly projected geometry. The conformally adjusted metric of the directly
projected geometry

h̃ik = e−2Φhik , (14)

is the so-called optical reference geometry.

3.2 Kerr–de Sitter case

KdS spacetimes, being stationary and axially symmetric, admit twoKilling vector fields: the
timelike vector field η = ∂/∂t and the spacelike vector field ξ = ∂/∂φ. These Killing vector
fields are not orthogonal in general and ηiηi = gt t , ηiξi = gtφ , ξ iξi = gφφ . Their linear
combination, especially ιi = ηi +ΩLNRFξ

i , whereΩLNRF = −ηiξi/ξ
iξi , can be used for

the definition of the special observers with the 4-velocity

ni = e−Φ(ηi +ΩLNRFξ
i ) , (15)

Φ = 1
2 ln [−(ηi +ΩLNRFξ

i )(ηi +ΩLNRFξi )] . (16)

This 4-velocity, relevant for the construction of the ordinary projected geometry, corres-
ponds to the 4-velocity of the locally non-rotating frames moving along circular orbits with
the angular velocity dφ/dt = ΩLNRF. The timelike vector field (15) is the unit and hy-
persurface orthogonal vector field, whereas its 4-acceleration equals to the gradient of the
scalar functionΦ, just as required in the equations (10).
The metric coefficients of the optical reference geometry necessary for the construction

of the embedding diagrams of the equatorial plane are given by the relations

h̃rr = r(1 + a2y)2[r3 + a4ry + a2(2 + r + r3y)]
∆2

r
, (17)

h̃φφ = [r3 + a4ry + a2(2 + r + r3y)]2

r2∆r
. (18)

4 EMBEDDINGDIAGRAMS

Properties of the optical reference geometry can be represented by the embedding of the
equatorial plane into the 3-dimensional Euclidean space with the line element expressed in
the cylindrical coordinates (ρ, z,α) in the form

dσ 2 = dρ2 + ρ2 dα2 + dz2 . (19)
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4.1 Embedding formula

The embedding diagram is characterized by the embedding formula z = z(ρ) determining
a surface in the Euclidean space with the line element

dl2
(E) =

[

1 +
(

dz
dρ

)2
]

dρ2 + ρ2 dα2 , (20)

isometric to the 2-dimensional equatorial plane of the optical space determined by the line
element

dl̃2 = h̃rr dr2 + h̃φφ dφ2 . (21)

The azimuthal coordinates can be identified (φ = α) and we can put ρ2 = h̃φφ . Thus the
differential form of embedding formula is governed by the relation
(

dz
dρ

)2
= ˜hrr

(
dr
dρ

)2
− 1 . (22)

It is convenient to transfer it into a parametric form z(ρ) = z(r(ρ)) with r being the
parameter, i.e.,

dz
dr

= ±
√

h̃rr −
(dρ

dr

)2
, (23)

whereas the sign in this formula is irrelevant, leading to isometric surfaces (Hledík, 2001).
Using the relation ρ2 = h̃φφ and the metric coefficients (17) and (18), we obtain the

differential form of the embedding formula in the form

dz
dr

= ±
√

L
−∆r

3r4
, (24)

where

L = Ay4 + By3 + Cy2 + Dy + E (25)

and

A = a6r6(a2 + r2)3 , (26)
B = a4r5(a2 + r2)2[3r3 + a2(3r + 10)] , (27)
C = −a2r3(a2 + r2)[−3r7 − a2(6r2 + 16r + 9)r 3

− a4r(3r2 + 12r + 37) + 4a6] , (28)
D = r2{r10 + a2r6(3r2 + 2r − 18) + a4r3[r(3r2 − 4r − 16) + 36]

+ a6r [r(r2 − 14r − 18) + 60] − 4a8(2r + 5)} , (29)
E = 4a8 − 4a6r [r(r − 3) + 6] − 3a4(r − 2)r2[r(4r − 3) + 6]

− 2a2r5[r(6r − 17) + 18] + (9 − 4r)r 8 . (30)
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4.2 Features of embedding diagrams

Fromthedifferential formof the embedding formula (24), it is clear that due to the condition
(dz/dr)2 ≥ 0, the equatorial plane of the optical geometry is not entirely embeddable
into the 3-dimensional Euclidean space. The embeddable regions are determined by the
condition L(r; a2, y) ≤ 0, whereas the equality in this relation determines limits of the
embeddability. Due to the relation
dz
dρ

= dz
dr

dr
dρ

, (31)

the radii of turning points of the embedding diagrams, i.e., their bellies and throats, are
determined by the condition dρ/dr = 0.

4.2.1 Limits of embeddability

The equation L(r; a2, y) = 0 implicitly defines two functions yL±(r; a2), whereas
yL−(r; a2) < yL+(r; a2) for all values of a2 and r . Instead of giving long explicit ex-
pressions for the functions yL±(r; a2), we only present their properties and examples of
different types of their behaviour (see Figs 2 and 3). For given values of a2 and y, the limits
of embeddability are determined by solutions of the equations

y = yL±(r; a2) . (32)

Because of the reality condition∆r (r; a2, y) > 0 and the repulsive cosmological constant,
the solutions are restricted by the conditions

0 < yL±(r; a2) < yh(r; a2) . (33)

Thus the embeddable regions are given by the conditions 0 < yL−(r; a2) ≤ y and y ≤
yL+(r; a2).
The zero points of functions yL±(r; a2) are determined by the condition E(r; a2) = 0

(see Eq. (25)), i.e., by the equation

4a8 − 4a6r [r(r − 3) + 6] − 3a4(r − 2)r2[r(4r − 3) + 6]
− 2a2r5[r(6r − 17) + 18] + (9 − 4r)r 8 = 0 , (34)

which we consider as the implicit form of functions a2
L0±(r). The function a2

L0+(r) has two
local maxima a2

L0+,max1
.= 1.1354 and a2

L0+,max2
.= 1.0754 located at r .= 0.6895 and at

r = 1.3317. There is also one local minimum a2
L0+,min = 1 located at r = 1. On the other

hand, the function a2
L0−(r) has no local extrema.

The number of solutions of the equation (32) depends on the number of extrema of the
functions y = yL±(r; a2). They are given by the functions a2

Le1(r) and a2
Le2±(r), which are

defined implicitly by eliminating y from the equations L(r; a2, y) = 0 and ∂r L(r; a2, y) =
0. Since this expression is too large to be presented here, we only show the behaviour of
the functions a2

Le1(r) and a2
Le2±(r) (see Fig. 2). The function a2

Le1(r) is identical with the
function a2

he(r) (see the relation (9)) governing the extrema of yh(r; a2). Thus two extrema
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Figure 2. Characteristic functions a2
L0±(r) (closely dotted) governing zeros of the function

yL±(r; a2); a2
Le1(r) (dashed-dotted) and a2

Le2±(r) (solid) governing extrema of yL±(r; a2); a2
T0±(r)

(dotted) governing zeros of the function yT(r; a2); a2
Te±(r) (dashed) governing extrema of yT(r; a2).

The thick parts of the dashed-dotted and solid curves govern positive extrema of yL±(r; a2). In the
parameter line (a2) of the spacetimes, the extrema and common points of the characteristic functions
separate fourteen regions corresponding to the different types of behaviour of yL±(r; a2) (see Fig. 3).
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Figure 3. Functions yL±(r; a2) (solid) limiting embeddable regions (white); yT(r; a2) (dashed)
determining turning points of embedding diagrams; yh(r; a2) (dashed-dotted) determining locations
of event horizons and limiting the dynamic regions (gray). For given y and a2, limits of embeddability
are determined by solutions of y = yL±(r; a2). Turning points of the embedding diagrams are
determined by solutions of y = yT(r; a2) and restricted by the condition 0 < y < yh(r; a2). In
the parameter line (y) of the KdS spacetimes, extrema of yL±(r; a2) and yT(r; a2) separate regions
corresponding to different classes of the spacetimes differing in the number of embeddable regions
(first digit) and turning points of the embedding diagrams (second digit). Note that in the case of the
classes NS12 and NS22, the second digits exceptionally denote one turning point and one inflexion
point of the diagrams, i.e., not two turning points.
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Figure 3. (Continued frompage 89.)

of yL±(r; a2) coalesce with two extrema of yh(r; a2). These two extrema of yL±(r; a2) are
the only common points of yL±(r; a2) and yh(r; a2) and there is yL±(r; a2) < yh(r; a2) for
the other points. The maximum of the function a2

Le1(r) takes the value a2
Le1,max

.= 1.2120
and is located at r .= 1.6160. The common point of a2

Le1(r) and a2
L0+(r) coalesces with

the local minimum of a2
L0+(r) and divides the function a2

Le1(r) into two parts governing
positive (relevant for the classification) and negative extrema of yL±(r; a2). The function
a2

Le2+(r)has localmaximum a2
Le2+,max

.= 1.4706 located at r .= 1.0961 and localminimum
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Figure 3. (Continued frompage 89.)

a2
Le2+,min

.= 1.0683 at r .= 1.3289. Two of three common points of a2
Le2+(r) and a2

L0+(r)
coalesce with local maxima of a2

L0+(r) and divide the function a2
Le2+(r) into two parts

governing positive and negative extrema of yL±(r; a2). The function a2
Le2−(r) completely

governs negative local extrema of yL±(r; a2), which we do not consider here.
All the characteristic functions a2

L0±(r), a2
Le1±(r) and a2

Le2(r) are illustrated in Fig. 2.
These functions enable us to understand the behaviour of the functions yL±(r; a2) and
classify the KdS spacetimes according to the number of embeddable regions.

4.2.2 Turning points of the embedding diagrams

Since there is
dρ
dr

=
{

r2∆
3/2
r

}−1 {
r3a4(a2 + r2)y2 + r2a2[(2r + 5)a2 + r2(2r + 3)]y

+r4(r − 3) + ra2[r(r − 3) + 6] − 2a4
}

, (35)

for given values a2 and y, the radii of turning points of the embedding diagramsdetermined
by the condition dρ/dr = 0, are given by solutions of the equation

y = yT(r; a2) ≡
{

2a2r2(a2 + r2)
}−1 {

−(2r + 5)ra2 − r3(2r + 3)

+
√

r(a2 + 3r2)[8a4 + ra2(16r + 1) + r 3(8r + 3)]
}

. (36)

The solutions are restricted by the conditions

0 < yL−(r; a2) < yT(r; a2) < yL+(r; a2) . (37)
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The zeros of the function yT(r; a2) are given by the relation

r4(r − 3) + ra2[r(r − 3) + 6] − 2a4 = 0 , (38)

which we consider as the implicit form of the functions a2
T0±(r). The maximum of this

function takes the value a2
T0±,max

.= 1.3667 and is located at r .= 0.8116.
The number of solutions of the equation (36) depends on the number of the extrema of

the function yT(r; a2). They are determined (due to the condition ∂r yT(r; a2) = 0) by the
equation

−
{√

a4r3(a2 + 3r2)[8a4 + r(16r + 1)a2 + r3(8r + 3)]
}−1

×
{

r [12a8 + r(48r + 1)a6 + 3r3(24r + 1)a4 + 3r5(16r + 1)a2

+ 3r7(4r + 3)]a2
}

+ 5a4 + 12r2a2 + 3r4 = 0 , (39)

which we consider as the implicit form of functions a2
Te±(r)with the maximum a2

Te+,max
.=

1.8126 at r .= 1.3285.
The characteristic functions a2

Te±(r) and a2
T0±(r) are illustrated in Fig. 2 and enable us

to understand the behaviour of the functions yT(r; a2) and classify the KdS spacetimes
according to the number of turning points of the embedding diagrams.

4.3 Classification of the Kerr–de Sitter spacetimes

The number of embeddable regions and turning points of the embedding diagrams is de-
termined by the number of solutions of equations (32) and (36), which depends on the
number of the extrema of the functions yL±(r; a2) and yT(r; a2). We therefore denote
yL−,max(a2) as the only maximum of the function yL−(r; a2) which becomes positive (rel-
evant for the classification) for some a2 and r, yL+,e1(a2), yL+,e2(a2) as the extrema of the
function yL+(r; a2) coalescent with the minimum andmaximum of the function yh(r; a2);
yL+,e3(a2), yL+,e4(a2) as the remaining two extrema of the function yL+(r; a2). Finally we
denote yT,min(a2) and yT,max(a2) as the minimum andmaximum of the function yT(r; a2).
Using the characteristic functions a2

Te±(r), a2
T0±(r), a2

L0±(r), a2
Le1(r) and a2

Le2±(r), we can
distinguish fourteen different types of behaviour of the functions yL±(r; a2) and yT(r; a2)

differing in the number of their extrema satisfying the conditions 0 < y ≤ yh(r; a2) (see
Fig. 3). We represent the obtained fourteen different types of KdS spacetimes in Table 1.
The classification of the KdS spacetimes according to the number of embeddable regions

and turning points can be now given in the following way. We step by step discuss the
number of embeddable regions using the number of solutions of the equation (32) restricted
by the conditions (33) for given a2 and y and the number of turning points of embedding
diagrams given by the solutions of the equation (36) restricted by the conditions (37) for
each type of the KdS spacetimes separately.
In the spacetimes of type A, for 0 < y < yL+,e2(a2), there are four solutions of the

equation (32) satisfying the conditions (33) and then two embeddable regions. There are
two solutions of the equation (36) satisfying the conditions (37), i.e., two turning points of
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Table 1. Different types of the KdS spacetimes determined by the different types of behaviour of the
functions yL±(r; a2) and yT(r; a2). The number of extrema yL+,e1(a2), yL+,e2(a2), yL+,e3(a2),
yL+,e4(a2), yL−,max(a2), yT,min(a2), and yT,max(a2) of the functions yL±(r; a2) and yT(r; a2)
satisfying the conditions 0 < y ≤ yh(r; a2) are subsequently expressed by the digits in the last
column. The types Ea, Eb, and Ec differ in the relation among the values of extrema yL+,e2(a2),
yL+,e3(a2), and yL+,e4(a2) and the types Fa andFb differ in the relation among the values of extrema
yL+,e3(a2) and yT,max(a2).

Type Range of a2 Extrema

A (0, 1⟩ 0,1,0,0,0,0,0
B (1, 1.0683) 1,1,0,0,0,0,0
C ⟨1.0683, 1.0754) 1,1,0,1,1,0,0
D ⟨1.0754, 1.1354⟩ 1,1,0,1,0,0,0
Ea (1.1354, 1.1597) 1,1,1,1,0,0,0
Eb (1.1597, 1.2032) 1,1,1,1,0,0,0
Ec ⟨1.2032, 1.2120) 1,1,1,1,0,0,0

Type Range of a2 Extrema

Fa (1.2120, 1.2938) 0,0,1,1,0,0,1
Fb ⟨1.2938, 1.3667⟩ 0,0,1,1,0,0,1
G (1.3667, 1.4706) 0,0,1,1,0,1,1
H ⟨1.4706, 1.8126) 0,0,0,0,0,1,1
I ⟨1.8126,∞) 0,0,0,0,0,0,0
S1 1.1597 0,1,1,0,0,0,0
S2 1.2120 0,0,1,1,0,0,1

the embedding diagrams. Moreover there are three solutions of the equation (7) determ-
ining three even horizons and thus two stationary regions of the spacetimes. We denote
the obtained class as BH22, i.e., black-hole KdS spacetimes with two embeddable regions
and two turning points. For y ≥ yL+,e2(a2) there are two solutions of the equation (32)
satisfying the conditions (33) and thus only one embeddable region. The only solution of
the equation (36) satisfying the conditions (37) determines one turning point of the embed-
ding diagrams. Moreover there is one solution of the equation (7), i.e., one cosmological
horizon separating one stationary and one dynamic region. We denote the obtained class as
NS11, i.e., naked-singularity KdS spacetimes with one embeddable region and one turning
point. Note that although there are two horizons and two stationary regions in the case
of y = yL+,e2(a2), the outer stationary region coincides with the outer horizon where the
geometry is not embeddable and thus we cannot consider it. Using the same way, we can
sort the remaining types of the spacetimes obtaining the classification of all KdS spacetimes
(see Table 2).
Now it is clear, that the functions yL+,e1(a2), yL+,e2(a2), yL+,e3(a2), yL+,4(a2),

yL−,max(a2), yT,min(a2), and yT,max(a2) separate the parametric plane (a2, y) into nine
regions (see Fig. 4) corresponding to two classes of KdS black-hole spacetimes and to seven
classes of naked-singularity spacetimes differing in the number of embeddable regions and
number of turning points of the embedding diagrams. Qualitatively different types of the
embedding diagrams corresponding to the presented classification are illustrated in Figs 5–
10.

5 CONCLUSIONS

The embedding diagrams of the optical reference geometry of the KdS spacetimes were
presented and the classification of the spacetimes according to the number of embeddable
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Table 2. Classification of the KdS spacetimes according to the number of embeddable regions (first
digit) and turning points of the embedding diagrams (second digit). Limits of the ranges of the
parameter y (functions of the parametera2) are illustrated in Fig. 4.

Class Range of y

Type A

BH22 (0; yL+,e2(a2))

NS11 ⟨yL+,e2(a2); ∞)

Type B

NS33 (0; yL+,e1(a2))

BH22 ⟨yL+,e1(a2); yL+,e2(a2))

NS11 ⟨yL+,e2(a2); ∞)

Type C

NS33 (0; yL−,max(a2))

NS23 ⟨yL−,max(a2); yL+,e4(a2))

NS33 (yL+,e4(a2); yL+,e1(a2))

BH22 ⟨yL+,e1(a2); yL+,e2(a2)

NS11 ⟨yL+,e2(a2); ∞)

TypeD

NS23 (0; yL+,e4(a2)⟩
NS33 (yL+,e4(a2); yL+,e1(a2))

BH22 ⟨yL+,e1(a2); yL+,e2(a2))

NS11 ⟨yL+,e2(a2); ∞)

Type Ea

NS13 (0; yL+,e3(a2)⟩
NS22 (yL+,e3(a2); yL+,e4(a2)⟩
NS33 (yL+,e4(a2); yL+,e1(a2))

BH22 ⟨yL+,e1(a2); yL+,e2(a2))

NS11 ⟨yL+,e2(a2); ∞)

Type Eb

NS13 (0; yL+,e3(a2)⟩
NS23 (yL+,e3(a2); yL+,e1(a2))

BH32 ⟨yL+,e1(a2); yL+,e4(a2)⟩
BH22 (yL+,e4(a2); yL+,e2(a2))

NS11 ⟨yL+,e2(a2); ∞)

Type Ec

NS13 (0; yL+,e3(a2)⟩
NS23 (yL+,e3(a2); yL+,e1(a2))

BH32 ⟨yL+,e1(a2); yL+,e2(a2))

NS21 ⟨yL+,e2(a2); yL+,e4(a2)⟩
NS11 (yL+,e4(a2); ∞)

Class Range of y

Type Fa

NS13 (0; yL+,e3(a2)⟩
NS23 (yL+,e3(a2); yT,max(a2))

NS22 y = yT,max(a2)

NS21 (yT,max(a2); yL+,e4(a2)⟩
NS11 (yL+,e4(a2); ∞)

Type Fb

NS13 (0; yT,max(a2))

NS12 y = yT,max(a2)

NS11 (yT,max(a2); yL+,e3(a2)⟩
NS21 (yL+,e3(a2); yL+,e4(a2)⟩
NS11 (yL+,e4(a2); ∞)

Type G

NS11 (0; yT,min(a2))

NS12 y = yT,min(a2)

NS13 (yT,min(a2); yT,max(a2))

NS12 y = yT,max(a2)

NS11 (yT,max(a2); yL+,e3(a2)⟩
NS21 (yL+,e3(a2); yL+,e4(a2)⟩
NS11 (yL+,e4(a2); ∞)

Type H

NS11 (0; yT,min(a2))

NS12 y = yT,min(a2)

NS13 (yT,min(a2); yT,max(a2))

NS12 y = yT,max(a2)

NS11 (yT,max(a2); ∞)

Type I

NS11 (0; ∞)

Type S1

NS13 (0; yL+,e3(a2)⟩
NS22 (yL+,e3(a2); yh,min(a2))

BH22 ⟨yh,min(a2); yL+,e2(a2))

NS11 ⟨yL+,e2(a2); ∞)

Type S2

NS13 (0; yL+,e3(a2)⟩
NS23 (yL+,e3(a2); yT,max(a2))

NS21 ⟨yT,max(a2); yL+,e4(a2)⟩
NS11 (yL+,e4(a2); ∞)
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Figure 4. Classification of the KdS spacetimes according to the number of embeddable regions (first
digit) and turning points of embedding diagrams (second digit). In the parameterplane (a2, y), there
are two classes BH22 and BH32 of the KdS black-hole spacetimes and seven classes NS11, NS12,
NS13, NS23, NS21, NS22, NS23, NS33 of the KdS naked-singularity spacetimes. Note that in the
case of the classes NS12 andNS22, the second digits exceptionally denote one turning point and one
inflexion point, i.e., not two turning points. The classes NS2 andNS12 are denoted by the thick solid
curves.

regions of the geometry (first digit) and number of turning points of the embedding dia-
grams (second digit) was given:

BH spacetimes NS spacetimes

KdS BH22, BH32 NS11, NS12, NS13, NS21, NS22, NS23, NS33

K BH22 NS11, NS12, NS13, NS23, NS33

SdS BH11 –
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Figure 5. Embedding diagram (two parts) of the optical reference geometry of the KdS spacetime of
the class BH22.
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Figure 6. Embedding diagram of the optical reference geometry of the KdS spacetime of the class
NS13.
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Figure 7. Embedding diagram (two parts) of the optical reference geometry of the KdS spacetime of
the classNS23.
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Figure 8. Embedding diagram of the optical reference geometry of the KdS spacetime of the class
NS12.
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Figure 9. Embedding diagram (two parts) of the optical reference geometry of the KdS spacetime of
the classNS21.
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Figure 10. Embedding diagram of the optical reference geometry of the KdS spacetime of the class
NS11.
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As well as in the case of the pure Kerr spacetimes (y = 0) (Stuchlík and Hledík, 1999a),
it is a complex classification compared to the Schwarzschild–de Sitter spacetimes (a = 0,
Stuchlík and Hledík, 1999b), because of the rotation of the source of the gravitation, theor-
etically allowing the existence of the naked-singularity spacetimes. Of course, intuitively,
the centrifugal force, closely related to the embedding diagrams, must be also heavily de-
pendent on the rotation. On the other hand, the cosmological repulsion manifests mainly
in the behaviour of the gravitational inertial force, which is not directly related to the em-
bedding diagrams (for the detailed analysis of the inertial forces in the KdS spacetimes, see
Kovář and Stuchlík, 2004).
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1 INTRODUCTION

At the present epoch of the universe, there is a minimummass for naturally forming black
holes which is somewhere in the region of 2 M⊙. If a very dense object with a mass smaller
than this starts collapsing towards the black hole state, the collapsewill be halted by neutron
degeneracy pressure. The situation was different in the very early universe. Consider, for
example, the conditions a few microseconds after the Big Bang (around the time of the
cosmological quark-hadron transition): the temperatures then were ! 100 MeV (1012 K),
densities ! 1015 g cm−3, the horizon scale " 10 km (or 1 M⊙) and the energy density of
the universe was dominated by relativistic particles and radiation. This is deeply inside the
radiation-dominated era. At this time, the equation of state could be roughly approximated
by

p = 1
3

(
e − Λ

2π

)
, (1)

where e and p are the total energy density and pressure andΛ is an effective cosmological
constant term representing the behaviour of vacuum energy which may be present in addi-
tion to the relativistic particles (quarks, pions, leptons, photons). In the absence of vacuum
energy, (1) reduces to the standard expression for a radiation dominated fluid. An equation
of state of this general form can be used at any time during the radiation-dominated era, up
to around the time of equivalence between radiation and matter (∼ 104 years after the Big
Bang). In contrast with high-density matter today (where the hadrons are in the form of
non-relativistic baryons), thismatter in the early universe does not stiffenwhen compressed
and so it was possible then to form smaller black holes than could be produced today.
It has been suggested by Niemeyer and Jedamzik (1998, 1999) that black holes formed

from density fluctuations in the early universe might havemasses following a scaling law of
the form

MBH = K (δ − δc)
γ , (2)

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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where K and γ are constants, δ is the amplitude of the perturbation and δc is the critical
threshold value for δ (perturbations with amplitudes larger than this would produce black
holes while smaller perturbations would disperse into the surrounding medium). The sort
of behaviour represented by (2) is known as critical collapse and has been demonstrated
(theoretically) to occur for scale-free situations involving scalar fields and fluids. It was
open to question whether a similar behaviour would arise in the early universe where there
are some relevant scales,most notably the horizon scale.
The work which I am reporting on here has been done in collaboration with Ilia Musco

and Luciano Rezzolla of SISSA, Trieste and has the aim of investigating various aspects of
the formation of these primordial black holes (PBHs) in the early universe. Cosmological
structure formation is thought to have resulted from the growth and evolution of small
perturbations initiated at the time of inflation (see Liddle and Lyth, 2000, and references
therein). Inflationary models give rise to a spectrum of super horizon-scale fluctuations
which then start to re-enter the horizon in the radiation-dominated era and PBHs could
be formed at this stage in extreme cases where the fluctuation amplitude exceeds a critical
threshold value (Zel’dovich and Novikov, 1966, 1967; Hawking, 1971; Carr and Hawking,
1974). The masses of these PBHs could, in principle, span many orders of magnitude,
from the Planck mass up to the horizon mass at the time of equivalence between radiation
and matter. We have carried out GR numerical simulations of spherical PBH formation in
the background of an expanding universe in the radiation-dominated era. Our work builds
on previous investigations by a number of authors including: Carr (1975); Nadezhin et al.
(1978a,b); Bicknell and Henriksen (1979); Niemeyer and Jedamzik (1998, 1999); Shibata
and Sasaki (1999); Hawke and Stewart (2002). Our aim was to re-visit the subject area,
trying to clarify various issues. A particular point is that we have used, as initial conditions,
perturbations representing growing-mode over-densities with length-scales greater than
thehorizonscale and stillwithin the linear regime. Their evolutionwas then followedas they
subsequently become nonlinear. A convenient parameter for measuring the perturbation
amplitude δ is the fractional mass-excess within the overdense region. Determining the
critical threshold value of this (δc), above which PBHs are formed, is clearly important for
cosmological considerations (Carr et al., 1994; Green and Liddle, 1997; Liddle and Green,
1998).

2 MATHEMATICALFORMULATION&CALCULATIONMETHOD

As withmost of the other literature on this subject, we have restricted attention to spherical
symmetry, which very greatly simplifies the calculations, andwehave used the formulations
of the relativistic hydrodynamical equations given by Misner and Sharp (1964); Hernan-
dez and Misner (1966). Both of these are Lagrangian formulations (with a co-moving
radial coordinate), the first using a diagonal metric (with the time referred to as “cosmic
time” which reduces to the familiar Friedmann–Robertson–Walker time coordinate in the
absence of perturbations), and the second using an outward null slicing where the time
coordinate is an “observer time” (the clock time as measured by a distant fundamental
observer viewing the evolution proceeding).
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The spherical matter distribution is divided into a sequence of concentric spherical shells
andwe label each onewith a co-moving radial coordinatewhichwedenote by r . The general
form of the metric can then be written as

ds2 = −A2 dt2 − 2AB drdt + C2 dr2 + R2(dθ2 + sin2 θ dϕ2) , (3)

where R, A, B and C are functions of r and the time coordinate t ; 2πR is the proper
circumference of a circle with comoving radial coordinate r and R is the radial coordinate
used in the Schwarzschild metric. (We are using units in which c = G = 1.) One is free to
define a new time coordinate tc as

a dtc = A dt + B dr , (4)

and inserting this into (3) then gives

ds2 = −a2 dt2
c + b2 dr2 + R2(dθ2 + sin2 θ dϕ2) , (5)

(with b2 = B2 + C2). This is a diagonalmetric (no cross term in drdt) and tc is the cosmic
time. This formulation is particularly simple and has the advantage of using a slicing
which many people find intuitive; this was the approach used by May and White (1966)
in their classic paper studying spherically-symmetric gravitational collapse. However, this
approachhas awell-knowndrawback for studying black hole formation in that singularities
are typically formed rather early in calculations of continuing collapse and it is not then
possible to follow the subsequent evolution (although this problem can be avoided by using
an excision technique). Another possibility is to use the freedom in time-slicing to avoid the
singularity formation. In spherical symmetry, using an outgoing null slicing is an attractive
option. On a radial light ray (or null ray)

ds2 = −a2 dt2
c + b2 dr2 = 0 , (6)

giving

a dtc = ±b dr , (7)

with the plus sign corresponding to an outgoing ray and the minus sign to an ingoing one.
We can define an observer time coordinate to which is constant along an outgoing null ray:

f dto = a dtc − b dr , (8)

where f is an integrating factor. With suitable normalization, to is the proper time as
measured by a distant observer. In terms of this, the metric then becomes

ds2 = − f 2 dt2
o − 2 f b drdto + R2(dθ2 + sin2 θ dϕ2) , (9)

which is the general form (3) with C set equal to zero. The observer-time approach is par-
ticularly convenient for calculations involving black hole formation in spherical symmetry:
anything which could not be seen by a distant observer (including singularity formation)



104 J.Miller

does not occur within finite coordinate time while all observable behaviour can be cal-
culated. This is, in some sense, the optimal approach for studying black hole formation in
spherical symmetry (being linkeddirectly topotential observations rather than coming from
anabstractmathematical prescription) althoughmore sophisticated slicing conditionshave
advantages for calculations away from spherical symmetry.
For both the cosmic time and observer time approaches, one then has a system of equa-

tions for the metric functions and hydrodynamic variables. We will not repeat these here
but refer the reader to the original papers (Misner and Sharp, 1964; Hernandez and Mis-
ner, 1966). Our calculations of PBH formation have been made using a code based on
that of Miller and Motta (1989) but with the grid organized in a way similar to that in the
code of Miller and Rezzolla (1995), which was designed for calculations in an expanding
cosmological background.
In general, the calculation proceeds in two stages: first, initial data is specified on a

space-like slice at constant cosmic time, specifying the energy density e and the radial four-
velocity componentU as functions of R at the initial time ti. This data is then evolved using
the cosmic-time equations so as to generate a second set of initial data on a null slice (at
constant observer time). To do this, an outgoing radial light ray is traced out from the centre
and parameter values are noted as it passes the boundary of each grid zone. This second set
of initial data, constructed in this way, is then evolved using the observer-time equations.
The initialmodel consists of anunperturbedbackground, represented by the spatially-flat

Friedmann–Robertson–Walker solution, together with a density perturbation and a corres-
ponding velocity perturbation satisfying the conditions for a growing-mode. For the results
presented in the next section, the initial perturbations had the well-known Mexican hat
profile (with a central over-density surrounded by a compensating under-density) and were
specified with a length-scale of several horizon-scales and small amplitudes well within the
linear regime. Once the initial conditions have been specified, the data is then evolved
forwards in time and the perturbation parameter δ is calculated at the moment when the
overdensity enters the horizon. For further details of the methods used, see Musco et al.
(2005).

3 SOMERESULTS FROMTHECALCULATIONS

In this section, we present some results from our calculations (all withΛ = 0 except where
otherwise stated). Further details can be found inMusco et al. (2005).
Figure 1 shows theworldlines of fluid elements during a typical evolution leading to black

hole formation. The initial perturbation had a Mexican-hat profile with a length-scale of
5 horizon-scales and gave rise to a black holewithmass MBH = 0.4415 MH where MH is the
horizon mass at the time of horizon crossing. The perturbation amplitude was rather close
to the critical value: δ − δc = 2.37 × 10−3 measured at horizon crossing (with δc = 0.43).
Note the cut between theworldlines ofmaterial going to form the blackhole and thematerial
continuing tomove outwardswith the expansion of the universe. In between, a relative void
forms although a small amount of material is continuing to be accreted across this up to the
end of the calculation. For cases closer to the critical limit, the void becomes deeper and a
shock appears at its outer edge.
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Figure 1. A typical evolution resulting in the
formation of a black hole: the plot shows the be-
haviour of fluid-element worldlines. The time is
measured in units of the horizon crossing time
tH and the horizontal scale shows the log of the
Schwarzschild circumference coordinate meas-
ured in units of the horizon radius at time tH.

Figure 2. Scaling behaviours for MBH as a func-
tion of δ − δc calculated for growing-modeMex-
ican hat perturbations specified within the linear
regime. The filled circles correspond to Λ = 0
while the open circles are for a positive Λ giving
ΛM2

H = 2.25 × 10−3.

Figure 2 shows scaling laws obtained for the mass of the black hole MBH as a function
of δ − δc for a standard case with zero Λ and a representative case with Λ > 0. For zero
Λ, we find δc ≃ 0.43 and γ ≃ 0.36. Comparing with previous calculationsmade for initial
perturbations which were not specified as purely growing modes (Niemeyer and Jedamzik,
1999), the values of γ are the same but the previous calculations gave δc ≃ 0.67 which
is substantially different. We note that our present result is consistent with that of Green
et al. (2004) who used a different method. The results for positive Λ show γ decreasing
with increasingΛ (as expected, because a positiveΛ hinders collapse with the effect being
strongest for the higher masses) and δc increasing with increasing Λ. Both relations are
approximately linear inΛM2

H for small enoughΛ.
Noting the work of Hawke and Stewart (2002), we do not expect that the linear scaling

laws will continue to indefinitely small values of MBH and δ − δc but instead will level off
at a minimum value of MBH (they found a minimum value of ∼ 10−4 of the horizon mass
which they interpreted as being caused by the effects of strong shocks breaking the scale-
free behaviour). This is beyond the regime that we can treat at present with our code. It
will be important however to check these results because they were obtained for non-linear
initial perturbations which were not purely growing modes.
Figure 3 shows worldlines for a particular case of subcritical collapse starting with a

Mexican hat perturbation specified in the linear regime, with δ being as close to δc as
can be well-handled by the code (δ − δc = −3.0 × 10−3). This is representative of the
more extreme cases of subcritical collapse; for less extreme cases, the perturbation subsides



106 J.Miller

Figure 3. Worldlines for a subcritical Mexican
hat perturbation with δ − δc = −3.0 × 10−3.
This plot shows alternating collapse and expan-
sion of the perturbed region while the outer
material continues to expand uniformly. For
sub-critical cases, the cosmic time formulation is
used throughout; the time is measured in units of
the horizon crossing time with ti being the initial
time fromwhich the calculation started.

Figure 4. The evolution of the radial velocity U
is plotted as a function of time at three (comov-
ing) locations: near to the centre of the perturba-
tion, at an intermediate region (mid-way through
the collapsing matter) and at the edge of the grid
where the fluid is unperturbed. U is measured
in units of its initial value at the same co-moving
location and the time is measured in units of the
horizon crossing time.

into the background medium in an uneventful way. Figure 4 shows the behaviour of the
radial component of four-velocity at three locations: near to the centre of the perturbation;
in the outer unperturbed medium and at an intermediate location. It is helpful to view
Figs 3 and 4 in conjunction. At first, the material in the central region is continuing to
expand but is decelerating. It then has a very gentle collapse followed by a similarly gentle
bounce and re-expansion. This continues until it encounters the surrounding material
which was not originally perturbed and it then rebounds from this more strongly, propelled
by a compression. The following bounce is then far more dramatic since it follows a
collapse nearly in free-fall, largely unopposed by internal pressure. Unlike the situation
for a similar perturbation within a non-expanding uniform background, there are then no
further cycles of expansion and collapse because the expansion of the background prevents
further compressions arising. However, for perturbations with δ closer to δc further cycles
might be seen.

4 CONCLUSIONANDFUTUREPERSPECTIVES

The main results of our work so far have been: (i) confirmation of previous results about
the existence of scaling laws; (ii) calculation of the revised value of δc for calculations
startingwith purely growingmode perturbations; (iii) calculations including the effects of a
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non-zero vacuumenergy; (iv) demonstrationof thequite dramatic hydrodynamic behaviour
which can occur in sub-critical collapse.

Topics for future work include the following:

• Use of the code to investigate different prescriptions for perturbation spectra coming
from inflation to see whether some prescriptions can be ruled out on the grounds that their
PBHproduction would be in conflict with observations.
• Improvement of the code to enable study of caseswith smaller δ− δc so as to check on the
result about the scaling law levelling off at aminimummass.
• Investigation of the possibility that intermediate mass black holes (102–103 M⊙) might
have a primordial origin rather than coming fromPopulation III stars as commonly thought.
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Games with polytropes and adiabates
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ABSTRACT
Equilibrium configurations that are solutions of spherically symmetric hydrostatic
equations of General Relativity for an ideal fluid obeying a polytropic (or adiabatic)
equation of state are given in the framework of general relativity. The equilibrium
configurationsare given in termsof thepolytropic indexn and the socalled relativistic
parameterσ (for polytropes) or α (for adiabates).

First, simple models of polytropic and adiabatic spheres for non-relativistic and
ultra-relativistic case of the equation of state are introduced. Then, the comparison
of polytropic and adiabatic spheres is given in some special characteristic cases and
the influence of the relativistic parameter on the structure of the spheres and the
gravitational and binding energy.

1 INTRODUCTION

We assume static spherically symmetric, equilibrium perfect-fluid configurations obeying
the polytropic and adiabatic equation of state (EoS).We are going to discuss non-relativistic
(i.e., n = 1.5) and ultrarelativistic (i.e., n = 3.0) case of polytropic and adiabatic spheres.
I’ll show you differences in behaviour of quantities for different polytropic and adiabatic
EoS (i.e., for different value of polytropic index n). We compare polytropic and adiabatic
configuration in the case when central pressure and central density of both configurations
are equal and in the case when central pressures and central rest densities are equal.

2 POLYTROPICANDADIABATIC SPHERES

We assume perfect-fluid configuration obeying polytropic and adiabatic EoS (Iben, 1963;
Chandrasekhar, 1964;Stuchlík andHledík, 2005). Thematter inside the sphere isdescribed
by the perfect-fluid stress-energy tensor

T µ
ν = (P + ρc2)UµU ν + Pδµν . (1)

The energy-momentum tensor is related to the spacetime geometry by Einstein’s gravita-
tional equations in the standard form

Gµν ≡ Rµν − 1
2 Rgµν = 8πG

c4 Tµν (2)

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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and the law of local energy-momentum conservation is described by

T µν ;ν = 0 . (3)

The r -component (which is the only non-zero component in the static case) of this conser-
vation law is
dP
dr

+ 1
2
(P + ρc2)

dν
dr

= 0 . (4)

Pressure P andmass-energy density ρ are connected by polytropic or adiabatic EoS

P(p) = K(p)ρ
1+ 1

n
(p) , P(a) = K(a)ρ

1+ 1
n

g(a) , (5)

where ρg is rest mass-energy density, K is a constant to be determined by the thermal
characteristics of a given fluid sphere and n is the polytropic index. Subscript (p) denotes
polytropic quantities, subscript (a) denotes adiabatic quantities. The rest and total mass-
energy density are related by ρ = ρg + n P/c2 (Tooper, 1964, 1965).
We derive the general relativistic equations of equilibrium for a spherically symmetric

distribution of fluid obeying a polytropic and adiabatic EoS. In spherical coordinate system
at rest with respect of the fluid and chosen such that themetric reduces to the standard form

ds2 = −e2Φc2 dt2 + e2Ψ dr2 + r2(dθ2 + sin2 θ dφ2) . (6)

The equations of hydrostatic equilibrium in these coordinates are (Oppenheimer and
Volkoff, 1939)

dP(p)

dr(p)
= −

(
ρ(p)c2 + P(p)

) G
c2 M(p)(r(p)) + 4πG

c4 P(p)r3
(p)

r(p)

[
r(p) − 2G

c2 m(p)(r(p))
] , (7)

dM(p)(r(p))

dr
= 4πr2

(p)ρ(p) . (8)

(This is Tolman–Oppenheimer–Volkoff equation of hydrostatic equilibrium for the poly-
tropic case. The equation of hydrostatic equilibrium for adiabatic case has the same form,
only the total mass-energy density ρ(p) is changed to rest mass-energy density ρg(a) and
(p) → (a).)
We introduce new variable θ (Tooper, 1964) which is connected with density as

ρ(p) = ρc(p)θ
n , ρg(a) = ρgc(a)θ

n , (9)

and is connected with pressure as

P(p) = Kρ
1+ 1

n
c(p) θ

n+1 = Pc(p)θ
n+1 , P(a) = Kρ

1+ 1
n

gc(a)θ
n+1 = Pc(a)θ

n+1, (10)

Relativity parameter σ for polytropes or α for adiabates are defined as

σ =
K(p)ρ

1
n
c(p)

c2 = Pc(p)

ρc(p)c2 , α =
K(a)ρ

1
n
gc(a)

c2 = Pc(a)

ρgc(a)c2 . (11)
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Physical interpretation of the parameter σ is the ratio of pressure to energy density at the
centre of the sphere and physical interpretation of α is the ratio of pressure to rest energy
density at the centre of the sphere.
With transformations to new variables ξ , θ , v defined by

r(p) = ξ

A(p)
, A2

(p) = 4πGρc(p)

(n + 1)σc2 (12)

M(p)(r(p)) = 4πρc(p)

A3
(p)

v(p)(ξ(p)) , (13)

(in the adiabatic case ρc(p) → ρgc(a) and σ → α), the equations of hydrostatic equilibrium
for polytropes become

dθ
dξ(p)

= −

(
σξ3

(p)θ
n+1 + v(p)

)
(1 + σθ)

ξ2
(p)

g(p)rr , (14)

dv(p)

dξ(p)
= ξ2

(p)θ
n , (15)

and the equations of hydrostatic equilibrium for adiabates become

dθ
dξ(a)

= −

(
αξ3

(a)θ
n+1 + v(a)

)
[1 + α(n + 1)θ ]

ξ2
(a)

g(a)rr , (16)

dv(a)

dξ(a)
= ξ2

(a)θ
n(1 + nαθ) , (17)

where the radialmetric coefficient for polytropes is given by

g(p)rr (ξ(p), v(p); n, σ,λ(p)) ≡ 1
1 − 2σ (n + 1)

v(p)

ξ(p)

(18)

and the radial metric coefficient for adiabates may be obtained by simple replacement
σ → α.

3 CASEOF Pc(a) = Pc(p) AND ρc(a) = ρc(p)

When we want to compare quantities in this special case we have to compute relation
between adiabatic and polytropic relativistic parameter

α = σ

1 − nσ
, σ = α

1 + nα
. (19)

We will focus to behaviour of masses, radiuses, binding energy and gravitational potential
energy. Relation between masses M(a) and M(p) is

M(p) = M(a)

[
(1 − nα)3

1 + nα

]1/2
v(p)

v(a)
. (20)
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The relation between radii R(a) and R(p) is

R(p) = R(a)

(
1 − nα
1 + nα

)1/2 ξ(p)1

ξ(a)1
. (21)

The relation between binding energies Eb(a) and Eb(p) is

Eb(p) = Eb(a)
1 − v(p)

ug(p)

1 − v(a)
ug(a)

ug(p)

ug(a)
, (22)

where ug(a) and ug(p) are defined by the following integrals:

ug(a) =
∫ ξ(a)1

0

ξ2
(a)θ

n

[
1 − 2(n + 1)α

v(a)
ξ(a)

]1/2 dξ(a) , (23)

ug(p) =
∫ ξ(p)1

0

ξ2
(p)θ

n

[
1 − 2(n + 1)σ (1 + nσ )n + v(p)

ξ(p)

]1/2 dξ(p) . (24)

The relation between gravitational potential energiesΩ(a) andΩ(p) is

Ω(p) = Ω(a)(1 + nα)
n−3

2
(1 + nα)[1 + nα(1 + θ)] − v(p)

ug(p)

1 + nαθ − v(a)
ug(a)

ug(p)

ug(a)
. (25)

4 CASEOF Pc(a) = Pc(p) AND ρgc(a) = ρgc(p)

When we want to compare quantities in this special case we have to compute relation
between adiabatic and polytropic relativistic parameter

α = σ (1 + σ )n . (26)

We will focus to behaviour of masses, radiuses, binding energy and gravitational potential
energy. Relation between masses M(a) and M(p) is

M(a) = M(p)

[
(1 − nσ )(1 + σ )4n/3

1 − nσ (1 + σ )n

]3/2
v(a)

v(p)
. (27)

Relation between radiuses R(a) and R(p) is

R(a) = R(p)
(1 − nσ )1/2(1 + σ )3n/2

[1 − nσ (1 + σ )n]1/2
ξ(a)1

ξ(p)1
. (28)

Relation between binding energies Eb(a) and Eb(p) is

Eb(a) = Eb(p)

1 − v(a)
ug(a)

1 − v(p)

ug(p)

(1 + σ )
n(3−n)

2
ug(a)

ug(p)
. (29)
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Relation between gravitational potential energiesΩ(a) andΩ(p) is

Ω(a) = Ω(p)(1 + σ )
n(3−n)

2
1 + nθσ (1 + σ )n − v(a)

ug(a)

1 + nθσ − v(p)

ug(p)

ug(a)

ug(p)
. (30)

5 CONCLUSIONS

The structure of sphere (adiabatic or polytropic) is different for non-relativistic or ultra-
relativistic case (as we can see in the Fig. 1). Radius of spheres grows with increasing
polytropic index n. Non-relativistic star has the smallest radius and ultra-relativistic has the
bigger one. For ultra-relativistic example hasmore than 5/6 of the star nearly zero density –
it is unphysical effect but this is extreme condition. Mass and gravitational potential energy
are also increasing with increasing polytropic index. Binding energy is decreasing and for
limit ultra-relativistic case is in whole radius negative. (This behaviour is similar in case of
polytropic spheres).
In Fig. 2 we can see comparison between polytropes and adiabates in non-relativistic and

ultra-relativistic case. Radius and mass of spheres are smaller for adiabates and binding
energy is smaller for polytropes. In ultra-relativistic case are differences between polytropes
and adiabates greater than for non-relativistic case. Characteristic of changes are the same
as in non-relativistic case.
Figure 3 shows the differences between quantities for special case when ρc(a) = ρc(p)

and Pc(a) = Pc(p). From Eqs (19) it is obvious that polytropic parameter σ has limits. For
n = 1.5 has to be σ < 2/3 and for n = 3.0 has to be σ < 1/3. Ratio of masses Ma/Mp and
gravitational potential energiesΩa/Ωp are increasing, i.e., mass and gravitational potential
energy of adiabates grows with polytropic parameter σ more quickly than for polytropes.
Ratio of radiuses Ra/Rp is increasing too but for ultra-relativistic case appears something
like “shoulder.” Ratio of binding energy Eb(a)/Eb(p) is for n = 1.5 decreasing and for
n = 3.0 increasing. The peaks in non-relativistic case are probably just numerical artefacts
lacking any physical meaning.
In Fig. 4 are shown dependencies of adiabatic and polytropic index for case ρc(a) = ρc(p),

Pc(a) = Pc(p) (left panel) and for case ρgc(a) = ρgc(p), Pc(a) = Pc(p) (right panel).
Figure 5 shows dependencies of different quantities for special case ρgc(a) = ρgc(p) and

Pc(a) = Pc(p). We can see dependencies of ratios Ma/Mp,Ωa/Ωp and Ra/Rp in the left site
and zoom part of non-relativistic case in the right site. Quantities have similar behaviour
as in previous special case. In graphs of ratio of binding energies to polytropic parameter
we can see some instability in ultra-relativistic case for σ ∼ 0.62. It can be connected with
ratio of causality.
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Figure 1. Graphs of the dependence of pressure P, mass M, gravitational potential energy Ω and
binding energy Eb on radius r of the adiabatic spheres for different value of polytropic index n
(continuous line denotes non-relativistic case (n = 1.5), dotted line denotes quantities with n = 2.0,
dash-and-dot line denotes quantities with n = 2.5 and broken line denotes ultra-relativistic case
n = 3.0).
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Subnuclearmatter in neutron stars and
supernovae: nuclear pasta and beyond
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ABSTRACT
Wereview the current status ofmodels ofmatter at subnucleardensity as it appears in
astrophysical contexts; namely, during core collapse of supernovae and in the inner
crusts of neutron stars. We discuss the main observational probes of this regime,
and present preliminary results of our own studies of the so-called nuclear pasta that
appears in this density regime.

1 INTRODUCTION

The evolution of a star with a mass of between ≈ 10 M⊙–30 M⊙ ends when the material
of the core, which has been processed to iron via a series of fusion reactions throughout
its lifetime, reaches the Chandrasekhar mass. At this point electron degeneracy pressure
can no longer support the core against its own gravity. The core becomes unstable to
radial oscillations and collapses. Electron captures onto protons and photodisintegration
of iron nuclei rapidly remove electron and radiation pressure and the collapse proceeds on a
timescale of milliseconds (Woosley et al., 2002; Bethe, 1990). The core shrinks by a factor
of ≈ 1000 to a radius of 100 km, at which point the density at the centre has reached the
order of magnitude that is found in the nuclei of atoms. A convenient density scale on
which to describe suchmatter is set by nuclear saturation density ρs ≈ 3 × 1014 g cm−3 ≡
0.16 baryons fm−3 = ns (1 fm = 10−15 m) which is defined as the density at which the
energy per nucleon of infinite, symmetric (proton fraction yp = 0.5) nuclearmatter (SNM)
has a minimum. In the inner part of the core, the collapse overshoots nuclear saturation
density and is halted and reversed by the strongly repulsive short range nucleon-nucleon
interaction. This rebound meets matter still falling inwards and a shock develops. What
happens next is still a matter being explored through simulation (Janka et al., 2004) but it
is thought that the shock stalls as it passes through and interacts with the material of the
outer core, only to be revived by the massive neutrino flux emergent from the inner core.
The outer material of the star is ejected, and a supernova (SN) explosion becomes visible
through electromagnetic (which carries away ≈ 1% of the energy) and neutrino radiation
(which carries away the other 99% ≈ 1051 ergs). The high density core becomes a neutron
star (NS). Thus begins a new stage in the star’s life, whose properties largely depend on the
properties of bulkmatter around nuclear saturation density (Janka et al., 2001).

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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The bulk nuclear matter generated in the collapse of the star is initially hot (1010–
1012 K ≡ 1–100 MeV). The neutrinos are initially trapped; that is, their mean free path
through the matter is much smaller than the dimensions of the core itself, and this inhibits
electron capture onto protons (inverse beta decay) (Langanke andMartinez-Pinedo, 2003).
The fraction of protons is thus locked at ≈ 0.3. Below nuclear matter densities nucleons
still cluster into nuclei and, as we shall see, other shapes. Thematter is in nuclear statistical
equilibrium (NSE) – equilibrium with respect to the strong nuclear force. Subsequently
the matter cools mainly through the loss of neutrinos and the proton fraction falls as in-
verse beta decay becomes possible again. A cold neutron star has temperatures below
109 K ≡ 0.1 MeV and a core proton fraction of around 0.1. Since this temperature is small
compared to the nuclear energy scale, it can be considered as effectively at zero temperature.
Much theoretical effort has been expended examining thenature of bulkmatter at nuclear

densities and above so as to supply more realistic physical inputs to the modelling of core
collapse SNe and to understand the properties of neutron stars. These inputs usually come
in the form of an equation of state (EoS) which describes the pressure of the matter as a
function of density and temperature P = P(ρ, T ) and from which the mechanical and
thermodynamical properties of the matter can be derived. These studies can be broadly
divided into two groups: those that include exotic components in the matter (where we
define exotic as non-nucleonic), and those that do not.
The dominant theoretical input to those studies without exotic components is the nuc-

leon-nucleon interaction in a many-body context. The nuclear interaction cannot be ob-
tained from QCD exactly, and models obtained indirectly from QCD have limited applic-
ability. All widely used nuclear models are phenomenological, fit to data from nucleon-
nucleon scattering and nuclei (systems of up to 300 nucleons and proton fractions around
0.5) (Machleidt, 2001). Their extrapolation to the regime of an (effectively) infinite number
of nucleons and a much smaller proton fraction, where no laboratory data exists, is very
model dependent and uncertain. Heavy ion collisions are the closest we can come to creat-
ing systems of many nucleons at the densities and temperatures of NSs and SNe, and may
shed some light on their properties.
A range of exotic components have been postulated to come into existence in stellar

nuclear matter. They include hyperons (nucleons with strange quarks in them), meson
condensates and, at the highest densities, quarkmatter (Glendenning, 2000). Manymodels
of stellar nuclear matter include one or more of them. However, our knowledge of the way
these particles interactwith nucleons andwith themselves is far smaller than our knowledge
of the nucleon-nucleon interaction alone. Laboratory data is scant or non-existent: some of
these effects are based heavily on theoretical speculation.
The hope is that detailed observations of neutron stars and supernovae might constrain

our models of nuclear matter at zero and non-zero temperatures and help us understand
better both the nature of the nucleon-nucleon interaction in this unfamiliar environment
and, through this and the more exotic phenomena postulated, the fundamental theory of
the strong interaction.
As a result of the theoretical uncertainties outlined above, we do not have a good idea of

the density at which various exotic components appear in the star and of what their effects
will be. Thus in the central parts of stellar core collapse and neutron stars it is very difficult
to separate the effects on potential observables of exotic and non-exotic components.
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At densities just below nuclear saturation (0.1–1ρs), there exists an inhomogeneous
phase (or phases) of matter in which some bulk matter – nuclei or nuclear clusters of
various shapes – coexists with a gas of nucleons. The nuclear shapes present have been
termed “pasta.” The theoretical uncertainties in this regime are limited solely to those in
non-exotic physics such as the nucleon-nucleon interaction. The study of matter in this
density regime, and astrophysical observations of phenomena influenced by it, could help
us constrain the our models of the nucleon physics alone, which in turn would allow us
to better disentangle the uncertainties in the physics of matter above nuclear saturation
density if the same description of nuclearmatter is used there.
We will refer to matter in the density regime 0.1–1ρs as “subnuclear matter.” Whereas

uniform nuclear matter is expected to be fluid like, subnuclear matter may exist in a variety
of phases ranging fromsolid to liquid crystal. Itsmechanical and thermodynamic properties
are expected to be quite different to the uniform phase and probably vary quite substantially
with density and temperature within the subnuclear phase.
In this paper we review our current understanding of subnuclear matter and its observa-

tional implications, and give some preliminary results from our efforts to simulate it.

2 SUBNUCLEARMATTERANDNUCLEARPASTA

Let us place our studies in physical context by examining the anatomy of a neutron star.
For the following description we will not mention the pasta phase; we will later explain
where it fits in.
We are dealing with a system of ≈ 1057 baryons (equivalent to one solar mass). At

zero temperature and pressure, the equilibrium (ground state) configuration of a system of
about 90 baryons is 56

26Fe. Its energy cannot be lowered by changing its composition through
the strong, weak or electromagnetic interactions. For 1057 baryons at zero temperature and
pressure, and ignoring gravity, the ground state is a large integer number of iron nuclei
arranged in a lattice so as to minimise the configurational energy. The electrons are in a
ferromagnetic state.
Adding gravity, the system will be arranged in a spherically symmetric configuration so

as to minimise the gravitational energy. The outer surface will be at zero density, and the
density will increase to a central density. The iron lattice will form the outermost layer; let
us nowmove inwards towards the centre.
At a density of ρ ∼ 107 g cm−3 the electrons will become relativistically degenerate and

their Fermi energy (∼ 1 MeV) allows inverse beta decay to occur: electrons at the Fermi
surface combine with protons to produce a neutron and anti-neutrino (which escapes),
lowering the energy:

n → p + e− + ν̄e . (1)

The reverse process is inhibited because the electrons fill the Fermi sea, leaving no place
for an extra electron to go. Thus as one moves inwards, and the density increases, the
equilibrium nuclei move step by step away from iron nuclei and towards more neutron
rich nuclei. In addition, the reduction in the proportion of protons in the nuclei decreases
internal Coulomb repulsion and allows larger nuclei to form.
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At a density of ρ ∼ 4 × 1011 g cm−3 the ratio of neutrons to protons in the nuclei reaches
a critical level: the nuclei have become so large that the nuclear force only weakly binds the
outermost neutrons, and neutron drip occurs. Neutrons leak out of the nuclei and a two
phase system develops in which nuclei and free neutrons co-exist and together form the
ground state of matter at this density.
At densities of ρ ∼ 4 × 1012 g cm−3 the number of free neutrons has grown so large

that their pressure exceeds that of the free electrons, and the neutron fluid now controls the
properties of this system.
At a density ofρ ∼ 2.5×1014 g cm−3 (nuclear saturationdensity), nuclei are so close that

they touch one another. Beyond this density, the nuclei merge into a fluid of neutrons and
protons. This fluid is in beta equilibrium with the electrons. When the electron chemical
potential exceeds the muon rest mass, it becomes energetically favourable for neutrons to
decay into protons plusmuons (a new decay channel has opened up), and somuons exist in
beta equilibrium too.
Thedensity regionbelowneutrondrippoint is termed theouter crust. Aboveneutrondrip

point but below the point atwhich the nucleons forma homogeneous fluid is the inner crust.
Above this point is the core. The inner and outer crusts combined form the outer " 1 km
of the star, but their rigidity compared with the fluid core means they are expected to play a
large part in the neutron star dynamics.

2.1 Complexity, frustration and the appearance of pasta

Matter on Earth is made of atoms: the short range, attractive nuclear interaction binds
nucleons into a nucleus on a scale of a few fm, and nuclei are separated of by distances of
the order 1000 fm. In subnuclear matter, the separation of nuclei and hence their coulomb
repulsion has become comparable to the scale over which the attractive nuclear interaction
operates. Matter is frustrated: it is impossible to minimize the energy of the system with
respect to all microscopic interactions simultaneously, and the result is a very large number
of low energy states into which the matter can arrange itself (Horowitz and Perez-Garcia,
2004). In this case, the competition between coulomb repulsion and the nuclear surface
tension results in a large number of possible nuclear configurations very different from
“ordinary” spherical nuclei. These shapes are termed nuclear pasta. The subnuclear system
shares many similarities with more familiar, complex fluids such as solutions of polymers.
See (Watanabe and Sonoda, 2005) for amore detailed exploration of this.
Finally it is important to note the major difference between the pasta phase in neutron

stars (zero temperature, proton fraction ∼0.1) and supernovae (finite temperature, proton
fraction ∼ 0.3): in neutron stars the pasta phase coexists with a significant density of
external neutron gas. This gas is mostly absent or very low in density in the pasta phase in
supernovae (Watanabe and Sonoda, 2005).

2.2 Pasta studies with nuclear degrees of freedom

The nuclear pasta regime was first studied using the semi-classical liquid drop model, in
which the degrees of freedom are nuclear rather than nucleonic, and within the Wigner–
Seitz approximation which places restrictions on the nuclear shapes describable by assum-
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ing that a unit cell of the regular pasta structure can be replaced by a spherical cell of the
same volume. In the liquid dropmodel the matter is broken down into elements such as the
bulk (the matter inside and outside of the pasta), the surface, and so on. Their properties
are supplied by fitting results of microphysical calculations of infinite nuclear matter to a
semi-empirical mass formula and, depending on the model used, they can vary quite widely.
This affects predictions of, for example, the density of transition to uniform matter, and
most of the studies cited below can accommodate a range of such values.
Ravenhall et al. (1983) first established the basic shapes that one might expect to find in

subnuclear matter, and named them after types of pasta, giving birth to the nomenclature
that has been retained up to the present day. They found that within their formalism,
nucleons arrange themselves into the following shapes: with increasing density, spheres,
cylinders (spaghetti), slabs (lasagna), cylindrical holes (tubes, or penne), spherical holes
(breaking the pasta theme, bubbles or Swiss cheese) and finally uniformmatter.
The nuclear and subnuclear equation of state of supernova matter has been most extens-

ively studied using the liquid drop formalism; indeed, the most widely used EoS used today
in supernova simulations is the Lattimer and Swesty (LS) EoS (Lattimer et al., 1985; Lat-
timer and Swesty, 1991). The advantage of such a formalism is the speed with which one
can obtain the pressure at any given density and temperature during the simulation rather
than interpolate between points on an EoS table.
The effect of thermal fluctuations on the pasta shapes inNSs andSNehas been studied in

the liquid drop framework, and it has been found that even at temperatures in neutron star
crusts the long range order of the shapes may be destroyed. For example, one study finds
that individual lasagna shapes extend only for ≈ 100–1000 fm before becoming disrupted
(Watanabe et al., 2000a,b).
It is mostly assumed that the pasta forms a rigid lattice (e.g., bcc1 for spherical nuclei),

but Pethick and Potekhin (1998) have pointed out that along the extension of the shapes,
there exists translational invariance and thus it behaves more like a fluid in that direction,
whilst remaining in a lattice structure transverse to the extension. The pasta shapes seem
likely, therefore, to exist somewhere between a solid phase and liquid phase, much like a
liquid crystal, and their mechanical and thermal properties will probably vary significantly
from one shape region to another. This has not been the subject of much consideration.

2.3 Pasta studies with nucleonic degrees of freedom

2.3.1 Quantummolecular dynamics

Studies using the liquid drop model neglect the microscopic degrees of freedom. However,
the microscopic scale (nucleons) is not far separated from the semi-macroscopic scale
(pasta), and microscopic degrees of freedom could play an important role and should be
taken into consideration.
The technique of quantum molecular dynamics (QMD) and similar (Maruyama et al.,

1998) are semi-classicalmicroscopic approaches that leads to an improved treatment of the

1 Abbreviation “bcc” stands for the lattice type “body centred cubic.”
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pasta regime. Each nucleon, represented by a Gaussianwavefunction, is evolved according
to Newtonian equations of motion

Ṙi = ∂H
∂ P i

, Ṗ i = − ∂H
∂Ri

(2)

and a stochastic two-body term. Here H is the two body Hamiltonian which describes the
nuclear force, and includes a term tomimic the Pauli exclusion principle, and R i and P i are
the position andmomentum of the i th particle.
Pasta has been studied using this method by placing A nucleons in a large cubic box,

volume V (with A and V adjusted to give the appropriate baryon number density), with
periodic boundary conditions. No assumption on the nuclear shape had to bemade, and the
box can bemade large enough to include the effects of electron screening.
The pasta’s dynamical response to a neutrino flux has been calculated in this framework

(Horowitz and Perez-Garcia, 2004; Horowitz et al., 2004), and significant strength at low
energies from excitations of the internal degrees of freedom of the pasta has been found.
This may be an important effect in the treatment of neutrino interactions with matter in SN
simulations, especially concerning shock revival.
The pasta shapes themselves and their sequence have also been studied in detail using

QMD at zero and finite temperature (Watanabe et al., 2002, 2004). It is found that more
complicated shapes intermediate between the canonical pasta shapesmay exist, and display
rubberlike or spongelike mechanical qualities. It was also shown that pasta can be formed
on a timescale much smaller than NS cooling by cooling a uniform nucleon distribution,
and that it can also form by compression of a bcc lattice of spherical nuclei on a timescale
much smaller than that of core collapse.

2.3.2 Hartree–Fock

Although QMD does describe matter in terms of the nucleonic degrees of freedom, it does
not contain some important quantum effects that are seen in nuclear systems such as
the discrete shell like distribution of the single particle energies of nucleons confined to a
nucleus. The simplestway of incorporating these effects into the study of subnuclearmatter
is through the Hartree–Fock (HF) method, in which the problem of solving the A body
Schrödinger equationwith a two-body nuclear potential is reduced to solving A coupled one
body Schrödinger equations with a common one-body mean field.
The subnuclear phasewasfirst studied in theHFapproximationbyBonche andVautherin

(1981), who in one dimension, in the Wigner–Seitz approximation, used it to calculate the
EoS of SN matter below saturation density. They were able to observe the nuclei and
external neutron gas emerge self-consistently.
Recently, NS matter was studied in the HF approximation in a cubic box, free of the

Wigner–Seitz approximation (Magierski and Heenen, 2002). The basic pasta shapes coex-
isting with the external neutron gas emerged naturally, and in addition other exotic shapes
were observed. An additional, important effect was uncovered to do with the scattering
of the free neutrons comprising the external neutron gas off the nuclear clusters. The ef-
fect is two-fold: the energy distribution of the free neutrons is discretized like those of the
bound nucleons, forming a shell structure; and the scattering causes an effective interaction
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between nuclear clusters analogous to the Casimir effect in quantum field theory. It has
thus been dubbed the Fermionic Casimir effect (Magierski et al., 2002). The energy of this
interaction is comparable to the energy difference between the different shape phases. As a
result, the order in which the shape changes occur may be different to the simple sequence
initially thought, and several shapesmay coexist at the same density in different areas of the
star. The effects this coexistence might have on crustal dynamics have yet to be explored.
Dynamical response of pasta has been studied using a modified HF method in one di-

mension in theWigner–Seitz approximation (Khan et al., 2005). It is found that low energy
supergiant resonances occur across twoWigner–Seitz cellswhichwould affect significantly
the thermodynamics of the inner crust of NSs and the interactions of neutrinos with SN
matter.

2.4 Superfluidity

At a critical temperature of ≈ 109–1010 K neutrons and protons in the core and neutrons
in the external gas in the NS inner crust are expected to pair up and form a superfluid.
Superfluids have zero viscosity, and as a result cannot support bulk rotation. In order to
retain its angular momentum, the neutron superfluid has to arrange itself into quantized
vortices aligned with the rotation axis, with a cross-sectional density of ≈ 104/P cm−2

where P is the rotational period of the star in seconds. Various stages of the neutron
star’s life see it spinning down or up (see next section), resulting in the vortices moving
outwards or inwards from the centre of the star. Such behaviour in spinning superfluids
has been observed in the laboratory (see, for example, the work on sodium gas cooled to a
Bose–Einstein condensate in Abo-Shaeer et al., 2001). However, the critical temperature
andpropertiesof thevarious superfluids inneutronstarsare still to bedeterminedaccurately
because of the uncertainties in extrapolating the nucleon pairing interaction to the regime of
extremely neutron rich, bulk matter (see Dean and Hjorth-Jensen, 2003 for a review). The
effect of pairing on nuclear pasta, and the effect of pasta on vortices, is still to be explored.

3 OBSERVATIONAL IMPLICATIONS

We now briefly review some phenomena associated with NSs and SNe that have been
observed ormay potentially be observed and could act as probes of the pasta regime.

3.1 Supernova simulations

Properties of core collapse supernovae and their mechanism may be deduced from their
observational characteristics: light curves and spectra from the explosion and its remnant
provide information about its energetics and the distribution of elements created. The
events of the core of the explosion, however, are not accessible optically, although they may
be probed through neutrino and gravitational wave observations.
Todeduce themechanismsandproperties ofmatter in the core collapse, onemust develop

theoretical models to be confronted by the observations. The most realistic supernova
simulations so far, however, suffer from the following drawback: the shockwave that is
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created when the core bounces stalls before it can eject the outer envelope – in other words,
there is no explosion (Janka et al., 2001). However, these models do not include a realistic
treatment of the interaction of neutrinos with the nuclei and pasta phase of the subnuclear
medium. It is generally accepted that the shock will be revived by such interactions, so
it is essential to examine them carefully. For example, the large number of low energy
configurations that are be available in the pasta regime may allow significant transfer of
energy from the neutrinos to the nuclear medium (Horowitz et al., 2004), and yet are only
just starting to be studied in detail.

3.2 Young neutron stars: cooling

A newly born neutron star cools very quickly through neutrino emission, while the crust
stays hot a lot longer, cooling on its thermal conduction timescale mainly through heat
flow into the core which can thought of in terms of a cooling wave flowing from the centre
of the star, during which time the effective temperature stays constant at ≈ 2 × 109 K.
As the cooling wave reaches the edge of the star, the effective temperature drops sharply.
The magnitude of the drop and duration of this thermal relaxation process depends mainly
on the thermal conductivity and heat capacity of the inner crust (Gnedin et al., 2001).
Observations of young neutron stars ("100 yrs) during the period of the emergence of the
cooling wave would thus constrain the properties of the inner crust, including the nature of
the superfluidity and its critical temperature there. There have not been any studies of this
epoch that take into account the effects of pasta.
Thermal emission has been detected from several young (≈ 104 yrs), isolated neutron

stars and may help constrain neutrino and thermal cooling models (Page et al., 2004).
There are suggestions also that the properties of pasta can allow the more efficient direct
Urca process for neutrino coolingwhere spherical nuclei may suppress it.

3.3 Adolescent neutron stars: spin down and glitches

Neutron stars enter a phase of spin down after their birth due to torque exerted by their
magnetic fields. The spin down rate canmeasured very accurately by observing their pulsed
radio emission. Most radio pulsars exhibit the glitch phenomenon in which it is observed
the star’s spin frequency increases suddenly before relaxing back to its prior spin down rate.
In recent years it has become apparent that glitches vary greatly in their magnitude and the
nature and timescale of the relaxation (Horvath, 2004, and references therein).
There have been two major models put forward to explain the glitch phenomenon. The

first is the starquake theory, in which the solid crust of the neutron star develops stresses
as the spin down decreases centrifugal support from the core. When the stresses reach a
certain magnitude, the crust cracks and rearranges itself into a configuration with smaller
moment of inertia, increasing the rotational frequency. The viability of this mechanism
depends on the amount of elastic energy that can be stored in the crust, and this will be
influenced by the mechanical properties of subnuclear matter. A second model involves the
interaction of the superfluid vortices with nuclei in the inner crust: it has been suggested
that in certain circumstance it is energetically favourable for vortices to pin to the nuclei,
impeding their movement radially outwards as the star spins down. Thus there develops a
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rotational velocity difference between the lattice of nuclei and the neutron superfluid. Then
there is either a catastrophic unpinning of vortices and sudden motion of them outwards
when the rotational velocity difference reaches a critical value (mechanical models) or the
vortices unpin when a large input of thermal energy into the inner crust occurs from, for
example, a starquake (thermal models) (Horvath, 2004; Larson and Link, 2002; Crawford
and Demiański, 2003). Others suggest pinning does not occur at all, and that we should
look elsewhere to explain glitches (Jones, 1998). One thing is for certain: the nature of
pinning, and indeed whether or not it occurs at all, depends critically on the properties of
the nuclei and pasta in the inner crust and their interaction with superfluid neutrons and
vortices.

3.4 Mature neutron stars: accretion powered spin up and X-ray emission

Later on in its life a neutron star with a binary companion enters a phase of its life during
which it accretes material off its companion, gaining angular momentum and spinning
up, eventually to periods of order milliseconds. The accreted material reaches the surface
of the neutron star and, when its density and temperature are great enough, undergoes
thermonuclear burning. The observational properties of such binaries aremany and varied
(Campana et al., 1998; Wijnands, 2005).
If accretion occurs at near to super Eddington rates, burning can occur stably on the

surface and no material is ejected. The weight of the accreted material compresses the
crust, forcing the bottom layers into the core. If accretion continues for long enough in
a stable way, the whole crust can be forced into the core, dissolving into uniform nuclear
matter, replaced by the accreted matter. Whereas the original crust was composed of
material processed through to nuclear statistical equilibrium, the new crust will not be. The
properties of the pasta in the new crustmay have changed quite considerably.
Energy generated by nuclear burning at the surface can diffuse inwards, heating the

interior. If one assumes the inner crust is completely crystalline in its nature, with a well
defined sequence of nuclei with increasing density that may not be monotonic with respect
to the nucleon number A, one can apply the Lindemann melting criterion to determine
at what temperature the lattice will melt at various densities (Haensel and Zdunik, 2003;
Brown, 2000). One finds that it melts in layers: liquid sandwiched between solid. This
obviously has an impact on the mechanical properties of the crust. The effect of heating on
the non-crystalline phases of pasta has not been studied to our knowledge.
During the quiescent phase of soft X-ray transients (SXRTs), neutron stars that accrete

off a lowmass companion, X-ray radiation is observed that is greater than onewould expect
from an old, cooling neutron star. It has been suggested by Haensel and Zdunik (2003)
that this radiation comes from the crust, heated during the last accretion episode. These
observations could help us constrain the thermal conductivity of the crust.

3.5 Neutron star oscillations andmergers: gravitational waves

With a network of gravitational wave observatories across the world reaching operational
sensitivities, we are about to embark on a new era of observational astronomy using gravita-
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tional waves to probe events that would otherwise be inaccessible to us. Some observations
should allow us to constrain our theories of nuclearmatter.
Gravitational wave asteroseismology – the examination of gravitational waves from os-

cillation modes in young and old neutron stars – should prove a fruitful method of con-
straining the EoS of nuclear matter (Andersson and Kokkotas, 2004; Ferrari et al., 2003;
Benhar et al., 1999). Such oscillations should be sensitive to the mechanical properties of
subnuclearmatter in the inner crust.
The final moments of the inspiral of a binary neutron star system offer a potentially

powerful source of gravitational waves, the observation of which would allow a determin-
ation of the binary parameters and other parameters such as the innermost stable circular
orbit (ISCO) which are particularly sensitive to the properties of the crustal EoS (Bejger
et al., 2005).

3.6 Multifragmentation reactions

Finally we mention the possibility of studying nuclear matter at subnuclear densities in
labs here on Earth. The multifragmentation stage of heavy ion collisions produces, at high
densities and temperatures, similar structures to those predicted for nuclear pasta, albeit
briefly and at a higher proton fraction (Botvina andMishustin, 2005), and may allow some
constraints to be imposed on properties of the pasta phases.

4 ANEWSTUDYOF SUBNUCLEARMATTER

We have presented a basic review of the present state of inner crust theory. We believe
there is sufficient motivation for a further study of the pasta phases, one focused on an in
depth examination of microphysical effects (involving the nucleon degrees of freedom and
quantum effects) and their implications for thermal and mechanical properties and for the
EoS. Magierski and Heenen (2002) demonstrated the existence of the Fermionic Casimir
effect using the Hartree–Fock (HF) method, but their study was limited to very few dens-
ities and only considered neutron star matter at zero temperature. We would like to use
the same HF method in three dimensions, extending it to a full survey of the neutron star
inner crust and subnuclear matter in supernovae, and examining the sequence of phases
we find, their energies, their responses to neutrinos and to mechanical perturbations and
their thermal properties. We would also like to calculate the EoS of subnuclear matter. We
have previously calculated the EoS of uniform nuclear matter in the HF approximation, so
we will be able to join the two together self-consistently. This would be advantageous for
applications to hydrodynamical simulations of SNe and NSs, as there would be no discon-
tinuities arising from artificial joins in the EoS. It is also desirable to have as self-consistent
an EoS as possible from the point of view of constraining our nuclear models using ob-
servations. Finally we note that, while the HF method more suited than, say, QMD, to
include quantum microphysical effects, it lacks the ability that QMD simulations have to
study long range effects such as thermal fluctuations and lattice vibrations, since to extend
our simulation volume to sufficient sizes is computationally unfeasible. Thus our method
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should be viewed as complementary to QMD until computer technology catches up with
our theoretical ambitions!
The Hartree–Fock method is used in conjunction with phenomenological effective two-

nucleonpotentials suchas theSkyrme force (whichweusehere) and is extensivelydescribed
in nuclear physics literature (see, e.g., Bender et al., 2003). We briefly review the method in
Appendix A.
We consider density, temperature and proton fraction yp as parameters of the matter in

bulk, and are interested in the following ranges:

• 0.001 fm−3 < nb < 0.16 fm−3

• 0 MeV < T < 10 MeV
• 0 < yp < 0.5

We make the following assumption about the matter we are attempting to describe: at
a given temperature and density the matter is arranged in a periodic structure through a
sufficiently large region for a unit cell to be identified. Given this, wemay calculate only one
unit cell and obtain from this both the bulk and microscopic properties of the matter self
consistently, and directly see how the one affects the other.
Each unit cell will contain a certain number of neutrons N and protons Z , making a

total baryon number of A = N + Z . In the lower density limit (nb " 0.0001 fm−3), these
particles will be arranged in what we would recognize as a roughly spherical (but large)
nucleus at the centre of the cell. As the density is increased, however, the shape will deform,
neutrons and protons will become unbound, and the distinction between the nucleus and
the unbound neutrons and protonswill be lost, andwewill be forced to think of the contents
of the cell as a single entity, the nuclear configuration.
Finally, we note that we have freedom to increase the cell volume V and number of

nucleons A and still describe the same density. In our first approach to this study, we would
like to determine a single representative cell size. This is done by calculating configurations
at constant density, temperature and proton fraction, varying cell size, and selecting the
configuration that gives the minimum free energy.

4.1 Preliminary results

Weare still at the testing stages of our simulations, butwe present somepreliminary results.
In the four figures that we show we have integrated the proton and neutron densities in the
cell over the z direction for display purposes.
Figures 1 and 2 show the proton and neutron distributions from a sequence of config-

urations obtained at eight densities, from 0.0195 fm−3 to 0.0976 fm−3 (nuclear saturation
density being 0.16 fm−3) and at zero temperature and a proton fraction of yp = 0.03. Note,
we have not minimized with respect to cell volume at each density: we have used the same
volume throughout. One can see the development of the central nucleus and neutron gas;
notice that any distinction between the two is quite arbitrary. One can also see that at the
highest density we have essentially uniformmatter, illustrating the ability of our simulation
to bridge the interface between subnuclear and nuclearmatter self-consistently.
Figures 3 and 4 show the proton and neutron distributions from a sequence of configur-

ations obtained at four temperatures, from 0 MeV to 9 MeV, and at a density of 0.06 fm−3
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and a proton fraction of yp = 0.1. Here we see nuclear configurations quite different to a
single nucleus in a cell: at 0 and 2 MeV we see configurations that might be classified as

Figure 1. Sequence of proton densities integrated over the z direction at increasing densities. The
densities are, from left to right, top to bottom, 0.0195, 0.0312, 0.0390, 0.0507, 0.0585, 0.0702, 0.0780
and 0.0976 fm−3. The scale along the vertical axis is fm2.

Figure 2. Sequence of neutron densities integrated over the z direction at increasing densities. The
densities are, from left to right, top to bottom, 0.0195, 0.0312, 0.0390, 0.0507, 0.0585, 0.0702, 0.0780
and 0.0976 fm−3. The scale along the vertical axis is fm2.
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Figure 3. Sequence of proton densities integ-
rated over the z direction at increasing temper-
atures. The temperatures are, from left to right,
top to bottom, 0, 1, 2 and 9 MeV. The scale along
the vertical axis is fm2.

Figure 4. Sequence of neutron densities integ-
rated over the z direction at increasing densities.
The densities are, from left to right, top to bot-
tom, 0, 1, 2 and 9 MeV. The scale along the
vertical axis is fm2.

cylindrical in the pasta scheme; at 1 MeV we have a configuration that does not appear in
the pasta scheme at all. As we push the temperature to 9 MeV (≈ 1011 K) we again see
dissolution to uniformmatter.
We conclude by emphasizing again that these results are preliminary. They have been

calculated at arbitrary cell sizes and there are still tests to be done. However, we hope they
demonstrate our ability to self-consistently produce a range of nuclear shapes with no prior
assumptions on the nuclear geometry except tri-axiality, and that we can smoothly model
the transition to uniformmatter.

APPENDIXA: SKYRME–HARTREE–FOCKTHEORY

Weuse the Skyrme interaction, which is a two body interaction between particles i and j ,

Vi j,Skyrme = t0(1 + x0 Pσ )δ(r i − r j )

+ 1
2 t1(1 + x1 Pσ )

[
p2

12δ(r i − r j ) + δ(r i − r j ) p2
12

]

+ t2(1 + x2 Pσ ) p12 · δ(r i − r j ) p12

+ 1
6 t3(1 + x3 Pσ )ρα(r̄)δ(r i − r j )

+ it4 p12 · δ(r i − r j )(σ i + σ j ) × p12 , (A1)

where ρ is the baryon number density, p12 = pi − pj is the relative momentum, Pσ is the
spin exchange operator, σ is the vector of Pauli spin matrices and r̄ = (r i + r j )/2. t0, t1,
t2, t3, t4, x0, x1, x2, x3 and α are parameters which are adjusted so that the results of many
body calculations using this potential match experimental properties of nuclei.
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Using this potentialwehave to solve themany-bodySchrödinger equation for A nucleons

ĤΨ =
⎛

⎝
A∑

i=1

h̄2 p2
i

2m
+

A∑

i< j

Vi j,Skyrme

⎞

⎠Ψ = EΨ . (A2)

What is the form of the many body wavefunction Ψ ? Well, many body fermion wavefunc-
tions must be constructed from Slater determinantsΦ, which are antisymmetric products
of the single particle wavefunctionsψ :

Φk1,...,kA (r1, ..., r A) = 1√
A!

∣∣∣∣∣∣∣

φk1(r1) . . . φk1 (r A)
...

...

φkA (r1) . . . φkA (r A)

∣∣∣∣∣∣∣
. (A3)

φk(r i ) is the single particle wavefunction of the i th nucleon in momentum state k. The
momentum states k1, . . . , kA are taken from the infinity of available states.
In general, the solution to equation (A2) is a linear combination of all possible Slater

determinants:

Ψ (r1, . . . , r A) =
∑

k1,...,kA

ck1,...,kAΦk1,...,kA (r1, . . . , r A) , (A4)

where the sum is over all possible combinations of A momentum states selected from
the infinite number available. Then the probability of finding the nucleons in a certain
combination of states if given by the corresponding coefficient c.
As one might guess at this point, finding such a solution is an intractable problem, and

wemustmake an approximation, which is exactly what we do.

A1 The Hartree–Fock approximation

The Hartree–Fock approximation states that the ground state wavefunction for a nuclear
configuration is given by a single Slater determinant, and not a linear combination of all
possible ones. In other words, there is a definite set of states k1, . . . , kA that are occupied by
individual nucleons with an occupation probability of 1.
How do we find this wavefunction? Well, we use the variational principle which states

that the best approximation to the ground state for the Hamiltonian Ĥ is obtained for that
wave functionΦ whose energy expectation value is minimal. Mathematically, we write

δE[Φ] = δ⟨Φ|Ĥ |Φ⟩ = 0 . (A5)

Carrying out this variational procedure with respect to the single particle wavefunctions of
a single Slater determinant, the two body Skyrme potential becomes a one body density-
dependent potential and the A-body Schrödinger equation for the A-body wavefunction
becomes A single body Schrödinger equations for the single particle wavefunctions:

hHFφi,q =
[
−∇ h̄2

2m∗
q
∇ + uq(r) + wq(r)

(∇ × σ )

i

]
φi,q = ϵi,qφi,q . (A6)
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Here, q = p, n labels the isospin states, i the single particle states, wq is the spin-orbit
potential (which we currently set to zero), uq is the single particle potential, and m∗

q is the
effective mass.
Physically, inmaking this approximationwearemaking theassumption that thenucleons

in a nucleus or a nuclear configuration move independently of each other in an average
potential created by all the other nucleons.
The one body potentials derived from the Skyrme interaction are given by

uq = t0
(

1 + 1
2 x0

)
ρ − t0

(
1
2 + x0

)
ρq

+ 1
12

t3ρα
[
(2 + α)

(
1 + 1

2 x3

)
ρ − 2

(
1
2 + x3

)
ρq − α

(
1
2 + x3

) ρ2
p + ρ2

n

ρ

]

+ 1
4

[
t1
(

1 + 1
2 x1

)
+ t2

(
1 + 1

2 x2

)]
τ − 1

4

[
t1
(

1
2 + x1

)
− t2

(
1
2 + x2

)]
τq

− 1
8

[
3t1
(

1 + 1
2 x1

)
− t2

(
1 + 1

2 x2

)]
∇2ρ

+ 1
8

[
3t1
(

1
2 + x1

)
+ t2

(
1
2 + x2

)]
∇2ρq

− 1
2

t4
(
∇ · J + ∇ · Jq

)
+ UCoul (A7)

and the effective mass is

h̄2

2m∗
q

= h̄2

2mq
+ 1

4

[
t1
(

1 + 1
2 x1

)
+ t2

(
1 + 1

2 x2

)]
ρ

− 1
4

[
t1
(

1
2 + x1

)
− t2

(
1
2 + x2

)]
ρq (A8)

with the following densities and currents depending on the single particle wavefunctions φi

ρn,p(r) =
N,Z∑

i=1

niφ
∗
i (r)φi (r) , (A9)

jn,p(r) = i
2

N,Z∑

i=1

ni
[
∇φ∗

i (r)φi (r) − φ∗
i (r)∇φi (r)

]
, (A10)

τn,p(r) =
N,Z∑

i=1

ni∇φ∗
i (r) · ∇φi (r) , (A11)

∇ Jn,p(r) = −i
N,Z∑

i=1

ni∇φ∗
i (r) · ∇ × σφi (r) , (A12)

ni is the occupation probability of each state. It is 1 or 0 in a pure Hartree–Fock basis
at zero temperature. At finite temperature, the occupation probabilities are given by the
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Fermi–Dirac distribution:

ni,q = 1

e
ϵi,q −µq

kB T + 1
, (A13)

where µ is the chemical potential of the relevant species. The Hartree–Fock (binding)
energy E is given by

E =
∑

i

ϵi

+
∫

d3x
{
−αt3(ρp + ρn)

α
[(

1 + 1
2 x3

)
(ρp + ρn)

2 −
(

1
2 + x3

)
(ρ2

p + ρ2
n )
]}

.

(A14)

Thus we are presented with a series of A coupled non-linear differential equations to
solve. Note that the potentials in the Hamiltonian, which determine the single particle
wavefunctions, are themselves composed of the single particle wavefunctions. This type of
problem must be solved iteratively. Basically we want to start with an initial guess of the
wavefunctions of all the states that might conceivably contribute to the total ground state
wavefunction, form the potentials out of them, calculate ĥHFφi,q − ϵi,qφi,q = δφi,q , form
newwavefunctions φi,q,new = φi,q + δφi,q and repeat. In practice this iteration is unstable
andwe usemore sophisticated schemes based on it.
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ABSTRACT
We present a simple approximate analytical formulae describing relativistic shift
of a spectral line, produced by a small bright spot on a thin accretion disc around
a non-rotating black hole. For the redshift factor we employ similar approach as
Zhang, X.-H. and Bao, G. (1991), The rotation of accretion disks and the power
spectra of X-ray ‘flickering’,Astronomy and Astrophysics, 246, pp. 21–31, improved
in terms of Beloborodov, A. M. (2002), Gravitation Bending of Light Near Com-
pact Objects, Astrophys. J., 586, pp. L85–L88 approximation for light bending and
Pecháček, T., Dovčiak, M., Karas, V. and Matt, G. (2005b), The relativistic shift of
narrow spectral features from black-hole accretion discs, Astronomy and Astrophys-
ics, 441, pp. 855–861 account for aberration effects. Approximation is used also for
calculating light-travel time. Results are compared with an exact solution obtained
by numerical integration of null geodesics.

1 INTRODUCTION

TheX–ray spectroscopy of ActiveGalacticNuclei (AGN) and galactic black hole candidates
is a powerful method for experimental study of accretion onto black holes. In this paper we
discuss a simple toy-model of a bright spot orbiting a black hole. Our results can be used to
simplify calculations of line profiles from thin Keplerian discs.
Let us consider a monochromatic point source on a circular orbit around a black hole.

This source is assumed to be isotropically emitting photons of constant frequency νs in its
rest frame. We derive an approximate formula for time dependency of observed frequency
as seen by an observer with inclination i at infinity,

νo = νo(t, r, i) , (1)

where r is orbital radius of the spot and t is time measured by observer’s clock. It is useful
to decompose the problem into two parts and calculate the observed frequency and time
in terms of two independent functions of the source position. Position of the source is

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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described by its orbital radius r and azimuthal angle φ (measured from the nearest point
to the observer). Change of the frequency is described by the redshift factor, i.e., the ratio
νo/νs ≡ g(r,φ, i). The assumption of a circular orbit means that

r(t) = const, φ(t) = Ω t , (2)

whereΩ is the orbital frequency of the source. Time t describes a delay between arrivals of
a photon emitted from the nearest point (r , φ = 0) and another photon emitted from some
φ. Time can be generally written in the form

t (r,φ, i) = φ

Ω
+ δt (r,φ, i) , (3)

where δt is a time delay due to the geometrical and gravitational effects. Preliminary results
of this investigation have been published in Pecháček et al. (2005a).

2 APPROXIMATIONOFTHEREDSHIFTFACTOR

The redshift factor can be, within the approximation of geometrical optics, written in the
form,

g = uαo poα

uαs psα
, (4)

where uα and pα are four-velocities and four-momenta of the observer and source, respect-
ively. The gravitational field of a nonrotating black hole can be made dimensionless and
expressed in Schwarzschild’s coordinates,

ds2 = −
(

1 − 2
r

)
dt2 +

(
1 − 2

r

)−1
dr2 + r2 dθ2 + r2 sin2 θ dφ2 , (5)

where r is measured in units of M . Equation (4) can be in this metric written in the form

g =
√

1 − 2/r −Ω2r2 sin2 θ

1 −Ωλ
, (6)

whereΩ(r) is the orbital frequency of the source. Impact parameter λ ≡ L/E is connected
with the direction of emission by equation

λ =
n(φ)et

(t) + et
(φ)

n(φ)eφ(t) + eφ(φ)

, (7)

where eα(a) is an orthonormal tetrad of the source and n(a) ≡ p(a)/p(t) is a null directional
four-vector with respect to this tetrad.
Letψ be an anglemeasured in the orbital plane of light, so thatψ = 0 is for the observer.

A photon is emitted from the point (r,ψ) at some angleα with respect to the radial direction
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in static local frame. According to Beloborodov (2002), α can be approximately calculated
from the relation

1 − cosα = (1 − cosψ)

(
1 − 2

r

)
. (8)

For the φ-component of the directional four-vector we obtain

n(φ) = −
√

1 − cos2 α

1 − cos2 ψ
sin i sin φ , (9)

where cosψ = sin i cosφ. From Eqs (6), (7) and (9) and from an assumption of Keplerian
orbital frequencyΩ(r) = r−3/2 we obtain

g(r,φ, i) =
√

r(r − 3)

r + sin φ sin i
√

r − 2 + 4(1 + cosφ sin i)−1
. (10)

For further details, see Pecháček et al. (2005b).

3 APPROXIMATIONOFTIMEDELAY

Time of flight of photons is influenced by presence of the black hole, even if the light bending
is negligible. In Pecháček et al. (2005a) we use a similar approach as Shapiro (1964)
improved for stronger gravitational fields. In this paper we examine the following elliptic
integral for time of flight. From normalizations of photons four-momentum (pµ pµ = 0)
and from conservation laws it follows

dt = 2

(1 − u)u2
√

1 − (1 − u)u2b2
du , (11)

where u = 2/r and b = λ/2 is a dimensionless impact parameter. The integration of (11)
leads to an elliptic integral. We can rearrange the integrand in amore suitable form,

∫
1

(1 − u)u2
√

1 − (1 − u)u2b2
du = −

√
1 − (1 − u)u2b2

u

+ b2

2

∫
u

√
1 − (1 − u)u2b2

du

+
∫

1

(1 − u)u
√

1 − (1 − u)u2b2
du . (12)

The first term is equal to− cosα/u. Using the approximation (8) we obtain

−cosα
u

= −r
2

cosψ − (1 − cosψ) . (13)

Approximating the Equation (12) for light-travel time in a similar way as Beloborodov
(2002) did for the spatial shape of light rays, we can expand the remaining integrals in
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Figure 1. Dependence of g on time t for some combinations of values of source orbital radius r and
observer inclination i . Every point of the approximative curve corresponds to g(φ) and t (φ) calculated
from formulae (3), (10) and (15) for the same value of φ ∈ ⟨0, 2π⟩. The exact solution is obtained
in an analogous way by direct numerical integration of geodesic equation. The time is plotted as a
fraction of orbital period T = 2π/Ω .
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x ≡ (1 − cosα)/(1 − u) and collect terms with the same power of u. Each of these terms
is in itself a power series in x . In our approximation we use only the leading terms from the
described expansion.
For δt (r,φ, i)we can formulate the following simple algorithm:

• Introduce

cosψ1 = sin i, cosψ2 = sin i cosφ . (14)

• For j = 1, 2 calculate

Tj = −r cosψj − (1 − cosψj ) − 2 ln
(

1 + cosψj

2

)
. (15)

• The result is δt (r,φ, i) = T2 − T1.

4 CONCLUSION

In this paperwe use the same approximation for the g-factor as in Pecháček et al. (2005b,a).
This approximation is quite precise. The relative error of g as a functionofφ is only δg < 8%
at rms = 6. Accuracy of the approximation of extremal values of g is even higher and the
relative error for that is better than 0.1%. The approximation of time delay is different
from the formula used in Pecháček et al. (2005a). In contrast to that work, our present
approximation is applicable for all combinations of parameters r , i andφ.
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Light escape cones and raytracing in Kerr
geometry

Jan Schee, Zdeněk Stuchlík and Josef Juráň
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
The integrals of photon motion in the Kerr spacetimes are given in terms of the
emission angles related to emitters moving along the circular geodesic orbits. The
local frames of the circular geodesic emitters are given in relation to the locally
nonrotating frames and local directional angles of the escape cones are given in
terms of themotion constants of photons.

1 INTRODUCTION

Studies of the optical phenomena in the field of Schwarzschild and Kerr black holes are of
high importance in understanding of many astrophysical phenomena related to accretion
discs rotating around the holes in the Galactic binary systems or quasars and active galactic
nuclei (Bardeen, 1973; Novikov and Thorne, 1973).
A lot of work is devoted to the modelling of light curves and profiled spectral lines gen-

erated in the vicinity of black holes (Laor, 1991; Bao and Stuchlík, 1992; Stuchlík and Bao,
1992; Karas et al., 1992; Viergutz, 1993; Fabian et al., 1975). The recent results include
also the phenomena of polarization of the radiation (Horák, 2005; Horák andKaras, 2005).
The modelling of the light curves of sources on accretion discs around black holes can be
very important in understanding the quasiperiodic oscillations observed in microquasars
(Bursa et al., 2004; Bursa, 2005). The high frequency QPO’s enable us to predict the black
hole spin in the microquasars (Török et al., 2005; Török, 2005a) and in the centre of the
Galaxy (Török, 2005a,b), and they are relevant for the binary systems with neutron stars
(Abramowicz et al., 2005b,a).
In the investigations of the black-hole optical phenomena, two approaches of integration

of the Carter equations of photon motion can be used-namely, direct numerical integration
(Cunningham, 1975; Cunningham and Bardeen, 1972), and more sophisticated approach
based on the elliptic integrals (Rauch and Blandford, 1994; Kraniotis, 2004).
Here, we propose a modification of the elliptic integral approach by introducing the

photon directional angles as measured in the emitter’s frame into the elliptic integrals of
the photon geodetical motion. In Section 2, the frames of the geodesic circular observers
(emitters) GF are introduced by Lorentz transforming the locally nonrotating frames. In

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Section 3, the directional angles of photons in the GF are given in terms of the Carter con-
stants of motion and the escape photon cones are determined. In Section 4, the raytracing
of photons is discussed, and the integrals of motion are given in terms of the elliptic integ-
rals involving the photon directional angles. In Section 5, some concluding remarks are
presented and examples of the rays are shown.

2 THEFRAMEOFOBSERVERSONCIRCULARGEODESICS (GF)

AGF ismoving along a circular geodetical orbit in the equatorial planeofKerr geometry. We
shall construct its frame, i.e., tetrad of 1-forms, starting from the locally nonrotating frames
(LNRF), which are generally non-geodetical accelerated frames (Misner et al., 1973). The
LNRF rotate with the geometry in such a way that the directions −ϕ and ϕ are equivalent.
The tetrad of the LNRF 1-forms is given by the relations

ω(r) =
{

0,

√
Σ

∆
, 0, 0

}

, (1)

ω(θ) =
{

0, 0,
√
Σ, 0

}
, (2)

ω(t) =
{√

∆Σ

A
, 0, 0, 0

}

, (3)

ω(ϕ) =
{

−ΩLNRF

√
A
Σ

sin θ, 0, 0,

√
A
Σ

sin θ

}
, (4)

while the constants of motion E(energy) and φ(axial angular momentum) and the angular
velocityΩLNRF are given by

E =
√
∆Σ

A
, (5)

φ = 0 , (6)

ΩLNRF = ±2aMr
A

. (7)

where

∆ = r2 − 2Mr + a2 , (8)
Σ = r2 + a2 cos2 θ , (9)
A = (r2 + a2)2 − a2∆ sin2 θ . (10)

The tetrad of 1-forms corresponding to the GF is obtained by a special Lorentz trans-
formation of the LNRF tetrad. GF is moving with respect to the LNRF in ϕ direction with
velocity VGF± , where the± sign corresponds to the corotating and counterrotating circular
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geodesic, respectively. The relevant transformation matrix has the standard form

Λ(V ) =

⎛

⎜⎜⎝

γ 0 0 −γ V
0 1 0 0
0 0 1 0

−γ V 0 0 γ

⎞

⎟⎟⎠ , (11)

where

γ = 1√
1 − V 2

. (12)

Themagnitude of the velocity V is determined by the relation

V = U (ϕ)

U (t) = ω
(ϕ)
µ Uµ

ω
(t)
µ Uµ

, (13)

where Uµ is four-velocity of GF (observer) and ω(µ) is the tetrad of LNRF observer. Using
Eq. (13), one arrives to

VGF± = ω
(ϕ)
t + ω

(ϕ)
ϕ (Uϕ/U t )

ω
(t)
t

= A
Σ

√
∆

(ΩGF± −ΩLNRF) , (14)

whereΩLNRF is given by the relation (7) and

ΩGF± = ±
√

Mr
r2 ± a

√
Mr

. (15)

We obtain

VGF± = ± (r2 + a2)
√

Mr ∓ 2aMr√
∆ (r2 ± a

√
Mr )

. (16)

The special Lorentz transformation ω̃(µ) = ω(α)Λ
µ
α (V ) gives us the 1-form tetrad of GF

ω̃(r) =
{

0,

√
Σ

∆
, 0, 0

}

, (17)

ω̃(θ) =
{

0, 0,
√
Σ, 0

}
, (18)

ω̃
(t)
± =

{
r2 − 2Mr ± a

√
Mr

Z±
, 0, 0,∓ (r2 + a2)

√
Mr ∓ 2Mar

Z±

}

, (19)

ω̃
(ϕ)
± =

{

∓
√

Mr∆
Z±

, 0, 0,

√
∆ (r2 ± a

√
Mr )

Z±

}

. (20)

where the “±” distinguish between corotating and counterrotating observers, again, and

Z± = r
√

r2 − 3Mr ± 2a
√

Mr , (21)
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The constants of motion of GF, E , φ are given by the relations (Bardeen, 1973)

E± = r2 − 2Mr ± a
√

Mr
Z±

, (22)

φ± = ± (r2 + a2)
√

Mr ∓ 2Mar
Z±

, (23)

and its angular velocityΩGF± is given by Eq. (15).

3 LOCALESCAPECONESOFGF’S

Motion of a photon in the Kerr geometry is determined by the Carter equations (Carter,
1973), which read

Σkr = ±
√

R(r) , (24)
Σkθ = ±

√
W (θ) , (25)

Σkϕ = − PW

sin2 θ
+ a PR

∆
, (26)

Σkt = −a PW + (r2 + a2)PR

∆
, (27)

where

R(r) = P2
R −∆K , (28)

W (θ) = K −
(

PW

sin θ

)2
, (29)

PR(r) = E(r2 + a2) − aφ , (30)
PW (θ) = a E sin2 θ − φ . (31)

Usually, it is convenient to introduce a new constant Q = K − (φ − a E)2 which can be
expressed in the form Q = p2

θ + cos2 θ(φ2 csc2 θ − a2 E2). The aim of this section is to
construct light escape cones for GF. The geodetical motion of photons can conveniently be
given in terms of the constant of motion L = Q + φ2. Then we can define the two impact
parameters.
The impact parameter λ is defined by the relation

λ ≡ φ

E
= kϕ

−kt
= −ω

(µ)
ϕ k(µ)

ω
(µ)
t k(µ)

. (32)

The impact parameterL is determined byL ≡ L/E 2. For a givenλ one obtains an effective
potential of the radial motionL(r; λ, a). The functionL(r; λ, a) determining the effective
potential reads

L = L
E2 = L(r; λ, a) ≡ (aλ− 2r)2

∆
+ r(r + 2) . (33)
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Figure 1.The local escape cone. A schematic drawing ofα,β and γ definition. An observer at [r0; θ0]
in a given spacetime with parameter a is shooting a photon in the direction characterized by any
double of angles from the set {α0,β0, γ0}. (The third angle is related to the other two by the relation
(38).) Angles aremeasured locally. Angleα0 is subtended by tetrad vector er ; angleβ0 is measured in
the plane perpendicular to radial direction; angle γ0 is subtended by tetrad vector eϕ .

Using the effective potential, we can construct light escape coneswhich enable us to determ-
ine whether a photon can escape to infinity or fall below a black-hole horizon.
The constants ofmotion of a photon λ andL fully characterize a photon geodesic and are

fully determined by any double of angles from the set {α0,β0, γ0} defined by the relations
(see Fig. 1)

k(t) = −k(t) = 1 , (34)
k(r) = k(r) = cosα0 , (35)
k(θ) = k(θ) = sinα0 cosβ0 , (36)
k(ϕ) = k(ϕ) = sinα0 sin β0 = cos γ0 . (37)

For directional angle γ0 (see Fig. 1), there is

cos γ0 = k(ϕ)

k(t) = ω
(ϕ)
µ kµ

ω
(t)
µ kµ

. (38)

For the GF one obtains from (24),(26) and (38) the relation between the impact parameter
λ and the angle γ0, which reads

λ =

[
(a2 + r2)

√
Mr − 2aMr

]√
Mr +

(
r2 + a

√
Mr
)
∆ cos γ0

(
r2 − 2Mr + a

√
Mr
)√

∆+
√

Mr ∆ cos γ0

. (39)
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Figure 2.Plot ofLm3 andλ2 for γ0 ∈ ⟨0,π⟩;GF+ observer is at radius r0 = 5 and rotation parameter
of black-hole is a = 0.6. Intersections of both functions determine values of γmin and γmax.

By setting the angle γ0, we get impact parameter λ and also the behaviour ofL is given. To
find whether a photon can escape to infinity, we need to calculate minimum of L (denoted
Lm3). From equation ∂L/∂r = 0 one finds that the minimumLm3 is located at the radius

rm3 =
√

aλ− a2 for λ ≥ a , (40)

rm3 = 1 − k1

k2
+ k2

3
for λ < a , (41)

where

k1 = a2 + aλ− 3 , (42)

k2 =
[

27(1 − a2) + 3
√

3
√

27(1 − a2)2 + k3
1

]1/3
. (43)

For GF only rm3 given by (41) is relevant. Values of minima Lm3 at radius rm3, given by
relation (40), lie in the region forbidden for the radial motion. For λ and given r0, we have
behaviour of the minimum for the radial motion Lm3 and behaviour of the minimal value
of L which follows from the restriction on the latitudinal motion and is given by formulae
(Bičák and Stuchlík, 1976)

L = λ2 for |λ| ≥ 0 , (44)
L = 2aλ− a2 for |λ| ≤ 0 . (45)

The intersection of minimal value ofL andLm3 give us γmin and γmax(see Fig. 2). For every
value of γ0 ∈ ⟨γmin, γmax⟩we calculateαmax

0 from the relation

αmax
0 = arccos

[
sign(r0 − rm3)

k(r)

k(t)

]
, (46)
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Figure 3. Light escape cones for the GF on a circular orbit corotating with the Kerr spacetime (plot
(a)) and for the GF counterrotating in the Kerr spacetime (plot (b)). Both observers are at the radius
r0 = 5. Rotating parameter a = 0.2 in both cases. Angle β = 90◦ corresponds to a photon moving
in the equatorial plane in the direction of observer’s revolution. Angle β = 270◦ corresponds to a
photonmoving in the equatorial plane in the opposite direction of observer’s revolution.

where

k(r)

k(t) = r
√

(r2 − 3r + 2a
√

r )[(a2 − aλ+ r2)2 − (a2 − 2aλ+ L)∆]√
r2∆ [r2 + (a2 − λ)

√
r ]

. (47)

Angle β0 can be obtained from the relation

cos γ0 = sinαmax
0 sin β0 . (48)

For all γ0 ∈ ⟨γmin, γmax⟩, we obtain a set of doubles [αmax
0 ,β0]. This set separates angle

space into two regions. Parameters from the region “below” the border identify photons
that fall into the black-hole, while parameters from the region “above” the border identify
photons that escape to infinity. For a given β, it means that if α < αmax

0 , then photon with
[α,β] can escape to infinity, when α ≥ αmax

0 , then photon with [α,β] will asymptotically
wind on to the photon circular orbit or fall below black-hole horizon.

4 RAYTRACINGANDLIGHT ESCAPECONES

Let us consider a source of radiation on a circular orbit in the vicinity of a Kerr black-hole.
In order to calculate optical effect which influence the radiation radiated from the sourcewe
use raytracing algorithm. It means that we consider all photons radiated from that source
at some instant te and track them. But not all of the radiated photons will reach distant
observer. Some of the radiated photons will fall into the black-hole or will asymptotically
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wind onto the photon circular orbit. Only photons that escape to infinity are worth to track
in considering the observable optical phenomena. The light escape cones are very useful
tool to select only photons, that can escape to infinity and be possibly observed by a distant
observer.
With transformation u ≡ 1/r andµ ≡ cos θ , we rewrite the Carter equations (24)–(27)

into the form (Rauch andBlandford, 1994)

Σku = usgn
√

U , (49)
Σkµ = µsgn

√
M , (50)

Σkϕ = −a + λ

1 − µ2 + a
∆

(u−2 + a2 − aλ) , (51)

Σkt = −a[a(1 − µ2) − λ] + u−2 + a2

∆
(u−2 + a2 − aλ) , (52)

where

U = 1 + (a2 − q − λ2)u2 + 2[(a − λ)2 + q]u3 − a2qu4 , (53)
M = q + (a2 − q − λ2)µ2 − a2µ4 . (54)

Signs usgn = ±1 andµsgn = ±1 change when a relevant turning point is reached. Turning
points in u andµ are solutions ofU(u) = 0 and M(µ) = 0.
The Carter equations (49)–(52) can be rewritten into the following integral form (Rauch

andBlandford, 1994)

∫ µ(u)

µ0

dµ′
√

M(µ′)
= usgnµsgn

∫ u

u0

du′
√

U(u′)
, (55)

ϕ(u) = ϕ0 + µsgn

∫ µ(u)

µ0

λµ′2

1 − µ′2
dµ′

√
M(µ′2)

+ usgn

∫ u

u0

2(a − λ)u′ + λ

(u/u+ − 1)(u/u− − 1)

du′
√

U(u′)
,

(56)

t (u) = t0 + µsgn

∫ µ(u)

µ0

a2µ2 dµ′
√

M(µ′)
+ usgn

∫ u

u0

2a(a − λ)u3 + a2u2 + 1
u2(u/u−1)(u/u− − 1)

du′
√

U(u′)
.

(57)

Here the u coordinate is taken for a free parameter u ∈ ⟨0, u turn⟩. For a given u0, u, µ0 we
calculate value ofµ from Eq. (55). Suppose for themoment that a2 > 0, q2 ̸= 0(M− > 0);
then we canwrite

M(µ) = a2(µ2 − M+)(µ2 − M−) , (58)

where M− = µ2
− and M+ = µ2

+. Denoting the r.h.s. of Eq. (55) as

I ≡ µsgnusgn

∫ u

u0

du′
√

U(u′)
(59)
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and rearranging Eq. (55), one obtains
∫ µ+

µ

dµ′
√

M(µ′)
=
∫ µ+

µ0

dµ′
√

M(µ′)
− I . (60)

Substituting from Eq. (58) to Eq. (60), we arrive at the relation

µ+
∫ µ+

µ

dµ′

|a|
√

(µ′2 − M+)(µ′2 − M−)
= µ+

∫ µ+

µ0

dµ′

|a|
√

(µ′2 − M+)(µ′2 − M−)
− µ+ I .

(61)

Using the standard formulae (Abramowitz and Stegun, 1964; Rauch andBlandford, 1994)

a
∫ a

y

dt
√

(a2 − t2)(t2 − b2)
= F(φ|m1) = dn−1

( y
a

∣∣∣m1

)
, (62)

where we are using complementary parameter m1 = 1 − m and x = tanφ; sin φ =
(a2 − y2)/(a2 − b2), andm = (a2 − b2)/a2; we obtain the formula

x(µ+, I ) = F

(√
M+ − µ2

0

µ2
0 − M−

∣∣∣∣∣
M−
M+

)

− µ+|a|I . (63)

The value ofµ is determined from the Jacobi function dn by the relation

µ = µ+ dn
(

x(µ+, I )
∣∣∣∣

M−
M+

)
. (64)

For other cases, depending on values of M− and q, we proceed analogically. One finally
obtains a table of relations to calculateµ (see Rauch andBlandford, 1994).
Thephoton trajectory is uniquely determinedby the constants ofmotionλ andq ≡ Q/E 2

which for the GF± take the form

λ± = −
∓2aMu−1 + (a2 + u−2)

√
Mu−1 +

(
±u−2 + a

√
Mu−1

)√
∆ sin α sinβ

u−1(u−1 − 2M) +
√

Mu−1 (a +
√
∆ sin α sin β)

, (65)

q± =
u−2

[
u−1(u−1 − 3M) ± 2a

√
Mu−1

]
(u−2 + a2µ2) cos2 β sin2 α

[
u−1(u−1 − 2M) +

√
Mu−1 (a +

√
∆ sin α sin β)

]2 − a2µ2

+

[
(a2 − u−2)

√
Mu−1 ∓ 2aMu−1 +

(
±u−2 + a

√
Mu−1

)√
∆ sinα sin β

]2

√
1 − µ2

[
u−1(u−1 − 2M) +

√
Mu−1 (a +

√
∆ sinα sin β)

]2 , (66)

where α and β are determined by the light escape cone, as described in previous Section 3.
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Figure 4. Trajectories of photons emitted by GFs orbiting a Kerr black hole with a = 0.6 at radius
r0 = 10. The directional angles of photons are (from left to right; doubles [α0

max,β0]): [100◦,90◦],
[125◦,90◦], [135◦,90◦], [178◦,90◦], [100◦,270◦], [125◦,270◦], [135◦,270◦], [178◦,270◦].

Figure 5. Trajectories of photons emitted by GFs orbiting a Kerr naked singularity with a = 1.1 at ra-
dius r0 = 3. The directional angles of photons are (from left to right; doubles [α0

max,β0]): [100◦,90◦],
[125◦,90◦], [135◦,90◦], [178◦,90◦], [100◦,270◦], [125◦,270◦], [135◦,270◦], [178◦,270◦].
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Whenµ and u are known,we can compute values ofϕ and t from (56) and (57). Integrals
in that relations can be also expressed in terms of elliptic integrals; this we are preparing for
our next work. Here, these integrals are computed numerically.
We can conclude that for given, locally measured, angles α, β, we calculate values of

impact parameters of λ and q . From Eqs (55)–(57), we obtain the geodesic of a photon for
a given radial parameter u ∈ [0, u turn]. We have a set of coordinates (t, u, µ,ϕ)which can
be used to calculate photon 4-momentum from the Carter Eqs (24)–(27). From this point,
we can calculate physical quantities like redshift of a photon, lensing parameter of radiation
passing by the black-hole (naked singularity), its light curve, etc., that characterize the
optical phenomena in the black-hole backgrounds.
The raytracing can now be implemented by the procedure presented above. Some typical

plots of the photon trajectories, are given in Figs 4 and 5, for different parameters α and β.

5 CONCLUSIONS

We have discussed the relation of the light escape cones of the GFs to the raytracing of
photons in the Kerr spacetimes. The results of our study can be represented in the following
way. Theboundarybetweenphotons that can escape to infinity and those captured by aKerr
black-hole (naked singularity) is determined by the light escape cone and relations between
α0

max and β0, as illustrated for the case of black holes (naked singularities) in Fig. 6 (Fig. 7).
The examples of typical photon trajectories starting at GFs orbiting in the field of Kerr

black holes (naked singularities) are determined by the raytracing in terms of elliptic integ-
rals using the local directional angles at GFs and are illustrated in Fig. 4 (Fig. 5).
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Figure 6. The light escape cone (a) of the GF+ orbiting a Kerr black hole with a = 0.6 at r0 = 10.
The relevant angle relationα0

max(β0) is given in (b).
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Figure 7. The light escape cone (a) of the GF+ orbiting a Kerr naked singularity with a = 1.1 at
r0 = 3. At (b), the relationα0

max(β0) is plotted.

The presented approach to the raytracing in terms of elliptic integrals will be used in
further investigations of the optical phenomena in the field of Kerr black holes and naked
singularities. We expect to obtain a procedure that will enable to compute all the optical
characteristics (the redshift, luminosity, . . . ) along any ray at any point of the photon
trajectory. Further, it is important to make generalization from the stationary situations,
when emitters moving along circular geodesic orbits are considered, to dynamical, time-
dependent situations.
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ABSTRACT
We examine halo orbits of electrically charged particles near a magnetized compact
star. We compare theNewtonian and Pseudo-Newtonian approaches to the Störmer
problem as a preliminary discussion of the full general relativistic approach. We
show the differences in the effective potential that arise due to strong gravity near a
gravitating body.

1 INTRODUCTION

Near compact objects (black holes and neutron stars), strong gravity acts on particles and
fluids and its influence competes with electromagnetic forces. Basic aspects of the motion
are identical as they are in the limit of weak gravitational field, e.g., near planets of the Solar
system, however, strong gravity brings modifications and some new aspects.
On the way to understanding radiation belts surrounding magnetized planets, including

the Earth, one meets Störmer’s analysis (Störmer, 1955) of the charged particle motion in
the pure magnetic dipole field. The radiation belts consist of individual ions and electrons;
their motion is governed mainly by the magnetic force. In the case of dust grains the
charge-to-mass ratio is smaller and dynamics is more complex. We cannot consider just
the magnetic force in the equations of motion, instead we have to include also the planet’s
gravity and rotation of the magnetic dipole.
In this paper we present a brief introduction to the Störmer problem and discuss its

modification due to the general relativity. First, in Section 2 we discuss the Newtonian
approach based on Dullin et al. (2002). The main aim of this section is to summarize
the weak gravitational field formalism and to prepare for the discussion of differences that
will be brought by strong-gravity. In order to facilitate the transition to general relativity
formalism we first discuss the Störmer problem in terms of the Pseudo-Newtonian model

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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of Paczyński and Wiita (1980). In Section 3 we compare the Newtonian and the Pseudo-
Newtonian approaches to the Störmer problem.

2 SUMMARYOFDULLIN’S ETAL. ANALYSIS IN THENEWTONIAN
APPROACH

Dullin et al. (2002) developed a general approach that incorporates both gravitational and
electromagnetic forces near a planet. General discussion of charged particle motion can
begin with axisymmetric geometry assumption, which describes motion of charged grains
in the alignedmagnetosphere of a rotating planet. Let’s studymotion of a particle ofmassm
and charge q in three-dimensional space. In the inertial frame equations of motion are

m r̈ = q
c

ṙ × B − ∇U(r) , (1)

where the scalar potential U(r) includes gravitational potential and potential of electric
field induced by the rotation of the dipole. Dullin et al. (2002) make an assumption that the
magnetic field B and potentialU are symmetric with respect to rotation around the z axis.
In order to express co-rotational electric field let’s transform the equations of motion to a

rotating coordinate system using a rotation matrixR corresponding to the angular velocity
Ω = (0, 0,Ω)T. The transformed equations of motion read

m q̈ =
(q

c
B − 2mΩ

)
× q̇ − mΩ × (Ω × q) + q

c
B × (Ω × q) − ∇U(q) , (2)

where we can recognize the Coriolis force −2mΩ × q̇ and the centrifugal force −mΩ ×
(Ω × q). Comparing the transformed equations of motion (2) to the non-transformed
one (1), it is possible to see that there is no term B × (Ω × q) in (1). Consequently, there
must be such term in ∇U in order to cancel it. This term gives rise to co-rotational electric
field:

E = q
c

B × (Ω × q) = q
c
MΩ∇

(
x2 + y2

r3

)
, (3)

whereM is strength of a centredmagnetic dipole. The electric field E is unipolar, therefore
it is not induced by a changing magnetic field, it is perpendicular to the magnetic field and
the divergence of the electric field is nonzero, which gives rise to a space charge distribution
originating from the plasma rotation.
In order to distinguish the impact of the charge-to-mass ratio of the particle and to

stress the significance or negligence of the gravitational or co-rotational electric forces we
introduce two parameters – “switches” – which can adopt values 0 or 1 : σg is connected
to the gravitational field, its value is σg = 1 if the gravity is more significant than the
co-rotational electric force, or otherwise σg = 0. The switch σr is connected to the co-
rotational electric field, its value is σr = 1 in case the co-rotational electric field is significant
and σr = 0 if it is negligible.
According to four possible values of σg, σr pairs we introduce four distinct flavours of the

problem (Dullin et al., 2002): theClassical Störmer Problem (CSP,σg = 0, σr = 0) inwhich
the particle moves under the pure magnetic dipole field conditions, the Rotational Störmer
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Problem (RSP, σg = 0, σr = 1) which includes the planetary co-rotational electric field,
the Gravitational Störmer Problem (GSP, σg = 1, σr = 0) with Keplerian-gravity included
and co-rotational electric field excluded, and the most general Rotational-Gravitational
Störmer Problem (RGSP, σg = 1, σr = 1), which includes both planetary gravitational and
co-rotational electric field.
For each of these four cases we must consider charge sign in prograde or retrograde

orbits. Here follows the Dullin et al. (2002) results résumé: (1) CSP: There are no stable
circular orbits, equatorial or non-equatorial (halo). (2) RSP: There exist stable equatorial
orbits for both charge-signs. There are no halo orbits. (3) GSP: There are stable orbits for
both charge signs. Retrograde stable halo orbits for positive charges, prograde stable halo
orbits for negative charges. (4) RGSP: There are stable equatorial orbits for both charge
signs. There is a range of positive charge-to-mass ratios without stable equatorial orbits.
There are prograde halo orbits for negative charges. There are pro- or retrograde halo orbits
for positive charges. For stability the frequencymust be sufficiently different from twice the
planetary rotation rate.

2.1 Equations ofmotion

In an inertial frame we can split the potential into two parts: the first part corresponding to
the gravity and the other part corresponding to the co-rotational electric field:

U(r) = −σg
µm
r

+ σr
q
c
MΩ

(
x2 + y2

r3

)
. (4)

We can distinguish three types of constants:

• Parameters connected with the planet: the massµ = GM and the spin rateΩ .
• Parameters connected with dust particle: the mass m and an electric charge measured
in qM/c.
• Constants of motion: angularmomentum pϕ and total energy h = H of the particle. We
can define a region in configuration space by fixing these two parameters.

In order to reduce the number of parameters we scale distances and masses. Distances are
measured in terms of radius of Keplerian synchronous orbit R and masses are scaled to the
particlemass m. Then we introduce two dimensionless parameters p and δ:

p ≡ pϕ
Rδc
qM

and δ ≡ ΩqM

mcµ
= ωcΩ

ω2
K

, (5)

where ωc = q B0/mc is the cyclotron frequency, B0 is the planetary equatorial magnetic
field and ωK = (GM/R3

s )1/2 is the Kepler frequency at the planetary radius Rs. The
parameter p is the scaled angular momentum and the parameter δ corresponds to the
charge-to-mass ratio.
Finally, we use the effective potential method in order to derive relation between circular

orbits radii and previously introduced parameters p and δ. The scaled Hamiltonian of the
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above equations of motion in spherical coordinates reads

H = 1
2

(
p2

r + p2
θ

r2

)
+ Ueff . (6)

2.2 Equatorial orbits

Assuming the motion in the equatorial plane, Dullin et al. (2002) consider the effective po-
tentialUeff is that part ofHamiltonian (6) independent of non-constantmomenta pr and pθ :

Ueff(r, θ, p) = (pr − δ sin2 θ)2

2r4 sin2 θ
− σg

r
+ σrδ sin2 θ

r
. (7)

Sincewe know the Hamiltonian (6) we can express the equations of motion:

ṙ = pr , θ̇ = pθ , ϕ̇ = ∂Ueff

∂p
, (8)

ṗr = −∂Ueff

∂r
, ṗθ = −∂Ueff

∂θ
, ṗϕ = 0 . (9)

In order to simplify the partial derivatives of Ueff calculation we introduce the frequency
ω(r, θ):

ω(r, θ) = ϕ̇ = ∂Ueff

∂p
= p

r2 sin2 θ
− δ

r3 . (10)

This frequency is measured in terms of planetary spinΩ , thenceω = 1means synchronous
motion. Nowwe eliminate p in equations in terms ofω:

Ueff = 1
2
ω2r2 sin2 θ − σg

r
+ σrδ sin2 θ

r
. (11)

Assuming the circular orbits in the equatorial plane, Dullin et al. (2002) have to solve
polynomial

P(r,ω) = ω2r3 − ωδ + σrδ − σg . (12)

Solving the equation for equatorial orbits P = 0 we get a generalized Kepler’s third law for
equatorial orbits:

re(ω)3 = σg + δ(ω − σr)

ω2 . (13)

The equation for equatorial orbits (12) can be solved for δ as a function ofω(r):

δ = r3ω2 − σg

ω − σr
. (14)

Now we have two parameters describing particle motion and we are able to figure out
“phase space (ω, δ)” trajectories. Consider an equatorial circular orbit of given radius re.
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Figure 1. Possible (ω, δ)-parameterization for equatorial orbits and for halo orbits.

The corresponding angular momentum pe can be calculated from (10). The radius re is
positive if (see Fig. 1)

ω ≤ σr − σg

δ
and δ ≤ 0 , or (15)

ω ≥ σr − σg

δ
and δ ≥ 0 . (16)

Finally, we can choose the radius of equatorial orbit r and frequency ω(r) and according
to the equation (14) we obtain value of δ parameter as function of r,ω. Moreover, by choos-
ing just the orbital radius, we obtain “phase space trajectories” of such dust grain (see Fig. 3
in Dullin et al., 2002). Each curve on figure shows possible (ω(r), δ(r)) parameterization
of the equatorial orbit of radius r for distinct Störmer problem.

2.2.1 Stability of the equatorial orbits

From the second derivatives of the effective potential Ueff (11) Dullin et al. (2002) get the
stability constraint onω. The equatorial orbits are stable ifω lies in following ranges:

δ < 0 : ω−
e < ω < ωPF ,

0 < δ < δ−e : ωPF < ω < ω−
e ,

δ > δ+e : ωPF < ω < ω+
e ,

where

ω±
e = 1 ±

√
3

2

(
σr − σg

δ

)
, ωPF = σr − σg

3δ
, δ±e = σg

σr

5 ± 2
√

3
3

.
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2.3 Halo orbits

Halo orbits are defined as orbits which do not cross the equatorial plane. According to
Dullin et al. (2002) we can find such halo orbits, which occur in a plane parallel to the
equatorial plane. Our first aim is to find circular halo orbits. In case of equatorial orbits
we solved Eq. (12). The non-equatorial orbits are described by solution of set of equations
Q(r,ω) = 0 and A(θ,ω) = 0, where

Q(r,ω) = ω2r3 + 2ωδ − 2σrδ , (17)
A(θ,ω) = σg + 3δ(ω − σr) sin2 θ . (18)

The non-equatorial (halo) orbits for charged dust grains are completely described by these
functions A and Q. Solutions for orbits with constant radius and/or at constant height
above/beneath the equatorial plane are given by

r3
h (ω) = 2δ

σr − ω

ω2 , (19)

sin2 θh(ω) = σg

3δ(σr − ω)
. (20)

Similar conditions for halo orbits as Eqs (15) and (16) for equatorial orbits are given by
(see Fig. 1)

ω ≥ σr − σg

3δ
and δ ≤ 0 , or (21)

ω ≤ σr − σg

3δ
and δ ≥ 0 . (22)

Under conditions of the equations (19) and (20) the parameter δ can be expressed as a
function of r andω(r):

δ|r=const = r3ω2

2(σr − ω)
, (23)

δ|θ=const = σg

3(σr − ω) sin2 θ
. (24)

Finally, let’s chose the radius of equatorial orbit r and frequency ω(r) and according to
the equation (23) we obtain “phase space trajectories” of such dust grain. Each curve
in figure shows possible (ω(r), δ(r)) parameterization of equatorial orbit of radius r for
distinct Störmer problem. Moreover, we can fix height above/beneath the equatorial plane
according to (24) in order to obtain curves of constant θ . Or, we can merge these two
types of curves together and get a set of parameters (ω, δ) for circular trajectories (constant
r) at constant height (constant θ) – see Fig. 6 in Dullin et al. (2002). From Eq. (24) we
can see gravity is necessary for orbits in planes parallel to the equatorial plane (planes of
constant θ).
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2.3.1 Stability of the halo orbits

From the second derivatives of the effective potential Ueff (11) Dullin et al. (2002) got the
stability constraint onω. The halo orbits are stable ifω lies in following ranges:

δ < δ−h : ω > ω+
h ,

δ−h < δ < 0 : ω > ωPF ,

0 < δ < δ+h : ω < ωPF ,

δ > δ−h : ω < ω−
h ,

where

ω±
h = σr

(
2 ±

√
3
)

, δ±h = σg

σr

1 ±
√

3
6

.

3 THESTÖRMERPROBLEM IN PSEUDO-NEWTONIANAPPROACH

On our way to find circular orbits we can either use (ω, δ) parameters, or alternatively, we
can inspect the poloidal (ρ, z) plane around the planet in order to search for the effective
potential minima. Complete discussion of the problem requires general relativity, however,
basic aspects of the motion can be examined in terms of the Pseudo-Newtonian model.
In order to compare the Newtonian and the Pseudo-Newtonian approaches we use the
effective potential (Howard et al., 1999) (note the potentials Ueff,N and Ueff,PW are scaled
by the dust grainmassm):

Ueff,N = 1
2ρ2

(
pϕ − ωcρ

2

r3

)2

− σg
ω2

K
r

+ σr
Ωωcρ

2

r3 , (25)

where r = (ρ2 + z2)1/2, pϕ = ωρ2
0 + ωcρ

2
0/r3

0 is the constant of motion, (ρ0, z0) is the
position of the equilibria circular orbit,ωK = (GM/Rp3)1/2 is theKeplerian frequency and
ωc = q B0/mc is the cyclotron frequency. In the Pseudo-Newtonian approach the effective
potential reads

Ueff,PW = 1
2ρ2

(
pϕ − ωcρ

2

r3

)2

− σg
ω2

K

r − 2G M
c2 Rp

+ σr
Ωωcρ

2

r3 . (26)

Introducing the gravitational radius GM/c2 in the denominator of the middle term on the
right-hand side is a simple trick that captures certain features of motion very near compact
stars and black holes. In (25) and (26) we use “scaled lengths” notation – all the length
quantities are expressed in terms of planetary radius Rp.
We study two systems in order to compare effects of the object’s compactness to the

effective potentials (25) and (26) of planet, in this case Saturn, and of a compact ob-
ject – the neutron star. For the system with planet Saturn we use these parameters:
MSAT = 5.6 × 1029 g, RSAT = 6.03 × 109 cm,ΩSAT = 1.69 × 10−4 Hz, BSAT = 0.21 G,
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Figure 2. Iso-contours of the effective potential in the Newtonian approach (left) and in the Pseudo-
Newtonian approach (middle) and comparison of both approaches (right) by over-plotting the two
graphs on top of each other. The case of the Rotational-Gravitational (σg = σr = 1) Störmer
Problem for Saturn (Rg/Rp = 6.88 × 10−6). Each row of pictures differs by the dust-grains surface
potential – here from Φ = 200 V cm−2 to Φ = 400 V cm−2. As expected, the Newtonian and the
Pseudo-Newtonian results are almost indistinguishable because of small compactness of the central
body in this example.
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Figure 3.The same as in Fig.2, but for the case of a highly compact neutron star (Rg/Rp = 0.201). In
contrast to the previous figure, minimaof the effective potential have developed forΦ ≥ 292 V cm−2

in case of the Newtonian approach (25) and for Φ ≥ 317 V cm−2 in case of the Pseudo-Newtonian
approach (26). These correspond to halo orbits.
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Rg/RSAT = 6.88 × 10−9. For the system with the neutron star we use these parameters:
MNS = 4.0 × 1033 g, RNS = 1.47 × 106 cm,ΩNS = 5.0 × 103 Hz, BNS = 6.88 × 106 G,
Rg/RNS = 2.01 × 10−1.
Iso-contours of the effective potentials (25) and (26) are shown in Fig. 2 for the case of

Saturn. In the left column we can see the iso-contours of the effective potential (25), in
the middle column we can see the iso-contours of the effective potential (26) and in the
right column we compare the Newtonian and the Pseudo-Newtonian approaches. From
the Fig. 2 we can see that the difference between the Newtonian and the Pseudo-Newtonian
approaches in case of non-compact object is negligible. Each set of pictures (each line) in
the Fig. 2 means different surface potential of a studied dust grain. We choose to study dust
grainswith surface potential fromΦ = 200 V cm−2 toΦ = 400 V cm−2. The localminima
of the effective potential of chosen dust grains are located in the equatorial plane on radial
distance from 2 RSAT to 7 RSAT.
However, near a compact object the difference between the iso-contours of the two po-

tentials, (25) versus (26), are not negligible. This can be seen in Fig. 3, which has been
constructed in a similar way as Fig. 2. The chosen dust grains surface potential is the same
as in the previous case: from Φ = 200 V cm−2 to Φ = 400 V cm−2. In case the surface
potential is lower thanΦ = 292 V cm−2 for the Newtonian approach (25) or is lower than
Φ = 317 V cm−2 for the Pseudo-Newtonian approach (26) there are equatorial circular
orbits. Otherwise, there are non-equatorial circular orbits near the neutron star.

4 CONCLUSIONS

Results of the Newtonian and the Pseudo-Newtonian approaches coincide in the case of
weak gravitational fields (see Fig. 2). There are several differences between the results of
the Newtonian and the Pseudo-Newtonian approaches in the case of compact objects (see
Fig. 3). We have verified that similarly to the Newtonian case, both equatorial and halo
orbits can occur near a compact star, depending on the dust grain surface potential.
However, it can be inferred from the Fig. 3 that general relativistic corrections to the

gravity of the central body have a tendency to bring the halo orbits closer to the equatorial
plane. Further investigation of these corrections is a subject of our ongoing project.
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Perfect fluid tori in the Kerr–de Sitter naked
singularity backgrounds
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ABSTRACT
Perfect fluid tori with uniform distribution of the specific angular momentum,
ℓ(r, θ) = const, orbiting theKerr–de Sitter naked singularities are discussed. Closed
equipotential surfaces corresponding to stationary thick discs are allowed only in the
spacetimes admitting stable circular geodesics. The last closed surface crosses itself
in the cusp(s) enabling outflows of matter from the torus due to the violation of hy-
drostatic equilibrium. The inner cusp enables the accretion onto the ring singularity.
Influence of the repulsive cosmological constant, Λ > 0, resides in the existence
of the outer cusp enabling the excretion (outflow of matter from the torus into the
outer space) and gives rise to completely new type of a disc called the excretion disc.
The plus-family accretion and excretion discs can be both the corotating or counter-
rotating discs, theminus-family ones are always the counterrotating discs, as related
to locally non-rotating frames. If the parameters of naked-singularity spacetimes
are very close to the parameters of the extreme black-hole spacetimes, the family
of possible disc-like configurations includes members with two isolated discs where
the inner one is always a counterrotating accretion disc, while the outer one can
be the corotating or counterrotating excretion disc, as well as the counterrotating
accretion disc.

1 INTRODUCTION

Observations give strong evidence that accretion discs orbiting massive black holes are
the energy sources in quasars and active galactic nuclei. Since the existence of naked
singularities is not excluded on the present state of knowledge (e.g., de Felice andYunqiang,
2001), accretion onto a naked singularity could still be regarded as the power engine of the
most energetic phenomena in the Universe, despite of the cosmic censorship hypothesis
(Penrose, 1969). Basic properties of geometrically thin accretion discs with low accretion
rates and negligible pressure are given by the circular geodesic motion in the black-hole
backgrounds (Novikov and Thorne, 1973), while for geometrically thick accretion discs
with high accretion rates and pressure being relevant they are determined by equipotential
surfaces of test perfect fluid rotating in the background (see, e.g., Abramowicz, 1998).
Attention is focused on the configurations containing closed equipotential surfaces, as they
correspond to stationary tori, which occur only in the backgrounds admitting stable circular

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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orbits. An outflowofmatter from the torus induced by a violation of hydrostatic equilibrium
is possible, if the last closed equipotential surface self-crossing in the cusp(s) can exist in
the background. (In fact, in the centre of any equilibrium toroidal configuration the matter
follows stable equatorial circular geodesic, while in the cusps it follows unstable equatorial
circular geodesics.) The so-called Paczyński mechanism (Abramowicz et al., 1978, 1980)
is very similar to the one well-known from the binary systems where the matter overfilling
the “Roche lobe” can flow from the normal star onto the companion through the Lagrange
point L1 or even out from the system through the Lagrange point L2 (see, e.g., Novikov and
Thorne, 1973).
The presence of a repulsive cosmological constant or, equivalently, a positive vacuum

energy, indicated by a wide range of independent cosmological tests giving the present
value Λ0 ∼ 10−56 cm−2 (see, e.g., Spergel et al., 2003; Bahcall et al., 1999; Kolb and
Turner, 1990), leads to very important consequences for the properties of both the thin and
thick discs.
It was shown that thin discs orbiting the Schwarzschild–de Sitter (SdS) black holes have,

besides the standard inner edge at the inner marginally stable circular orbit, an outer edge
at the outer marginally stable circular orbit located slightly under the static radius (Stuchlík
and Hledík, 1999). Similarly, thick discs orbiting the SdS black hole have, besides the
standard inner cusp enabling accretion inflow of matter from the disc onto the black hole,
an outer cusp located nearby the static radius and enabling an outflow of matter from the
system of the black hole and its accretion disc into the outer space; such a process is called
excretion. Rezzolla et al., analysing the dynamics of thick discs in the SdS backgrounds
(Rezzolla et al., 2003; Rezzolla, 2004), suggested that the repulsive vacuum energy can
have a stabilizing effect on dynamics of thick discs, as the mass outflow through the outer
cusp is able to efficiently suppress the so-called runaway instability of the disc, which
can develop in some dynamical models of accretion disc (see Abramowicz et al., 1983;
compare with Wilson, 1984; Nishida et al., 1997). Moreover, for current value of the
cosmological constant , Λ = Λ0

.= 1.3 × 10−56 cm−2, and supermassive black holes of
mass M ∼ 109 M⊙, the location of the outer cusp, and the outer edge of the disc, is about
110 kpc that is smaller than but comparable to the extension of giant galaxies with such
massive central black holes, indicating that the repulsive cosmological constant could play
an important role in the formation and evolution of large galaxies.
Another feature connected with the cosmic repulsion consists in strong collimation of

open equipotential surfaces near the axis of rotation, being evident nearby and behind the
static radius, suggesting a certain role of Λ > 0 in the collimation of jets far away from
the maternal disc (Stuchlík et al., 2000; Stuchlík, 2005). It is curious, if the influence
of the repulsive cosmological constant will be relevant for the radial and vertical epicyclic
oscillations that are expected as a source of quasiperiodic variability at quasars and active
galactic nuclei as predicted by Török (2005a,b).
Studies of rotating backgrounds are crucial to understand astrophysically realistic situ-

ations in active galactic nuclei because their central engines are assumed to be fast rotating
due to the matter trapped from the accretion disc. Our work analyses the combined effect
of a repulsive vacuum energy and rotation of the black hole/naked singularity on the prop-
erties of accretion discs. The equatorial circular geodesics of the Kerr–de Sitter spacetimes
and their relevance for the geometrically thin accretion discswere discussed in Stuchlík and
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Slaný (2004b). As in the Schwarzschild–de Sitter spacetimes, the outer marginally stable
orbit always exists in those Kerr–de Sitter spacetimes admitting any stable circular orbits.
Because the Kerr–de Sitter spacetimes are asymptotically de Sitter, not flat, the notion of
corotating or counterrotating motion cannot be related to the observers at infinity but only
to the locally non-rotating observers/frames (LNRF).As in theKerr spacetimes, the circular
geodesics of the Kerr–de Sitter spacetimes can be separated into two families (see Stuchlík
and Slaný, 2004b). The minus-family orbits are all counterrotating, while the plus-family
orbits are usually corotating relative to the LNRF. However, the plus-family orbits become
counterrotating in the vicinity of the static radius in all Kerr–de Sitter spacetimes (these
orbits are unstable), and also near the ring singularity in Kerr–de Sitter naked-singularity
spacetimes with the rotational parameter low enough (these orbits can even be stable down
to the inner marginally stable orbit). In such spacetimes, the efficiency of the conversion
of rest energy into heat energy in the geometrically thin plus-family accretion discs, given
by the difference of energies of a particle at the outer and the inner marginally stable orbit
(η = Ems(o) − Ems(i)), can reach extremely high values exceeding the efficiency of the
annihilation process. It should be noted, however, that in all Kerr–deSitter spacetimes con-
taining stable circular orbits, the accretion efficiencyη is smaller in comparisonwith the one
for pure Kerr case (y = 0). Moreover, it was shown that transformation of a Kerr–de Sitter
naked singularity into an extreme black hole, caused by the accretion process, leads to an
abrupt instability of the innermost parts of the plus-family accretion discs that can have
strong observational consequences (Stuchlík and Slaný, 2004b; Stuchlík, 1980).
Studies of equilibrium configurations of barotropic perfect fluid orbiting the Kerr–

de Sitter black holes have revealed qualitatively the same properties of the tori as in the
Schwarzschild–de Sitter backgrounds allowing stable circular geodesics (Stuchlík and
Slaný, 2004a; Slaný and Stuchlík, 2005). In fact, in black-hole backgrounds we can distin-
guish three kinds of discs:

Accretion discs Toroidal equipotential surfaces are bounded by the marginally closed
critical equipotential surface self-crossing in the inner cusp and enabling outflow of
matter from the disc into the black hole. Another critical surface self-crossing in the outer
cusp is open. Matter filling the region between the critical surfaces cannot remain in
hydrostatic equilibrium and contributes to the accretion flow along the inner cusp and a
throat formed by open surfaces. Moreover, if the potential levels corresponding to the
critical surfaces are comparable, i.e., Wcrit(i) " Wcrit(o), huge overfilling of the critical
surface with the inner cusp causing the accretion could be combined with the excretion,
having a capability to regulate the accretion.

Marginally bound accretion discs Such configurations exist only for the uniform distri-
bution of the specific angular momentum in the disc ℓ(r, θ) = ℓmb, where ℓmb cor-
responds to the Keplerian specific angular momentum on the marginally bound circu-
lar orbit. Toroidal equipotential surfaces are bounded by the marginally closed critical
equipotential surface self-crossing in both the cusps. Any overfilling of the critical sur-
face causes the accretion inflow through the inner cusp as well as the excretion outflow
through the outer cusp.

Excretion discs Toroidal equipotential surfaces are bounded by the marginally closed
critical equipotential surface self-crossing in the outer cusp and enabling outflow of
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matter from the disc into the outer space by a violation of hydrostatic equilibrium. The
equipotential surface with the inner cusp, if such a surface exists, is open (cylindrical)
and separated from the critical surface with the outer cusp by other cylindrical surfaces
which, in fact, disable accretion into the black hole.

Due to the existence of non-zero pressure-gradients in the fluid, the inner edge of the
accretion discs (corresponding to the inner cusp of equipotential surfaces) is shifted under
the inner marginally stable orbit up to the inner marginally bound orbit, rmb(i) < rin <

rms(i). Similarly, the outer edge of the excretion discs (corresponding to the outer cusp of
equipotential surfaces) is located between the outer marginally stable and outer marginally
bound orbit, rms(o) < rout < rmb(o). Marginally bound accretion discs have, thus, naturally
determined both edges by the location of the cusps of the only critical surface, r in ≈ rmb(i),
rout ≈ rmb(o), and correspond to maximally extended discs. Moreover, potential difference
between the boundary (determined by the marginally closed critical surface) and the centre
of the torus, ∆W = Wcrit − Wcenter, takes the largest values for plus-family marginally
bound accretion discs. In black-hole backgrounds, the maximal value corresponds to the
disc corotating the extreme Kerr black hole (y = 0), ∆W ≈ 0.549 (Abramowicz et al.,
1978), andwith the cosmological parameter y growing up to yc(KdS)

.= 0.059 tends to zero.
Rotation of the background influences the shape of tori: the corotating discs are thicker

andmore extended than the counterrotating ones, generating narrower funnelwhere highly
collimated relativistic streams of particles – jets aremost probably created.
Here, we shall present the results concerning the structure of equipotential surfaces in

barotropic perfect fluid tori with uniform distribution of the specific angular momentum,
ℓ(r, θ) = const,1 rotating in the Kerr–de Sitter naked-singularity backgrounds, thoroughly
published in Slaný and Stuchlík (2005). In Section 2, general theory of equilibrium config-
urations of barotropic perfect fluid orbiting in a stationary and axisymmetric background
is outlined, in Section 3, Kerr–de Sitter spacetimes admitting stable equatorial circular
orbits of test particles and the properties of such orbits are briefly discussed. Structure
of equipotential surfaces determining the equilibrium configurations of barotropic fluid in
the Kerr–de Sitter naked-singularity background is presented in detail in Section 4. In
“Concluding remarks” (Section 5), the properties of the tori around naked singularities are
summarized and compared with those in the black-hole backgrounds.

2 EQUILIBRIUMCONFIGURATIONSOFBAROTROPIC PERFECTFLUID

Analytic theory of equilibrium configurations of rotating perfect fluid bodies was developed
by Boyer (1965) and than studied by many authors. The main result of the theory, known
as “Boyer’s condition,” states that the boundary of any stationary, barotropic, perfect fluid

1 Tori with ℓ(r, θ) = const are marginally stable (Seguin, 1975) and capable of producing maximal luminosity
at all (Abramowicz et al., 1980). Moreover, topological properties of the equipotential surfaces seem to be rather
independent on the distribution of the specific angularmomentum ℓ(r, θ) (see Kozłowski et al., 1978; Abramowicz
et al., 1978; Jaroszyński et al., 1980; Abramowicz et al., 1980; Abramowicz, 1998; Stuchlík et al., 2000). In more
realistic situations we can expect that, at large distances, such thick discs will transform into the thin discs with
Keplerian distribution of the specific angular momentum, whichwere discussed in Stuchlík and Slaný (2004b).
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body has to be an equipotential surface. In this section we briefly discuss its application to
the relativistic test perfect fluid orbiting in a stationary and axisymmetricway in a stationary,
axisymmetric background (Abramowicz et al., 1978; Kozłowski et al., 1978; Stuchlík et al.,
2000; Slaný and Stuchlík, 2005).
In the standard Boyer–Lindquist coordinates the spacetime is described by the line ele-

ment

ds2 = gt t dt2 + 2gtφ dtdφ + gφφ dφ2 + grr dr2 + gθθ dθ2 (1)

satisfying the properties of stationarity and axial symmetry, i.e., ∂t gµν = ∂φgµν = 0.
Further, we shall consider test perfect fluid moving in the azimuthal direction only and
forming the toroidal configurations (discs). Its 4-velocity vector field U µ has only two
non-zero componentsU t ,Uφ which can be the functions of coordinates r, θ , and the stress-
energy tensor field has the well known form

T µν = (ϵ + p)UµU ν + pgµν , (2)

whereϵ and p are the total energydensityand thepressuremeasured in the frameco-moving
with the element of the fluid. The angular velocity and the specific angular momentum of
the rotating fluid are defined in terms of the 4-velocity field as:

Ω = Uφ

U t , ℓ = −Uφ
Ut

. (3)

These definitions lead to the relation betweenΩ and ℓ in the form

Ω = − ℓgt t + gtφ

ℓgtφ + gφφ
. (4)

The equation of motion of the fluid, i.e., the relativistic Euler equation, obtained by the
projection of the conservation law ∇µT µν = 0 onto the hypersurface orthogonal to the
4-velocityUµ, has the axially symmetric form

∂i p
ϵ + p

= −∂i (ln Ut ) + Ω∂iℓ

1 −Ωℓ
, (5)

where i = r, θ and

(Ut )
2 =

g2
tφ − gt t gφφ

gt tℓ2 + 2gtφℓ+ gφφ
. (6)

For a barotropic fluid, i.e., for a body with an equation of state p = p(ϵ), the surfaces
of constant pressure are given, in accordance with Boyer’s approach, by the equipotential
surfaces of the potential W (r, θ) defined by the relations (Abramowicz et al., 1978)
∫ p

0

d p
ϵ + p

= ln(Ut )in − ln(Ut ) +
∫ ℓ

ℓin

Ω dℓ
1 −Ωℓ

≡ Win − W , (7)
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where the subscript “in” refers to the inner edge of the disc. The explicit form of the poten-
tial, W = W (r, θ), is given by Eq. (7), if one specifies the metric tensor of the background
and the “rotational law,” i.e., the functionΩ = Ω(ℓ). The simplest but also astrophysically
very important is the casewith uniform distribution of the specific angularmomentum

ℓ(r, θ) = const (8)

through the disc. In this special case the potential is given by the simple formula

W (r, θ) = ln

(
g2

tφ − gt t gφφ
gt tℓ2 + 2gtφℓ+ gφφ

)1/2

(9)

and is fully determined by the geometry of the background. Note that the points where
∂i W = 0 correspond to free-particle (geodesic)motion due to the vanishing of the pressure-
gradient forces there.

3 KERR–DESITTERSPACETIMESADMITTINGSTABLECIRCULARORBITS

Stationary toroidal configurations corresponding to thick discs can exist only in the space-
times allowing the motion along stable circular geodetical orbits. The analysis of equatorial
circular geodesics in the Kerr–de Sitter spacetimes has been done in Stuchlík and Slaný
(2004b) where their relevance for the thin (Keplerian) discs was also discussed. In this sec-
tion we describe those characteristics of the circular geodesics which are useful for further
discussion on thick discs.
The geometry of Kerr–de Sitter spacetimes is given by the line element

ds2 = − ∆r

I 2ρ2 (dt − a sin2 θ dφ)2

+ ∆θ sin2 θ

I 2ρ2

[
a dt − (r2 + a2) dφ

]2
+ ρ2

∆r
dr2 + ρ2

∆θ
dθ2 , (10)

where

∆r = r2 − 2Mr + a2 − 1
3Λr2(r2 + a2) , (11)

∆θ = 1 + 1
3Λa2 cos2 θ , (12)

I = 1 + 1
3Λa2 , (13)

ρ2 = r2 + a2 cos2 θ (14)

and geometric units (c = G = 1) are used. The spacetime is specified by three para-
meters: central mass (M), rotational parameter (a) corresponding to the specific angular
momentum of the central object, and positive cosmological constant (Λ). It is convenient
to introduce the dimensionless “cosmological parameter”

y = 1
3ΛM2 (15)
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and reformulate relations (10)–(14) into the completely dimensionless form by putting
M = 1 hereafter. The spacetime is stationary, axially symmetric and asymptotically
de Sitter.
The spacetime horizons are determined by the condition∆r = 0 giving the relation

y = yh(r; a) ≡ r2 − 2r + a2

r2(r2 + a2)
(16)

determining implicitly radii of the horizons. Local extrema of the function yh(r; a) are given
by the relation

a2 = a2
ex(h)(r) ≡ r

2

[
1 − 2r + (8r + 1)1/2

]
. (17)

Function a2
ex(h)(r) has one extreme (maximum)

a2 = a2
crit = 3

16

(
3 + 2

√
3
)

.= 1.21202 (18)

at r = rcrit = (3 + 2
√

3 )/4. We can conclude that for 0 < a2 < a2
crit the function

yh(r; a) has two local extrema, ymin(a) and ymax(a); for a2 = a2
crit these extrema coincide.

Black-hole spacetimes exist for ymin(a) ≤ y ≤ ymax(a). In general, three horizons (the
inner and the outer of the black hole, rh− and rh+, and the cosmological one, rc) exist. If
y = ymin(a), rh− = rh+ < rc, which corresponds to the extremeblackhole. If y = ymax(a),
rh− < rh+ = rc, which corresponds to the marginal naked singularity, as two dynamical
regions are joined together. If y < ymin(a) or y > ymax(a), naked-singularity spacetimes
occur. Note that for 0 < a < 1, ymin(a) < 0. If a2 = a2

crit, the “ultra-extreme” case occurs
(rh− = rh+ = rc), corresponding to a naked-singularity case, and we obtain maximal value
of the cosmological parameter enabling the existence of black holes to be:

y = ycrit = 16
(3 + 2

√
3 )3

.= 0.05924 . (19)

For a2 > a2
crit, the cosmological horizon exists only, and the Kerr–de Sitter geometry

describes a naked-singularity spacetime.
As in the Kerr spacetimes, also in the Kerr–de Sitter spacetimes we can distinguish two

families of equatorial circular geodesics denoted + (plus) or − (minus), if the spacetime
admits circular geodesics.2 Angular velocity on such (Keplerian) orbits is given by the
simple formula

ΩK± = 1
a ± r3/2/(1 − yr3)1/2 (20)

revealing that no circular orbits can exist behind the “static radius”

r = rs ≡ y−1/3 , (21)

2 For more detailed view into the problem of existence and properties of the equatorial circular geodesics in the
Kerr–de Sitter spacetimes see Stuchlík and Slaný (2004b).
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Figure 1. Classification of the Kerr–de Sitter spacetimes according to the existence of stable circular
orbits of test particles in the equatorial plane. Dashed curve separates regions of black holes (BH) and
naked singularities (NS), full curves separate spacetimes admitting either both families (±) of stable
circular orbits or the plus-family (+) only or even no (0) stable circular orbits. For large values of
a2 both the full lines tend to the a2-axis. Shaded region corresponds to the naked-singularity space-
times admitting counterrotating stable plus-family orbits, dashed-dotted curve forms the boundary
of subregion where these counterrotating stable plus-family orbits possess negative total energy (the
constant of motion connected with the existence of timelike Killing vector field in the Kerr–de Sitter
spacetime). (Taken from Slaný and Stuchlík, 2005.)

whereΩK = 0. Note that the relation (21) for the static radius is independent of the rotation
parameter a and coincides with the formula for the static radius at the Schwarzschild–
de Sitter spacetimes. Direction of the circular geodesics can be determined from the point
of view of LNRFmoving in the equatorial plane with the angular velocity

ΩLNRF = a(r2 + a2 −∆r )

(r2 + a2)2 − a2∆r
. (22)

Orbits withΩ > ΩLNRF orΩ < ΩLNRF are called the corotating or the counterrotating,
respectively.
In the black-hole spacetimes, all stable plus-family (minus-family) orbits are corotating

(counterrotating) relative to the LNRF, whereas in the naked-singularity spacetimes with
a rotational parameter low enough, in accordance with the Kerr case (Stuchlík, 1980),
stable plus-family orbits lying near the ring singularity become counterrotating relative to
the LNRF. More precisely, such orbits can exist in specifically chosen naked-singularity
spacetimes with parameters 1 < a2 < a2

cL
.= 2.4406 and 0 < y < yc(ms+)

.= 0.06886
(shaded region in Fig. 1). Moreover, a constant of motion E+, connected with the station-
arity of the geometry and possessing a physical meaning of specific energy of a particle
on such an orbit, can be negative for the counterrotating plus-family orbits in the naked-
singularity spacetimes with specifically chosen rotational parameter 1 < a2 < a2

cE
.= 1.47

(the subregionwith dashed-dotted boundary in Fig. 1) (see Stuchlík and Slaný, 2004b). All
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stable minus-family circular orbits are counterrotating from the point of view of LNRF in
all naked-singularity spacetimes.
Discussion on stability of circular orbits against radial perturbations enables to divide the

parametric Kerr–de Sitter space (a2, y) into six regions according to the existence of stable
circular orbits of both families (Stuchlík and Slaný, 2004b). The result is presented in Fig. 1
where the abbreviations BH and NS denote the black-hole and naked-singularity regions,
respectively, the signs (+) and (−) correspond to the family of circular orbits which can be
stable in a given region, and (0) says that no stable circular orbits are possible in the region.

4 EQUIPOTENTIAL SURFACES

The potential W (r, θ) in the Kerr–de Sitter background is given by the formulae

W (r, θ) = ln
[
ρ2

I 2
∆r∆θ sin2 θ

∆θ (r2 + a2 − aℓ)2 sin2 θ −∆r (ℓ− a sin2 θ)2

]1/2

. (23)

All relevant properties of the equipotential surfaces are described by the behaviour of the
potential in the equatorial plane

W (r, θ = π/2) = ln
[

r2

I 2
∆r

(r2 + a2 − aℓ)2 −∆r (ℓ− a)2

]1/2

. (24)

There are two reality conditions of the function (24), namely

∆r ≥ 0 , (25)
(r2 + a2 − aℓ)2 −∆r (ℓ− a)2 > 0 . (26)

Condition (25) can be rewritten into the relation y ≤ yh(r; a) which is satisfied in the
whole stationary part of the naked-singularity background, 0 < r < rc, between the ring
singularity and the cosmological horizon. The second reality condition (26) is connected
with a limit given by the photon motion, since it implies the inequality ℓph− < ℓ < ℓph+
where

ℓph±(r; a, y) = a + r2

a ± √
∆r

(27)

correspond to the effective potentials of the photon geodesic motion (see Stuchlík and
Hledík, 2000 for an alternative definition).
The local extrema of the function W (r, θ = π/2) lie at those radii where the specific

angularmomentum coincideswith the specific angularmomentum of test particlesmoving
on the geodetical (Keplerian) circular orbits, i.e., where

ℓ = ℓK±(r; a, y) ≡ ± (r2 + a2)(1 − yr3)1/2 ∓ ar1/2[2 + r(r2 + a2)y]
r3/2[1 − (r2 + a2)y] − 2r1/2 ± a(1 − yr3)1/2 . (28)

Those extrema are the only local extrema of the function W (r, θ).
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Figure 2. Keplerian specific angular momentum and the effective potential of the photon geodesic
motion in some appropriately chosen Kerr–de Sitter naked-singularity spacetimes admitting stable
circular geodesics of the both families. Behaviour of the functions ℓK+(r; a, y), ℓK−(r; a, y),
ℓph+(r; a, y) and ℓph−(r; a, y) is described by the solid, dashed, dashed-dotted and dotted curves,
respectively. The vertical solid and dotted straight lines correspond to the asymptotes of ℓK+(r; a, y)

and ℓph−(r; a, y), respectively. The rising (descending) part(s) of ℓK+ and the descending (rising)
part(s) of ℓK− correspond to the stable (unstable) orbits. The local extrema of the functions ℓK±
determine the specific angularmomentumof marginally stable orbits – the inner and the outer, ℓms(i)
and ℓms(o), respectively. The local maximum of ℓph− determines the impact parameter of the photon
circular geodesic, ℓph(c). (a) y = 10−6, a2 = 1.05, (b) y = 10−6, a2 = 1.15, (c) y = 10−7,
a2 = 1.22, (d) y = 10−7, a2 = 1.3, (e) y = 10−6, a2 = 5, (f) y = 10−6, a2 = 64. (Taken from
Slaný and Stuchlík, 2005.)

We start discussion on the equilibrium configurations of perfect fluid in the naked-
singularity backgrounds with spacetimes of the class NS(±) allowing stable circular orbits
of the both families. The curves of Keplerian angular momentum ℓK±(r; a, y) possess two
local extrema corresponding to the inner and the outer marginally stable obit ℓms(i) and
ℓms(o), respectively; the rising parts of ℓK+(r; a, y) and the descending part of ℓK−(r; a, y)

determine stable circular orbits (Fig. 2). In naked-singularity spacetimeswith the rotational
parameter low enough to admit stable negative-energy orbits, the curve of ℓK+ (r; a, y) con-
tains two points of discontinuity corresponding to the zero-energy orbits (Figs 2a,b). In
naked-singularity spacetimes where the innermost stable plus-family orbits are still coun-
terrotating but correspond to the states with E > 0, the local minimum of the function
ℓK+(r; a, y) lies in negative values of ℓ (Figs 2c,d). Behaviour of the function ℓK+(r; a, y)

in remaining naked-singularity spacetimes (Figs 2e,f), and behaviour of Keplerian angular
momentum for the minus-family orbits ℓK−(r; a, y) is similar to their behaviour above the
outer black-hole horizon in theKerr–deSitter black-hole spacetimes allowing stable circular
orbits of given families (Stuchlík and Slaný, 2004a; Slaný and Stuchlík, 2005).
In naked-singularity spacetimes of the class NS(+) containing stable circular orbits of

the plus-family only, a special subset of spacetimes with sufficiently small values of the



Perfect fluid tori in the Kerr–de Sitter naked singularity backgrounds 177

0.6 1 1.5
r

2

3

4

5

6

l
K
,
l
p
h

Figure 3. Keplerian specific angular momentum and the effective potential of the photon geodesic
motion in the Kerr–de Sitter naked-singularity spacetime (y = 0.061, a2 = 1.24) admitting stable
circular geodesics of the plus-family with negative specific energy (E+ < 0) only. Behaviour of
the functions ℓK+(r; a, y), ℓK−(r; a, y), ℓph+(r; a, y) and ℓph−(r; a, y) is described by the solid,
dashed, dashed-dotted and dotted curves, respectively. The rising part of ℓK+ corresponds to the
only stable circular orbits. The local extrema of the function ℓK+ determine the specific angular
momentum of the inner and the outer marginally stable orbit, ℓms(i)+ and ℓms(o)+, respectively. The
local maximum of ℓph− determines the impact parameter of the photon circular geodesic, ℓph(c).
(Taken from Slaný and Stuchlík, 2005.)

rotational parameter a and sufficiently large values of the cosmological parameter y exists,
in which all stable orbits in the equatorial plane are counterrotating with negative specific
energy being located between the ring singularity and the photon orbit. Corresponding
behaviour of the functions ℓK±(r; a, y) and ℓph±(r; a, y) is presented in Fig. 3.
In all of the naked-singularity spacetimes, minus-family photon circular orbits exist

only,3 corresponding to the localmaximum ℓph(c) of the function ℓph−(r; a, y); the function
ℓph+(r; a, y) has no local extrema.
In most of the naked-singularity spacetimes, the necessary condition for the existence

of stationary tori is the same as in the black-hole spacetimes, i.e., the specific angular
momentum has to be chosen between the values of Keplerian angular momentum on the
inner and the outer marginally stable orbits, ℓ ∈ (ℓms(i), ℓms(o)), of a given family, however,
the exceptions exist concerning theplus-family discs innaked-singularity backgroundswith
the rotational parameter low enough to admit counterrotating stable plus-family circular
geodesics.
An interplay between the functions ℓK±(r; a, y) and ℓph±(r; a, y) reveals a varied set

of possible stationary disc-like configurations. First we shall consider naked-singularity
spacetimes of the classNS(±); this enables to cover almost all possible toroidal equilibrium
configurations of perfect fluid. Next we shall consider the spacetime of the class NS(+), in
which all stable orbits are negative-energy counterrotating ones.

3 A comprehensive analysis of the photon geodesic motion in general Kerr–Newman–de Sitter background can
be found in Stuchlík andHledík (2000).
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(1) Naked-singularity spacetimes with a rotational parameter low enough to admit plus-
family stable circular orbits with E < 0, where ℓms(i)+ < ℓms(o)+ (Fig. 2a).
(i) ℓ > ℓms(o)+ Two free-particle circular orbits exist in a given disc; the inner one is
unstable and the outer one is stable corresponding to the inner cusp of the equipotential
surfaces and to the centre of the disc, respectively. Both the orbits are the negative-energy
counterrotating ones.
(ii) ℓms(i)+ < ℓ < ℓms(o)+Twopairs of circular geodesics exist, separated bya forbidden
region for the occurrence of particles and fluid; boundary of the forbidden region is given
by the functions ℓph±(r; a, y). The inner pair is identical with the one described in the
case (1)(i). The outer pair contains the inner–stable orbit and the outer–unstable one
corresponding to the centre of the second disc and to the outer cusp of the equipotential
surfaces, respectively. Both the orbits are corotating.
(iii) a < ℓ < ℓms(i)+ Two corotating circular geodesics with properties identical to the
second pair of the previous case (1)(ii) exist.
(iv) ℓms(i)− < ℓ < a In a given disc, three circular geodesics exist. The innermost and
the outermost ones are unstable corresponding to the inner and the outer cusp of the
equipotential surfaces, respectively, themiddle one is stable determining the centre of the
disc. In dependence on the sign of ℓ these orbits are corotating (ℓ > 0) or counterrotating
(ℓ < 0).
(v) ℓms(o)− < ℓph(c) < ℓ < ℓms(i)− Five circular geodesics exist for the given angular
momentum distribution. Counted in direction from the singularity, the second one and
the fourthone are stable corresponding to twocentres of the configuration, the remaining
ones are unstable corresponding to the cusps. All circular geodesics counterrotate the
ring singularity. In fact, the configuration consists of two counterrotating stationary
tori. If ℓph(c) < ℓms(o)−, such a configuration occurs for the whole range ℓms(o)− < ℓ <

ℓms(i)−.
(vi) ℓms(o)− < ℓ < ℓph(c) In such a configuration, two pairs of counterrotating circular
geodesics exist separated by a forbidden region for the occurrence of particles and fluid;
now, theboundaryof the forbidden region is givenby the function ℓph−(r; a, y)only. This
situation is similar to the case (1)(ii), however, the orbits with E > 0 are constituting the
inner pair now. If ℓph(c) < ℓms(o)−, such a configuration does not exist.
(vii) ℓ < ℓms(o)− This situation is identical to the case (1)(i) with one exception: the
circular geodesics correspond to states with E > 0.

(2) Naked-singularity spacetimes with a rotational parameter low enough to admit plus-
family stable circular orbits with E < 0, where ℓms(i)+ > ℓms(o)+ (Fig. 2b). With the
exception of the case (1)(ii) all the previously mentioned cases (1)(i), (1)(iii)–(1)(vii) are
possible.
(3) Naked-singularity spacetimes admitting stable counterrotating plus-family orbitswith
E > 0, where ℓms(o)− < ℓms(i)+ < ℓms(i)− (Fig. 2c). From the casesmentioned above, only
the cases (1)(iii)–(1)(vi) are possible here and, in addition, two new ones arise:
(i) ℓms(o)− < ℓ < ℓms(i)+ < ℓph(c) Two circular geodesics exist in a given disc; the
inner one is stable and the outer one is unstable corresponding to the centre of the disc
and to the outer cusp of the equipotential surfaces, respectively. Both the orbits are the
counterrotating ones and the disc is separated from the ring singularity by the forbidden
region for the occurrence of matter determined by the photon potential.



Perfect fluid tori in the Kerr–de Sitter naked singularity backgrounds 179

(ii) ℓms(o)− < ℓph(c) < ℓ < ℓms(i)+ In a given disc, three circular geodesics exist. The
innermost and the outermost ones are unstable corresponding to the inner and the outer
cusps of the equipotential surfaces, respectively, the middle one is stable determining the
centre of the disc. All the orbits are the counterrotating ones. The same situation occurs
when ℓph(c) < ℓms(o)− < ℓ < ℓms(i)+.

(4) Naked-singularity spacetimes admitting stable counterrotating plus-family orbitswith
E > 0, where ℓms(i)− < ℓms(i)+ < 0 (Fig. 2d). The cases (1)(iii), (1)(iv), (3)(i), (3)(ii)
could occur in such a spacetime. Moreover, if ℓph(c) < ℓms(o)− the case (3)(i) is impossible.
(5) Naked-singularity spacetimes admitting corotating stable plus-family orbits4 where
ℓms(o)+ > a (Fig. 2e). The same situation as in (4) with one exception: the case (1)(iv) can
be the corotating only.
(6) Naked-singularity spacetimes where ℓms(o)+ < a (Fig. 2f). Just two possibilities,
the corotating one (1)(iv) and its counterrotating analogy (3)(ii), could occur in such a
spacetime.
(7) naked-singularity spacetimes of the class NS(+), in which all stable orbits are coun-
terrotating with E < 0 (Fig. 3).
(i) ℓms(i)+ < ℓph(c) < ℓ < ℓms(o)+ The situation is similar to the case (1)(iv) but all
three geodetical orbits are counterrotating only.
(ii) ℓms(i)+ < ℓ < ℓph(c) The situation is similar to the case (1)(i). If ℓph(c) < ℓms(i)+,
such a configuration does not exist.

The presented analysis gives some insight into the behaviour of the potential W (r, θ) in
the naked-singularity backgrounds. In effort to cover up all the possible toroidal config-
urations, we present in Fig. 4, where the Kerr–Schild coordinate x instead of the Boyer–
Lindquist coordinate r is used5, the behaviour of the function W (r, θ = π/2) in appropri-
ately chosen spacetimes (each of them has been already discussed in terms of behaviour of
theKeplerian angularmomentum, see Figs 2 and 3) and only for the values of specific angu-
lar momentum ℓ enabling the existence of stationary discs. The local maxima correspond
to the cusps of the equipotential surfaces and the local minima correspond to the centres
of the discs. We can see that both the accretion discs (Figs 4a,d,e,j,k,m,p,q,s) and the ex-
cretion ones (Figs 4c,f,l,o,r) could exist in naked-singularity backgrounds too. Moreover,
some naked-singularity backgrounds admit the configurations with two discs (Figs 4b,g–
i,n). The inner disc is always a counterrotating accretion disc but the outer accretion or
excretion disc is corotating in some cases, and counterrotating in the other cases. Region
between the discs either contains the forbidden region for the occurrence of the fluid given
by the photon potential through the relation ℓ = ℓph± (Figs 4b,n), or can be filled by an
accretion flow from the outer accretion disc (Figs 4g,h), or corresponds to a non-stationary
outer part of the inner accretion disc (Fig. 4i). In the cases where both the accretion and
the excretion discs are possible, a limiting value of the parameter ℓ separating the accretion

4 The counterrotating ones belong to theminus-family only.
5 Relationbetween theBoyer–Lindquist coordinates r, θ and theKerr–Schild coordinates x, y, z is given through
the expressions: x2 + y2 = (r2 + a2) sin2 θ , z = r cos θ indicating that in the equatorial plane (θ = π/2) and for
y = 0 the Kerr–Schild coordinate x = ±(r2 + a2)1/2.
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Figure 4.Behaviour of the potential W (r,θ = π/2) in the appro-
priately chosen Kerr–de Sitter naked-singularity backgrounds.
The values of constant specific angular momentum ℓ were
chosen to cover up all the possible disc-like configurations in
naked-singularity backgrounds and are referred to the discussion
presented above. A region in between the non-solid vertical lines,
determined by the conditions ℓ = ℓph+(r; a, y) (dashed-dotted
lines) and ℓ = ℓph−(r; a, y) (dotted lines), is the “forbidden

region.” (a) y = 10−6, a2 = 1.05, ℓ = 8; ℓ ∈ (1)(i) case. (b) y = 10−6, a2 = 1.05, ℓ = 3.5;
ℓ ∈ (1)(ii) case. (c) y = 10−6, a2 = 1.05, ℓ = 2.5; ℓ ∈ (1)(iii) case. (d) y = 10−6, a2 = 1.05,
ℓ = 0.5; ℓ ∈ (1)(iv) case, ℓ < ℓmb+. (e) y = 10−6, a2 = 1.05, ℓ .= 0.84193; ℓ ∈ (1)(iv) case,
ℓ = ℓmb+. (f) y = 10−6, a2 = 1.05, ℓ = 0.9; ℓ ∈ (1)(iv) case, ℓ > ℓmb+. (g) y = 10−6, a2 = 1.05,
ℓ = −4.65; ℓ ∈ (1)(v) case, ℓ > ℓmb−. (h) y = 10−6, a2 = 1.05, ℓ .= −4.71940; ℓ ∈ (1)(v) case,
ℓ = ℓmb−. (i) y = 10−6, a2 = 1.05, ℓ = −4.85; ℓ ∈ (1)(v) case, ℓ < ℓmb−. (j) y = 10−6, a2 = 5,
ℓ = −5.3; ℓ ∈ (3)(ii) case, ℓ > ℓmb−. (k) y = 10−6, a2 = 5, ℓ .= −5.38545; ℓ ∈ (3)(ii) case,
ℓ = ℓmb−. (l) y = 10−6, a2 = 5, ℓ = −5.5; ℓ ∈ (3)(ii) case, ℓ < ℓmb−. (m) y = 10−6, a2 = 1.05,
ℓ = −8; ℓ ∈ (1)(vii) case. (n) y = 10−7, a2 = 1.22, ℓ = −7.5; ℓ ∈ (1)(vi) case. (o) y = 10−7,
a2 = 1.22, ℓ = −9; ℓ ∈ (3)(i) case. (p) y = 0.061, a2 = 1.24, ℓ = 4.1; ℓ ∈ (7)(i) case, ℓ < ℓmb+.
(q) y = 0.061, a2 = 1.24, ℓ .= 4.25561; ℓ ∈ (7)(i) case, ℓ = ℓmb+. (r) y = 0.061, a2 = 1.24,
ℓ = 4.35; ℓ ∈ (7)(i) case, ℓ > ℓmb+. (s) y = 0.061, a2 = 1.24, ℓ = 3.7; ℓ ∈ (7)(ii) case. (Taken from
Slaný and Stuchlík, 2005.)

discs from the excretion ones corresponds to the specific angular momentum of a particle
on the marginally bound circular geodesic, ℓmb.
Meridional sections through the equipotential surfaces of the equilibrium configurations

just mentioned are depicted in Fig. 5. Like in the black-hole backgrounds, the boundary
of the shaded regions (corresponding to stationary discs) is formed by the critical closed
equipotential surface self-crossing in the cusp(s).

The case (a) corresponds to the counterrotating accretion disc with well-defined inner
edge on the position of the inner cusp; the equipotential surface with the outer cusp does
not exist. Specific energy of the fluid elements in the centre and on the inner edge (where
the fluid follows the geodesicmotion) is negative andwe can expect that every fluid element
in the disc has energy E < 0. Moreover, no open equipotential surface going out from the
singularity and corresponding to the outflow of matter in the form of “jets” is connected
with such a configuration.
The case (b) contains two discs; the inner one is the counterrotating negative-energy

accretion disc with the critical equipotential surface self-crossing in the inner cusp and the
outer one corresponds to the corotating excretion discwith the critical equipotential surface
self-crossing in the outer cusp. Region between the discs is the “forbidden region” and
no matter can escape from the inner disc to form “jets,” as seen from the behaviour of the
equipotential surfaces.
The case (c) corresponds to the corotating excretion disc with the critical equipotential

surface self-crossing in the outer cusp. The structure of the open equipotential surfaces
together with the existence of the “forbidden region” near the ring singularity disables the
possibility of infall of matter from the disc onto the singularity.



182 P. Slaný and Z. Stuchlík

0.6 0.7 0.8 0.9 1 1.1 1.2
sinh!1!"#################r2 " a2 sin Θ$

!0.75

!0.5

!0.25

0

0.25

0.5

0.75

s
i
n
h
!
1
!rc

o
s
Θ
$

(a)

1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

0.9 0.95 1 1.05 1.1 1.15
sinh!1!"#################r2 " a2 sin Θ$

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

s
i
n
h
!
1
!rc

o
s
Θ
$

(b)

1 2 3 4 5 6
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

(c)

0 1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

0 0.25 0.5 0.75 1 1.25 1.5
sinh!1!"#################r2 " a2 sin Θ$

!1.5

!1

!0.5

0

0.5

1

1.5

s
i
n
h
!
1
!rc

o
s
Θ
$

(d)

1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

(e)

1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

(f)

1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

0.2 0.4 0.6 0.8 1 1.2
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(g)

1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

0.4 0.6 0.8 1 1.2
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(h)

1 2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

0.4 0.6 0.8 1 1.2
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(i)

2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

(j)

2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

(k)

2 3 4 5
sinh!1!"#################r2 " a2 sin Θ$

!6

!4

!2

0

2

4

6

s
i
n
h
!
1
!rc

o
s
Θ
$

(l)

0.4 0.6 0.8 1 1.2
sinh!1!"#################r2 " a2 sin Θ$

!0.75

!0.5

!0.25

0

0.25

0.5

0.75

s
i
n
h
!
1
!rc

o
s
Θ
$

(m)

1 2 3 4 5 6
sinh!1!"#################r2 " a2 sin Θ$

!7.5

!5

!2.5

0

2.5

5

7.5

s
i
n
h
!
1
!rc

o
s
Θ
$

0.975 1.025 1.075 1.125
sinh!1!"#################r2 " a2 sin Θ$

!0.075

!0.05

!0.025

0

0.025

0.05

0.075

s
i
n
h
!
1
!rc

o
s
Θ
$

(n)

Continued on the next page.



Perfect fluid tori in the Kerr–de Sitter naked singularity backgrounds 183

1 2 3 4 5 6
sinh!1!"#################r2 " a2 sin Θ$

!7.5

!5

!2.5

0

2.5

5

7.5

s
i
n
h
!
1
!rc

o
s
Θ
$

(o)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(p)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(q)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(r)

0.9 1 1.1 1.2 1.3 1.4
sinh!1!"#################r2 " a2 sin Θ$

!1

!0.5

0

0.5

1

s
i
n
h
!
1
!rc

o
s
Θ
$

(s)

Figure 5. Equipotential surfaces (meridional sections) for the cases
described in Fig. 4. Shaded regions containing closed equipotential
surfaces correspond to the possible toroidal configurations; the last
closed surface (critical surface) is self-crossing in the cusp(s) which
naturally determines the edge(s) of a disc. TheKerr–Schild coordinates
together with the scale of axes were chosen to show clearly the whole
range of a disc including the ring singularity (the gray point on the
left in the equatorial plane) as well as the region near the static radius.
In the cases (b), (d), (g)–(i) and (n), the inner region near the ring
singularity is enlarged in the right figure. A detailed discussion of
depicted stationary configurations is presented in the text. (Taken from
Slaný and Stuchlík, 2005.)

Cases (d)–(f) correspond to the configurations well-known from the black-hole back-
grounds.
The case (d) represents the corotating accretion disc where the last closed equipotential

surface is self-crossing in the inner cusp. There is another critical surface self-crossing in
the outer cusp, but this surface is open. The fluid between the critical surfaces is not in
hydrostatic equilibrium and falls directly onto the singularity.
The case (e) corresponds to the corotating marginally bound accretion disc. The critical

equipotential surface contains two cusps; the inner/outer cusp determines the inner/outer
edge of the disc and the outflows of matter through the outer cusp as well as the infalls
through the inner cusp caused by a violation of hydrostatic equilibrium are possible.
The case (f) corresponds to the corotating excretion disc since the last closed equipoten-

tial surface contains the outer cusp in which the surface becomes open. The critical surface
with the inner cusp is open and the region between the critical surfaces is filled up by other
open surfaces disabling, in fact, accretion of matter onto the singularity.
Cases (g)–(i) contain two counterrotating discs and the region between them is not

forbidden for the occurrence of matter. The inner disc is always the accretion disc with the
inner cusp only; the critical equipotential surface is marginally closed and self-crossing in
this cusp.
In the case (g), the outer disc is the accretion disc as the marginally closed critical surface

with the inner cusp is present, but the open critical surface with the outer cusp also exists.
The matter from the outer disc as well as from the region between the critical surfaces
can flow through the inner cusp (after overfilling the critical surface) and a throat formed
by open equipotential surfaces onto the singularity. If some sufficiently strong dissipative
processes are present during such infall, the matter could fill the inner accretion disc.
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In the case (h), the outer disc is the marginally bound accretion disc where the boundary
is given by the critical surface with two cusps and the outflow of matter through the both
cusps is equally probable. Again, if the dissipative processes, present in the accretion flow,
efficiently drain the energy from the accreting matter, it could feed the inner accretion disc
instead of a direct infall through the throat onto the singularity.
In the case (i), the outer disc is the excretion disc and the outflow through the outer cusp

of the last closed (critical) surface is only possible. The critical equipotential surface with
the inner cusp is open and the region between the critical surfaces contains open surfaces
only.
Cases (j)–(l) represent the counterrotating analogy of the cases (d)–(f), the case (m) is

the plus-energy analogy of the case (a) and the cases (n), (o) are the fully counterrotating
analogy of the cases (b), (c), respectively.
Cases (p)–(s) have some common properties with the case (a), especially that the matter

following geodetical motion at the centre and in the cusp(s) of the potential possesses
negative energy (and we can expect that every fluid element in the disc has energy E < 0)
and that the configuration is imprisoned by a photon shell around the singularity. As a
consequence, no open equipotential surfaces corresponding to “jets” of matter from the
configuration into the outer space exist.
The case (p) corresponds to the counterrotating negative-energy accretion disc since the

last closed surface is self-crossing in the inner cusp. Another critical surface self-crossing in
the outer cusp is open.
The case (q) corresponds to the counterrotating negative-energy marginally bound ac-

cretion disc since the last closed surface is self-crossing in both the cusps.
The case (r) corresponds to the counterrotating negative-energy excretion disc; the last

closed surface is self-crossing in the outer cusp. Another critical surface self-crossing in the
inner cusp is open and there is no possibility for accretion onto the singularity.
The case (s) is very similar to the case (a), and also corresponds to the counterrotating

negative-energy accretion disc, since there is only one critical surface which is, moreover,
marginally closed and self-crossing in the inner cusp.

5 CONCLUDINGREMARKS

Influence of a repulsive cosmological constant, or equivalently a vacuum/dark energy, on
the structure of toroidal configurations of test perfect fluid orbiting theKerr–deSitter naked
singularities allowing, at least, stable circular orbits of the plus-family (0 < y < yc(ms+)

.=
0.06886) can be summarized in the following way. In naked-singularity backgrounds with
the rotational parameter a2 > a2

cL
.= 2.4406, or even for a2 > 27/16 .= 1.6875 (corres-

ponding to the Kerr limit, Stuchlík, 1980), if the cosmological parameter y is not very large,
typically y < 10−4, the situation is similar to those in the black-hole backgrounds (Stuchlík
and Slaný, 2004a; Slaný and Stuchlík, 2005):

(1) Stationary tori exist for the range of specific angular momentum ℓ between the
values corresponding to the specific angularmomenta of the inner and the outer marginally
stable circular orbit, ℓ ∈ (ℓms(i), ℓms(o)), as such values of ℓ enable the existence of closed
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equipotential surfaces. Moreover, the equipotential surface with the outer cusp always
exists.
(2) For ℓ ∈ (ℓms(i), ℓmb), where ℓmb denotes the specific angularmomentum ofmargin-

ally bound circular orbit, the last closed surface is self-crossing in the inner cusp and the
configuration corresponds to the accretion disc. Equipotential surface with the outer cusp
is open andmatter from the region between the critical surfaces contributes to the accretion
flow along the inner cusp. When the critical surface with the outer cusp is overfilled, an
outflowofmatter through the outer cusp begins to complement the accretion inflow, having
a capability to regulate the accretion.
(3) For ℓ ∈ (ℓmb, ℓms(o)), the last closed surface is self-crossing in the outer cusp and the

configuration corresponds to the excretion disc. The equipotential surface with the inner
cusp, if such a surface exists, is open and separated from the critical surface with the outer
cusp by additional open surfaceswhich, in fact, disable accretion onto the naked singularity.
(4) For ℓ = ℓmb, the last closed surface is self-crossing in both cusps and the configura-

tion corresponds to the marginally bound accretion disc.

In naked-singularity backgrounds with the rotational parameter low enough, especially
for a2 < a2

cE
.= 1.47, and typically for a2 < 32/27 .= 1.1852 (corresponding to the Kerr

limit (Stuchlík, 1980)whichholds sufficientlywell for y < 10−4), exceptions and additional
possibilities exist:

(1) If ℓms(i)+ < ℓms(o)+, stationary discs exist for an arbitrary value of the specific
angular momentum ℓ. Spacetimes where ℓms(i)+ > ℓms(o)+ admit no stationary discs for
the specific angular momentum ℓ satisfying the relation ℓms(i)+ > ℓ > ℓms(o)+. For the
remaining values of ℓ, the stationary configurations always exist.
(2) Moreover, for ℓ > ℓms(o)+ > ℓms(i)+ or ℓ > ℓms(i)+ > ℓms(o)+, the configuration

corresponds to the counterrotating accretion disc with matter in states with E < 0. The
disc is isolated from the outer space by the region without any equipotential surfaces.
Consequently, no open equipotentials describing the jets are present. The inner parts
including the ring singularity are screened by the disc itself. For ℓ < ℓms(o)− < ℓph(c) or
ℓ < ℓph(c) < ℓms(o)−, the configuration corresponds to a counterrotating accretion disc
with matter in states with E > 0.
(3) In the part of naked-singularity spacetimes of the classNS(+)with sufficiently large

values of the cosmological parameter y (very close to yc(ms+)), in which all stable plus-
family circular orbits are counterrotating with negative specific energy, the stationary tori
exist for ℓ ∈ (ℓms(i)+, ℓms(o)+). Together with closed equipotential surfaces the equipoten-
tial surface with the inner cusp always exists. We can expect that all fluid elements in the
torus have negative energy (E < 0). For ℓms(i)+ < ℓ < ℓmb+ the configuration corres-
ponds to the counterrotating negative-energy accretion disc, for ℓmb+ < ℓ < ℓms(o)+ the
configuration corresponds to the counterrotating negative-energy excretion disc, and for
ℓ = ℓmb+ the configuration corresponds to the counterrotating negative-energymarginally
bound accretion disc with both accretion and excretion outflows from the torus. Since the
outer marginally bound circular orbit in the equatorial plane is located under the photon
circular orbit, rmb(o)+ < rph(c), the whole torus is cut off from the outer space by the photon
shell.
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(4) Special values of the specific angular momentum ℓ = const can lead to stationary
configurations with two discs. The inner one is always the counterrotating accretion disc
(for ℓms(o)+ > ℓ > ℓms(i)+ > a matter in the disc is in the states with E < 0; otherwise the
matter is in the stateswith E > 0), but the outer disc canbe, in dependenceon the value of ℓ,
the corotating or the counterrotating excretion disc, aswell as the counterrotating accretion
disc. The region between the discs can be a region forbidden for matter, if ℓ = const
has common points with any of the functions ℓph±(r; a, y). However, in the case of two
counterrotating accretion discs, the region between the discs is filled by the matter falling
from the outer disc through its inner cusp onto the ring singularity. If, in addition, some
efficient dissipative processes are present in the accretion flow from the outer disc, the
matter could fill the inner accretion disc, rather than to be directly falling onto the ring
singularity. If the inner accretion disc has already been created, it could shield the ring
singularity from direct infall of accretingmaterial coming from the outer disc.
(5) The potential difference between the boundary and the centre of the torus, ∆W =

Wcrit − Wcenter, grows unlimitedly,∆W → ∞, for the plus-family marginally bound accre-
tion discs orbiting a naked singularity approaching the extreme-hole state, independently
of the cosmological parameter y < yc(KdS).
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Excitation of oscillations by a small
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ABSTRACT
Properties of the gravitational perturbation force caused by a small inhomogeneity
locatedon the surface of a neutron star are studied. The oscillating perturbation force
in both the accretion disc rotating around the star and in the interior of a differentially
rotating star is determined. Both vertical and radial components of the force are
given and their relations are discussed. The frequency of the oscillations is given
by the difference of the frequency of the rotation of the star surface, and the orbital
frequency in the disc (the frequency of rotation ofmatter in the star interior). Outside
the star, in the disc, the vertical and radial forces vary with the same phase. Inside
a differentially rotating star, the variations of the forces are in the opposite phase in
an internal part of the star, while they are in the same phase in an external layer of
the star. In an intermediate part of the star, an additional oscillatory change appears.
Is is shown that the anharmonic character of the oscillatory forces is limited to the
seventh non-negligible harmonics. For completeness, we present the perturbation
force generatedby a symmetric accretion column.

1 INTRODUCTION

Quasiperiodic oscillations (QPOs) of X-ray brightness have been observed in a number of
binary systems containingneutron stars (see vanderKlis, 2000 for a review) andblackholes
(McClintock andRemillard, 2004). In the QPOs the spectrum often shows twin peaks with
frequencies correlated to theX-ray intensity. The ratio of the twinpeak frequencies observed
in black-hole systems is exactly, or almost exactly 3 : 2 (Abramowicz et al., 2004b), while
in the neutron star systems the ratio is concentrated around 3 : 2 within an interval much
wider than in the black-hole systems, and even some anticorrelation effect between sources
has been recognized quite recently by Abramowicz et al. (2005b). Therefore, the resonant
oscillatory model (Abramowicz and Kluźniak, 2001) seems to be the most promising in
explaining QPOs in both black-hole and neutron star binary systems (Abramowicz and
Kluźniak, 2004) and even in SgrA∗ (Török, 2005a,b). A simultaneous occurrence of the
resonant phenomena (parametric and forced) at different radii of the accretion disc enables,
in some special cases, exact prediction of the black hole spin due to the corresponding
triples of observed frequencies with special rational ratios (Stuchlík and Török, 2005).
However, some other possibilities, as the warped disc oscillations (Kato and Fukue, 1980;

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Kato, 2004b,a) or simple p-mode oscillations of fluid tori (Rezzolla, 2004) still cannot be
excluded.
It was shown that both the parametric resonance and forced resonance with beat (com-

binational) frequencies between vertical and radial disc oscillations at the epicyclic frequen-
cies can well explain the observed data for all of the microquasars with twin peak QPOs
that were considered so far (Török et al., 2005; Török and Stuchlík, 2005); moreover, the
parametric resonance predictions for the values of the black hole spin and its relation to
the frequency-mass dependence are in a good agreement with the observational best-fit line
(McClintock and Remillard, 2004; Abramowicz et al., 2004a). The parametric resonance
has been treated in a non-linear regime using multi-scale approach (Horák et al., 2004;
Horák, 2004). The relation between the magnitude and frequency ratio has been derived in
this approach which could be a good starting point for explaining the anticorrelation effect
observed in the case of QPOs in neutron star binary systems (Abramowicz et al., 2005b,a).
In order to start up the oscillations and the resonance phenomena, it is necessary to fulfil

some initial conditions. The conditions should be of both internal and external origin, and,
usually, one could expect an interplay of both internal and external “ignition”mechanisms.
The external mechanism for excitation of the oscillations could come from the gravitational
perturbation force caused by a “mountain” on the surface of the neutron star. We shall
consider influence of such a mountain in an accretion disc orbiting the neutron star in its
equatorial plane. For completeness, behaviour of the perturbational force of the mountain
will be determined also in the interior of the star – for simplicity we focus our attention
to the forces acting in the equatorial plane, again. Such a study could be interesting in
connection to generation of the oscillation modes and gravitational waves in the interior of
a differentially rotating neutron star.
The frequency of the force caused by the gravitational surface perturbation of a homo-

geneous neutron star is given by the difference of the orbital frequency of the disc and the
neutron star surface (Petri, 2005). In the interior of the neutron star, the force can be rel-
evant, if the star is rotating differentially. Then, basically, the frequency of the perturbing
force is given by the difference of the frequencies in the surface of the star and in its interior,
but some additional frequencies could arise inside the star, as we shall see. In Section 2,
we determine both the vertical and radial component of the gravitational force given by an
isolated “mountain” located on the surface of the neutron star and acting at a given radius
of the accretion disc rotating around the neutron star or inside the differentially rotating
neutron star, while in Section 3, analogous formulae for the symmetric accretion column
are derived. Concluding remarks are presented in Section 4. For simplicity, we use here
purely Newtonian approach in treating the gravitational perturbation force.

2 GRAVITATIONALFORCEOFAN ISOLATEDMOUNTAIN

In order to obtain an intuitional understanding of the possible external excitation mechan-
isms of the accretion discs oscillations,we determine both the vertical and radial component
of the gravitational force generated by an isolatedmountain on the surface of a neutron star,
acting at a given radius of the accretion disc rotating around the neutron star. Further, we
shall determine the oscillatory parts of the force.
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We assume a homogenous and isotropic neutron star of mass MA and radius RA rotating
around its rotation axis with angular velocityΩA, with the symmetry plane of the accretion
disc being located at the plane orthogonal to the rotation axis, as can be expected up to radii
R ∼ 103 RA because of the Bardeen–Petterson effect (Bardeen and Petterson, 1975).
A mountain generating the anisotropic gravitational perturbative force is assumed to be

a point-like source of mass m, located on the surface of the star at a position determined by
the latitudinal angle θA.
We use the spherical coordinates (R, θ,ϕ), the origin of the coordinate system coincides

with the centre of the neutron star. The angular velocity profile of the accretion disc
is denoted by Ωd(r). In the case of thin (or slim) discs, the profile is Keplerian, i.e.,
Ωd(r) = ΩK(r) (Novikov and Thorne, 1973; Abramowicz et al., 1992). For thick discs, the
angular velocity profile is determined by the distribution of the specific angularmomentum
(Kozłowski et al., 1978; Jaroszyński et al., 1980). The angular velocity inside the star is
assumed in a general formΩi = Ωi(r, θ).
We shall determine the radial and vertical components of the gravitational force of the

perturbative sources inpurelyNewtonianway. For simplicity, the forcewill be determined in
the equatorial plane, i.e., in the symmetry plane of the disc, which is surely quite correct for
the thin, Keplerian discs, and gives good estimates for thick (slim) discs and in the interior
of the star. The time evolution of the perturbing force components will be determined for
a fixed point on the rotating accretion disc which will be characterized by the coordinates
(R, θ = π/2,ϕ = Ωdt), with the natural restriction put on the radial coordinate RA <
R < 103 RA. In the interior of the star, we again consider the equatorial plane (θ = π/2)
and 0 < R < RA. We give both the total forces and their oscillatory parts.
Here, and henceforth, we shall consider the force acting on a unit mass element of the

accretion disc (or the neutron star) located at a given radius R of symmetry plane of the
disc, which is corotating with the disc (or the neutron star). Using the purely Newtonian
approach, we obtain the time dependent vertical component of the perturbing gravitational
force to be given by the relation

FAV(t) = Gm
R2

A

(
RA

R

)3
cos θA

[
1 − 2

RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

, (1)

while the time dependent radial component of the force is given by

FAR(t) = Gm
R2

A

(
RA

R

)2 (
1 − RA

R
sin θA cosωAt

)

×
[

1 − 2
RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

, (2)

where the angular velocity is given by

ωA ≡ |ΩA −Ωd| (3)

in the disc, and by

ωA ≡ |ΩA −Ωi(R, θ = π/2)| (4)
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inside the neutron star. The forces are oscillatory, but the oscillations have an anharmonic
character. Thismeans that in the Fourier analysiswe could find some additional frequencies
related toωA.
Introducing variable x ≡ RA/R, the local extrema of the oscillating forces are given by

the relations:

∂FAV

∂t
= Gm

R2
A

3x4 sin θA cos θA sinωAt
(1 − 2x sin θA cosωAt + x2)5/2 = 0 , (5)

∂FAR

∂t
= Gm

R2
A

x3(1 − 2x sin θA cosωAt + x2)1/2

(
1 − 2x sin θA cosωAt + x2

)5/2

× ωA sin θA sinωAt (−2 + x sin θA cosωAt + x2) . (6)

Clearly, the local extreme points of both FV and FR are given in the expected standard way
by the condition independent of the radial position and θA

sinωAt = 0 . (7)

However, for the radial force FR, there are additional extrema depending on the radial
position and θA by the relation

cosωAt = 2 − x2

x sin θA
. (8)

Clearly, outside the neutron star, i.e., in the disc, where 0 < x < 1 (RA < R), these extrema
are irrelevant, but inside the star (x > 1), the extrema are relevant in the internal of x related
to the angle θA, through the inequality

−1 ≤ 2 − x2

x sin θA
≤ 1 . (9)

The behaviour of FV and FR is illustrated in Fig. 1 for x ∈ (0, 1), i.e., in the disc, and in Fig. 2
for x > 1, i.e., inside the neutron star (assuming ωA = const, i.e.,Ωi = const ̸= ΩA). It
should be noted that above the interval of x with additional extrema of the radial force FR,
the both forces FV and FR are varying in the same phase, while under the interval, in the
central part of the neutron star, the extremum of the radial force FR is shifted in half of the
period and the forces vary in the opposite phase. This behaviour of the radial component
of the perturbation force could imply interesting consequences in generating the oscillatory
modes of the star and related gravitational waves.
The vertical force oscillates around the mean value (given by cosωAt = 0)

FAV(mean) = Gm
R2

(
RA

R

)3
cos θA

[
1 +

(
RA

R

)2
]−3/2

(10)



Excitation of oscillations by an inhomogeneity on the surface of a NS 193

0.8

1.3

1.8

0 5 10 15 20

F A
R

ωAt
0.04

0.11

0.18

0 5 10 15 20

F A
V

ωAt

1

3

5

0 5 10 15 20

F A
R

ωAt

0.1

0.5

0.9

0 5 10 15 20

F A
V

ωAt

1

9

17

0 5 10 15 20

F A
R

ωAt

0

2.5

5

0 5 10 15 20

F A
V

ωAt

0

20

40

0 5 10 15 20

F A
R

ωAt

0

10

20

0 5 10 15 20

F A
V

ωAt

0

40

80

0 5 10 15 20

F A
R

ωAt

0

50

100

0 5 10 15 20

F A
V

ωAt

Figure 1.The oscillatory radial (left column) and vertical (right column) gravitational forces generated
by an inhomogeneity (amountain) located on the surface of a rotating neutron star, and acting outside
the star onto elements of an equatorial accretion disc. The mountain is assumed to be located at
θA = 45◦. The oscillatory forces (at R = 8 RA, 5 RA, 3 RA, 2 RA, 1.25 RA from top to bottom, full
curves) have generally an anharmonic character andare given at some typical radii in the vicinity of the
neutron star. They are compared to the behaviour of the forces at R = 10 RA (dashed curves), where
the oscillations approach harmonic character. Notice that the vertical and radial forces oscillations
aremutually in phasewhich does not changewhen approaching the surface R = RA from above.
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Figure 2.The oscillatory radial (left column) and vertical (right column) gravitational forces generated
by amountain on the surface of a differentially rotating neutron star, and acting inwards the star in its
equatorial plane. The mountain is assumed at θA = 45◦. The oscillatory forces have an anharmonic
character again. They are given at some typical radii (at R = RA/5, RA/2, RA/1.5, RA/1.2, RA/1.01
from top to bottom, full curves) and compared to the nearly harmonically oscillating forces at R =
RA/50 (dashed curves). Notice that the vertical and radial forces are mutually in opposite phase near
the centre (R ! RA sin θA), while in some intermediate interval of radii R ∼ RA sin θA, the character
of the radial force oscillations becomes more complex (see the cases of x = 1.5, 1.2). Further
approaching the surface from below (R " RA sin θA) leads to in-phase varying of both components,
although they retain strongly anharmonic character.
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Figure 3. The amplitude of the vertical oscillatory force in terms of the inverse radius x = RA/R
given for θA = 45◦. Outside the neutron star (RA/R < 1), the amplitude grows monotonically with
R descending, while inside the neutron star (RA/R > 1), the vertical amplitude reaches a maximum
given by θA.

1

1.1

1.2

0 π/4 π/2 3π/4 π

x e
V

θA

-1000

-750

-500

-250

0

250

500

750

1000

0 π/4 π/2 3π/4 π

A e
V

θA

Figure 4. The extrema of the amplitude of the oscillatory vertical force. Left panel: the radii xeV(θA).
Right panel: the related extremal values of AeV(θA). The positive and negative branches render the
direction of the vertical force.

with the frequencyωA and amplitude AV ≡ FAV(max) − FAV(mean) given by the relation

AV = Gm
R2

A

(
RA

R

)3
cos θA

⎧
⎨

⎩

[

1 − 2
RA

R
sin θA +

(
RA

R

)2
]−3/2

−
[

1 +
(

RA

R

)2
]−3/2

⎫
⎬

⎭ . (11)

The behaviour of the amplitude of the oscillatory vertical force AV(x, θA) is illustrated in
Fig. 3. The local extrema of the function AV(xeV, θA) are determined by the condition

x2 − 2 + x sin θA

x2 − 2
=
(

1 − 2x sin θA + x2

1 + x2

)5/2

. (12)
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The radii of the extrema xeV and of the related extremal values AeV are given in Fig. 4. The
radial force oscillates around the mean value

FAR(mean) = Gm
R2

A

(
RA

R

)2
[

1 +
(

RA

R

)2
]−3/2

(13)

with the frequencyωA and amplitude

AR = Gm
R2

A

(
RA

R

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − RA
R sin θA

[
1 − 2 RA

R sin θA +
(

RA
R

)2
]3/2 − 1

[
1 +

(
RA
R

)2
]3/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (14)

The behaviour of the amplitude of the oscillatory radial force AR(x, θA) varying with the
frequency ωA given by Eq. (7) is illustrated in Fig. 5. The local extrema of the function
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Figure 5. The amplitude of the radial oscillatory force in terms of the inverse radius x = RA/R
determined for θA = 45◦. The amplitude has at least one localmaximumoutside the neutron star and
it reaches a local minimumwith the zero value inside the star.
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AR(xeR, θA) are determined by the condition

x2 − 2 + x sin θA(4 − 3x sin θA)

x2 − 2
=
(

1 − 2x sin θA + x2

1 + x2

)5/2

. (15)

The special case of AR(xzR, θA) = 0 is determined by the condition

1 − x sin θA =
(

1 − 2x sin θA + x2

1 + x2

)3/2

. (16)

The radii of the extrema xeR, the zero radial amplitude xzR and of the related extremal values
AeR are given in Fig. 6.
In the case when we can assume R ≫ RA, we arrive at the simple formulae for both the

total force and the amplitude of the oscillatory force. The oscillations now have harmonic
character. There is

FAV(t) ∼ Gm
R2

A

(
RA

R

)3
cos θA

(
1 + 3

RA

R
sin θA cosωAt

)
, (17)

FAR(t) ∼ Gm
R2

A

(
RA

R

)2 (
1 + 2

RA

R
sin θA cosωAt

)
. (18)

The amplitude of the harmonically oscillating part of the forces reads

AV ∼ 3
Gm
R2

A

(
RA

R

)4
sin θA cos θA , (19)

AR ∼ 2
Gm
R2

A

(
RA

R

)3
sin θA . (20)

The shift of the anharmonic oscillation to the harmonic one can be directly seen in Fig. 1. Of
course, a similar shift occurs in the limit of R/RA → 0 (Fig. 2).

3 GRAVITATIONALFORCEOFASYMMETRICACCRETIONCOLUMN

Now, we assume two mountains located at the poles of the magnetic axis having the same
mass mD, with the angle between the axis and the equatorial plane θA. Clearly, we can use
the results obtained for the isolated mountain case and combine them properly. In fact, we
can use the simple relations

FDV(t) = FAaV(t) − FAbV(t) , FDR(t) = FAaR(t) + FAbR(t) , (21)

where FAaV, FAaR (FAbV, FAbR) give the vertical and radial forces of the mountain above
(below) the equatorial plane. The azimuthal angle in the expressions for the FAa and FAb
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forces is shifted by ϕ = π. Therefore, we arrive at the following results. The vertical force is
given by the relation

FDV(t) = GmD

R2
A

(
RA

R

)3
cos θA

⎧
⎨

⎩

[
1 − 2

RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

−

−
[

1 + 2
RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

⎫
⎬

⎭ , (22)

and the radial force is

FDR(t) = GmD

R2
A

(
RA

R

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − RA
R sin θA cosωAt

[
1 − 2 RA

R sin θA cosωAt +
(

RA
R

)2
]3/2 +

+ 1 + RA
R sin θA cosωAt

[
1 + 2 RA

R sin θA cosωAt +
(

RA
R

)2
]3/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (23)

These are, again, anharmonically oscillating forces, but frequency of the radial force is
doubled because of the symmetry of the accretion columns. Introducing variable x ≡
RA/R, the local extrema of the oscillating forces are given by the relations

∂FDV

∂t
= − GmD

R2
A

3x4ωA sin θA cos θA sinωAt

×
[
(1 − 2x cos θA cosωAt + x2)−5/2 + (1 + 2x cos θA cosωAt + x2)−5/2

]
, (24)

∂FDR

∂t
= GmD

R2
A

x3 cos θA sinωAt
[ −2 + x cos θA cosωAt + x2

(1 − 2x cos θA cosωAt + x2)5/2

+ 2 + x cos θA cosωAt + x2

(1 + 2x cos θA cosωAt + x2)5/2

]
. (25)

The vertical force oscillates around the mean value FDV(mean) = 0with frequencyωA and
amplitude

DV = GmD

R2
A

(
RA

R

)3
cos θA

⎧
⎨

⎩

[
1 − 2

RA

R
sin θA +

(
RA

R

)2
]−3/2

−

−
[

1 + 2
RA

R
sin θA +

(
RA

R

)2
]−3/2

⎫
⎬

⎭ . (26)
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Figure 7.The oscillatory radial (left column) and vertical (right column) gravitational forces generated
by two inhomogeneities (mountains) of equal masses located at the poles of the magnetic axis (θA =
45◦, 135◦, and ∆ϕA = 180◦) on the surface of a rotating neutron star, and acting outside the star
onto elements of an equatorial accretion disc. The oscillatory forces have generally only slightly
anharmonic character and are given at some typical radii in vicinity of the neutron star (at R =
8 RA, 5 RA, 3 RA, 2 RA, 1.25 RA from top to bottom, full curves). They are always compared to the
behaviour of the forces at R = 10 RA (dashed curves), where the oscillations approach harmonic
character. Notice the double frequency of the radial component compared to the vertical one, and that
the phase does not changewhen approaching the surface R = RA from above.
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Figure 8.The oscillatory radial (left column) and vertical (right column) gravitational forces generated
by two inhomogeneities (mountains) of equal masses located at the poles of the magnetic axis (θA =
45◦, 135◦, and∆ϕA = 180◦) on the surface of a differentially rotating neutron star, and acting inside
the star in its equatorial plane. The oscillatory forces have an anharmonic character again. They are
given at some typical radii (at R = RA/5, RA/2, RA/1.5, RA/1.2, RA/1.01 from top to bottom, full
curves) and compared to the nearly harmonically oscillating forces at R = RA/50 (dashed curves).
Notice the double frequency of the radial component compared to the vertical one. The phase of the
vertical component does not change when approaching the surface R = RA from below, while the
radial one changes its phase by π after passing the intermediate interval around R ∼ RA sin θA, in
which its character is rather complex.
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The radial force oscillates around the mean value

FDR(mean) = 2GmD

R2
A

(
RA

R

)2
[

1 +
(

RA

R

)2
]−3/2

(27)

with the frequencyωDR = 2ωA and the amplitude

DR = GmD

R2
A

(
RA

R

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − RA
R sin θA

[
1 − 2 RA

R sin θA +
(

RA
R

)2
]3/2 − 2

[
1 +

(
RA
R

)]3/2 +

+ 1 + RA
R sin θA

[
1 + 2 RA

R sin θA +
(

RA
R

)2
]3/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (28)

The behaviour of FDV and FDR is illustrated in Fig. 7 for x ∈ (0, 1), i.e., in the disc, and in
Fig. 8 for x > 1, i.e., inside the neutron star.
Under assumption RA/R ≪ 1, we obtain harmonically oscillating forces. The vertical

force is given in the form

FDV(t) ∼ 6
GmD

R2
A

(
RA

R

)4
sin θA cos θA cosωAt (29)

implying the amplitude of the oscillating force

DV ∼ 3
GmD

R2
A

(
RA

R

)4
sin 2θA . (30)

The radial force is given by the relation

FDR(t) ∼ GmD

R2
A

(
RA

R

)2
[

2 − 3
(

RA

R

)2 (
1 − 8 sin2 θA sin2 ωAt

)]

; (31)

the amplitude of the oscillations of the force is given by

DR ∼ 24
GmD

R2
A

(
RA

R

)4
sin2 θA , (32)

and we clearly see that the frequency of the radial oscillations must be twice of the corres-
ponding rotational frequency.

4 CONCLUDINGREMARKS

The analysis of the behaviour of the vertical and radial components of the gravitational
perturbative force generated byan isolatedmountain located on the surface of a neutron star
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Figure 9. Fourier amplitude spectral density corresponding to oscillations of the radial (left column)
and vertical (right column) components of gravitational force discussed in Fig. 1. The zero-frequency
peak (corresponding to constant part of the force) is cut off and the peaks are normalized to the
maximum of 1. Higher harmonics become noticeable when approaching the surface from above
(R ! 3RA) for both radial and vertical force, which is in accordance with the discussion in Fig. 1.
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Figure 10. Fourier amplitude spectral density corresponding to oscillations of the radial (left column)
and vertical (right column) components of gravitational force discussed in Fig. 2. The zero-frequency
peak (corresponding to constant part of the force) is cut off and the peaks are normalized to the
maximum of 1. Higher harmonics of the vertical component become more recognizable when ap-
proaching the surface from below (R " RA/5), while higher harmonics of the radial component are
well developed around the intermediate interval around R ∼ RA sin θA and vanish towards the centre
and the surface of the star. This is in accordancewith the discussion in Fig. 2.
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Figure 11. Fourier amplitude spectral density corresponding to oscillations of the radial (left column)
and vertical (right column) components of gravitational force discussed in Fig. 7. The zero-frequency
peak (corresponding to constant part of the force) is cut off and the peaks are normalized to the
maximum of 1. Symmetrization of the mountains makes the higher harmonics negligible compared
to the case of isolated mountain. Notice the frequency doubling of the radial force. This is in
accordance with the discussion in Fig. 7.
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Figure 12. Fourier amplitude spectral density corresponding to oscillations of the radial (left column)
and vertical (right column) components of gravitational force discussed in Fig. 8. The zero-frequency
peak (corresponding to constant part of the force) is cut off and the peaks are normalized to the
maximum of 1. Symmetrization of the mountains makes the higher harmonics negligible compared
to the case of isolatedmountain,with the exception of the intermediate interval around R ∼ RA sin θA.
Notice the frequency doubling of the radial force. This is in accordancewith the discussion in Fig. 8.
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brings interesting results. We have discussed time variations of the forces in the equatorial
plane related to the rotation axis of the star in both exterior and interior of the star. In the
exterior, where a corotating accretion disc is assumed, the vertical and radial force oscillate
with the same phase, and have an anharmonic character. In the interior of the star, the
character of the oscillatory vertical and radial forces is more complex than in the exterior,
if we assume a differentially rotating star, i.e., the angular velocity in the interior being
different than the angular velocity of the neutron star surface. In some layer under the star
surface, the oscillations of the vertical and radial forces are in the same phase, while near
the centre of the star, the oscillations are in the opposite phase. Further, there is a special
intermediate region, located nearby R ∼ RA sin θA, where the oscillations aremodulated in
such a way that there are additional local extrema, given by Eq. (8), i.e., dependent on the
radial coordinate R and the angle θA. This force, oscillating in a non-standard way, could
generate oscillations of a differentially rotating neutron star is some unexpected manner
deserving further investigation. Of course, it is interesting to consider not only influence of
an isolatedmountain, but also of twomountains (accretion columns) symmetrically located
at the poles of the neutron star magnetic field which is misaligned with the axis of rotation
of the star. Wegive here the relevant formulae for the vertical and radial force and their local
extrema, and postpone discussion to future studies. Nevertheless, wewould like to stress an
important new phenomenon, namely that the radial force always oscillates with frequency
doubled in comparisonwith oscillations of the vertical one.
Going down from R ∼ 10 RA to R ∼ 1.25 RA in the equatorial disc, the amplitude of the

radial (vertical) oscillatory force grows by factor of 102 (103).
Fourier analysis of the oscillatory vertical and radial forces (inFigs 9–12weuse amplitude

spectral density instead of power spectral density, which is more relevant for the excitation
of the oscillations and can better emphasize faint higher harmonics, see, e.g., Press et al.,
1997) shows that higher harmonics up to seventh are non-negligible in the case of isolated
mountain and the radial component around the region R ∼ θA inside the neutron star,
while in the case of symmetric accretion columns higher harmonics are more suppressed
and occur in odd multiples of the basic frequency for the vertical oscillations, which is
caused by “triangular” shape of the oscillations.
We can conclude that an isolated mountain can lead to more complex phenomena in

excitation of oscillations in both equatorial discs and interior of differentially rotating stars.
Both situations are undermore detailed study at present.
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ABSTRACT
The equation governing small radial oscillations and the related Sturm–Liouville
eigenvalue equation for eigenmodes of the oscillations are determined for spherically
symmetric configurations of perfect fluid in spacetimeswith a nonzero cosmological
constant. The Sturm–Liouville equation is then applied in the cases of spherically
symmetric configurationswith uniformdistribution of energy density and polytropic
spheres. It is shown that a repulsive cosmological constant rises the critical adiabatic
index and decreases the critical radius under which the dynamical instability occurs.

1 INTRODUCTION

The recent cosmological observations (Bahcall et al., 1999) indicate that the repulsive
effective cosmological constantΛ > 0 has a significant role in both the very early universe
during the inflationary era (Linde, 1990) and in the present universe (Spergel et al., 2003)
because of the accelerated expansion of the Universe. Of course, the magnitude of the
effective cosmological constant Λ > 0 differs by many orders in the recent era and the
very early era of the expansion, the origin of the effective cosmological constant can be
different, but its repulsive gravitational effect can be treated in the sameway. The influence
of Λ > 0 on the black-hole (naked singularity) backgrounds was treated in a number
of papers (Stuchlík et al., 2000; Krauss, 1998). The internal Schwarzschild spacetimes
with Λ ̸= 0 and uniform distribution of energy density were given in Stuchlík (2000)
for star-like configurations and extended to more general situations in Böhmer (2004a,b).
The polytropic and adiabatic spheres were preliminary treated and compared by Stuchlík
(2005); Stuchlík andHledík (2005b);Hledík et al. (2004). Neutron starmodelswith regions
of nuclear matter described by different relativistic equations of state that are matched
together were also treated extensively, e.g., by Østgaard (2001); Urbanec et al. (2005).
Their stability can be grounded on energetic considerations (Tooper, 1964), but it is more

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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suitable to treat it in the dynamical way pioneered by Chandrasekhar (1964). Here, we
shall present generalization of the dynamical treatment of the perfect fluid configurations
stability to the case of spacetimes with Λ ̸= 0. In Section 2, the dynamical equation for
the radial pulsations of spherically symmetric perfect fluid configurations is derived under
the assumption of adiabatic pulsations, and the related boundary conditions are specified in
a way corresponding to the treatment presented in Misner et al. (1973). Then the Sturm–
Liouville equation for the eigenfrequencies of pulsation eigenmodes is given. In Section 3,
the Sturm–Liouville equation is treated for the configurations with uniform energy density
distribution and for somepolytropic spheres, using some special choice of the trial function.
Concluding remarks are presented in Section 4. For completeness, we consider also the
case of an attractive cosmological constant (Λ < 0).

2 RADIALPULSATIONSANDSTURM–LIOUVILLE EQUATION

In the standardSchwarzschild coordinates (t, r, θ,ϕ), the spacetimeof thepulsating, spher-
ically symmetric configuration is given by the spacetime element

ds2 = −e2Φ dt2 + e2Ψ dr2 + r2(dθ2 + sin2 θ dϕ2) , (1)

where the metric coefficients are taken in the general form

Ψ = Ψ (r, t) , Φ = Φ(r, t) . (2)

The matter inside the configuration is assumed to be a perfect fluid with ρ(r, t) being the
energy density and p(r, t) being the isotropic pressure.
The equilibrium (static) configuration about which the configuration pulsate is determ-

ined by the functionsΦ0(r), Ψ0(r), ρ0(r), p0(r) satisfying the Einstein gravitational equa-
tions in the form

1
r2

(
re−Ψ0

)′ +Λ = −8πG
c4 ρ0 , (3)

− 1
r2 + e−Ψ0

r2 + Φ ′
0e−Ψ0

r
+Λ = 8πG

c4 p0 , (4)

1
2

e−Ψ0

(

Φ ′′
0 + Φ ′2

0
2

+ Φ ′
0 − Ψ ′

0
r

− Φ ′
0Ψ

′
0

2

)

+Λ = 8πG
c4 p0 (5)

which determine the unperturbed state; here, the prime denotes d/dr .
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The oscillating configuration (with perturbed quantities) is determined by the Einstein
equations in the form

1
r2

[
1 − (

reΦ
)′]−Λ = 8πG

c4 T t
t , (6)

eΨ − 1
r2 − Φ ′

r
−Λ = 8πG

c4 T r
r , (7)

e−Ψ

2

[(
Ψ̈ + Ψ̇ 2

2
− Ψ̇ Φ̇

2

)
−
(
Φ ′′ + Φ ′2

2
+ Φ ′ − Ψ ′

r
− Φ ′Ψ ′

2

)]
−Λ = 8πG

c4 T θθ , (8)

e−Ψ Ψ̇
r0

= 8πG
c4 T r

t . (9)

Here, prime denotes partial derivative with respect to radius and dot denotes partial deriv-
ative with respect to time.
For pulsations of a small amplitude, the metric coefficients Ψ (r, t) and Φ(r, t) and the

thermodynamic variables ρ(r, t), p(r, t) and n(r, t) (n being the number density) as meas-
ured in the fluid’s rest frame can be described by their small Euler variations. Thus, in
general we define

q(r, t) = q0(r) + δq(r, t) , (10)

where δq ≡ (δΦ, δΨ, δρ, δp, δn). The pulsation is given by the radial displacement ξ of the
fluid from the equilibriumposition

ξ = ξ(r, t) . (11)

The Euler perturbations δq are related to the Lagrangian perturbations∆q measured by an
observer whomoves with the pulsating fluid by the relation

∆q(r, t) = q(r + ξ(r, t), t) − q0(r) ≈ δq + q ′
0ξ . (12)

The pulsation, i.e., the evolution of the perturbation function, is governed by the Einstein
gravitational equations which have to be combined with the energy-momentum conserva-
tion, baryon conservation, and the laws of thermodynamics. All the equations have to be
linearized relative to the displacement from static equilibrium configuration. We have to
obtain the dynamic equation for the fluid displacement ξ(t, r) and the set of initial-value
equations expressing the perturbation functions δΦ, δΨ, δρ, δp, δn in terms of the displace-
ment function ξ(t, r). The cosmological constant is not perturbed as we do not assume any
relation of the cosmological constant to matter. We shall perform the dynamical stability
analysis following the method ofMisner et al. (1973).

2.1 Baryon conservation – energy density and pressure perturbations

First, we express the velocity of the fluid element in terms of the displacement. Following
Misner et al. (1973); Chandrasekhar (1964), we define

ur

ut = ∂ξ

∂t
≡ ξ̇ . (13)
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Because the number of baryons of the fluid has to be conserved, the conservation law has to
be satisfied in the general form
(
nuµ

)
;µ = 0 (14)

that can be expressed in the form

d(∆n)

dτ
= −n

(
uµ;µ

)
(15)

and using the linearized expressions

ut = e−Ψ0 (1 − δΦ) , ur = ξ̇e−Φ0 , (16)

we arrive to the equation

∆n = n0

[
1

r2eΨ0

(
r2eΦ0ξ

)′
+ δΛ

]
. (17)

Assuming adiabatic pulsations, the Lagrange variables in number density and pressure
are related by the adiabatic index γ through the relation

γ ≡
(
∂ ln p
∂ ln n

)

s
= n

p
∆p
∆n

, (18)

andwe arrive to the initial value equation for δp in the form

δp = −γ p0

[(
r2eΨ0ξ

)′

r2eΨ0
+ δΨ

]
− ξp′

0 . (19)

Notice that in terms of the Euler variables, there is (Chandrasekhar, 1964):

γ =
(

p
∂n
∂p

)−1 [
n − (ρ + p)

∂n
∂ρ

]
.

The projection of the energy-momentum conservation law T µν ;ν = 0 onto the 4-velocity
uµ gives the local energy conservation law in the form

∆ρ = ρ0 + p0

n0
∆n (20)

implying the initial-value equation for δρ in the form

δρ = −(ρ0 + p0)

[(
r2eΨ0ξ

)′

r2eΨ0
+ δΨ

]
− ξρ′

0 . (21)
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2.2 Metric coefficient perturbations

The perturbed stress energy tensor has linearized components

Trt = −(ρ0 + p0) eΨ0−Φ0 ξ̇ , Trr = p0 + δp . (22)

The linearized form of Eq. (9), i.e., G tr = (8πG/c4)Ttr , then implies the initial-value
equation for δΛ in the form

δΛ = −4π (ρ0 + p0) re2Ψ0ξ = −
(
Ψ ′

0 +Φ ′
0
)
ξ , (23)

while Eq. (7), i.e., Grr = (8πG/c4)Trr , implies the initial-value equation for δΦ:

δΦ ′ = −γ
r

(
4πp0 − Λ

2

)
e2Ψ0+Φ0

(
r2e−Ψ0ξ

)′
+ 4πG

c4

[
p′

0 − (ρ0 + p0)
]

e2Ψ0ξ . (24)

2.3 Pulsation dynamic equation and boundary conditions

Evolution of the fluid displacement ξ(t, r) is determined by the Euler equation for the
4-acceleration aµ of the fluid elements, which is given by the projection of the energy-
momentum conservation law T µν ;ν = 0 onto the plane orthogonal to uµ:

(ρ + p)aµ = −p,µ − uµuν p,ν . (25)

In the linearized form, Eq. (25) has the only nonzero component

ar = Φ ′
0 + δΦ ′ + e2(Ψ0−Φ0)ξ̈ . (26)

Using the initial-value equations and introducing a renormalized displacement function

ζ ≡ r2e−Φ0ξ , (27)

we arrive at the dynamic equation governing the pulsations in the form

W ζ̈ =
(
Pζ ′)′ + Qζ (28)

with the functions W (r), P(r), Q(r) determined for the equilibrium configuration by the
relations

W ≡ (ρ0 + p0)
1
r2 e3Ψ0+Φ0 , (29)

P ≡ γ p0
1
r2 eΨ0+3Φ0 , (30)

Q ≡ eΨ0+3Φ0

[
(p′

0)
2

ρ0 + p0

1
r2 − 4 p′

0
r3 − (ρ0 + p0)

(
8πG

c4 p0 −Λ

)
e2Ψ0

r2

]
. (31)

The boundary conditions must guarantee that the displacement function cannot result
in a divergent energy density and pressure perturbations at the centre of the sphere, and
therefore, ξ/r is finite for r → 0. Further, the Lagrange variations of the pressure must
keep the condition p = 0 at the surface of the configuration at the radius R, i.e., there is

∆p = −γ p0
eΦ0

r2

(
r2e−Φ0ξ

)′
→ 0 as r → R . (32)
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2.4 Sturm–Liouville equation and dynamical stability of equilibrium configurations

The linear stability analysis can be realized by the standard assumption of the displacement
decomposition

ζ(r, t) = ζ(r)eiωt . (33)

Then the dynamic equation reduces to the Sturm–Liouville equation and the related bound-
ary conditions in the form
(
Pζ ′)′ + (Q + ω2W )ζ = 0 , (34)

ζ

r3 is finite as r → 0 , (35)

γ p0
eΦ0

r2 ζ
′ → 0 as r → R . (36)

The Sturm–Liouville equation (34) and the boundary conditions determine eigenfrequen-
cies ωj and corresponding eigenmodes ζi (r), where i = 1, 2, . . . , n. The physically inter-
esting stable configurations have discrete spectrum of the normal radial modes; the i -th
mode has i nodes between the centre and the surface of the configuration. The eigenvalue
Sturm–Liouville (SL) problem can be expressed in the variational form of Misner et al.
(1973) as the extremal values of

ω2 =
∫ R

0
(
Pζ ′2 − Qζ 2) dr
∫ R

0 Wζ 2 dr
(37)

determine the eigenfrequenciesωi and the corresponding functions ζi (r) are the eigenfunc-
tions that have to satisfy the orthogonality relation
∫ R

0
e3Ψ0−Φ0(p0 + ρ0)r2ξ (i)ξ ( j ) dr = 0 . (38)

The absolute minimum value of Eq. (37) represents the squared frequency of the fun-
damental mode of pulsation. If it is negative, the configuration in unstable, as eiωt grows
exponentially with time, if it is positive, the configuration is stable against adiabatic, radial
perturbations. Therefore, a sufficient condition for the dynamical instability is the vanish-
ing of the right hand side of Eq. (37) for a trial function satisfying the boundary conditions
(Misner et al., 1973;Chandrasekhar, 1964). Weshall test theSLproblem in thenext section
for two simple cases.
Using the conditionω2 = 0 for themarginally stable configurations, we can deduce from

Eq. (37) a formula giving the critical value of the adiabatic index γc assuming it is constant
through the configuration. The formula takes the general form

γc =

∫ R
0

eΨ0+3Φ0
r2

[
(p′

0)
2

ρ0+p0
− 4p′

0
r − (ρ0 + p0)

(
8πG

c4 p0 −Λ
)

e2Ψ0

]
ζ 2 dr

∫ R
0

p0
r2 eΨ0+3Φ0ζ

′2 dr
. (39)

We shall give the critical adiabatic index for the special cases of the uniform and polytropic
spheres in the next section.
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3 DYNAMICAL INSTABILITYOFPOLYTROPIC SPHERES

The Sturm–Liouville equation (34) can be used to determine the dynamical instability of
spherical configurations of perfect fluid with any equation of state. Here, we shall restrict
our attention to the polytropic spheres, concentrating on the special case of uniformdensity
configurations and the spheres with the polytropic index n = 3.

3.1 Uniform density spheres

For spheres with uniform distribution of energy density ρ = const and radius R, the
Einstein structure equations can be integrated in terms of elementary functions (Stuchlík,
2000). It is useful to express the metric coefficients and the pressure in terms of the new
variables

y2 = 1 − r2

a2 , y2
1 = 1 − R2

a2 , (40)

with the characteristic dimension of the configuration a related to the energy density by the
relation

a2 = 3c4

8πGρ(1 + λ)
, (41)

where

λ = ρvac

ρ
, ρvac = Λc4

8πG
. (42)

Then the metric coefficients e2Φ and e2Ψ can be given by the formulas

e2Φ = [3y1 − y(1 − 2λ)]2

4(1 + λ)2 , (43)

e2Ψ = 1
y2 , (44)

and the pressure distribution is given by

p = ρ(1 − 2λ)(y − y1)

3y1 − (1 − 2λ)y
. (45)

In the special case of λ = −1, there is 1/a2 = 0, and the solution must be given in a special
way. There is

e2Ψ = 1 , eΦ = 1 + 3GM
2c2 R

(
r2

R2 − 1
)

, (46)

with

M = 4π

3c2 ρR3 , (47)
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and the pressure distribution is given by

p =
3ρG M

c2

2R − 3G M
c2

1 − r2

R2

1 +
3GM

c2

2R− 3GM
c2

r2

R2

. (48)

In order to have realistic configurations with positive pressure, the condition

R >
9GM

2c2(2 − λ)
= 9rg

4(2 − λ)
(49)

must be satisfied.
Considering the repulsive cosmological constant only, λ > 0, we will discuss the stability

of the spheres. (Of course, except the case of λ = −1, all of the derived formulae could be
applied in the case of attractive cosmological constant, λ < 0.) Introducing the variables

x = r
a

, x1 = R
a

, (50)

the Sturm–Liouville variational equation (37) takes the form

ω2a2y1

∫ x1

0

ζ̄ 2 dx
x2y3 = y1

4(1 + λ)2

∫ x1

0

(1 − 2λ)2(2y2 − 1) − 9y2
1

x2y3 ζ̄ 2 dx

+ γ

8
(1 − 2λ)
(1 + λ)3

∫ x1

0

(
ζ̄ ′)2 (y − y1) [3y1 − (1 − 2λ) y]2

x2y
dx , (51)

where

ζ̄ ≡ x2e−Φξ , ζ̄ ′ = dζ̄
dx

. (52)

Using the Chandrasekhar trial function (Chandrasekhar, 1964)

ξ ≡ xeΦ , ζ̄ ≡ x3 , (53)

we render the Sturm–Liouville variational equation to the form

a2ω2 y1

∫ x1

0

x4

y3 dx = y1

4(1 + λ)2

∫ x1

0

[
(1 − 2λ)2

(
2y2 − 1

)
− 9y2

1

] x4

y3 dx

+ 9γ
8

(1 − 2λ)
(1 + λ)3

∫ x1

0
(y − y1)[3y1 − (1 − 2λ) y]2 x2

y
dx . (54)

By the standard substitution

x = sin θ , y = cos θ, θ1 = arcsin
R
a

, (55)
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Figure 1. Dependence of the critical value of adiabatic index γc on sphere radius R. Full curve:
vanishing cosmological constant λ = 0; then γc diverges as R → 9rg/8 from above. Dashed curve:
positive cosmological constantλ = 0.1, the point of divergence is shifted to 1.18421 > 9/8 according
to (49), and γc,λ>0 > γc,λ=0. Dashed-dotted curve: negative cosmological constant λ = −0.1, the
point of divergence is shifted to 1.07143 < 9/8 according to (49), and γc,λ<0 < γc,λ=0.

the Sturm–Liouville equation can be transfered into the form convenient for direct integra-
tion

(ωa)2 cos θ1

∫ θ1

0

sin4 θ

cos2 θ
dθ

= cos θ1

4 (1 + λ)2

∫ θ1

0

[
(1 − 2λ)2

(
2 cos2 θ − 1

)
− 9 cos2 θ1

] sin4 θ

cos2 θ
dθ

+ 9γ
8

(1 − 2λ)
(1 + λ)3

∫ θ1

0
(cos θ − cos θ1) [3 cos θ1 − (1 − 2λ) cos θ ]2 sin2 θ dθ . (56)

The critical value of the adiabatic index γc, given by the condition ω = 0, can then be
determined by direct integration of the r.h.s. of the Sturm–Liouville equation (34). The
results are illustrated in Fig. 1.
As shown by Chandrasekhar (1964), themost interesting results are obtained in the limit

of θ1 → 0, because in such situations the chosen trial functions tend to proper solutions.
Assuming θ1 → 0, the Sturm–Liouville equation reduces into the form

(ωa)2 = 1
2(1 + λ)2

{
(1 + λ)

[
3γ (1 − 2λ) − 4

(
1 − λ

2

)]

− θ1
2

14
[18γ (1 − 2λ)(3 + λ) − 53 − 40λ(1 − λ)]

}
(57)



218 Z. Stuchlík and S. Hledík

andwe arrive to a simple asymptotic formula for the critical adiabatic index

γc = 2(2 − λ)

3(1 − 2λ)
+ 19 − 4λ(13 − 7λ)

42(1 − 2λ)(1 + λ)

R2

a2 . (58)

Using the relation for the gravitational radius of the configuration,

R2

a2 = (1 + λ)
2GM
c2 R

= (1 + λ)
rg

R
, (59)

the condition of instability takes the form

γ < γc ≡ 2(2 − λ)

3(1 − 2λ)
+ 19 − 4λ(13 − 7λ)

42(1 − 2λ)(1 + λ)

rg

R
. (60)

In the case of vanishing cosmological constant (λ = 0), we arrive at the well known result
(Chandrasekhar, 1964)

γ < γc ≡ 4
3

+ 19
42

rg

R
. (61)

3.2 Polytropic spheres

The polytropic spheres are characterized by the equation of state

p = Kρ1+ 1
n (62)

where n is the polytropic index and K is a constant related to a concrete sphere. The spheres
are characterized by the relativistic parameter giving ratio of the central pressure and energy
density

σ = pc

ρcc2 . (63)

The density and pressure profiles are given by the relations (Tooper, 1964; Stuchlík, 2002)

ρ = ρcθ
n , p = pcθ

n+1 , (64)

where θ(x) is a function of the dimensionless radius

x ≡ r
L

, L ≡
[
σ (n + 1)c2

4πGρc

] 1
2

, (65)

where L determines the characteristic length scale of the configuration. The Einstein
equations imply that the function θ(x) and the “mass” function v(x) ≡ m(x)/M are
determined by the set of differential equations (Stuchlík andHledík, 2005a)

x2 dθ
dx

1 − 2σ (n + 1)
(
v(x)x−1 + 1

3λx2
)

1 + σθ
+ v(x) − 2λ

3
x3 = −σ xθ

dv

dx
, (66)

dv

dx
= x2θn . (67)



Dynamical stability of fluid spheres in spacetimes with a nonzeroΛ 219

The edge of the configuration is located at the first solution θ(x1) = 0 of Eqs (66) and (67).
The radius and mass of the configuration are determined by x1 and v(x1) through the
relations

R = Lx1 , (68)

M = 4πL3ρcv(x1) = c2

G
Lσ (n + 1)v(x1) . (69)

The radialmetric coefficient is then given by

e−2Ψ = 1 − 2σ (n + 1)

[
v(x)

x
+ λ

3
x2
]

(70)

while the temporal metric coefficient is

e2Φ = (1 + σθ)−2(n+1)

{
1 − 2σ (n + 1)

[
v(x1)

x1
+ λ

3
x2

1

]}
. (71)

ThevariationalSturm–Liouville equation fordynamical stabilityof thepolytropic spheres
with respect to radial pulsations now takes the form (assuming γ constant in the configura-
tion)

ω2 L2ρcc2
∫ x1

0
e3Ψ+Φθn(1 + σθ)ζ̄ 2 dx

x2 = γ σρcc2
∫ x1

0
eΨ+3Φθn+1

(
dζ̄
dx

)2 dx
x2 (72)

− σ (n + 1)ρcc2
∫ x1

0
eΨ+3Φ

{
θn dθ

dx
4
x

[
σ (n + 1)x

1 + σθ

dθ
dx

− 1
]

(73)

− 2(1 + σθ)θn
(
σθn+1 − λ

)
e2Ψ

}
ζ̄ 2 dx

x2 . (74)

The relation of derivatives of p andΦ is transfered into the form

dΦ
dx

= −2(n + 1)σ

1 + σθ

dθ
dx

. (75)

Following Chandrasekhar (1964), it is convenient to use the trial functions

ξ1 = xeΦ/2 , ξ2 = x , (76)

yielding

ζ̄1 = x3e−Φ/2 , ζ̄2 = x3e−Φ . (77)

The critical value of the adiabatic index can be determined by numerical integration only.
The results are given in Fig. 2.
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Figure 2. Dependence of the critical value of adiabatic index γc(σ ; n,λ) on relativistic parameter σ
defined by Eq. (63). Top panel: Regardless of the value of polytropic index n = 3, 1.5 and cosmolo-
gical parameter λ = 0, ±0.0007, within the interval σ ∈ ⟨0, 0.2⟩ the dependence pursues common,
approximately linear trend: γc(σ ; n,λ) ≈ 4/3 + 5σ . Remainingpanels: Deviation of the dependence
γc(σ ; n,λ) from the common trend for n = 3 (middle row) and n = 1.5 (bottom row), numerically
calculated for Chandrasekhar trial functions (76). Left column: using trial function ξ1, right column:
using trial function ξ2. Full curves correspond to vanishing cosmological constant, while dashed
(dashed-dotted) curves correspond to positive (negative) cosmological constant expressed in termsof
cosmological parameterλ = ±0.0007.
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4 CONCLUDINGREMARKS

We consider the role of a nonzero cosmological constant in the problem of dynamical
instability of spherically symmetric configurations of perfect fluid. The Sturm–Liouville
variational equation for eigenmodes of radial pulsations of general spherically symmetric
perfect fluid configurations is derived and then applied in two special cases of spheres
with uniform distribution of energy density (Stuchlík, 2000), and of the polytropic spheres
(Stuchlík and Hledík, 2005b). The case of uniform spheres can be properly taken as a
test bed of the dynamical instability problem – although these solutions of the Einstein
equations are of rather artificial character, they reflect quite well the basic properties of very
compact objects (Glendenning, 1988). Moreover, analysis of their properties can be given
in terms of elementary functions.
It is shown by Chandrasekhar (1964) that the critical value of the adiabatic index is about

γ = 4/3 in the case of uniform spheres and it is influenced by the ratio of the radius of the
sphere and its gravitational radius (given by itsmass). Wegeneralize these results, showing
that the positive (negative) cosmological constant is rising (lowering) the critical adiabatic
index.
In fact, for the onset of the dynamical instability the inequality

R < Rc ≡ 2GM
c2

19 − 4λ(13 − 7λ)

42
[
γ − 2(2−λ)

3(1−2λ)

] (78)

must be satisfied, as follows from Eq. (60). When γ will be slightly higher than 4(1 −
λ/2)/[3(1 − 2λ)], the dynamical instability occurs when the configuration is contracted
under the critical radius Rc. Similar phenomena are observed in the case of polytropic
spheres, when the instability analysis can be realized numerically.
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Friedmanmodels with the superstring dark
energy

Zdeněk Stuchlík andMartin Kološ
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
The Friedmanmodels of theUniversewith the superstring dark energy are construc-
ted. According to the spacetime foam approach the stringy dark energy appears to be
inversely proportional to the cosmic scale factor. Evolution of the Friedman models
is discussed under this assumption and comparedwith the standardmodels.

1 INTRODUCTION

The evolution of the cosmic scale factor a in dependence on the cosmic time t is given by the
Friedman equations of the standard cosmology (Misner et al., 1973)

3
ȧ2 + k

a2 = 8πρ , (1)

−2
ä
a2 − ȧ2 + k

a2 = 8πp , (2)

where ˙≡ d/dt . It is assumed that the energy density ρ and pressure p of the perfect fluid
representing the matter content of the Universe fulfil the special simple kind of barotropic
equation of state

p = wρ . (3)

Combining (1) and (2), we obtain the dynamic Friedman equation
ä
a

= −4π

3
(ρ + 3 p) (4)

implying that the gravitational the force is given by ρ + 3 p, and the pressure contributes
substantially the force. It follows from (4) that forρ+3 p < 0 the expansion of theUniverse
must be accelerated.
Recent observations (Riess et al., 2004; Spergel et al., 2003) show that expansion of the

Universe at the present era is accelerated. From Friedman equation (4) it follows that there
must be some special form of matter (energy) withw < −1/3 in the equation of state. This
is called dark energy. The observations imply that the dark energy forms about 70% of the
total mass of the Universe. It is curious that a form of energy, about which we know so few,
forms nearly all the content of the Universe.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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2 DARKENERGYFROMSUPERSTRINGTHEORY

In Ellis et al. (2000)1 superstring theory has been applied in the framework of the spacetime
foam approach to quantization of gravity and one of the most interesting results of this ap-
proach is that energy of vacuum is varying with the cosmological time like 1/t 2. Therefore,
in the stringy spacetime foam approach the vacuum energy behaviour resembles elasticity
of spacetime and the dark energy looks like the cosmological “constant” that changes with
the cosmological time and the scale factor of the expandingUniverse according to the law

Λ(t) = Λ(0)

t2 ∼ 1
a(t)

. (5)

Therefore, it is interesting to consider a specific form of dark energy with density changing
with scale factor according to the law

ρDE(stringy) ∼ 1
a(t)

. (6)

We shall treat the cosmologicalmodels under assumption of the presence of the stringy dark
energy and standard general relativistic equations of evolution of the Universe.

3 EVOLUTIONOF THEFRIEDMANMODELSWITHTHE STRINGYDARK
ENERGY

We assume the Universe containing the dust (pd = 0) with energy density ρd > 0 and dark
energy with ρDE > 0. The FriedmanEqs (1) and (2) then take the form

3
ȧ2 + k

a2 = 8πρd + 8πρDE , (7)

−2
ä
a2 − ȧ2 + k

a2 = −16π

3
ρDE . (8)

Further, we assume theBigBang beginning of theUniversewith a(t) continuously growing
with the cosmic time. The scale factor is tuned by the conditions a(0) = 0 and a(T0) = 1,
where t0 denotes the age of the Universe.
The solutions of the Friedman equations can be appropriately characterized by introdu-

cing an effective potential depending on the scale factor a(t). Writing the Friedman Eq. (7)
in the form

ȧ2 = 8π

3
ϵ

a
+ 8π

3
σa − k , (9)

where ϵ and σ are constant during the expansion of the Universe and introducing the
constants X = 8πϵ/3 and Y = 8πσ/3, Eq. (9) can be given in the form corresponding to
the motion in an effective potential
(da

dt

)2
= X

a
+ Y a − k = E2 − V 2(a) . (10)

1 For another version of this approach see, e.g., Lopez andNanopulos (1995).
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Figure 1. The effective potential determining evolution of the scale factor in the Universe with the
stringy dark energy.
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different values of the curvature term.



226 Z. Stuchlík andM. Kološ

The equation describesmotion with energy E 2 = −k in the effective potential

V 2(a) = − X
a

− Y a . (11)

The motion determined by the potential V 2(a) is possible if E2 > V 2(a). The motion is
limited by the turning points given by

(da
dt

)2
= 0 , (12)

i.e., by E = V (a). The behaviour of the effective potential is given in Fig. 1 for some typical
values of the evolution constants. Now, it is possible to determine the behaviour of the scale
factor for a given parameter k and initial values of ρd, ρDE.
The openUniverse (k = −1) and the flatUniverse (k = 0)will be always expanding. The

closed Universe (k = +1) will be expanding forever if XY > 1/4. In the closed Universe
with XY < 1/4 the expansion is converted into contraction at the turning point.
The solutions of Eq. (9) are given in Fig. 2. The explicit form of the solution can be given

in two ways.

3.1 Direct integration

Equation (9) gives the scale factor evolution in the implicit form t = t (a). The differential
equation of the first order (9) is separable and the solution can be determined in terms of
elliptic integrals. We obtain the equation

t (a) =
∫ √

a
Y a2 − ka + X

da , (13)

that can be expressed in the form

t (a) =
∫ √

a
(a − A)(a − B)

da , (14)

where

A = k +
√

k2 − 4XY
2Y

and B = k −
√

k2 − 4XY
2Y

, (15)

are the roots of the polynomial of Eq. (13). For k = 0 both roots are imaginary and
A = −B. In the case of k = ±1 the roots are real for XY < 1/4, while they are complex for
XY > 1/4.2 The scale factor can then be given in an implicit form by the relation

t (a) = 2
√

B (E[ϕ, k] − F[ϕ, k]) , (16)

2 The special case of XY = 1/4 is not considered here.
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Figure 3. The cosmic time given as a function of the scale factor. Now, the expansion of themodels is
synchronized at the Big Bang, instead of the present time t0, as is done in Fig. 2.

where

ϕ = i argsinh
(√

− a
A

)
and k = A

B
. (17)

The functions F[ϕ, k] and E[ϕ, k] are the elliptic integrals of the first and the second kind
defined in the standardway by

F[ϕ, k] =
∫ ϕ

0

dϕ
√

1 − k2 sin2 ϕ
, (18)

E[ϕ, k] =
∫ ϕ

0

√
1 − k2 sin2 ϕ dϕ . (19)

The dependence of the scale factor on the cosmic time a = a(t) is implicitly given by
Eq. (16) – for the given values of the curvature parameter k, the function a(t) is determined
numerically and illustrated in Fig. 3.

3.2 A parametric integration

The scale factor and the cosmic time can be given in the parametric form

a = a(α) , (20)
t = t (α) , (21)
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where α is an appropriately chosen parameter; it is so called development angle. If the
parameterization given by

dt = √
a dα , (22)

is chosen,3 the integral in Eq. (14) is transformed into the form

α(a) =
∫ √

1
(a − A)(a − B)

da , (23)

which leads to elementary functions, not elliptic integrals. In the case of k = 0, the evolution
of the scale factor in terms of the new parameter α is determined by

a(α) =
√

X
Y

sinh
(√

Yα
)

. (24)

Equation (22) then determines the function t (α) in the form

t (α) = 2
√

i 4√XY E

[
π

4
−

√
−Y α
2

, 2

]

, (25)

where, of course, the elliptic integral of the second kind appears.

4 COMPARISONWITHTHE STANDARDMODELS

We shall compare there types of the Friedman cosmologicalmodels.

(a) Themodel containing the dusty matter only.
(b) Themodel with addition of the repulsive cosmological constant ρΛ = const > 0.
(c) Themodel with addition of the stringy dark energy characterized by ρDE ∼ 1/a(t).

Equation (1) can be expressed in the form

1 = ΩDE +Ωd +Ωk , (26)

where

Ωi = ρi/ρcrit ; ρcrit = 3H/8πG . (27)

There exists an extremal point in the evolutionof the scale factor justwhen H = ȧ/a = 0.
Using this condition we arrive in the case of three models considered here to the relations

(a) Ωk(0)a +Ωd(0) = 0 , (28)
(b) ΩDE(0)a3 +Ωk(0)a +Ωd(0) = 0 , (29)
(c) ΩDE(0)a2 +Ωk(0)a +Ωd(0) = 0 . (30)

3 Wecanalso considerparameterizationsgivenby the relationsdt = (a−A)−1/2 dα anddt = [a/(a−A)]1/2 dα.
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Therefore, the turning point in the evolution of a(t) exist, if there is a positive root of
Eqs (28)–(30). When consideringΩd(0) > 0 andΩDE(0) > 0, we can conclude that for the
curvature factors of k = −1 a k = 0 the scale factor a(t) grows forever. For k = +1 the
behaviour of a(t) is more complicated. In the case (a), the closed Universe always collapse,
however in the cases (b) and (c), it is possible even for k = +1 that there exist models
expanding forever.
Finally, we determine the age of the Universe as given by the three models considered

above. For the dusty model and the the dusty model with the repulsive cosmological
constant, we can use the standard results (Misner et al., 1973). In the case of the dusty
model with the stringy dark energy, the age is given by the formula

t0 = 1
H0

∫ 1

0

a da
(
ΩDE(0)a3 +Ωk(0)a2 +Ωd(0)a

)1/2 . (31)

Taking into account recently given values of the cosmic parameters4 the age of the Universe
according to the consideredmodels is given by

(a) t0 = 11.3 × 109 years , (32)
(b) t0 = 13.5 × 109 years , (33)
(c) t0 = 12.7 × 109 years . (34)

The age of the model with stringy dark energy (c) is between the age of the model with the
repulsive cosmological constant (b) and the age of the standard dustymodel (a).

5 CONCLUSIONS

The Friedman dusty model of the Universe with the stringy dark (vacuum) energy is dis-
cussed and compared with the standard model, and the model with the repulsive cosmolo-
gical constant. The special dependence of the stringy vacuum energy density on the scale
factor of the Universe causes an interesting and strong shift of the stringy model properties
in comparison with both the other models, as the role of the dark energy grows with the
redshift factor. Then the age of the stringymodels is between the ages of the standardmodel
and theΛ > 0 model. Further, the beginning of the dominance of the stringy dark energy
shifts to higher redshift in comparison with the repulsive cosmological constant. It follows
from the Fig. 4 that this happens for the redshift factor higher about twice in comparison
with the case of the repulsive cosmological constant. For the stringy model the scale factor
dependence on the cosmic time is between those of the standard model and the model with
the cosmological constant.

4 ΩDE(0) = 0.7,Ωd(0) = 0.3, k = 0, H0 = 1/14 × 10−9 years = 1/42 × 10−16 s.
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Figure 4.Evolution of the energy content of theUniverse in terms of the redshift z = 1/a(t) − 1. The
evolution is given for the dust, radiation, vacuum energy and stringy dark energy.

ACKNOWLEDGEMENTS

The present work was supported by Czech grants MSM 4781305903, GAČR 202/03/1147
and by the Committee for Collaboration of Czech Republic with CERN. One of the authors
(Z. S.) would like to acknowledge the perfect hospitality at the CERN’s Theory Division
where part of the work was realized.

REFERENCES

Ellis, J., Mavromatos,N. E. andNanopoulos, D. V. (2000), Time-DependentVacuumEnergy Induced
by D-Particle Recoil, Gen. Relativity Gravitation, 32(5), pp. 943–958, ISSN 0001-7701, gr-qc/
9810086, URL http://oldwww.math.uni-potsdam.de/grg/.

Lopez, J. L. andNanopulos, D. V. (1995), A new cosmological constantmodel,ACT-25/94, hep-ph/
9501293.

Misner, C.W., Thorne, K. S. andWheeler, J. A. (1973),Gravitation, Freeman, San Francisco.
Riess, A. G. et al. (2004), Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope:

Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophys. J., 123, p.
145, astro-ph/0402512.

Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R., Bennett, C. L., Halpern, M.,
Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Tucker, G. S., Weiland,
J. L., Wollack, E. and Wright, E. L. (2003), First Year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Determination of Cosmological Parameters, Astrophys. J. Suppl., 148, p.
175, astro-ph/0302209.



Proceedings ofRAGtime 6/7:Workshops on black holes and neutron stars, Opava, 16–18/18–20September, 2004/2005 231
S. Hledík and Z. Stuchlík, editors, SilesianUniversity inOpava, Czech Republic, 2005, pp. 231–240

Swiss cheesemodel with the superstring
dark energy
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Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
The Swiss cheese model of the Universe with the superstring dark energy is con-
structed. The junction conditions are shown to be fulfilled and time evolution of the
matching hypersurface of the internal Schwarzschild spacetime and homogeneous
external FriedmanUniverse is studied.

1 INTRODUCTION

One of the crucial problems of cosmology ismodelling of gravitational bound systems in the
expanding Friedman Universe. The simplest model of spherically symmetric gravitation-
ally bound systems immersed in an expanding Universe is in the fully non-linear general
relativistic regime described by the Einstein–Straus model of the Universe, which is also
called Swiss cheese model (Einstein and Straus, 1945). A hole in the cheese represents the
vacuummetric around gravitationally bounded object and cheese is thewholeUniverse (see
Fig. 1). Precisely speaking, the Einstein–Straussmodel is a Schwarzschildmetric smoothly
connected to the FriedmanUniverse.
Recent observations (Riess et al., 2004; Spergel et al., 2003) show that at its present

period the expansion of the Universe is accelerated. The Friedman equations (Misner et al.,
1973) imply that there must be some special form of energy governed by equation of state
p = wρ with w < −1/3. This form of energy is called dark energy. At present, the dark
energy forms about 70% of the total mass-energy of the Universe (Ostriker and Steinhardt,
1995).
We can use the effective cosmological constant in order to describe the dark energy. Then

the Swiss cheese model becomes to be an Einstein–Strauss–de Sitter model and we use
Schwarzschild–de Sitter metric to describe the vacuum spacetime around the gravitation-
ally bounded object (Stuchlík, 1983, 1984, 2002).
In Ellis et al. (2000), the superstring theory has been applied to the spacetime foam

ideas and one of the most interesting results is that energy of vacuum is varying with the
cosmic time like 1/T 2. Therefore, in the stringy spacetime foammodel the vacuum energy
behaviour resembles elasticity of spacetime and the dark energy looks like the cosmological
constant that changes with the cosmological time and the scale factor of the expanding

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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iFRW

S

Schwarzchild−de Sitter

eFRW

Figure 1. Einstein–Straus–de Sitter vakuola model, sometimes called Swiss cheese model, which
describes gravitationally bound structure in the expandingUniverse.

Universe according to the law

Λ(T ) = Λ(0)

T 2 ∼ 1
a(T )

. (1)

Therefore, we shall consider a specific form of dark energy with density changingwith scale
factor according to

ρDE(stringy) ∼ 1
a(T )

. (2)

2 CONSTRUCTIONOFTHE STRINGYESDSMODEL

In the standard ESdS model (Stuchlík, 1983, 1984, 2002), the vacuum spacetime around
the gravitationally bounded object is described by the Schwarzschild–de Sitter metric. In
the stringydark energymodel, there is the fundamental problem. Canweuse theSdSmetric
also forΛ = Λ(a)? Of course, the exactmodelmust be treated in the full set of equations for
the stringy cosmologicalmodel. However, we can use an approximative approach based on
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the general relativistic equations.1 IfΛ(a) is changing slowly, thenΛ(a) ≈ const for some
time, and the SdS metric can be used and its evolution can be integrated with Λ = Λ(a).
So wewill be using SdS likemetric in the form

ds2 = −A2(r, a) dt2 + A−2(r, a) dr2 + r2(dθ2 + sin2 θ dϕ) , (3)

where

A2(r, a) = 1 − 2M
r

− 1
3
Λ(a)r2 . (4)

The outer Friedman Universe is described by the Robertson–Walker geometry. Its line
element in the standard comoving coordinates reads

ds2 = −dT 2 + a2(T )
[
dχ2 +Σ2

k (χ)(dθ2 + sin2 θ dϕ)
]

, (5)

where

Σk(χ) =

⎧
⎨

⎩

sinχ for k = +1 ,

χ for k = 0 ,
sinhχ for k = −1 .

(6)

The evolutionof the scale factor is givenby the cosmological termwith the samedependence
as that in the SdSmetric (see Stuchlík and Kološ, 2005). In the Swiss cheese model we are
matching the Friedman part χ > χb to the SdS part r < rb and t < tb through the
hypersurface SF = SS = S. On the hypersurface S freely falling test particle are moving
withχ = χb and follow radial geodesics in theSdS spacetime r = rb(τ ). The circumference
of the main circles on the space slices of the hypersurface S (for T = const) are given by

2πrb = 2πa(T )Σk(χb) . (7)

Then the induced metric (Misner et al., 1973) at the hypersurface S in the SdS geometry is
given by

(3)ds2
− = −dτ 2 + r2

b (τ )(dθ2 + sin2 θ dϕ) , (8)

where τ is the proper time of freely falling observers on S. In the Friedman part the induced
metric on S is given by

(3)ds2
+ = −dT 2 + a2(T )Σ2

k (χ)(dθ2 + sin2 θ dϕ) . (9)

1 We assume that Λ(a) changes is synchronized way at the SdS spacetime, as it is a part of the Swiss cheese
Universe in which the dark energy evolution is given by the evolution of the scale factor. Such an assumption is
correct at least up to the time when thematching surface crosses the cosmological horizon of the SdS spacetime.
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3 THE JUNCTIONCONDITIONSATTHEMATCHINGHYPERSURFACES

Necessary condition for smooth metric junction (Misner et al., 1973) is ds2
+

S= ds2
− across

thehypersurfaceS. In our casewehave spherical symmetry, therefore smoothness ofmetric
across S means synchronization of proper times on the hypersurface S

−dT 2 S= −A2(r, a) dt2 + A−2(r, a) dr2 = −dτ 2 , (10)

i.e., we synchronize proper time of radial geodesics τ with cosmic time T on S. The proper
time τ of the radial geodesics in SdS spacetime is given by

dτ = ±
[
−A2(rb) + E2

b

]−1/2
dr , (11)

where Eb is the covariant energy of the geodesic (E 2
b = u2

t ). We canwrite the first Friedman
equation in the form (Misner et al., 1973)

ȧ2 = 8π

3
ϵ

a
+ 1

3
Λ(a)a2 − k , (12)

where ϵ = ρMa−3 is a constant through the cosmic history. Nowwe can express the cosmic
time T in the form

dT = ±
(

a0

a
− 1

3
Λ(a)a2 − k

)1/2
da , (13)

where a0 = 8πϵ/3. The proper time at the both sides of the matching surface reads

dτ = ±
[

2M
rb

+ 1
3
Λ(a)r2

b −
(

1 − E2
b

)]−1/2
dr , (14)

dT = ±
[

a0

a
+ 1

3
Λ(a)a2 − k

]−1/2
da . (15)

This implies junction conditions that are independent on the functionΛ = Λ(a):

rb = a(T )Σk(χb) , (16)
2M = a0Σ

3
k (χb) , (17)

1 − E2
b = kΣ2

k (χb) . (18)

Of course, there junction conditions hold in the Einstein–Straus model, or in the ESdS
model with the cosmological constant too (Stuchlík, 1984).
Junction of two spacetimes can be divided on two categories: surface layers and boundary

surfaces. For boundary surfaces we must fulfil extra junction condition [K i j ] = 0, where
Ki j is the extrinsic curvature. In Gaussian normal coordinates e j · n = gin = 0 and for
timelike hypersurface S, the extrinsic curvature is given by

Ki j = − 1
2 gi j,n . (19)
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The extrinsic curvature K +
i j of the hypersurface S in the Friedmanpart of the model is given

by the unit normal vector to the surfaceχ = χb = const

n = 1
a
∂

∂χ
, (20)

and according to (19), we arrive at the formula

K +
i j = − 1

2a
gi j,χ . (21)

We thus find the nonzero components in the form

K (+)
θθ = 1

sin2 θ
K (+)
φφ = −a(T )Σk(χb)

dΣk(χb)

dχ
. (22)

In the interior SdS spacetime, the 4-velocity of test particles of the hypersurfaceS is given by

u(b) = ut
(b)

∂

∂t
+ ur

(b)

∂

∂r
, (23)

where

ut
(b) = EbA

−2(rb) , (24)

ur
(b) =

[
E2

b − A2(rb)
]1/2

. (25)

The unit normal vector to the hypersurface S in the SdS spacetime reads

n(b) = nt ∂

∂t
+ nr ∂

∂r
. (26)

The hypersurface S is timelike then 4-vector n fulfils the condition n · n = 1. The compon-
ents nt and nr are determined by the condition

n · u(b) = nt u(b)t + nr u(b)r = 0 , (27)

which implies

nt = u(b)r = A−2(rb)ur
(b) , (28)

nr = −u(b)t = E . (29)

According to Eq. (19), extrinsic curvature K −
i j of hypersurface S in the inner SdS spacetime

is then given by

K (−)
θθ = 1

sin2 θ
K (−)
φφ = −rb(T )Eb . (30)

Using the junction condition (18), we arrive at

K (−)
θθ = 1

sin2 θ
K (−)
φφ = −rb(T )

[
1 − kΣ2

k (χb)
]1/2

. (31)
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Now it is clear that Eqs (31) and (22) coincide for all three curvature parameters k, and the
junction condition [K i j ] = 0 is satisfied. This means that there is no energy-momentum
tensor on the hypersurface S, i.e.,

Si j = 0 . (32)

We can conclude that it is possible to construct Einstein–Straus–de Sitter model of theUni-
verse for arbitrary dependence Λ = Λ(a). The junction hypersurface S is only boundary
surface, there is no energy-momentum tensor on S.

4 PHYSICAL INTERPRETATIONOFTHE JUNCTIONCONDITIONS

The first junction condition – Eq. (16) – expresses the fact that the circumference of main
circles at the matching surface is the same if measured in SdS spacetime and the Friedman
Universe.
When inserting the SdS spacetime into the Friedman Universe, it is necessary to have

mass of the SdS part equal to mass which will be contained in a ball with radius χb. This is
realized by the second junction condition (17)

2M = a0Σ
3
k (χb) = 8

3πϵa3(T )Σ3
k (χb) = 2M∗ , (33)

where 2M∗ is mass of a ball with radius a3(T )Σ3
k (χb) and density ϵ. Of course, this

condition is strongly restricting for use of ESdS vakuola for modelling of gravitationally
bound systems.
The last condition (18) expresses the fact that the junction is realized without surface

layer ([Ki j ] = 0)

Eb =
[
1 − kΣ2

k (χb)
]1/2

. (34)

We know that Σ2
k (χb) > 0 for all three curvature parameters k and this implies that

covariant energy of the geodesic satisfies conditions

E2
b

⎧
⎨

⎩

< 1 for k = +1 ,
= 1 for k = 0 ,

> 1 for k = −1 .
(35)

5 EXPANSIONOF THEMATCHINGHYPERSURFACES

According to Stuchlík and Schee (2004), expansion of the matching hypersurface S can
influence the effectiveness of the Rees–Sciama effect on the temperature fluctuation in
CMB. This effect is growing if speed of the junction hypersurface S is growing and can be
very strong when it is approaching the speed of light.
Speed of the junction hypersurface S as measured by the static SdS observers is given by

(for details, see Stuchlík, 1984)

vb(rb) = tanhα = ±
[
1 − Eb

−2A2(rb)
]1/2

. (36)



Swiss cheesemodel with the superstring dark energy 237

This speed approaches the light speed (vb(rb) = 1) at radii, where

A2(rb) = 0 , (37)

which is the condition giving loci of the event horizons. Therefore, the junction surface
velocity reaches the speed of light when the surface is crossing the cosmological horizon of
the SdS spacetime.
In the stringymodel of the dark energy, we introduce a new constant Q by the relation

Λ(a) = K
a(T )

= KΣk(χb)

rb
= Q

rb
. (38)

Then the metric factor takes the form

A2(rb) = 1 − 2M
rb

− 1
3

Qrb . (39)

The velocity of the junction surface can be expressed in the form

vb(rb) = ±
[
1 − E−2

b A2(rb)
]1/2

= ±
[

1 − E−2
b

(
1 − 2M

rb
− 1

3
Qrb

)]1/2
. (40)

The horizons of the vacuumspacetime are located at radii

rh(b,c) = 3
2Q

(
1 ±

√
1 − 8

3
QM

)
, (41)

where the condition QM < 3/8 must be satisfied. Clearly, the loci of the horizons change
with the evolution of the dark energy and scale factor. For all values of k, the minimum of
vb(rb) is located at

rb(e) =
√

6M
Q

. (42)

For k = +1, the velocity vb(rb) has zero points giving limits on validity of the model. The
zero points are given by

r0(±) = 3
2Q

[(
1 − E2

b

)
±
√
(
E2

b − 1
)2 − 8

3
QM

]

. (43)

The behaviour of the speed vb(rb) is given for all of the three versions of the ES vakuola
model. The results are illustrated for some representative values of the cosmological con-
stant and Q constant, respectively. The Einstein–Straus model (without dark energy) is
represented in Fig. 2, ESdS (cosmological constant) in Fig. 3 and the Swiss cheese model
with the stringy dark energy in Fig. 4.
We can see that in the stringy Swiss cheese model the speed of the junction hypersurface

reaches the light speed at 20 times larger rb value than in the ESdS case (compare Fig. 3
with Fig. 4). This means that in the stringy Swiss cheese model the influence on the CMB
temperature fluctuations is much smaller than in the ESdSmodel.
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Figure 2. Speed of the junction hypersurface S in the Einstein–Strausmodel. Radial coordinate rb is
inmass units.
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Figure 3. Speed of junction hypersurface S in the ESdS model with cosmological constant, for
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Figure 4. Speed of junction hypersurface S in the Swiss cheese model with dark energy form super-
string, for different values of Q.

6 CONCLUSIONS

We have shown that it is possible to construct the Swiss cheese model with the dark energy
depending on the scale factor a(T ), using the Schwarzschild–de Sitter like spacetime. The
junction hypersurface S is only boundary surface, and there is zero energy-momentum
tensor on the hypersurface S.
In future cosmic evolution, the influence of the stringy dark energy model on CMB tem-

perature fluctuations is smaller then in the model with the repulsive cosmological constant,
while in the past it should be stronger.
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ABSTRACT
Equilibrium conditions and spin dynamics of spinning test particles are discussed in
the stationary and axially symmetric Kerr–de Sitter black-hole or naked-singularity
spacetimes. Thegeneral equilibriumconditionsare established, butdue to their great
complexity, the detailed discussion of the equilibrium conditions and spin dynamics
is presented only in the simple andmost relevant case of equilibriumpositions in the
equatorial plane of the spacetimes. It is shown that due to the combined effect of the
rotation of the source and the cosmic repulsion the equilibrium is spin dependent in
contrast to the spherically symmetric spacetimes.

1 INTRODUCTION

Motion of test particles describes in an illustrative way properties of black-hole and naked-
singularity spacetimes. The motion of uncharged and spinless test particles is governed
by geodesic equations and directly determines the geodesic structure of the spacetimes.
Charged test particles can test combined gravitational and electromagnetic field of these
backgrounds, their motion is determined by the Lorentz equation. If the test particles pos-
sess also spin, their equations of motion are more complex in comparison with the spinless
particles, because of the interaction of the spin with the curvature of the spacetime given
by the Riemann tensor (Papapetrou, 1951; Pirani, 1956). Moreover, the spin dynamics has
also to be considered. In the absence of an electromagnetic field of the background, the spin
dynamics is determined by the Fermi–Walker transport equation.
Studies of the equilibrium positions and conditions (equilibrium hereinafter) of charged

test particles give direct information on interplay of the gravitational and electromagnetic
forces acting in the charged (Reissner–NordströmandKerr–Newman)backgrounds (Bičák
et al., 1989; Bonnor, 1993; Balek et al., 1989; Aguirregabiria et al., 1995; Stuchlík et al.,
1999). In the simplest Schwarzschild backgrounds, the equilibrium of test particles is im-
possible, because only the gravitational attraction is acting here. However, the presence of
a repulsive cosmological constant allows the equilibrium of even uncharged particles. Fur-
ther, it was shown that in the Schwarzschild–de Sitter (SdS) backgrounds, the equilibrium

80-7248-334-X © 2005 – SU inOpava. All rights reserved.



242 Z. Stuchlík and J. Kovář

of spinning test particles is independent of the particle spin being restricted to the static
radius,where the gravitational attraction is just balanced by the cosmic repulsion (Stuchlík,
1999). The equilibrium is spin-independent also in the Reissner–Nordström–de Sitter
spacetimes (Stuchlík andHledík, 2001). Of course, the equilibrium is spin dependent in the
rotating Kerr spacetimes due to the interaction of the spin of the particle and the black hole
(Aguirregabiria et al., 1995).
We focus onto more complicated case of stationary and axially symmetric spacetimes

around rotating black holes or naked singularities in the universewith the recently indicated
repulsive cosmological constant, i.e., onKerr–deSitter (KdS) spacetimes, in order to extend
the preliminary studies and to better understand the combined effects of the rotation of the
source and the cosmic repulsion. For comparison, restriction of our results to the pure
Kerr and SdS spacetimes is also included. Because of the complexity of general equilibrium
conditions, the detailed discussion is restricted only to the case of the equatorial plane of the
KdS spacetimes.

2 EQUATIONSOFMOTIONANDSPINDYNAMICS

The motion of a spinning test particle of mass m with 4-velocity uλ and spin tensor Sµν

in an arbitrary gravitational field has been studied by Papapetrou (1951). Such particle
deviates fromitsgeodesicmotionandmovesalongadifferent orbitdue to the spin-curvature
interaction. Introducing the Pirani spin supplementary condition (Pirani, 1956)

Sµνuν = 0 (1)

and the covariant spin vector

Sσ = 1
2ϵρµνσuρSµν , (2)

the motion is governed by the equation

m
Duα

dτ
= −ϵαµνβ D2uβ

dτ 2 Sµuν + 1
2
ϵλµρσ Rανλµuνuσ Sρ , (3)

where ϵρµνσ is theLevi-Civita completely antisymmetric tensor,D/dτ denotes the covariant
derivate along the vector field uα , i.e.,

Duα

dτ
= uβ

(
∂βuα + Γ αβγ uγ

)
, (4)

whereas Γ αβγ denotes coefficients of the affine connection of the background and Rανλµ is
theRiemann tensor describing the background onwhich particlemoves. The test particle is
assumed to be so small in size and inmass not tomodify the background. Clearly, we obtain
the geodesic motion in the case of spinless particles. Notice that by construction of the spin
vector (2), Sσ is permanently orthogonal to the 4-velocity uσ , i.e.,

Sσuσ = 0 . (5)
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Dynamics of the spin vector is then given by a relatively simple equation of the Fermi–
Walker transport

DSα
dτ

= uα
Duβ

dτ
Sβ . (6)

3 KERR–DESITTERSPACETIMES

KdS spacetimes are stationary and axially symmetric solutions of Einstein’s equations
with a non-zero cosmological constant Λ. In the standard Boyer–Lindquist coordinates
(t,ϕ, r,ϑ) and geometric units (c = G = 1), the line element of the KdS geometry is given
by the relation

ds2 = a2∆ϑ sinϑ2 −∆r

I 2ρ2 dt2 + 2a sinϑ2 [∆r − (a2 + r2)∆ϑ
]

I 2ρ2 dtdϕ

+ sinϑ2 [(a2 + r2)2∆ϑ − a2∆r sinϑ2]

I 2ρ2 dϕ2 + ρ2

∆r
dr2 + ρ2

∆ϑ
dϑ2 , (7)

where

∆r = r2 − 2Mr + a2 − 1
3Λr2(r2 + a2) , (8)

∆ϑ = 1 + 1
3Λa2 cos2 ϑ , (9)

I = 1 + 1
3Λa2 , (10)

ρ2 = r2 + a2 cos2 ϑ (11)

and the mass M , specific angularmomentum a, and cosmological constantΛ are paramet-
ers of the spacetime. Using the dimensionless cosmological parameter λ = ΛM 2/3 and
putting M = 1, the coordinates t , r , the line element ds2 , and the parameter a are expressed
in units of M and become dimensionless.
The stationary regions of the spacetimes, determined by the relation ∆r (r; a2,λ) ≥ 0,

are limited by the inner andouter black-hole horizons atrh− and rh+ andby the cosmological
horizon at rc. Spacetimes containing three horizons are black-hole (BH) spacetimes, while
spacetimes containing one horizon (the cosmological horizon exists for any choice of the
spacetime parameters) are naked-singularity (NS) spacetimes (Stuchlík and Slaný, 2004).
The radii of horizons are, due to the relation ∆r (r; a2,λ) = 0, given by solutions of the
equation

a2 = a2
h(r; λ) ≡ r2 − 2r − λr4

λr2 − 1
. (12)

For a fixed value of λ, the number of solutions of this equation (horizons) depends on
the number of positive local extrema of the function a2

h(r; λ) (see Fig. 1). The extrema
are located at the radii implicitly determined (due to the condition ∂r a2

h(r; λ) = 0) by the
relation

λ = λhe(r) ≡ 2r + 1 −
√

8r + 1
2r3 , (13)
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Figure 1. Location of the event horizons and static limit surfaces in the equatorial plane of the KdS
spacetimes. The function a2

h(r; λ) (solid) determines the loci of horizons; the function a2
s (r; λ)

(dashed) determines the radii of static limit surfaces. We give examples of different types of behaviour
of a2

h (r; λ) and a2
s (r; λ) in dependence on the value of λ discussed in the text. Panels (a)–(e) concern

the KdS spacetimes and for comparison the panel (f) concerns the Kerr spacetimes. The function
a2

h(r; λ) separates the dynamic regions (dark gray) and the stationary regions (light gray and white)
of the spacetimes. The function a2

s (r; λ) separates the ergosphere (light gray) and the other stationary
regions of the spacetimeswhere the existence of the equilibrium is possible (white). For given values
of λ and a2, the horizons and static limit surfaces (respectively) are determinedby the solutions of the
equations a2 = a2

h (r; λ) and a2 = a2
s (r; λ) (respectively). Note that in the panel (c), the irrelevant

negative function a2
s (r; λ) is illustrated.
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whereas the maximum of the function λhe(r) is located at rc = (3 + 2
√

3 )/4 and takes the
critical value λc(KdS)

.= 0.05924. Assuming the behaviour of the function a2
h(r; λ), we can

distinguish three different cases.

0 < λ < λc(KdS) There are two local extrema of the function a2
h(r; λ), denoted as

a2
h,max(λ) and a2

h,min(λ) and determined by the relations (12) and (13), whereas the local
minimum a2

h,min(λ) becomes positive (relevant) for λ > λc(SdS) ≡ 1/27 .= 0.03704.
Thus for a2 > a2

h,max(λ) or for a2 < a2
h,min(λ), there is one solution of Eq. (12) and only

NS spacetimes exist. For a2 < a2
h,max(λ) and a2 > a2

h,min(λ), there are three solutions of
the Eq. (12) andBH spacetimes exist (see Figs 1a-d).

λ = λc(KdS) The local extrema a2
h,max(λ) and a2

h,min(λ) coalesce at rc and take the value
a2

c
.= 1.21202. Then there is only one solution of the equation (12) for all a2 > 0 and

only NS spacetimes exist.
λ > λc(KdS) There are no extrema of the function a2

h(r; λ) and thus there is only one
solution of the equation (12) for all a2 > 0 and only NS spacetimes exist (see Fig. 1e).

The degenerate cases corresponding to extreme black holes or naked singularities are given
in Stuchlík and Slaný (2004). In the case of Kerr spacetimes (λ = 0), there are BH
spacetimes for a2 ≤ 1 and NS spacetimes for a2 > 1 (see Fig. 1e) (Misner et al., 1973)
and in the case of SdS spacetimes (a2 = 0), there are only BH spacetimes for λ ≤ λc(SdS)

(Stuchlík andHledík, 1999).
For our purposes, i.e., determination of equilibrium positions of particles, it is necessary

to determine behaviour of the ergosphere (for definition see, e.g., Misner et al., 1973). The
ergosphere of the KdS spacetimes, determined by the relation gt t > 0, is limited by the
static limit surfaces, given by the equation gt t = 0. In the equatorial plane, the radii of these
surfaces rs− (inner) and rs+ (outer) are given by solutions of the equation

a2 = a2
s (r; λ) ≡ r − 2 − λr3

λr
. (14)

Again, for a fixed value of λ, the possible number of solutions of this equation (static limit
surfaces) depends on the number of positive local extrema of the function a2

s (r; λ) (see
Fig. 1). We can find (due to the condition ∂r (a2

s (r; λ) = 0) the only extremum of the
function taking the value

a2
s,max(λ) = λ−2/3

(
λ−1/3 − 3

)
. (15)

It is located at the so-called static radius

r = rstat ≡ λ−1/3 , (16)

where (in the equatorial plane) the gravitational attraction is balanced by the cosmological
repulsion independently of the rotational parameter a (Stuchlík and Slaný, 2004). There
is a2

s,max(λc(SdS)) = 0, while it becomes positive for λ < λc(SdS) and diverges for λ → 0.
Further,wehave todistinguish thecaseswhen the static limit surfacesdoexist ordonot exist
in the BH spacetimes. The critical values of the rotational and cosmological parameters are
given by the relation

a2
h,max(λ) = a2

s,max(λ) (17)
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Figure 2. Classification of the KdS spacetimes. The parametric plane (λ, a2) is divided by the
functions a2

h,max(λ) (upper solid), a2
h,min(λ) (lower solid), and a2

s,max(λ) (dashed) into four regions
corresponding to the classes of KdS spacetimesBH-2, BH-0, NS-2, andNS-0 differing in the number
of horizons and static limit surfaces (expressed by the digit) in the equatorial plane.

and found to be a2
e,BH

.= 1.08317 and λe,BH
.= 0.03319. Assuming the behaviour of

the function a2
s (r; λ), we can summarize the number of static limit surfaces in the KdS

spacetimes.

λ < λc(SdS) There are two static limit surfaces for a2 < a2
s,max(λ), one static limit surface

for a2 = a2
s,max(λ), and none static limit surface for a2 > a2

s,max(λ) (see Figs 1a,b). If
λ < λe,BH, the static limit surface exists in all the BH spacetimes, and in NS spacetimes
with a2 < a2

s,max(λ) and it does not exist for a2 > a2
s,max(λ) in the NS spacetimes (see

Fig. 1a). If λe,BH < λ < λc(SdS), the static limit surface exists for BH spacetimes with
a2 < a2

s,max(λ) and do not exist for the BH and NS spacetimes with a2 > a2
s,max(λ)

(see Fig. 1b).
λ ≥ λc(SdS) There are no static limit surfaces for all a2 > 0 (see Figs 1c–e).

Clearly, if no static limit surface exists in the KdS spacetimes, the equilibrium is impossible
there. In the case of the Kerr spacetimes, there is the only static limit surface at r = 2
independently of a2 (see Fig. 1f) and in the case of the SdS spacetimes, there is no static
limit surface and no ergosphere.
According to the given discussion, the KdS spacetimes can be divided into four classes

BH-2, BH-0, NS-2, and NS-0 (see Fig. 2) differing in the number of horizons and static
limit surfaces (expressed by the digit) in the equatorial plane.
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4 GENERALEQUILIBRIUMCONDITIONS

In order to consider the equilibrium of a spinning test particle, we must find conditions
which guarantee that the equations of motion (3), and the equations of spin dynamics (6),
alongwith the orthonormality relation (5), are simultaneously satisfied for the 4-velocity uα
corresponding to a stationary particle in the background under consideration.
Since the particle is at the “rest,” its 4-velocity has the only non-zero time component that

is given by the relations

uα = 1√−gt t
δt
α ,

duα

dτ
= uβ∂βuα = 0 . (18)

Thus, naturally, the equilibrium is possible only outside the static limit surfaces (outside
ergosphere) where gt t < 0, whereas such regions occur only in the stationary regions,
where ∆r > 0. The orthogonality of the spin and the 4-velocity implies that St = 0, i.e.,
only space components of the spin vector are non-zero. Thus the spin dynamics equation
(6) reduces to the form

DSα
dτ

=
[
uαΓ i

t t(u
t )2
]

Si , (19)

which implies

dSα
dτ

=
[
Γ i
αtu

t + uαΓ i
t t(u

t )2
]

Si . (20)

Therefore, in theKdS geometry, the spin dynamics of particles in equilibrium is given by the
relations

dSt

dτ
= 0 ,

dSr

dτ
= utΓ

ϕ
rt Sϕ ,

dSϑ
dτ

= utΓ
ϕ
ϑ t Sϕ , (21)

dSϕ
dτ

= ut
[(
Γ r
ϕt − gtϕ

gt t
Γ r

t t

)
Sr +

(
Γ ϑϕt − gtϕ

gt t
Γ ϑt t

)
Sϑ
]

. (22)

The second derivative of the 4-velocity (18) can be rewritten as

D2uα
dτ 2 = (ut )2Γ

β
tαΓ

γ
βt uγ , (23)

which in the KdS geometry reduces to the following components

D2ut

dτ 2 = −ut
[(
Γ r

t tΓ
t
rt + Γ ϑt tΓ

t
ϑ t
)
+ gtϕ

gt t

(
Γ r

t tΓ
ϕ
rt + Γ ϑt tΓ

ϕ
ϑ t
)]

, (24)

D2uϕ
dτ 2 = −ut

[(
Γ r
ϕtΓ

t
rt + Γ ϑϕtΓ

t
ϑ t
)+ gtϕ

gt t

(
Γ r
ϕtΓ

ϕ
rt + Γ ϑϕtΓ

ϕ
ϑ t
)]

, (25)

D2ur

dτ 2 = 0 ,
D2uϑ
dτ 2 = 0 . (26)
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The first derivate of the 4-velocity reduces to

Duα

dτ
= (ut )2Γ αt t , (27)

which in the KdS spacetimes yields

Dut

dτ
= 0 ,

Duϕ

dτ
= 0 ,

Dur

dτ
= (ut )2Γ r

t t ,
Duϑ

dτ
= (ut )2Γ ϑt t . (28)

The equilibrium conditions can be obtained by using Eqs (3), (24)–(26), and (28). They
are too long to be explicitly written and discussed in a general case, as well as the spin
dynamics Eqs (21)–(22). Therefore we restrict our attention to the most important case
of the equatorial plane of the KdS spacetimes, which gives, moreover, a relatively simple
results.

5 EQUILIBRIUMCONDITIONS INEQUATORIALPLANEOF
KERR–DESITTERSPACETIMES

Aswenoticed inSection3, theequatorial equilibriumispossible in the spacetimesadmitting
static limit surfaces, andoutside the ergosphere of these spacetimes, i.e., in the regionwhere

a2 < a2
s (r; λ) , (29)

equivalently a2 −∆r < 0 or rs− < r < rs+. Generally, we thus assume λ < λcrit(SdS) and
a2 < a2

s,max(λ). Using the Eqs (21)–(22), we obtain the following spin dynamics equations

dSt

dτ
= dSϑ

dτ
= 0 , (30)

dSr

dτ
= ut a(1 − r3λ)

r2∆r
Sϕ , (31)

dSϕ
dτ

= ut a(1 − r3λ)∆r

r2 I 2(a2 −∆r )
Sr . (32)

The equation of motion (3) implies relevant conditions for α = r and α = ϑ only. By using
Eqs (24)–(26) and (28) we arrive at

Sϑ = m
r2(1 − λr3)(a2 −∆r )

a[λ2r6 + λ(r3 + 3a2r) − 3r + 7](1 + λa2)
, (33)

Sr a∆r [λ2r6 − λ(5r3 + 3ra2) + 3r − 5]
r4(a2 −∆r )2 = 0 . (34)

Thus, outside the ergosphere, in the equatorial plane, the equilibrium of spinning test
particles requires, due to the Eq. (30), Sϑ = const given by the Eq. (33). The conditions
(31)–(34) can be discussed in the following way.
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Sr = 0 The condition (34) is automatically satisfied. Equation (32) requires Sϕ = const
and the condition (31), where dSr/dτ = 0, implies that for
• Sϕ ̸= 0, the equilibrium is possible only at the static radius rstat (only if rstat satisfies
the condition (29)) with the spin Sϑ given by the equation (33), i.e., Sϑ = 0

• Sϕ = 0, the equilibrium is possible at all the radii satisfying the condition (29) with the
spin given by the function Sϑ (r; a,λ) determined by Eq. (33). In the case of spinless
particles (Sϑ = 0), the equilibrium is possible at the static radius only and there is no
equilibrium possible at the radii, where the function Sϑ diverges. Note that in the case
of a2 = a2

s,max(λ) = λ−2/3(λ−1/3 − 3), the condition (33)would allow the equilibrium
independent of the spin Sϑ at rstat. But this is the limit case of the spacetimes which
does not satisfy the condition a2 < a2

s (r; λ). The static radius rstat is the radius where
the static limit surfaces coalesce for a2 = a2

s,max(λ) (see Figs 1a,b). We give the
behaviour of the function Sϑ for a few specifically chosen values of λ and a in Fig. 3.
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Figure 3. Function Sϑ (r; a, λ) determining the magnitude and orientation of the latitudinal com-
ponent of the spin vector of spinning particle in equilibrium at the radius r for given values of the
parameters a2 and λ in the case of Sϕ = 0. The function vanishes at the radii of static limit surfaces,
denoted by the dashed lines between the light gray and white regions, and at the static radius. The
horizons of the spacetimes are denoted by the dashed lines between the dark gray and light gray
regions. The divergence of the function is denoted by the vertical lines. We give four examples of the
behaviour of the function for values of the parameters corresponding to the given classification of the
KdS spacetimes (see Fig. 2). Note that the function Sϑ (r; a,λ) is not relevant in the gray regions.
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Sr ̸= 0 The condition (34) is satisfied at the radii given by solutions of the equation

a2 = a2
eq(r; λ) ≡ λ2r6 − 5λr3 + 3r − 5

3λr
. (35)

But there is a2
eq(r; λ) ≥ a2

s (r; λ) for all positive values of r , thus there is no equilibrium
in this case.

5.1 Kerr and Schwarzschild–de Sitter cases

In the equatorial plane of the Kerr spacetimes, the equilibrium of spinning test particles
is also possible only outside the ergosphere, i.e., in the region with r > 2. The limit
case (λ = 0) of the equilibrium conditions (30)–(34) implies that the equilibrium requires
Sϑ = const, as well as in the KdS spacetimes.

Sr = 0 The condition (34) is automatically satisfied. The condition (32) implies Sϕ =
const and the condition (31), where dSr/dτ = 0, is satisfied only in the case of Sϕ = 0.
Then the equilibrium is possible at all the radii satisfying the conditions r > 2 with spin
given by the function

Sϑ = m
r3(2 − r)

a(7 − 3r)
. (36)

Note that there is no equilibrium possible for Sϑ = 0 (spinless case), because of the
restriction r > 2.

Sr ̸= 0 The condition (34) implies the solution r = 5/3, which does not satisfy the
condition r > 2 and then there is no equilibrium in this case.

In the SdS spacetimes, the limit case (a = 0) of the equilibrium conditions (30)–(34)
implies that the equilibrium is possible only at the static radius. The spin can be arbitrary
and itwill be time independent. Of course, because of the the spherical symmetry of the SdS
spacetimes, this result holds for any central plane of the spacetime.

6 CONCLUSIONS

The combined effect of the rotation of the source and the cosmic repulsion enriches signi-
ficantly the properties of the test particle equilibrium in the KdS spacetimes not only for the
spinning particles, but also for the non-spinning particles.
In the case of non-spinning particles (the equilibrium of which is given by the geodetical

structure of the spacetimes), the equilibrium position is allowed in the equatorial plane at
the static radii, determined by the spacetime parameters only. The static radius rstat =
λ−1/3, i.e., it is independent of the rotational parameter and coincides formally with the SdS
formula (Stuchlík, 1999). The equatorial equilibrium is possible at rstat for any KdS BH or
NS admitting existence of the static limit surfaces (see Fig. 2), but it is not possible in any
Kerr spacetimes. Notice, however, that the particles in equilibrium in the equatorial plane
are rotating relative to the locally non-rotating frames (Stuchlík and Slaný, 2004).
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The equilibrium of spinning particles in the equatorial plane of the KdS spacetimes
is spin-dependent in contrast to the case of spherically symmetric SdS and Reissner–
Nordström–de Sitter spacetimes (Stuchlík, 1999; Stuchlík and Hledík, 2001). It is pos-
sible at the static radius of the KdS spacetimes allowing existence of static limit surfaces, if
Sϕ = const ̸= 0, Sr = Sϑ = 0, i.e., spin directed in the ϕ-direction. If Sϑ = const ̸= 0 and
Sϕ = Sr = 0, the equilibrium is possible at the radii outside the ergosphere with the spin
component Sϑ determined by Eq. (33).
For comparison, the equilibriumpositions are briefly summarized in the next table, in the

cases of the SdS, Kerr, and KdS spacetimes, in dependence on the spin components.

Sr Sϕ Sϑ SdS Kerr KdS

= 0 = 0 = 0 rstat — rstat
̸= 0 rstat r = r(Sϑ , a) r = r(Sϑ , a,λ)

̸= 0 = 0 rstat — rstat
̸= 0 rstat — —

̸= 0 arbitr. arbitr. rstat — —
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On the possibility of precise determination of
black hole spin in the framework of resonance
models
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Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
It is highly probable that a non-linear resonance between somemodes of oscillations
in the accretion discs around black holes and neutron stars can play a crucial role in
exciting detectable modulations of the X-ray flux. Detailed studies of the resonance
models revealed that several of such non-linear resonances are possible in nearly
Keplerian discs in strong gravity. Moreover, this idea seems to be strongly supported
by observations – in all four microquasars showing twin peak QPOs (quasiperiodic
oscillations), the ratio of frequency peaks is 3 :2. In principle, using known frequen-
cies of the twin peaks and the known mass of the central black hole, the black-hole
spin can be determined. This was already done for the presently known sources and
few miscellaneous resonance models. Details of excitation mechanisms of eventual
resonances are still not fully explained, nevertheless one can imagine that not only
one resonance could be excited in the accretion disc. Thus, if two such different
resonances are present (by an accident or because of some causal connection), the
black hole spin can be precisely determined independently of the knowledge of the
black holemass, for some specific cases discussed here.

Keywords: compact objects –X-ray variability – theory – observations

1 INTRODUCTION

Quasiperiodic oscillations (QPOs) of X-ray brightness had been observed at low (Hz) and
high (kHz) frequencies in many Galactic low-mass X-ray binaries containing neutron stars
or black holes (see, e.g., McClintock and Remillard, 2004; van der Klis, 2000). Some of the
quasi periodic oscillations (QPOs) are in the kHz range and often come in pairs (νup, νdown)

of twin peaks1 in the Fourier power spectra. Since the peaks of high frequencies are close
to the orbital frequency of the marginally stable circular orbit representing the inner edge
of Keplerian discs orbiting black holes (or neutron stars), the strong gravity effects must be
relevant in explaining high frequencyQPOs (Abramowicz et al., 2004b).

1 More often called double peaks, but the authors prefer the term twin peaks coined by Lynch and Frost (1990).

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Before the twin peak kHz QPOs have been discovered in microquasars (first by
Strohmayer, 2001), and the3 :2 ratiopointedout (first byAbramowiczandKluźniak, 2001),
Kluźniak andAbramowicz (2000) suggested on theoretical grounds that theseQPOs should
have rational ratios, because of the resonances in oscillations of nearly Keplerian accretion
disks. It seems that the resonance hypothesis is now well supported by observations, and
that in particular the 3 :2 ratio (2νup = 3νdown) is seenmost often in twin peakQPOs in low
mass X-ray binaries – black hole and neutron star sources. In addition, there is even some
evidence of the same 3 :2 ratio in the X-ray spectra of the Galaxy centre black hole in Sgr A∗

(Abramowicz et al., 2004a; Aschenbach, 2004; Török, 2005).
According to the resonancehypothesis (KluźniakandAbramowicz, 2000), the twomodes

in resonance should have eigenfrequencies νr (equal to the radial epicyclic frequency) and
νv (equal to the vertical epicyclic frequency νθ or to the Keplerian frequency νK); see Ab-
ramowicz and Kluźniak (2004) and Török et al. (2005) for recent review. While models
based on the parametric resonance identify the two observed frequencies of the twin peak
(νup, νdown) directly with the eigenfrequencies of a resonance, models based on the forced
resonance allows to observe combinational (beat) frequencies of the modes. Both para-
metric and forced resonance models make clear and precise predictions about the values of
observed frequencies in connection with spin and mass of the observed object (at least in
the case of black holes). Figure 1 and Table 1 (from Török et al., 2005) show the estimate
of black hole specific internal angular momentum (sometimes, we call this quantity shortly
the black hole spin) given by few possiblemodels for microquasarswith observed twin peak
QPOs. Although the observed frequencies are consistent with several (but not every) res-
onance models, the most probable and natural explanation for the presence of 3 : 2 ratio is

Figure 1. In all four microquasars with X-ray twin peak
kHz QPOs discovered, νup/νdown = 3/2. (From Török
et al., 2005.)

Table 1. Estimate of the black hole
spin for the three microquasars result-
ing from miscellaneous resonance mod-
els. Displayed value is averagedby the fit

νup ∼ 1/M; for the details and exact numbers corresponding to the particularmicroquasars see Török
et al. (2005). Shaded field stress the estimate for the 3 : 2 parametric (or internal) resonance. (From
Török et al., 2005.)
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the 3 : 2 parametric (or internal) resonance (Abramowicz and Kluźniak, 2004; Török et al.,
2005).
In this article we briefly remind some essential points of the orbital resonance models

and then we discuss the possibility and consequences of the situation in which not only one
resonance is excited in the disc. We assume that both the parametric and forced resonance
could occur simultaneously at different parts of a Keplerian accretion disc. Then, under
the assumption that the upper (bottom) observed frequencies can be the same, we are able
to find the internal angular momentum of the black hole in dependence on the ratio of the
tripled observed frequencies and independently of the black hole mass. Of course, in such
case theblack holemass canbedetermined from themagnitudeof the observed frequencies.

2 DIGESTOFORBITALRESONANCEMODELS

Twomain groups of orbital resonancemodels exist. Both of them are related to the epicyclic
frequencies of the equatorial circular test particle motion. The epicyclic frequencies can be
relevant both for the thin, Keplerian discs (Kato et al., 1998) and for thick, toroidal discs
(Rezzolla, 2004; Šrámková, 2005).

2.1 Internal parametric resonance

The first one, the internal resonance model, is based on the idea of parametric resonance
between vertical and radial epicyclic oscillations with the frequencies νθ = ωθ/2π and
νr = ωr/2π. The parametric resonance is described by the Mathieu equation (Landau and
Lifshitz, 1976)

δθ̈ + ω2
θ [1 + h cos(ωrt)] δθ = 0 . (1)

Theory behind theMathieu equation implies that a parametric resonance is excited when

ωr

ωθ
= νr

νθ
= 2

n
, n = 1, 2, 3, . . . (2)

and is strongest for the smallest possible value of n (Landau and Lifshitz, 1976). Because
there is νr < νθ near black holes, the smallest possible value for the parametric resonance
is n = 3, which means that 2νθ = 3νr. This explains the observed 3 : 2 ratio, assuming
νup = νθ and νdown = νr. Note that the same condition (2) holds also for the internal
resonance in a systemwith conserved energy.

2.2 Forced resonance

Models based on the forced resonance come from the idea of a forced non-linear oscillator,
when the relation of the latitudinal (vertical) and radial oscillations is given by the formulae

δθ̈ + ω2
θ δθ + [non linear terms in δθ ] = g(r) cos(ω0t) , (3)

δr̈ + ω2
r δr + [non linear terms in δθ, δr ] = h(r) cos(ω0t) , (4)
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Table 2. Relation for observed frequencies for standard (νv = νθ ) and “Keplerian” (νv = νK) reson-
ances.

Theory Observed frequencies
Type of resonance nνr = mνv

n m νup νdown

parametric 3 2 νθ νr

st
an
da
rd

3 :1 forced 3 1 νθ νθ − νr

2 :1 forced 2 1 νθ + νr νθ

parametric 3 2 νK νr

K
ep
le
ria

n

3 :1 forced 3 1 νK νK − νr

2 :1 forced 2 1 νK + νr νK

with

ωθ = p
q
ωr , (5)

where p, q are small natural numbers and ω0 is the frequency of the external force.2 The
non-linear terms allow the presence of combination (beat) frequencies in resonant solutions
for δθ(t) and δr(t) (see, e.g., Landau and Lifshitz, 1976), which in the simplest case give

ω− = ωθ − ωr , ω+ = ωθ + ωr . (6)

Such resonances can produce the observable frequencies in the 3 :2 ratio as well as in other
rational ratios (note that one of the cases which give 3 : 2 observed ratio is also the “direct”
case of p : q = 3 : 2 corresponding to the same frequencies and radius as in the case of 3 : 2
parametric resonance).
Another, so called “Keplerian” resonance model, takes into account possible paramet-

ric or forced resonances between radial epicyclic frequency νr and Keplerian orbital fre-
quency νK.
Main relations for someof the resonancemodels brieflymentioned above are summarized

in the Table 2. Of course, there is an additional possibility how to compose the resonance
models, based on the combinations of the oscillations with the vertical epicyclic frequency
νθ and the Keplerian orbital frequency νK and its beat frequencies involving the radial
epicyclic frequency νr.

2 E.g., the gravitational perturbative forces are discussed, for the case of a neutron star with “mountains” or
accretion columns, and a binary partner of the neutron star or a black hole, in Stuchlík and Hledík (2005).
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3 DETERMINATIONOFTHE SPIN FROMRESONANCEMODELS

It is well known that the formulae for the vertical epicyclic frequency νθ and the radial
epicyclic frequency νr take in the gravitational field of a rotating Kerr black hole (with the
mass M and spin a) the form (e.g., Nowak et al., 1999)

ν2
θ = αθ ν

2
K , ν2

r = αrν
2
K , (7)

where the Keplerian frequency and related dimensionless epicyclic frequencies are given by
the formulae

νK = 1
2π

(
GM0

r 3
G

)1/2(
x3/2 + a

)−1
,

αθ = 1 − 4ax−3/2 + 3a2x−2 ,

αr = 1 − 6x−1 + 8ax−3/2 − 3a2x−2 . (8)

Here x = r/(GM/c2) is the dimensionless radius, expressed in terms of the gravitational
radius of the black hole. For a particular resonance n :m, the equation

nνr = mνv ; νv ∈ {νθ , νK} (9)

determines the dimensionless resonance radius xn:m as a function of the spin a.
From the known mass of the central black hole (e.g., low-mass in the case of binary

systems or hi-mass in the case of supermassive black holes), the observed twin peak fre-
quencies (νup, νdown), and the Eqs (7) and (9) imply the black hole spin, consistent with
different types of resonances with the beat frequencies taken into account. This procedure
was first applied to the microquasar GRO 1655−40 by Abramowicz and Kluźniak (2001),
more recently to the other three microquasars (Abramowicz and Kluźniak, 2004; Török
et al., 2005) and also to the Galaxy centre black hole (Török, 2005). Quantitative results of
this analysis are reminded partially in the Table 1.

4 MULTIPLERESONANCESANDTHEIROBSERVATIONALCONSEQUENCES

The very probable interpretation of twin peak frequencies observed in microquasars is
the 3 : 2 parametric resonance, however, generally it is not unlikely that more than one
resonance could be excited in the disc at the same time under different internal conditions.
In principle, in any case of this type, one can determine both the spin and mass of

black hole just only from the eventually observed set of frequencies. However, the obvious
difficulty would be to identify the right combination of resonances and its relation to the
observed set.
Here we consider the special case of two different resonances determined by a doubled

ratio of natural numbers n : m and p : q . Such resonances are located at the corresponding
radii rn:m , rp:q and characterized by observable set of frequencies resulting from the relevant
resonance modes (forced or parametric). Thus, the generic relation n : m : p : q fixes the
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rotational parameter of the central black hole. It is reasonable (because of arguments men-
tioned above) to assume that one of this excited resonances is a 3 : 2 parametric (internal)
resonance. Such situation is described by the generic relation 3 :2 : p :q and equivalent ob-
servable frequencies are in relation 3 :2 :s : t where s, t are the relevant numbers determined
by the combinational frequencies given by the ratio p : q establishing the radius where the
forced resonance of the epicyclic frequencies, or the epicyclic and Keplerian frequencies, is
realized.

4.1 Characteristic sets of frequencies with the duplex frequency

In some specific situations, for some specific values of the central black hole spin, thebottom
(top) frequencies observed at the radii r3:2 (or, generally, rn:m) and rp:q are identical. Now,
we assume the specific situation with coefficients q being equal to m or p being equal to n.
The first case of the “bottom identity” 3 : 2 : p describes the situation with two resonances
having common radial epicyclic frequencywhile the second case 3 :2 :q of the “top identity”
describes the situation with two resonances having common vertical epicyclic frequency.
These two possibilities are in principle allowed by the nonmonotonicity of the epicyclic
frequencies (7) discussed in detail in Török and Stuchlík (2005a).
It is rather familiar piece of knowledge that the radial epicyclic frequency has the global

maximum for any Kerr black hole, however also the vertical epicyclic frequency is not
monotonic if the spin is sufficiently high (see, e.g., Kato et al., 1998; Perez et al., 1997).
For the Kerr black-hole spacetimes, the locations Rr(a),Rθ(a) of maxima of the epicyclic
frequencies νr, νθ are implicitly given by the conditions (Török and Stuchlík, 2005a)

βj (x, a) = 1
2

√
x

x3/2 + a
αj (x, a) , (10)

where j ∈ {r, θ}, and

αr(x, a) ≡ 1
x2 − 2

a
x5/2 + a2

x3 , (11)

αθ (x, a) ≡ a
x5/2 − a2

x3 . (12)

For any black hole spin, the extrema of the radial epicyclic frequencyRr(a)must be located
above the marginally stable orbit. On the other hand, the latitudinal extrema Rθ (a) are
located above the photon (marginally bound or marginally stable) circular orbit only if the
limits on the black hole spin a > 0.748 (0.852, 0.952) are satisfied (Török and Stuchlík,
2005b). This means that while the “bottom identity” could happen for any black hole spin
a, the “top identity” can arise only for a ∼ 1. (The schematic sketches of the special cases
of the triples of the observed frequencies are in the ”direct” cases, with no beat frequencies
involved, illustrated in Fig. 2.)
In both cases of the “identities,” one frequency in resulting observable set must be

doubled. The common radial (vertical) frequency has to be the lower (upper) one. The
discussion is complicated by the possibility to consider corresponding (combinational) beat
frequencies, when νup = νθ + νr, νdown = νθ − νr.



On the possibility of determination of black hole spin 259

Figure 2. Left panel: locations of the two different resonanceswith natural coefficients n :m and p :q
for the specific case of q = m, figure is plotted for the Schwarzschild black hole (a = 0). Right panel:
locations of the two different resonances with natural coefficients n : m and p : q for the specific case
of p = n, figure is plotted for the extremal Kerr black hole (a = 1). For both schematic figures, the
position of n :m is particularly chosen at location of 3 :2 resonance.

Figure 3. Left panel: The functions ν p:q
r (a) for the smallest p, q = 1, 2, 3. Right panel: Functions

ν
p:q
θ (a) for 3 :2, 3 :1, 5 :1.

We have checked the functions ν p:q
r (a) in relation to ν3:2

r (a) for the smallest values of
p, q = 1, 2, 3. While for a 2 : 1 resonance the “bottom identity” is not possible, the curves
ν3:1

r (a), ν3:2
r (a) cross at a .= 0.44 and the set of frequencies resulting from common radial

epicyclic frequency could be generated (see Fig. 3 – left panel). For the “top identity” with
equal vertical epicyclic frequencies there is no “identity” possible if p, q are restricted to
1, 2, 3; however, e.g., for a 4 :1 or 5 :1 resonances the “top identity” could be realized in the
black hole backgroundswith the spin a ∼ 0.999 (see Fig. 3 – right panel).
In Table 3 we present sets of the observable frequencies which can result from the co-

incidence of the 3 : 2 parametric and 3 : 1 forced resonance, if the spin has the specific
value a = 0.44. Analogical analysis is given in Table 4 for the case of extremely high spin
a .= 0.999 and the “top identity” of the 3 :2 parametric resonance and the 4 :1 or 5 :1 forced
resonances.
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Table 3. The type of sets resulting for the “bottom identity” (a ∼ 0.44) of 3 : 2 parametric and 3 : 1
forced resonance.

νup νmiddle νdown characteristic set

ν3:1
θ ν3:2

θ νr 6 : 3 : 2

ν3:1
θ + νr ν3:2

θ νr 8 : 3 : 2

ν3:1
θ − ν3:1

r ν3:2
θ νr 4 : 3 : 2

Table 4. The type of sets resulting for the “top identity” (a ∼ 0.999) of 3 :2 parametric and 4 :1 or 5 :1
forced resonance.

νup νmiddle νdown characteristic set

νθ ν3:2
r ν4:1

r 12 : 8 : 3

νθ + ν4:1
r νθ ν3:2

r 15 : 12 : 8

νθ νθ − ν4:1
r ν3:2

r 12 : 9 : 8

νθ ν3:2
r ν5:1

r 15 : 10 : 3

νθ + ν5:1
r νθ ν3:2

r 18 : 15 : 10

νθ νθ − ν5:1
r ν3:2

r 15 : 12 : 10

5 CONCLUSIONS

The resonant model of QPOs predicts that both the internal parametric resonance and a
forced resonance can be excited in the both thin and thick accretion discs rotating around
black holes or neutron stars and that the resonant non-linear phenomena can occur between
oscillations with the vertical and radial epicyclic or with the orbital (Keplerian) frequency.
It is possible that the resonances are excited for different internal reasons, at different
radii on the accretion disc, and pairs of the resonant frequencies could occur in general
situations. Even in this case one can determine both the spin and mass of the black hole
but it would be rather difficult to identify relevant combination of resonances. However,
for special values of the black hole specific internal angular momentum (spin), the bottom
(upper) epicyclic frequencies could be equal at different radii, since there exist local extrema
of the radial profiles of both the epicyclic frequencies in the Kerr black hole spacetimes.
We have shown that in such situations, the ratio of the triples of the epicyclic frequencies,
or their combinations given by beat frequencies, is directly related to the black hole spin,
independently of the black hole mass. Such a possibility of direct measurement of the the
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black hole spin is very important because of relatively high uncertainties in observational
estimates of the black hole mass, necessary for determination of the black hole spin in
general resonant phenomena (Török et al., 2005) or in black hole spin determinations based
on the measurements of profiled spectral lines (Laor, 1991; Bao and Stuchlík, 1992; Karas
et al., 1992).
The relation between the tripled frequency ratios and the black hole spin is presented in

the Tables 3 and 4 in the basic possible cases of the bottom and top identities.
Of course, it is necessary to consider also the possibility to obtain a tripled frequencies

with the same ratio when taking into account some beat frequencies or relating the two
epicyclic and the orbital frequency.3 Such possibilities are under study at present.
The discussed possibility of precise determination of the black hole spin is based on

special situations when tripled frequencies are observed with characteristic ratios given by
the spin of the black hole, independently of its mass. The mass of the black hole is related
to the magnitude of the observed frequency triple. Of course, such a method can work only
accidentally, for the properly taken values of the black hole spin. Nevertheless, it is worth
to make careful search of the predicted frequency ratios in the observational data, because
an accidental success in the search could help much in understanding the other related
phenomena, if the spin is found precisely.
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Trapping of neutrinos in the internal
Schwarzschild–(anti-)de Sitter spacetimes

Zdeněk Stuchlík,Martin Urbanec and Gabriel Török
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Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
Extremely compact objects (R < 3G M/c2) contain null geodesics that are captured
by the object. Certain part of neutrinos produced in their interior will therefore
be trapped, thus influencing neutrino luminosity of the objects and their thermal
evolution. This effect was investigated for the interior Schwarzschild spacetimes
with the uniform distribution of energy density by Stuchlík, Z., Török, G., Hledík, S.
and Urbanec, M. (2005), Neutrino trapping in extremely compact objects, Classical
QuantumGravity, submitted. We will investigate here influence of the cosmological
constant on the trapping phenomena. We use again the simplest model for interior
of such objects based on the interior Schwarzschild–(anti-)de Sitter spacetimes.
We determine behaviour of the trapping coefficients, i.e., “global” one representing
influence on the neutrino luminosity and “local” one representing influence on the
cooling process.

1 INTRODUCTION

It is well known that in the internal Schwarzschild spacetimes of uniform energy density
(Schwarzschild, 1916) with radius R < 3GM/c2, bound null geodesics must exist being
concentrated around the stable circular null geodesic (Stuchlík et al., 2001; Abramowicz
et al., 1993). It follows immediately from the behaviour of the effective potential of null
geodesics in the exterior, vacuumSchwarzschild spacetimes, determining the unstable null
circular geodesics at the radius rph = 3GM/c2 (see, e.g., Misner et al., 1973), that any
spherically symmetric, static non-singular interior spacetime with radius R < rph admits
existence of bound null geodesics. We call objects (stars) admitting existence of bound
null geodesics – extremely compact objects (stars). Note that, in principle, the bound
null geodesics could exist also in objects having R > 3GM/c2, e.g., in some composite
polytropic spheres (Nilsson andUgla, 2000). The realistic equations of state admitting the
existence of the extremely compact objects were found and investigated, e.g., in Nilsson
andUgla (2000); Hledík et al. (2004); Østgaard (2001); Abramowicz et al. (1997), for both
neutron stars and quark stars.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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The existence of bound null geodesics in extremely compact objects has interesting as-
trophysical consequences, e.g., the trapped modes of gravitational waves influencing some
instabilities in these objects (Abramowicz et al., 1997; Abramowicz, 1999).
We consider another interesting problem – namely, the problem of neutrinos trapped by

the strong gravitational field of extremely compact objects, which can be important at least
for two reasons. First, the neutrino flow from extremely compact stars as measured by dis-
tant observers should be suppressed. Second, trapped neutrinos, being restricted to a layer
extending from some radius, depending on details of the structure of the extremely compact
stars, up to their surface, can influence cooling of the extremely compact stars. The cooling
process could even be realized in a “two-temperature” regime,when the temperature profile
in the interior of the star with no trapped neutrinos differs from the profile established in the
external layer with trapped neutrinos (Stuchlík et al., 2005). For the neutrino dominated
period of the cooling process, one can speculate that some part of the external layer near the
radius of the stable null circular geodesic, where the trapping of neutrinos reaches highest
efficiency, will reach a higher temperature than is the temperature in the interior of the star.
This effect can lead to an inflow of heat from the “overheated” external layer to the interior
of the star through other “agents” than the neutrino flow. Such a heat flow could influence
the structure of extremely compact stars, maybe, some special “self-organized” structures
could develop due to the assumed heat flow. Then properties of the extremely compact stars
could be modified in comparison with the standard picture given in Glendenning (2000);
Weber andGlendenning (1992); Weber (1999).
Of course, all of these ideas deserve very sophisticated analytical estimates and detailed

numerical simulations. The first step in considering the role of trapped neutrinos in ex-
tremely compact stars is estimation of the efficiency of the trapping effect by considering
the number of trapped neutrinos in comparison to all neutrinos produced in the extremely
compact objects. The influence on the neutrino luminosity of the star is given by a luminos-
ity trapping coefficient relating the total number of trapped neutrinos and the total number
of radiated neutrinos (per unit time of distant observers). The influence on the cooling pro-
cess is given by two “cooling” trapping coefficients: a “local” one given by ratio of trapped
and radiated neutrinos at any radiuswhere the trapping occurs, and the “global” one giving
ratio of trapped and radiated neutrinos (per unit time of distant observers) integrated over
whole the regionwhere the trapping occurs.
The trapping was considered in the internal Schwarzschild spacetime with uniform dis-

tribution of energy density (but a nontrivial pressure profile) and isotropic and uniform
distribution of local neutrino luminosity, when all the calculations can be realized in terms
of elementary functions only (Stuchlík et al., 2005). Here we shall extend the estimations
to the internal Schwarzschild–(anti-)de Sitter spacetimes with the uniform distribution of
energy density, in order to obtain information on the influence of a nonzero cosmological
constant on the effect. The trapping and “cooling” coefficients introduced in Stuchlík et al.
(2005) are given here by numerical integration.
In Section 2, we summarize properties of the internal Schwarzschild–(anti-)de Sitter

spacetime. In Section 3, null geodesics of the spacetime are described in terms of prop-
erly given effective potential. In Section 4, the trapping of neutrinos is determined. In
Section 5, the efficiency coefficients of the trapping are defined for both the total neut-
rino luminosity and neutrino cooling process, and determined numerically for the internal
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Schwarzschild–(anti-)de Sitter spacetime. In Section 6, concluding remarks are presented.
We shall use the geometric units, if not stated otherwise. For simplicity, we assume zero
rest energy of neutrinos and the period of evolution of the compact stars, when the temper-
ature is low enough that the motion of neutrinos is determined by the null geodesics of the
spacetime.

2 INTERIORSCHWARZSCHILD–(ANTI-)DESITTERSPACETIME

In standard Schwarzschild coordinates (t, r, θ,ϕ) the line element for interior Schwarz-
schild-(anti)de Sitter spacetimewith uniform energy density ρ reads

ds2 = −e2Φ(r) dt2 + e2Ψ (r) dr2 + r2(dθ2 + sin2 θ dϕ2) . (1)

The temporal and radial components of metric tensor are given by relations

(−gt t)
1/2 = eΦ = AY1 − BY (r) ,

(grr )
1/2 = eΨ = 1

Y (r)
, (2)

where

Y (r) =
(

1 − r2

a2

)1/2

, (3)

Y1 = Y (R) =
(

1 − R2

a2

)1/2

, (4)

1
a2 = 2M

R3 + Λ

3
, (5)

A = 9M
6M +ΛR3 , (6)

B = 3M −ΛR3

6M +ΛR3 . (7)

In the presented relations R is total radius of the star, M is the mass of the star andΛ is the
cosmological constant. The parameter a represents the curvature of the internal spacetime;
it is the radius of the embedding diagram of its equatorial plane t = const section into 3D
Euclidean space (Stuchlík et al., 2001).
We express all the quantities in terms of M , i.e., in dimensionless form: r/M → r ,

a/M → a, x ≡ R/M , y ≡ M2Λ/3, when we obtain the relations

a2 = x3

2 + yx3 , Y1 =
(

x − 2 − yx3

x

)1/2

,

A = 3
2 + yx3 , B = 1 − yx3

2 + yx3 . (8)
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Wecan see that if 2+ yx3 = 0, i.e., y = −2/x3, thenY (r) = 1, A− B = 1 and so eΨ (r) = 1
while

eΦ(r) = 1 + 3M
2R

(
r2

R2 − 1
)

(9)

and spacetime has a very simple form.
In terms of the tetrad formalism the metric (1) reads

ds2 = −[ω(t)]2 + [ω(r)]2 + [ω(θ)]2 + [ω(φ)]2 , (10)

where

ω(t) = eΦ dt , ω(r) = eΨ dr , ω(θ) = r dθ , ω(φ) = r sin θ dφ . (11)

Tetrad of 4-vectors eµ
(α) = [ω(α)

µ ]−1 is then given by

e(t) = 1
eΦ

∂

∂t
, e(r) = 1

eΨ
∂

∂r
, e(θ) = 1

r
∂

∂θ
, e(φ) = 1

r sin θ
∂

∂φ
. (12)

Tetrad components of 4-momentum of a test particle or a photon are determined by the
projections p(α) = pµeµ

(α), p(α) = pµω
(α)
µ which give quantities measured by the local

observers.

3 NULLGEODESICS, IMPACTPARAMETERANDEFFECTIVEPOTENTIAL

For neutrinos moving along null geodesics, the geodesic equation holds together with the
normalization condition
Dpµ

dλ
= 0 , pµ pµ = 0 . (13)

Due to the existence of two Killing vector fields: the temporal ∂/∂t one, and the azimuthal
∂/∂ϕ, two conserved components of 4-momentummust exist:

E = −pt , L = pϕ . (14)

Here E is the energy and L is the axial angularmomentum. All particlesmove in the central
planes. For a single particle, we can set this plane to be equatorial (θ = π/2 = const). For
null-geodetical motion, the impact parameter ℓ = L/E is useful.
The relevant equation governing the radialmotion then reads

(pr )2 = e−2(Φ+Ψ ) E2
(

1 − e2Φ ℓ

r2

)
. (15)

The radial motion is restricted by an effective potential defined for the internal and the
external spacetime separately in the form

ℓ2 ≤ Veff =

⎧
⎪⎪⎨

⎪⎪⎩

V int
eff = a2[1 − Y 2(r)]

[AY1 − BY (r)]2 for r ≤ R ,

V ext
eff = r3

r − 2 − yr3 for r ≥ R .

(16)
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Figure 1.Detailedbehaviour of effective potential (left, R = 2.8M,Λ = 0, taken from Stuchlík et al.,
2005) and influence of cosmological parameter y (right, R = 2.8M).

The behaviour of the effective potential is represented in Fig. 1. We have to find rb(i),
where the value of effective potential is equal to its value at surface of the star, and to find
rb(e) where the value of effective potential is equal to its value at r = 3. The relevant values
of the impact parameter are given in the equations

ℓ2
i = x2

Y 2
1

= x3

x − 2 − yx3 , (17)

ℓ2
e = 27

1 − 27y
. (18)

From relation (16) for V int
eff , we obtain Y (r) to be given by the condition

V int
eff = a2[1 − Y 2(r)]

[AY1 − BY (r)] = ℓ2
i(e) , (19)

and then from relation (3) by inverse transformation we get rb(i) or rb(e)

r2 = a2[1 − Y 2(r)] . (20)

First we find rb(i) respectively Y (rb(i)). From equality of the effective potential and ℓ2
i we

obtain condition

a2[1 − Y 2(r)]
[AY1 − BY (r)]2 = x2

Y 2
1

(21)

leading to quadratic equation in terms of Y (r) that gives two solutions

Y±(rb(i)) = 2x2 ABY1 ±
√

D
2(a2Y 2

1 + x2 B2)
, (22)

where

D = 4x4 A2 B2Y 2
1 − 4(a2Y 2

1 + x2 B2)Y 2
1 (x2 A2 − a2) . (23)
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Figure 3. The dependence of the radii determining the trapped neutrinos rb(e), rb(i) and rc(i) giving
radius of the stable circular photon orbit, on the radius R. The relations for the variable Y (r) are
converted into relations for r taken from Stuchlík et al. (2005).

After some simplifications we obtain the relevant solution in the form

Y (rb(i)) = Y1
9 − 2x − yx4

2x − 3 + yx3(x − 6)
, (24)

the other is the trivial solution Y (rb(i)) = Y1. The relevant solution rb(i) is shown in Fig. 2
for some values of cosmological parameter y.
Nowwedetermine rb(e), respectivelyY (rb(e)), fromequality of effective potential (for star

interior) with ℓ2
e :

a2[1 − Y 2(r)]
[AY1 − BY (r)]2 = 27

1 − 27y
. (25)
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Weobtain quadratic equation in terms of Y (r), having two solutions

Y±(rb(e)) = 54ABY1 ±
√

D
2[27B2 + a2(1 − 27y)] , (26)

where

D = 542 A2 B2Y 2
1 − 4[27B2 + a2(1 − 27y)][27A2Y 2

1 − a2(1 − 27y)] . (27)

We need 0 < rb(e) < x ; it can be shown that if yx 3 > −2, thenY+ is the relevant solution
while if yx3 < −2, then Y− is the relevant solution. Now, we can get rb(e) from Y (rb(e))

numerically. The solution of rb(e)(x, y) is shown in Fig. 2.
Circular null geodesics are given by the local extrema of effective potential (∂Veff/∂r =

0), which in the internal spacetime yields for their radius the relation

Y (rc(i)) = B
AY1

. (28)

The radius rc(i) is explicitly given by

r2
c(i) = a2 A2a2 − A2 R2 − B2a2

A2(a2 − R2)
, (29)

and it is illustrated in Fig. 3

4 TRAPPINGOFNEUTRINOS

In the case of extremely compact static objects described by the internal Schwarzschild–
(anti-)de Sitter spacetime, stable bound null geodesics exist (see Fig. 1), i.e., some part
of produced neutrinos is prevented from escaping these static objects. For the unit mass
M = 1, the relation (28) implies the impact parameter which corresponds to the local
maximum of the effective potential V int

eff at rc(i), where the stable circular null geodesics of
the internal Schwarzschild–(anti-)de Sitter spacetimes are located, to be given by

ℓ2
c(i) = x3

x − 2 − yx3 . (30)

The localminimumofV ext
eff atrc(e) = 3 corresponds to theunstable circular null geodesics of

the external vacuumSchwarzschild–(anti-)de Sitter spacetime, with ℓ2
c(e) = 27/(1 − 27y)

(see Fig. 1).

4.1 Regions of trapping

Bound neutrinos (depicted by the shaded area in Fig. 1) may generally appear outside the
extremely compact objects, but they are trapped by the strong gravitational field of these
objects and they enter them again. Therefore, we divide the trapped neutrinos into two
families:
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• “Internal” bound neutrinos (upper (shaded) part of the shadow area with impact para-
meter between ℓ2

int(R) and ℓ2
c(i)): their motion is restricted inside the object.

• “External” bound neutrinos (lower part of the shadow area with impact parameter
between ℓ2

c(e) and ℓ
2
int(R)): may leave the object, but they re-enter the object.

Pericentra for both the marginally bound (rb(e)) and “internal” marginally bound neutrinos
(rb(i)) can be obtained from Eqs (26) or (24), see Fig. 3 for the graphical representation
in the case of y = 0. For completeness, we show also loci rc(i) of the stable circular null
geodesic.
Bound neutrinos with mean free path ≫ R (this condition can be fulfilled in a few days

old neutron star, see Shapiro and Teukolsky, 1983; Weber and Glendenning, 1992) will
slow down the cooling. Of course, they will be re-scattered due to finiteness of the mean
free path. An eventual scattering of trapped neutrinos will cause change of their impact
parameter, therefore, some of them will escape the extremely compact star, suppressing
thus the slow down of the cooling process in the region of neutrino trapping. However,
the “external” bound neutrinos have certain portion of their orbit outside the compact
star where no interaction with matter is possible; this fact, on the other hand, “suppress
the suppression” of the cooling timescale retardation. Clearly, the scattering effect of the
trapped neutrinos is a complex process deserving sophisticated numerical code based on
the Monte Carlo method (we expect modelling of this effect in future). Only neutrinos
produced above or at rb(e) are subject to this effect; those produced below rb(e) freely escape
to infinity.

4.2 Directional angles

Considering (without loss of generality, as stated just above) an equatorial motion, we can
define the directional angle relative to the outward pointed radial directionmeasured in the
emitor system (i.e., the local system of static observers in the internal spacetime) by the
standard relations

sinψ = p(φ)

p(t) , cosψ = p(r)

p(t) , (31)

where

p(α) = pµω(α)
µ , p(α) = pµeµ

(α) (32)

are the neutrino momentum component as measured by the static observers. Besides
conserving components (13), and pθ = 0, Eq. (15) implies

pr = ±EeΨ−Φ
(

1 − e2Φ ℓ
2

r2

)
. (33)

For the directional angleswe thus obtain relations

sinψ = α(r, R,Λ)
ℓ

r
, cosψ = ±

(
1 − sin2 ψ

)1/2
, (34)



Trapping of neutrinos in the internal S(a)dS spacetimes 273

where

α(r, R,Λ) = AY1 − BY (r) . (35)

The interval of relevant radii is given by r ∈ (rb(e), R). The directional angle limit for the
bound neutrinos is determined by the impact parameter ℓ2

c(e) = 27/(1 − 27y). We arrive at
the relation

sinψe(r, R) = α(r, R,Λ)

(
27

1 − 27y

)1/2
. (36)

The directional angle limit for the “internal” bound neutrinos is determined by Eq. (30) and
yields the relations

sinψi(r, R,Λ) = α(r, R,Λ)

(
x3

x − 2 − yx3

)1/2

. (37)

Apparently, the conditionψi > ψe holds at any given radius r < R.

4.3 Local escaped to produced neutrinos ratio

We assume that neutrinos are locally produced by isotropically emitting sources. Then
escaped-to-produced-neutrinos ratio depends on a geometrical argument only. It is de-
termined by the solid angle 2Ω corresponding to escaping neutrinos (also inward emitted
neutrinos must be involved because even these neutrinos can be radiated away), see Fig. 4.
Let Np, Ne and Nb denote, respectively, the number of produced, escaped and trapped

neutrinos per unit time of an external static observer at infinity. In order to determine the
global correction factors

E(R,Λ) ≡ Ne(R,Λ)

Np(R,Λ)
, B(R,Λ) ≡ Nb(R,Λ)

Np(R,Λ)
= 1 − E(R,Λ) , (38)

it is necessary to introduce the local correction factor for escapingneutrinos at a given radius
r ∈ (rb(e), R). Because of the assumption of isotropic emission of neutrinos in the frame of
the static observers, the solid angle1Ωe(Ψe) determines fully the ratio of escaped-produced
neutrinos. The escaping solid angle is given by

Ωe(Ψe) =
Ψe∫

0

2π∫

0

sinΨ dΨ dφ = 2π(1 − cosΨe) (39)

and the escaping correction factor

ϵ(r, R,Λ) = dNe(r,Λ)

dNp(r,Λ)
= 2Ω(ψe(r, R,Λ))

4π
= 1 − cosψe(r, R,Λ) , (40)

1 In the case of non-isotropic emission of neutrinos, we should take Ωe(Ψe) =
∫ Ψe

0
∫ 2π

0 p(Ψ ) sin Ψ dΨ dφ with
p(Ψ ) being directional function of the emission (scattering) process.
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Figure 4. Schematic illustration of the bound-escape ratio at a radius r ∈ (rb(e), R) of an internal
Schwarzschild spacetime. Direction of the neutrino motion with respect to the static observers is
related to e(r) giving the outward oriented radial direction. Taken fromStuchlík et al. (2005).

while the complementary factor for trapped neutrinos

β(r, R,Λ) = 1 − ϵ(r, R,Λ) = dNb(r,Λ)

dNp(r,Λ)
= cosψe(r, R,Λ) . (41)

Notice that we consider production and escaping rates at a given radius r , but the radius
R of the compact object and the cosmological constant enter the relation as it determines
the escaping directional angle. The coefficient β(r, R,Λ) determines local efficiency of the
neutrino trapping, i.e., the ratio of the trapped and produced neutrinos at any given radius
r ∈ (rb(e), R). Its profile is shown for some representative values of R andΛ in Fig. 5. The
local maxima of the function β(r, R,Λ) (with R,Λ being fixed) are given by the condition
∂β/∂r = 0 which is satisfied at radius r = rc(i) with rc(i) being determined by Eq. (29).
This implies coincidence with the radius of the stable circular null geodesic, as anticipated
intuitively. In Fig. 5, the maxima are depicted explicitly.
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Figure 5. Local coefficient of cooling β (left, Λ = 0, some values of R taken from Stuchlík et al.,
2005) and influence of cosmological parameter y (right, R = 2.8M).

4.4 Neutrino production rates

Generally, the neutrino production is a very complex process depending on detailed struc-
ture of an extremely compact object. We can express the locally defined neutrino production
rate in the form

I(r{A}) = dN(r{A})
dτ (r)

, (42)

where dN is the number of interactions at radius r , τ is the proper time of the static observer
at the given r, {A} is the full set of quantities relevant for the production rate. We canwrite
that

dN(r) = n(r)Γ (r)dV (r) , (43)

where n(r), Γ (r) and dV (r) are the number density of particles entering the neutrino
production processes, the neutrino production rate and the proper volume element at the
radius r , respectively. Both n(r) and Γ (r) are given by detailed structure of the extremely
compact objects, dV (r) is given by the spacetime geometry.
Here, considering the uniform energy density internal Schwarzschild stars (for require-

ments of more realistic model see, e.g., Østgaard, 2001; Weber, 1999), we shall assume
the local production rate to be proportional to the energy density, i.e., we assume uniform
production rate asmeasured by the local static observers; of course, from the point of viewof
static observers at infinity, the production ratewill not be distributed uniformly. (According
to Glendenning, 2000, such toy model could be reasonable good starting point for more
realistic calculations.)
Therefore, in internal Schwarzschild spacetime we can write the local neutrino produc-

tion rate in the form

I(r) ∝ ρ = const (44)

or

I = dN

dτ
,

dN (r)

dτ
∝ ρ(r) ∝ const . (45)
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The local neutrino production rate related to the distant static observers is then given by
the relation including the time-delay factor

I = dN
dt

= IeΦ(r) . (46)

Now, the number of neutrinos produced at a given radius in a proper volume dV per unit
time of a distant static observer is given by the relation

dNp(r) = I (r) dV (r) = 4πIeΦ(r)+Ψ (r)r2 dr . (47)

Integrating throughwhole the compact object (from 0 to R) we arrive to the global neutrino
production rate in the form

Np(R) = 4πI

∫ R

0

[
AY1Y −1(r) − B

]
r2 dr . (48)

In an analogical way, we can give the expressions for the global rates of escaping and
trapping of the produced neutrinos:

Ne(R) = 4πI

∫ R

rb(e)

(1 − cosψe(r, R,Λ))
[

AY1Y −1(r) − B
]

r2 dr + Np(rb(e)) , (49)

Nb(R) = 4πI

∫ R

rb(e)

cosψe(r, R,Λ)
[

AY1Y −1(r) − B
]

r2 dr , (50)

where rb(e) is the radius given by Eq. (26) and cosΨe(r, R) is determined by Eq. (36).

5 EFFICIENCYOFNEUTRINOTRAPPING

In order to characterize the trapping of neutrinos in extremely compact stars, we intro-
duce some coefficients giving the efficiency of the trapping effect in connection to the total
neutrino luminosity and the cooling process in the period of the evolution of the star corres-
ponding to the geodetical motion of neutrinos.

5.1 Trapping coefficient of total neutrino luminosity

The influence of the trapping effect on the total neutrino luminosity of extremely compact
stars can be appropriately given by the coefficientBL relating the number of neutrinos pro-
duced inside the whole compact star during unit time of distant observers and the number
of those produced neutrinos that will be captured by the extremely strong gravitational field
of the star. The luminosity trapping coefficient is therefore given by the relation

BL(R) = Nb

Np
, (51)
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Figure 6.Behaviour of global luminosity coefficientBL (left,Λ = 0 taken from Stuchlík et al., 2005)
and influence of cosmological parameter y (right).

and the complementary luminosity “escaping” coefficient is determined by the simple for-
mula

EL(R) = 1 − BL(R) , (52)

whereNb, Np are given by relations (50), (48).
We can, moreover, define other global characteristic coefficients. For the “internal”

neutrinos withmotion restricted to the interior of the star, we introduce a coefficient

QL(R) = Ne

Np
(53)

and for the “external” neutrinos, we can use a complementary coefficient

XL = Next

Np
= BL − QL . (54)

The results are illustrated for all the coefficientsBL(R),EL(R),QL(R) andXL(R) in Fig. 6.

5.2 Trapping coefficient of neutrino cooling process

The efficiency of the influence of neutrino trapping on the cooling process is most effect-
ively described by the local coefficient of trapping bc relating the captured and produced
neutrinos at a given radius of the star, i.e., we can define

bc ≡ β(r; R) . (55)

The local cooling coefficient is therefore given in Fig. 5 for some typical values of R. As
intuitively expected, the maximum of bc(r; R) for a given R is located at the radius of the
stable null circular geodesic.
Further, the coolingprocess couldbeappropriatelydescribed ina complementarymanner

by a global coefficient for trapping, restricted to the “active” zone, where the trapping of
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Figure 7. Behaviour of the coefficient Bc. It is explicitly shown that Bc ∼ 10% for R = 2.87M .
Taken from Stuchlík et al. (2005).

neutrinos occurs. The cooling global trapping coefficient is thus defined by the relation

Bc(R) = Nb

Np(red)
, (56)

where Nb is given by Eq. (50), while Np(red) reads

Np(red) = Np(R) − Np(rb(e)) , (57)

where Np(R) is given by Eq. (48) and Np(rb(e)) is the number of neutrinos produced in the
internal region of the star where no trapping occurs 0 < r < rb(e).
In an analogical way, we can define the global cooling trapping coefficient for the “in-

ternal” neutrinos by the relation

Qc(R) = Ni

Np(red)
. (58)

The behaviour of the global “cooling” coefficientBc is shown in Fig. 7.

6 CONCLUSIONS

The detailed discussion of results for Λ = 0 can be found in Stuchlík et al. (2005). We
would like to point out some of the interesting and important ones.
It is important that the trapping of neutrinos is shown to be relevant even for the in-

ternal Schwarzschild–(anti-)de Sitter spacetimes with radius only moderately smaller than
Rcrit = rph = 3GM/c2. Therefore, it is worth to continue detailed studies of trapped neut-
rinos in realisticmodels of extremely compact neutron stars or quark stars, whenwe usually
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expect radii R moderately smaller than rph. The surface redshift for the extremely compact
stars with R = 3M is zmin = 0.732; the realistic models give maximum value of z ∼ 0.8
(Weber, 1999). (Of course, somemodels admit existence of objects with radii R close to the
critical value of 9GM/4c2, see, e.g., Nilsson and Ugla, 2000.) Recently, we are extending
the estimates of the trapping process to the cases of the polytropic and adiabatic spherical
objects and realistic models of extremely compact neutron stars and quark stars.
Because the effect of trappingof neutrinos is a cumulative one,we can expect its relevance

in realistic models of extreme compact objects. It is under study now, how the trapping will
influence the cooling process in some simple models of quark stars with a relatively simple
“bag” equation of state, and how the cooling of such a quark star will be modified by
cumulation of neutrinos in the zone of trapping.
The effect of cosmological constant Λ is shown in Figs 2, 5 and 6. The quite important

result is that the maxima ofBc (which correspond to minima of allowed radii of the object)
depend on the cosmological constant Λ. Of course, with the presently observed values
of the relict repulsive cosmological constant, its influence on the trapping phenomena is
negligible, however, the situation could be different for hypothetical strange quark config-
urations in the early universe, where the cosmological constant could be much higher than
its present value is.
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ABSTRACT
We study stellar trajectories in a dominating central potential perturbed by an
axisymmetric source of gravity. We aim this model to galactic nuclei where the
motion of stars on the shortest time-scale is governed by gravity of a central super-
massive black hole. The perturbation to its gravitational field is assumed to be due
to an accretion disc or a gaseous torus. A hydrodynamical drag of the disc on the
stellar trajectories is also considered. We discuss different observable consequences
of the perturbed stellar trajectories. In particular, we examine to what degree the
relativistic perihelion precession inhibits the effect of Kozai oscillations.

1 INTRODUCTION

We consider a model of galactic nuclei that consists of three main components: a super-
massive black hole, an axially symmetric accretion disc or a torus, and a dense stellar cluster.
In the innermost region, r " 106 Rg (Rg ≡ GM•/c2), a dominating source of the gravit-
ational field is the black hole with the mass 106 M⊙ " M• " 109 M⊙. An accretion disc
plays a crucial role in our model, being a source of non-spherical perturbation to the grav-
itational field and, simultaneously, perturbing stellar trajectories via hydrodynamical drag
during their repetitive passages through it. The stellar cluster is treated in a simple way as
a collisionless ensemble, which is a relevant approximation when the processes which we
discuss act on time-scales orders ofmagnitude shorter than relaxation time tr. We, however,
do consider an averaged spherically symmetric component of the gravitational field due to
the stellar cusp as it may considerably alter the results.
The periodical oscillations of orbital elements due to the axially symmetric perturbation

to the central potential is known in the celestial mechanics as the Kozai mechanism (Kozai,
1962; Lidov, 1961). We introduce briefly the classical approach to the Kozai mechanism
in the following Section together with a discussion of relativistic corrections. In Section 3
we suggest possible observable consequences of the Kozai mechanism in galactic nuclei.
Discussion and prospects of the future work are summarized in Section 4.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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2 NOTESONKOZAI APPROXIMATION

Motion in the central Keplerian potential is highly degenerate – in the Delaunay variables,
the Hamiltonian of a gravitationally bound two-body system is a function of single action
(generalized momentum) which implies that only one conjugated angle (cyclic generalized
coordinate) varies in time. In other words, only the mean anomaly along the Keplerian el-
lipse varies in time, while the semi-major axis, eccentricity and orientation of the ellipse are
conserved. An additional perturbing term in the potential, Vp, may decrease the degeneracy
and, consequently, lead to temporal variations of other orbital elements. The perturbation
theory of the celestial mechanics aims to describe temporal evolution of the orbital ele-
ments while discarding the information about the “fast” variable (mean anomaly). This is
achieved by looking for such a canonical action–angle variables for which the Hamiltonian
is independent (up to some order of accuracy) upon the action(s) conjugated to the fast
variable(s).
The Kozai approximation is implicitly based on an assumption of the existence of a

third integral of motion in addition to the orbital energy expressed in terms of semi-major
axis a and z-component of the specific angular momentum given by the Kozai integral
c ≡

√
1 − e2 cos i = Lz/Lmax, where i is the angle between direction of the star angular

momentum and the symmetry axis. Within the framework of the so called “averaging”
procedure the third integral appears to be an average V̄p of the perturbing potential over the
mean motion cycle (see e.g. Morbidelli, 2002). Then, the orbital evolution in the space of
the averaged orbital elements (e,ω) should be periodic and follow a contour of constant V̄p.
In the following, we will consider two different sources for which the perturbing potential
can be given analytically:

(i) a ring of radius Rd and mass Md which can represent either a molecular torus or an
averaged potential of a point-like mass orbiting around the central black hole on a circular
orbit (the latter case corresponds exactly to the configurations considered originally by
Lidov andKozai). The perturbing potential reads:

Vr(R, z) = −2GMd

π

K (k)

B
, (1)

where B2(R, z) ≡ z2 + (R + Rd)
2, k(R, z) ≡ 4RRd/B2(R, z) and K (k) stands for a

complete elliptic integral of the first kind.
(ii) a razor-thin disc with constant surface density of the finite outer radius Rd and

mass Md:

Vd(R, z) = 2GMd

πR2
d

×
[
Θ(R − Rd)π|z| − B E(k) − R2

d − R2

B2 K (k) − Rd − R
Rd + R

z2

B
Π(α2; k)

]
, (2)

where B, k and K (k) are defined as above, α2 ≡ 4Rd R/(Rd + R)2 and E(k) andΠ(α2; k)
are complete elliptic integrals of the second and the third kind, respectively.

In both caseswe have verified bymeans of direct numerical integration that the assumption
about the existence of the third integral of motion is valid for sufficiently small values of
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Figure 1. Three different topologies of contours of constant averaged disturbing potential V̄p in the
space of orbital elements e (radial coordinate) and ω (polar coordinate) for the disc with constant
surface density. Parameters common for all panels are: Md = 0.01 M•, Rd = 2 × 106 Rg and
a = 0.98 × 106 Rg; corresponding value of the Kozai integral is indicated above each panel. Except
for the separatrices, which are accentuated with thick lines, values of V̄d are equally spaced; the steps
are different for the individual cases, however.

semi-major axis compared to Rd. Trajectories in the (e,ω) space can, in general, form quite
a rich family of different topologies, depending on the shape of the perturbing potential and
values of the semi-major axis a and Kozai integral c. In our computations we met three
qualitatively different variants: in Fig. 1 they were constructed for a disc of constant surface
density with identical set of the orbital parameters in all panels, except for the value of c. In
the case of the ring-like source, only two topologies (those identified by c = 0.7 and 0.9)
have occurred in our calculations.
Even for the analytical potentials (1) and (2), an analytical form of the the third integral

of motion is not known. For the case of the potential due to the ring the quadrupole
approximation leads to equations for the orbital inclination i , eccentricity e and argument
of the pericentreω (see, e.g., Kiseleva et al., 1998):

TK
√

1 − e2 di
dt

= −15
8

e2 sin 2ω sin i cos i , (3)

TK
√

1 − e2 de
dt

= 15
8

e(1 − e2) sin 2ω sin2 i , (4)

TK
√

1 − e2 dω
dt

= 3
4

{
2(1 − e2) + 5 sin2 ω

[
e2 − sin2 i

]}
. (5)

Here, TK ≡ 4
3 (M•/Md)(Rd/a)3 P is a characteristic time of the Kozai oscillations (ex-

pressed in terms of orbit semi-major axis a and period P = 2π
√

GM• a3/2). The equations
(3)–(5) imply conservation of two variables:

c =
√

1 − e2 cos i and (6)
Q =

[
5e2 sin2 ω + 2(1 − e2)

]
sin2 i . (7)

Ivanov et al. (2005) discuss a modified set of equations relevant for the system which
consistsof adominatingcentralmass M• , a secondarypoint-likemassona circular orbit and
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a spherically symmetric power-law stellar cusp. Its potential causes the apsidal precession
of orbits which can be described by an additional term on the right-hand side of Eq. (5):

(dω
dt

)

∗
= −K

M∗(a)

M•

√
1 − e2

P
, (8)

where K is a dimensionless constant of the order of unity and M∗ (a) is themass of the stellar
cluster enclosed within the radius a. This term leads to amodification of the integral Q:

Q = e2
(

5 sin2 i + κ − 2
)

. (9)

Parameter κ(a) is defined as:

κ ≡ K
TK

P
M∗(a)

M•
= 2

3π
K

M∗(a)

Md
. (10)

2.1 Relativistic corrections

The oscillations of the orbital elements may be considerably weakened in the regime of
strong gravity by the effect of the relativistic pericentre advance. One way how to incorpor-
ate this effect is to add an appropriate term to the right-hand side of the Kozai equation (5):

(dω
dt

)

GR
= Rg

a(1 − e2)

6π

P
. (11)

In the applicationswhere direct numerical integration of the equations of motion ismore
convenient we use pseudo-Newtonian potential (Paczyński and Wiita, 1980) to mimic the
effects of the general relativity:

V (r) = − GM•
r − 2Rg

= − GM•
r

− 2GM• Rg

r(r − 2Rg)
≡ − GM•

r
+ VPN(r) . (12)

It is straightforward to treat the term VPN as another perturbation to the central Keplerian
potential in the Kozai approximation. Being spherically symmetric, this perturbation does
not affect conservation of all three components of the angular momentum, and so the
contours of the averaged perturbation potential V̄PN in the (e,ω) space form a concentric
circles. Hence, it is natural to expect that adding VPN to any of the axisymmetric perturba-
tions Vr or Vd will tend to smear the structure of the V̄p = const contours, i.e., it decreases
amplitude of the eccentricity oscillations.
The influence of the relativistic pericentre advance increases when the trajectory gets

closer to the centre. It can be estimated quantitatively by comparison of the characteristic
time TK

√
1 − e2 of the Kozai oscillations and the period TE of the relativistic effect:

TK
√

1 − e2

TE
= 4

M•
Md

(
Rd

a

)3 Rg

a(1 − e)

√
1 − e2

1 + e
. (13)
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The Kozai oscillations will be considerably suppressed for small a. Hence, setting TK = TE
we further estimate a minimal value of semi-major axis which ensures substantial oscil-
lations of eccentricity (using an approximation e → 1 ⇒ e + 1 ≈ 2; Hopman et al.,
2006):

amin ≈ (M•/Md)
2/7 R6/7

d R2/7
g R−1/7

p . (14)

Here, we replaced eccentricity of the orbit by its pericentre Rp ≡ a(1 − e)which is conveni-
ent for the discussion of Section 3.1.

3 APPLICATIONS IN THECONTEXTOFGALACTICNUCLEI

3.1 Tidal disruptions

Stars are assumed to be disrupted by the tidal forces fromcentral black holewhen they reach
the tidal radius:

Rt ≡
(

M•
M∗

)1/3
R∗ ≈ 2.2

(
M•

108 M⊙

)−2/3 ( M∗
M⊙

)−1/3 ( R∗
R⊙

)
Rg . (15)

Such an event could lead to observable effects, hence, it is desirable to study the probability
that a star from a given ensemble will be on the orbit with the pericentre comparable to
Rt. In a spherically symmetric cluster a condition Rp " Rt defines a loss cone in the stellar
cluster:

L " Lmin . (16)

Presence of an axially symmetric perturbation, however, violates conservation of the total
angular momentum, keeping only its z-component conserved. Hence, the condition (16)
should be replaced with

Lz " Lmin , (17)

which leads to substantial increase of the loss cone and, therefore, increased probability to
observe effects of the star-black hole close encounters.
Analytical analysis of the structure of the phase space for the case of the central mass M•

surrounded by a power-law stellar cluster (n(r) ∝ r −α) and the axisymmetric perturbation
due to the secondary mass Md was given in Ivanov et al. (2005). The stellar disruption rate
due to the Kozai effect is estimated as:

Ṁmax ≈
( q

0.01

)4/3
(

M•
107 M⊙

)5/3 ( Rh

1pc

)−2
M⊙ yr−1 , (18)

where q ≡ Md/M• and Rh is the characteristic radius of the stellar cusp.
In the following paragraphs we present another approach which is based on a direct

numerical integration of the equations of motion with the aid of knowledge of the topology
of the V̄p = const contours. This method gives more accurate results and it can be used for
different geometry of the source of the perturbing potential.
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Figure 2. Area of the space of initial parameters (e,ω) from which the trajectory will reach
eccentricity ≥ 0.965 at some stage during the evolution. Thick dotted line represents the orbit
which reaches the limiting value of eccentricity atω = π/2. Axisymmetric perturbation to the central
gravity is due to the disc of constant surface density, Md = 0.01 M•, Rd = 2 × 106 Rg; fixed integrals
of motion are a = 0.98 × 106 Rg and c = 0.2.

Let us consider a distribution function Df of the stellar cluster to be determined in vari-
ables (a, c, e,ω). Evaluation of a fractionF (rmin) of stars that reach the centre below rmin
at some stage of the orbital evolution can be performed in two steps: First, determine a cor-
responding fractionF (a, c; rmin) of stars with fixed a and c then integrate this function on
a grid in the (a, c) space to obtain F (rmin). The first step requires to integrate numerically
only one or two trajectories with suitably chosen initial conditions. The first trajectory is
started with e = 1 − rmin/a and ω = π/2 and it determines one boundary in the space of
e and ω. Another one may be necessary to integrate if the separatrices in the (e,ω) space
are crossed to determine boundary of region of rotation with small eccentricities. Initial
value of eccentricity of this second trajectory is found by starting several integrations with
ω = 0 and evaluation of de/dt . The trajectorywith largest eccentricity and negative de/dt is
selected. Example of this procedure is sketched in Fig. 2where we plot contours of constant
V̄d togetherwith numerical solution of the equations ofmotion for (e0 ,ω0) = (0.965,π/2).
Another trajectory with (e0,ω0) = (0.543, 0)was integrated as a boundary of the region of
rotation with small eccentricities. Any orbit starting from the same values of a and c and
arbitrary e and ω from the shaded area will reach the centre within rmin at some moment.
Hence, integration of Df over this area givesF (a, c; rmin).
The integrationwould be straightforward if the perturbing potential were not present – in

that case, the relevant region in the (e,ω) space is an interval between emin ≡ 1 − rmin/a <
e <

√
1 − c2. Let us consider a simple distribution function with random distribution

of the ellipses’ orientation: Df(a, e, i,ω) ∝ a1/4e sin i . Transformation (a, e, x,ω) →
(a, e, c,ω) gives:

Df(a, e, c,ω) ∝ a1/4 e√
1 − e2

(19)
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Figure 4. Same as Fig. 3 but for an ensemble in the compound gravitational field of the central mass
and non-spherical perturbation. In the first row, perturbation is due to the ring, while in the second
row it is due to the disc of the constant surface density. Panels on the left side were calculated with
Newtonian description of the potential of the central point-like source, while panels on the right side
were calculatedwith the pseudo-Newtonian potential (12).

and the fractionF (a, c; rmin) is then:

F (a, c; rmin) =
√

1 − e2
min − c

1 − c
. (20)

Weplot this function inFig. 3 fora ∈ ⟨3.4×105 Rg, 3.4×106 Rg⟩and rmin = 100 Rg. Next,
in Fig. 4we showF (a, c; rmin) obtained numerically for the systemperturbed by the gravity
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of the ring or the disc. In both cases we also present alternative variant when the pseudo-
Newtonian correction to the central potential is considered. Comparing Figs 3 and 4 we see
that F (a, c, rmin) is raised approximately by a factor of 100 due to the Kozai mechanism.
In accordance with the estimate (14) the effect of the relativistic pericentre advance breaks
the Kozai mechanism below certain value of a where F drops to values similar to the case
without the non-spherical perturbation. The disc-like source of the perturbing potential
competes more successfully with the perturbing relativistic effect. It can be understood
from the fact that this source is still close enough to the orbit even for smaller a.
Integrated fraction for the perturbing potential due to the ring is shown in Fig. 5. In the

left panel, we plotF (rmin), for fixed parameters M• = 3.5 × 106 M⊙, Md = 0.01 M• and
Rh = Rd = 6.8 × 106 Rg = 1.2 pc. The parameters are chosen to correspond to the case
of the Galactic centre, where the source of the axisymmetric perturbation is thought be the
circumnuclear molecular disc (CND). Three curves are given for clear comparison of the
importance of different effects – theKozai oscillations riseF with respect to anunperturbed
case by approximately two orders of magnitude. On the other hand, adding the pseudo-
Newtonian correction to the central potential decreases the number of potentially tidally
disrupted star by a factor ! 2. It can be also seen from the Figure that the influence of the
relativistic effect increases with decreasing rmin (in this case the function was not evaluated
for rmin < 20Rg for “technical” reasons, related to the definition of initial conditions).
In the right panel of Fig. 5 we demonstrate increasing strength of the relativistic peri-

centre advance with increasing mass of the black hole. In this example we scale the length
parameters with M• according to the empirical M•-σ relation (Tremaine et al., 2002):

M•
108 M⊙

≈
(

σ

200 km s−1

)4
. (21)
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Figure 5. Fraction of stars from a stellar cluster that reach the centre within rmin at some stage of
the orbital evolution. Left: F as a function of rmin for the parameters of the system relevant for the
Galactic centre. Right: F (Rt) for different values of the black hole mass M•; length parameters are
scaled with M• according to relations (15) and (22). In both panels the solid line corresponds to the
Newtonian treatment of the gravity of the black hole, while the dashed one was calculated with the
Paczyński–Wiita description of the centralmass potential. Thin dotted line in the left panel stands for
the referential case without the axisymmetricperturbing potential.
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Setting Rh = GM•/σ 2 we further obtain:

Rh = 2.25 × 106
(

M•
108 M⊙

)−1/2
Rg = 11

(
M•

108 M⊙

)1/2
pc . (22)

Like in the previous case we locate the ring-like source of the perturbing potential on the
outer edge of the stellar cusp: Rd = Rh. Finally, Rmin = Rt scales with M• according to the
relation (15).
Kozaimechanismmay cause substantially enhanced tidal stellar disruptions and produce

episodes of enhanced gas supply towards the black hole and, consequently, increased ac-
cretion rate. This period, however, is limited by the characteristic time of the Kozai cycle
(typically less than 1 Myr) during which the enlarged loss cone is emptied. The enhanced
disruption rate may be prolonged if the orientation of the Kozai perturber continuously
changes in time. This could be e.g. due to the precession in the large-scale non-spherical
galactic potential. An interesting consequence of the tidal disruptions due to the Kozai
mechanism is the fact, that the stars disrupted at the moment of maximal eccentricity dur-
ing their Kozai cycle reach the centre with small inclinationswith respect to the plane of the
source of the perturbing potential, hence, giving naturally rise of the accretion disc.

Squeezars

In addition to stars which are directly disrupted, a similar number comes as close as " 3 Rt
to the black hole. These stars survive the interaction with the black hole, but do experience
a strong tidal interaction (Alexander and Morris, 2003). The energy ∆E t (Rp) per orbit
invested in these tides comes at expense of the orbital energy and is of order

∆Et(b) = GM2
∗

R∗
T (b3/2) b−6 (23)

(Press and Teukolsky, 1977). Here, T (b) is a dimensionless function of b ≡ Rp/Rt, which
can be estimated numerically, see, e.g., Alexander and Kumar (2001).
The tidal energy will be radiated by the star, because it becomes hotter and puffs up. In

the context of the Galactic centre this process is discussed in Alexander andMorris (2003).
There is a possibility that the number of tidally heated stars is increased if the stellar orbits
are perturbed by an axisymmetric perturbation via the Kozai mechanism (Hopman et al.,
2006, work in progress).

3.2 Young stars in the vicinity of SgrA∗

There is a strong evidence that the centre of our Galaxy harbours a supermassive black
hole of mass M• ≈ 3 × 106 M⊙ (Genzel et al., 2003). It is identified with radio source
SagittariusA∗ which is assumed to emerge froma accretion discwith highly sub-Eddington
accretion rate. The black hole dominates the gravitational potential within a distance of
few parsecs. A central stellar cluster in this region consists mainly of old stellar population
and has a power-law density profile ρ(r) ∝ r −1.8, which is consistent with models of
a relaxed cluster under a dominance of a central mass. There are, however, also young
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stellar populations with age " 10 Myr in the innermost regions. They form two mutually
perpendicular rings at radial distances 0.01 pc " r " 0.1 pc. In addition, there are several
so called S-stars on highly eccentric orbits with semi-major axes below 0.01 pc. The S2
star, which is the most tightly bound to the central black hole, has a semi-major axis
a ≈ 0.004 pc ≈ 2.5 × 104 Rg and eccentricity e ≈ 0.87 (Ghez et al., 2003).
The S-stars represent one of the challengingmysteries of the contemporary astrophysics:

Tidal forces from the central black hole inhibit stellar formation at the distances where the
S-stars are observed. The most optimistic estimates admit star formation at a distance
of ! 0.1 pc from the centre (Vollmer and Duschl, 2001). Hence, it is necessary to find a
mechanismcapable of transporting stars by at least a factor of ten closer to the centrewithin
their lifetime. The effect of two body relaxation and mass segregation, which in general
lets massive stars sink towards the centre and sends lighter stars outward, acts on much
longer time-scales and could hardly work within the presented context. Therefore, various
scenarios of transportation have been suggested relying on an additional component per-
turbing (gravitationally) the stellar orbits. Portegies-Zwart et al. (2003) proposed that the
core of an infalling dense young stellar cluster would dissolve in the strong tidal field setting
some of its members to tightly bound orbits. This mechanism could be even more efficient
if the cluster is gravitationally bound to an intermediate mass black hole (Hansen and Mi-
losavljević, 2003). The starsmay also be captured individually due to close encounters with
members of a dense cluster of stellar mass black holes tightly bound to the central super-
massive black hole (Alexander and Livio, 2004). However, none of the models suggested so
far is widely accepted yet as they either are not able to reconcile all aspects of the observed
young stellar population or require a component that is not observationally confirmed at the
current time.
In Šubr and Karas (2005) we proposed an alternative model based on simultaneous

gravitational and hydrodynamical drag of a gaseous environment on orbiting stars, which is
assumed to form a flattened, disc-like structure. While the direct star-disc hydrodynamical
interaction causes continuous dissipation of the star’s orbital energy, gravity of the disc
leads to periodical changes of the orbital elements, which may substantially increase the
efficiency of the hydrodynamical drag.
Let us consider the topology of V̄d contours corresponding to low values of Kozai integral

c ≡
√

1 − e2 cos i . In this case, we can find initial values of orbital parameters e and ω
which lead to dramatically different orbit evolution. Starting with ω = 0 and eccentricity
slightly less than the value corresponding to the crossing of the separatrices (≈ 0.39 for
the example in Fig. 1) leads to rather small variations of eccentricity along an isocontour
confined within the inner region bound by the separatrices. On the other hand, starting
with the sameω and eccentricity slightly larger leads to large oscillations withmaximum ≈√

1 − c2. We now need a mechanism that allows an orbit to cross the separatrix. This
could be provided by hydrodynamical interaction with the disc that is also responsible for
the gravitational perturbation.
Wemodel this interaction as an instantaneous kick to the star’s velocity at the moment of

crossing the equatorial plane. The change of the linear momentum is determined from the
momentum conservation law under assumption that the star expels material from the disc
lying on its trajectory and accelerates it to its own velocity. Repetitive passages through the
disc lead to monotonical dissipation of the orbital energy together with circularisation and
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Figure 6. Temporal evolution of semi-major axis and eccentricity of the orbit of a star interacting
with the disc. Dashed line corresponds to evolution omitting the disc gravity. Solid line (dots in
the right panel) represents a simulationwhere both the hydrodynamical and gravitational interaction
were considered. Kozai oscillations can be deduced from the finite interval of possible eccentricities at
eachmoment, nevertheless, they are not explicitly visible as this effect acts on the time-scale of several
thousands of years. Zero timewas set to themomentwhen the orbit crosses the separatrix.

inclination decay (towards corotation). The rate of decay is strongly dependent upon initial
conditions – highly eccentric counterrotating orbits sink towards the centre several orders
of magnitude faster than circular orbits with low inclination. Hence, the orbital decay slows
down in time (Rauch, 1995; Vokrouhlický andKaras, 1998a; Šubr and Karas, 1999).
The gravity of the disc may considerably alter the picture. On the time-scale of hundreds

or thousands orbital periods the star follows the lines of constant V̄ in the (e,ω) space.
On an even longer time-scale, it slowly migrates across them due to the energy dissipation
caused by the hydrodynamical star-disc interaction. Moreover, the topology of contours
continuously changes as it depends on the semi-major axis and the z-component of angular
momentum. Hence, it may happen that the orbit passes through a separatrix, which leads
to a fast increase of eccentricity. An example of this evolution is plotted in Fig. 6 where
we show an orbit evolving due to both the hydrodynamical and gravitational influence of
the disc which has a constant surface density. It starts with a moderate eccentricity and
orientation nearly perpendicular to the disc. The parameters were chosen such that after
switching to the high eccentricity state, its orbital parameters roughly correspond to values
reported for the S2 star. Due to the excited eccentricity, the dissipative interaction with the
disc becomes more efficient and the orbital decay is accelerated with respect to the model
which omits disc gravity. The trajectory shown in Fig. 6 nicely manifests the key features of
the proposed mechanism, but it is not a suitable model of transportation of the S2 star to
its current orbit due to the rather slow decay. The decay can be accelerated by an order of
magnitudeprovided the star crosses the separatrixwithnegative L z which leads to aflipping
of the orbit towards counterrotation at the phases of high eccentricity and, consequently, to
strong energy dissipation. Examples of such orbits decaying from a ∼ 105 Rg to ∼ 104 Rg
in a fewmillions years can be found inŠubr andKaras (2005).
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4 CONCLUSIONS

There is an observational evidence that galactic nuclei, spherically symmetric to the first ap-
proximation, host components which produce a non-spherical, roughly axially symmetric,
perturbation to the gravitational potential. In the centre of our Galaxy there are already sev-
eral of them: two stellar rings formed by young He I stars with a < 0.1pc and a molecular
ring or disc with inner radius of ∼1.5 pc. Another source of the axial perturbation could be
a secondary black hole in the Galactic centre as suggested recently byMaillard et al. (2004).
(However, this option is rather speculative; see Schödel et al., 2005, for discussion.) Even if
the perturbingmass is small compared to themass of the central black hole, Md " 0.01 M•,
it may considerably alter orbits of some stars from the central stellar cluster, changing peri-
odically their eccentricities between moderate and extreme values. These changes, though
very fast in comparison with the two-body relaxation time, take place on more than thou-
sand years time-scale and, therefore, cannot be directly observed. Nevertheless, the tidal
interactions of the stars with the central black hole which may occur at the phase of max-
imal eccentricity are likely to produce observable effects – tidal disruptions or tidal heating.
We estimate that up to 104 stars from an initially spherically symmetric cluster may have
undergone strong tidal interaction with the central black hole in the Galactic centre due
to the Kozai oscillations. They could manifest themselves as decaying squeezars or they
may have been disrupted a few millions years ago providing a material for the formation
of the He I stars that are observed nowadays. We also suggest that the S-stars may have
been transported to the close vicinity of the black hole by the compound action of the Kozai
mechanism and a dissipative drag due to the flattened gaseous environment.
We have shown that for a proper determination of the number of orbits which may lead

to the tidal effects a post-Newtonian corrections to the gravity of the central mass have to
be taken into account. For the sake of simplicity we used Paczyński–Wiita description of
the central mass potential which provides pericentre advance, the most important effect of
general relativity in the presented context. Nevertheless, this potential does not produce
quantitatively exact value of the pericentre advance and, therefore, a comparison with fully
general relativistic orbits is desirable.
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On time-dependent spectra of black-hole
accretion discs

Jiří Svoboda
Charles University in Prague, Faculty ofMathematics and Physics, V Holešovičkách 2, Praha,
CzechRepublic

ABSTRACT
Wereport on a researchproject inwhichwe intend to employ time-dependent spectra
of black hole accretion discs and use them in order to map the intensity distribution
across the disc surface. The intrinsically narrow spectral line emitted from an ac-
cretion disc around a massive central object is broadened by the Doppler effect and
gravitational redshift. The changes of spectral line profiles are discussed and ex-
amples of predicted spectra are presented. We illustrate the essential differences
between the classical calculation and a relativistic approximation. The relativistic
approximation for frequency shift g-factor is employed in Pecháček, T., Dovčiak,M.,
Karas, V. and Matt, G. (2005), The relativistic shift of narrow spectral features from
black-hole accretion discs, Astronomy and Astrophysics, 441, pp. 855–861. We also
discuss possibilities offered by time-dependent spectra. An idea of mapping of an
accretion disc is mentioned. On the basis of knowledge about the spectrum we can
determine positions of bright radiating spots on the disc. And consequently from the
spot’s orbit it is possible to find out themass of the central object.

1 INTRODUCTION

Recent observations especially from space-based instruments suggest that supermassive
black holes exist in nuclei of many galaxies. This fact increases the chance to “observe”
a black hole, i.e., to reveal its presence and measure its physical properties. The value
of the mass of black holes in active galactic nuclei (AGN) is estimated to 106–109M⊙.
A convenient way to study black holes is by using radiation from the gas around. When
there is a lot of material in a black hole neighbourhood it spirals around the black hole
and slowly falls down to the horizon. Nonzero value of angular momentum of incoming
material leads to a formation of the accretion disc. From observations of accretion discs we
can deduce the evidence of existing black hole. We also canmeasure important parameters
of the black hole, especially its mass. Active galactic nuclei are good candidates in which a
formation of a massive black hole and an accretion disc can be observed. High luminosity
of AGN is caused by the conversion of the gravitational potential energy to radiation by
some friction in accreting material. The most of radiation is coming from the innermost
regions of the accretion disc, as studied by Fabian et al. (1989). These authors introduced

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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the relationship between radiation flux density distribution on the disc and the radius:

I (R) ≈ 1
Rα

, (1)

where α is a parameter. We consider α = 2, respectively α = 3 and compare both
dependencies.
We focus on the problem of predicted spectra, namely, the possibility to reveal the distri-

bution of local emissivity across the disc plane by comparing the predicted spectra against
time dependent observations. We consider the intrinsic spectral line as a δ-function in
energy:

I (R, E) = I0δ(E − E0)R−α . (2)

Because of the rotation around the central object the radial velocity of accreting material
RV (velocity from an observer) is changing with the position on the disc. Its value depends
on the radius from the centre and also on the azimuth. In the Newtonian approximation
the resulting spectral line is double peaked (Marsch andHorne, 1988). When the radiation
comes from the strong gravity field relativistic phenomena have to be taken into account.
The double-peaked character is preserved but the blue peak becomes much higher than
the red one and the redshift is appreciably bigger than the blueshift, so the spectral line
is broadened more to the lower frequencies. This is caused by gravitational redshift while
the increase of the blue peak is due to abberation and Doppler effect. In observations this
spectral line profile was first clearly seen in ASCA data (Tanaka et al., 1995) and has been
confirmed bymany other observations.
On the base of studying theADspectral line there is one interestingwayhow to determine

the black hole parameters. Imagine some radiating spot existing at some radius on the
accretion disc and surviving at least a significant part of an orbit. Assuming Keplerian
rotation the orbital period corresponds to the radius. By the 3rd Kepler’s law the orbital
period is also linked with the mass of the central object. So the observations of some
radiating spot on the disc lead consequently to the determination of the black hole mass.
Good time-resolution of the observation instruments is needed to recognize that spot in
the spectrum. The present-day X-ray probes do not reach required accuracy but with
new projects such as Constellation X observatory with 100-times greater sensitivity there
is a good chance to acquire spectra with demanded time-resolution. More details about
analysing time dependent spectra is mentioned in the Section 4. The basic relationships
and approximations used to simplify the problem are introduced in Section 2. In Section 3
the calculated profiles for a radiating ring and for discs are shown.

2 CALCULATIONS

To calculate the spectral line profile we make several assumptions. First, we assume that
the accretion disc is geometrically thin and optically thick. Next, the rate of the accretion
was neglected, so the velocity in the radial direction to the central object was set to zero. We
consider only the azimuthal velocity of the accretingmaterial. A good approximation of the
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value of this velocity is the Keplerian velocity which is given by a familiar relationship:

ΩKep ≡
√

GM
R3 . (3)

For simplicity we show the resulting profiles for Schwarzschild metrics, we have no mag-
netic fields in our considerations and we assume the radiation to be isotropic. To the
computation we use geometrized units c = G = 1, R in units of Rg, where Rg is the
gravitational radius (Rg = GM/c2). The azimuthal angle ϕ is set to zero when the radi-
ating material is maximally receding. In this convention, the direction to the observer is
ϕ = 3π/2. The value of radius is from the interval R ∈ ⟨6, 40⟩. The lower limit is a natural
choice because 6Rg is the last stable orbit in the Schwarzschild spacetime.
To describe how the observed spectral line profile looks like it is useful to introduce the

frequency shift g-factor defined as

g(R,ϕ, θ0) ≡ Eo

Ee
= poµUµ

o

peµUµ
e

, (4)

which includes all effects of the special and the general theory of relativity. This factor
needs to be computed numerically or it requires rather complicated analytical calculations,
however, rather accurate approximations are also available. We used the approximation
derived by Pecháček et al. (2005)

g =
√

R(R − 3)

R +
√

R − 2 + 4(1 − sin ϕ sin θ0)−1 cosϕ sin θ0
. (5)

3 COMPUTEDSPECTRALLINE PROFILES

In Fig. 1 (left panels) the spectral line of a radiating ring is shown in the Newtonian approx-
imation. There are three curves for three different angles of the inclination of the disc. The
standard convention is that the inclination angle is zero when the plane of the disc is per-
pendicular to the observer’s direction. It is obvious the bigger inclination angle the bigger
frequency shift. In the second figure there is the same plot but for the relativistic radiating
ring. In fact, it represents a radiation of a spot on an accretion disc around a black hole over
one orbit.
On the x -axis there is the frequency shift g, on the y-axis there is the radiation flux in

arbitrary units, which is normalized in the sense that the sum of all additions gives one.
If we compare both profiles it is clear on the first sight that the relativistic approximation

breaks down the symmetry by increasing of the blue peak’s height. The gravitational
redshift which broadens the spectral line to the red is also apparent.
Figure2presents the spectral lineprofiles for thewholeaccretiondiscs. For an illustration

accretion discswith two dependencies of the radiation flux density distribution I (R) on the
radius are compared (anaccretiondiscwith I (R) ≈ 1/R2 on the left andwith I (R) ≈ 1/R3

on the right).
The resulting spectra are appreciably more diffused which is a direct consequence of

the geometry. At the fixed frequency-shift a value of the flux corresponds to the length
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Figure 1.Spectral line profiles of a radiating ring at radius R = 6Rg influencedonly by theNewtonian
Doppler effect (left) and the relativistic approximation (right).
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Figure 2. Spectral line profiles of ADwith I (R) ≈ 1/R2 (left) andwith I (R) ≈ 1/R3 (right).
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of a curve joining the points on the disc with the same values of the shift. The difference
between approximations of I (R) ≈ 1/Rα is such that the bigger value of a parameter α
the more contributions to the wings of the spectral line. The wings are namely formed
by a radiation from the innermost parts of the disc while radiation from the outer region
assigns less frequency shift. The maximal frequency shift is linked with the radius by the
approximations mentioned above.

4 TIME-DEPENDENTSPECTRA

One can imagine the spectrum of an accretion disc as some mean profile on which a contri-
bution from a circulating bright spot may be occasionally superposed. While Fig. 1 showed
a continuum subtracted spectrum of a spot after integration over the whole orbital period,
Fig. 3 illustrates time evolution of the spectral line profile. The quantity T represents time
in units of orbital periods.
But it is difficult to recognize the contribution of the spot in the total observed spectrum.

With time dependent spectra we have bigger chance to find an orbiting spot in the spectra
and by mentioned familiar relationships to determine such an important characteristic of a
black hole as its mass.
If there is a hot bright spot on thedisc its radiation appears in the spectrumas a δ-function

moving with time through the disc spectrum. The turn-over points of that δ-function are
correlated to the radius of the spot ifwe considerKeplerian velocity as a good approximation
of the azimuthal motion. It is because the maximally receding, respectively approaching,
material contributes to the spectrum in the extremal shifts. If we establish the value of the
inclination angle by an independent way then the maximal radial velocity is just the orbital
Keplerian velocity times the sine of the inclination angle.
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Figure 3. Time evolution of a spectral line of a spot at R = 6Rg on a disc with the inclination
Θ0 = 85◦.
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5 CONCLUSION

The spectral line profiles of radiating rings and discs circulating around a massive black
hole were shown. We have illustrated how the predicted spectral line profiles differ from
the Newtonian ones. We mentioned a method to determine the mass of a black hole on
the base of studying an observed spectrum. A feasible way to estimate the black hole mass
employs the time-dependent spectra, assuming there is a hot spot on the disc orbiting with
the Keplerian velocity. Current measurements do not reach the required resolution but this
could be achieved in future.
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Long gamma-ray bursts: (current) theory
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ABSTRACT
Gamma-ray bursts (GRBs) represent an intersection inmanyastro-fields, andamore
complete understanding of their basic processes will have a broad impact in many
areas. Long-duration GRBs (LGRBs) represent a final stage in the evolution of
massive stars, and have been directly linked to supernovae; they may also explain
events such as X-ray flashes. Due to their high energies, LGRBs have been observed
out to cosmological distances, redshift z > 6.2; as short lived massive stars, they
trace out star forming regions and give valuable informationabout galactic evolution
through a large range of epochs. They have even been recommended as having
properties of “standard candles,” for testing cosmology to far greater depths than
Type Ia SNe. Finally, LGRBs are an interesting test ground for general relativity.
We discuss some observed properties, recent theoreties and problems in the field, in
relation to such topics as GRB progenitors, the collapsar model, host galaxies, and
jet phenomena.

Keywords: gamma-ray burst – supernova – collapsar – neutron star – black hole –
accretion disk – relativistic jets – afterglows

1 INTRODUCTION

The GRB phenomena were first reported by Klebesadel et al. (1973) using data from the
Vela satellites. The study consisted of 16 bursts lasting up to 30 s and which were detec-
ted in a range of 0.2–1.5 MeV. Since then, the number of observed GRBs has risen into
the thousands, with burst durations spanning more than 5 orders of magnitude. Several
new telescopes, and particularlymulti-wavelength observations, have increased our under-
standing of the phenomena.
The Compton Gamma-ray Observatory (CGRO) was launched in 1991, carrying the

Burst and Transient Experiment (BATSE) and the Energetic Gamma-RayExperiment Tele-
scope (EGRET) specifically designed for detecting gamma-rays. Observations and analyses
have determined that GRBs occur at cosmological distances (Metzger et al., 1997) and are
some of the most energetic events in the universe, with total energy typically ≈ 1051 ergs.
The gamma-rays themselves are emitted in highly collimated, polar jets (Kulkarni et al.,

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Figure 1.Duration distribution of sources in the BATSE 4B Catalog (Meegan et al., 2005). The total
Catalog contained over 2000 GRBs, with durations based on the time during which 90% of an event’s
fluence occured, T90. This sample shows a strong bimodality of two near-Gaussian distributions.
Even today, nearly two-thirds of all observed GRBs are long duration bursts.

1999) with Lorentz factorsΓ ≈ 102–103. Observations to date of temporal duration, spec-
tral hardness ratios and host galaxies confirm a bimodal distribution for the population (see
Fig. 1): short duration bursts (SGRBs, < 2 s) and long duration bursts (LGRBs, > 2 s),
with distinct progenitor scenarios for each class.
Throughout their history, models for GRBs have ranged from primordial black holes

(BHs) evaporating to energy released from the cusp of a cosmic string to fast neutron
stars (NSs) wandering through the Oort Clouds (Nemiroff, 1994). More recent trends
have settled upon compact object collisions (NS-NS, BH-NS) as a leading candidate for
producing SGRBs (e.g., Ruffert and Janka, 1999; Fryer, 1999), and the core-collapse of a
massive star for producingLGRBs (e.g.,Woosley andMacFadyen, 1999), whichwe discuss
further in this paper.
Current tools for analyzing GRBs obtain multiwavelength spectra: the European Space

Agency’s Integral, a multi-instrument launched in 2002, contains X-ray and optical tele-
scopes as well as a gamma-ray camera. In late 2004, the NASA’s Swift Satellite went into
orbit. Its onboard Burst Alert Telescope (BAT) detects and acquires locations for GRBs,
and then quickly (within ≈20 s) focuses an X-ray Telescope (XRT) andUltraviolet/Optical
Telescope (UVOT) on the region to detect afterglows. Swift is the most sensitive gamma-
ray detector built to date; its goals are to give data about GRB environments and their host
galaxies out to high redshift, to study short durations bursts (determining if their relative
paucity is physical or detection biased), to study the interaction of the GRB blastwave with
host environs via afterglows, and to add information on GRB progenitors and the physical
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mechanisms behind the different classes- all of which should lead to better constrained
theoretical models.
We discuss here observed properties, recent theories and problems in the field of LGRBs.

First, we discuss the recent association of LGRBs with Type Ic SNe; in the next section, we
discuss the collapsar model which comes from this association; we then discuss topics in
relativistic jets and afterglows; we discuss current studies of LGRBhost galaxies; finally, we
discuss briefly cosmological implications.

2 GRB-SN-HNCONNECTION

A major breakthrough in understanding the mechanism of LGRBs came with the associ-
ation of GRBs and core-collapse (Type Ic) SNe. First, occuring the same day as and within
the error box of GRB980425, a very luminous optical transient was discovered with the
BeppoSAX satellite and determined to be a Type Ic SN, SN1998bw (Galama et al., 1998).
The event was particularly bright, with a kinetic energy ≈ 2 × 1052 ergs, of roughly an
order of magnitude greater than previous Type Ic SNe, and subsequently dubbed a “hy-
pernova” (HN) (Iwamoto et al., 1998). Its optical properties were best matched by a
progenitor ≈40 M⊙ with a 13.8 M⊙ C + O core and producing 0.7 M⊙ Ni56 with a slightly
asymmetric explosion. Based on the estimated 2.9 M⊙ size of the compact remnant, the
end result was presumed to be a black hole.
In 2003, definitive proof of a SN-GRB connection was made by the identification of

a SN bump in the afterglow of GRB030329 (Stanek et al., 2003), one of the brightest
GRBs yet observed. The spectrum of SN2003dh was that of a Type Ic SN and also very
similar to that of SN1998bw. A comparison of light curves taken from SN2003dh and
GRB030329 is shown in Fig. 2 (Stanek et al., 2003). The broad lines observed in the ejecta
indicated that early time expansion velocities were > 30,000 km s−1; again, this event was
classified as a HN.
Theseassociations led to theacceptanceof the so-called “collapsarmodel” forgamma-ray

bursts from the model used originally for core-collapse SNe (Woosley, 1993). Briefly, the
scenario involves a rotating,massive star (M > 30 M⊙) collapsing to formablackhole from
its core and a centrifugally supported diskwhichaccretes onto theblack hole. Themethodof
powering the gamma-ray production is unknown, butmost proposed mechanisms required
BH-disk interaction. One further requirement of the model is that any H or He envelope is
removed by the time of production, otherwise the jet energy would be dissipated into kinetic
energy (known as the baryon massloading problem). Strong winds may play a role, as well
as a SN event, particularly one that is polarized along the axis of rotation.
One of the strongest physical features linking the two events is asphericity. This is a

necessary feature in gamma-ray bursts where large amounts of energy are released in polar
jets. It is also observed in many of the associated HNe, and with many Type Ic SNe in
general, and may best explain the range of SN Ic line profiles, due to viewing angle effects
(see Fig. 3) (Mazzali et al., 2005). If viewed along the polar/jet direction, iron is observed
moving at a higher velocity than oxygen, which is represented by a narrow line due to its
perceived perpendicular motion. If observed closer to the equatorial plane, then oxygen
shows double lines fromDoppler shifts toward and away from the observer. Viewing angle
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Figure 2. Comparison of spectra of SN1998bw and GRB030329 from Stanek et al. (2003); the
featuresmatch quite well, leaving little doubt of a direct association of the two events.

Figure 3. A comparison of viewing angles for asymmetric HN explosion, as for SN1998bw and
SN2003dh, computed from a 2Dmodel byMazzali et al. (2005). Iron is predominantly ejected along
the polar axes, and oxygen along and near the equatorial plane.
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effects also mean that several SNe/HNe observations may actually be gamma-ray bursts
that are not observed along the poles of emission.
Podsiadlowski et al. (2004) calculated the galactic rates for both HNe andLGRBs, taking

into account viewing angle effects; they found roughly comparable rates (within large
margins), that both events had a galactic rate of 10−6 to 10−5 yr−1 – a very suggestive
coincidence. These rates are orders of magnitude lower than the galactic rate of SNe
Type Ic, suggesting that special circumstances are required for the very energetic events,
some of which are addressed in the current collapsarmodels.

3 THECOLLAPSARMODEL

In the current “collapsar model” for LGRBs, the original star forms a black hole via a two
step process: first, the system collapses to a neutron star surrounded by amassive disk with
a SN explosion; then, the neutron star quickly accretes matter to form a black hole, with
the dense disk remaining. Finally, some kind of interaction between the disk and black hole
creates the ultra-relativistic (Lorentz factor > 100) gamma-ray jets. Very few specifics of
the process are understood, and several models are proposed for jet production.

3.1 The progenitor

GRB observations and afterglow spectra, in addition to the association with HNe/SNeIC,
give several requirements for the progenitors of these collapsars. Firstly, the progenitors are
certainlymassive, so that the iron core is nearly the size of a BH, ≈2 M⊙ or so. Mostmodels
employ progenitors with the initial mass range of > 25–30 M⊙, (Woosley andMacFadyen,
1999; Fryer and Heger, 2000); 2D simulations by Fryer (1999) showed that a star with
initial mass >40 M⊙ forms a BHdirectly with no intermediate NS, suggesting amaximum
progenitor size for this two-step collapse version of the model.
Secondly, the SN/HN connection requires the star must be stripped of any H or He

envelope (Heger and Woosley, 2003). This condition also helps in accommodating the
aforementioned baryon loading problem for the system a priori. Most progenitors utilize
Wolf-Rayet stars or bare helium stars that have been stripped of their envelopes either by
companions or by winds (Heger andWoosley, 2003; Chevalier and Li, 1999; Petrovic et al.,
2005).
Rotation plays an important and not-fully-understood role in these systems as well. It

is agreed that in order to prevent a prompt collapse to a BH, the ≈ 2 M⊙ Fe core must be
rotating rapidly enough that the specific angular momentum near its edge, jc, is greater
than that of the last stable orbit around a BH of the same mass: jc ≥

√
6 GM/c ≈

2 × 1016(M/2M⊙) cm2 s−1 (Podsiadlowski et al., 2004; Petrovic et al., 2005). Likewise,
most mechanisms for generating gamma-ray jets from a BH require rapid rotation (Fryer
et al., 1999). Rotation also results in non-spherical symmetry for the system, both from
centrifugal forces and from restricting convective regions along the rotation axis due to
instability criterion (Fryer and Heger, 2000). But the other effects of rotation are debated,
such as on the core bounce after the collapse. Due to the introduced centrifugal force,
the core bounce is weakened, lessening the explosion (Mönchmeyer and Müller, 1989);
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however, rotation yields asymmetric convective layerswhereneutrinosheatmore efficiently,
increasing the explosion in these parts (Yamada and Sato, 1994; Fryer and Heger, 2000).
In general, it is assumed that the progenitors are rapidly rotating, although the full range
of effects of rotation, such as chemical mixing and convective instabilities, are not well
determined.
In general, 1- and 2-dimension hydrodynamic simulations which have been performed

omit the full inclusion of magnetic fields and full general relativity (GR). Somemore recent
models investigate both: for inclusion of GR effects in prompt collapse, see recent papers
by Shibata and Sekiguchi (2005); Sekiguchi and Shibata (2005); for GR effects in the
proto-NS, (e.g., Fryer and Heger, 2000; Heger and Woosley, 2003). GR considerations
would be important particularly in the later stages of collapse during BH formation, and
in any adjustment to Kerr spacetime in the presence of a massive disk. Such interesting
considerations are for future studies.
Strong magnetic fields should in principle reduce stellar rotation rates significantly by

enforcing rigid rotation with frozen-in field lines (Spruit, 2002). And the majority of mech-
anisms suggested for producing the gamma-ray jets themselves (e.g., neutrino annihilation
Paczyński, 1990; Popham et al., 1999) and the Blandford–Znajek mechanism (Blandford
and Znajek, 1977; Lee et al., 2000; Popham et al., 1999), discussed below), require strong
magnetic fields during the BH/disk stage. It is often assumed (inmodels) that themagnetic
fields are negligible in the proto-NS and gain in size via flux conservation in the shrink-
ing system, as well as magnetic torques from differential rotation and dynamo transport
(Petrovic et al., 2005; Spruit, 2002).
Although each of these arguments may work in principle, a consistent model is more

difficult to achieve. Maintaining a large angular momentum to support a disk is difficult,
as strong magnetic fields work against differential rotation, and the ejection of a large
envelope loses large amounts of angular momentum from the star. One solution to this
angular momentum problem is a binary merger progenitor: massive helium stars interact
with quasi-conservativemass transfer and enter a common envelope inspiral; the stars eject
the common envelope and merge. Preliminary models have shown that some stars evolved
by this channelmay have up to an order of magnitude greater core angularmomentum than
the singlemassive star progenitor (Fryer andHeger, 2005). The binarymerger channelmay
be a viable solution to including the various progenitor requirements.

3.2 The central engine

In the collapsar model discussed in this paper, the gamma-rays are produced after the
system’s second collapse, when a massive accretion torus surrounds a BH (Popham et al.,
1999). There are differentmechanisms for converting thematter into gamma rays (Woosley
and MacFadyen, 1999), the two leading candidates being neutrino annihilation and the
Blandford–Znajek (B-Z) process.
The model for neutrino annihilation was proposed for both neutron star mergers and

failed SN explosions from a massive Wolf–Rayet star (Jaroszyński, 1996; Popham et al.,
1999). Briefly, neutrinos are produced in the massive disk and annihilate near the system’s
axis of rotation, where the density of matter is low, avoiding the baryon loading problem.
Neutrino annihilation produces a high energy e± plasma in a narrow jet. The BHmust have
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high angular momentum (a = J/MBH ≈ 1) with a torus described by a nearly constant
specific angular momentum profile. However, amidst other difficulties, the efficiency of
neutrino production and annihilation required to power GRBs is mainly considered too
high to be a plausiblemechanism for producing gamma-ray jets.
The more currently favoured model for GRB jet production (e.g., Lee et al., 2000) uses

magnetohydrodynamics (MHD). In 1977, Blandford and Znajek (1977) proposed that
the interaction between a BH and massive disk, mediated by a large magnetic field, would
convert rotational energy from the BH (Blandford and Znajek, 1977) into a Poynting-flux
dominated jet. For estimates of the energetics in GRB discussions, the B-Z effect yields
(Thorne et al., 1986):

Ėjet ≈ 1050a2
(

MBH

3 M⊙

)2 ( B
B15 G

)2
erg s−1 , (1)

where a = J/MBH is the Kerr spin parameter of the BH, MBH is the mass of the BH, and B
is the magnetic field strength in the BH/disk. It has been shown that the convection-driven
dynamo of Thompson and Duncan (1993) can just manage to produce a B-field of this
necessary magnitude. Even with this large field, the accretion rate must be quite high to
explain observed GRB energies, requiring a very dense disk. It is not known whether it is
possible to establish a disk of necessary density.

4 JETSANDAFTERGLOWS

In 1997, targeted by the Italian-Dutch X-ray satellite, Beppo-SAX, the first optical after-
glows from aGRB,GRB 970228, were obtained using a number of groundbased telescopes
and the Hubble Space Telescope (HST). The observed spectra matched well with a GRB
model composed of a simple blastwave from a “fireball” colliding into the surrounding
medium, decelerating and releasing energy (Wijers et al., 1997). The bulk Lorentz factor
(Γ > 103, Rees andMeszaros, 1992) of the relativistic fireball decreased in time as t−3/8 for
the observers frame, and the observed spectrumwas due to resulting synchrotron radiation.
“Afterglows” of radiation from the LGRBs are observed in wavelengths such as X-ray to

optical. The jet afterglows are quite important for revealing properties of theGRB- it is from
the afterglows that host galaxies and redshifts typically determined. Rhoads (1997) noted
that the lateral expansion of a GRB jet will create a steepening or break in the declining
afterglow spectrum which is related to the jet’s Lorentz factor. This phenomenon occurs
simultaneously across multi-wavelength spectra (see Fig. 4, Tagliaferri et al., 2005). The
jet collimation is given in terms of its minimum opening angle, Ω , which in our observer
rest frame is given by Ω ≈ Γ −1 if the photons are assumed to be emitted isotropically in
the rest frame of the radiating matter. This is the Ω which we would always observe for
gamma-rays, even with less collimation. By measuring the abrupt shift in the afterglow
spectrum to lower frequencies, therefore, one may determine the opening angle/Lorentz
factor, as has been done for several GRBs (as inWei and Lu, 2002).
An important and unresolved issue is the structure of the relativistic jets. The leading

candidate jetmodels are: a uniform (or “top-hat”)model (Panaitescu andMeszaros, 1999),
where the energy per solid angle and LorentzΓ are constant through the opening angle and
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Figure 4.FromTagliaferri et al. (2005), the light curve of recentGRB050904. Dashed lines represent
best fit lines in J band, which is used for the other bands. Themultiwavength steepening or break due
to the jet phenomenon is apparent.

Figure5.From(Granot et al., 2002), the calculatedeffect onfluxover timedependingon theobservers
viewing angle of a uniform jet. θO and θobs are the opening angle and observer’s angle from centre,
respectively.
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drop off sharply at the edge; and the universal structured jet (USJ) model (Lipunov et al.,
2001), where the energy per solid angle falls off with the square of the angle from a central
core value. In the latter model, all GRB jets are essentially identical (Nakar et al., 2004),
but slight differences in viewing angle result in very different light curves. Some authors
propose that gamma-ray bursts viewed far off-axis may explain events such asX-ray flashes
(Lamb et al., 2004).
Because of the uncertain nature of the physical circumstellar material (whether it is

a remnant of a stellar wind or cleared by a SN shell, depending on evolutionary paths),

Figure 6. From (Kumar and Granot, 2003), these diagrams show the variety of viewing angle effects
on the R-band afterglow of prescribed models of uniformly structured jets (and one Gaussian); the
initial energy per solid angle and Lorentz Γ are assumed to follow a power-law model, with the “a”
and “b” parameters representing the steepness of each factor,respectively. The circumstellarmaterial
is assumed to be of uniformdensity. Note the differences betweenbothmodels and viewing angles.
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and also because the viewing angles are uncertain, it is difficult to determine the precise
nature of the jet. Fig. 5 (Granot et al., 2002) shows the variation of uniform jet for different
opening angles, and Fig. 6 (Kumar andGranot, 2003) shows someof the different afterglow
results for the structured jet at various opening angles, with model parameters described
in the caption. Comparisons with physical afterglows have not yet selected one jet model
definitively, in part because of the large uncertainties of environment and viewing angles.

5 GRBHOSTGALAXIES

Most evidence connects LGRBs to the collapse of massive stars. Given their high energies
and the short lifespan of massive stars, LGRBs become natural candidates for studying
star formation histories. Moreover, gamma-rays are not subject to dust absorption (though
parts of their afterglows are), and have been observed out to redshift z > 6, making them
important in the study of the evolution of galaxies as well.
Floc’h et al. (2003) studied GRB host galaxies by identifying counterparts to optical

afterglows, most with redshift z < 1.6. Typically, hosts belonged to the population of blue,
faint galaxies with high star formation rate (SFR). The study also suggested that LGRBs
were preferentially located in regions of low-metalicity; this bias is explainable with the
collapsarmodel, as lowermetalicity in a stellar envelope reducesmass loss and also angular
momentum loss.
Simulations of large-scale structure formation (Courty et al., 2004) have identified host

candidates as young, low-mass galaxies (M < 1010 M⊙ with low to moderate star forma-
tion rate, of order a fewM⊙/year. These resultswere in agreementwithoptical observations
of LGRB hosts at z ≈ 1, typically blue subluminous galaxies, with SFR = 1–50 M yr−1

(e.g. Chary et al., 2002) and hostmass, M , in the range 2 × 108–4 × 1010 M⊙. It was found
that assigning LGRBhosts to the most active galaxieswith high SFRwas inconsistent with
observations. Instead, LGRB host galaxies were the most efficient at star-forming, having
high and consistent specific star-formation rates, SFR/M.Whilemost observed LGRBwere
z " 1, the simulations showed the efficiency of low-mass galaxies to be fairly constant with
redshift. Thus, observational studies of LGRB hosts would be biased towards higher mass
objects, due to the faintness of the low-mass galaxies.
A very recent survey of 37 LGRB host galaxies using the Hubble Space Telescope (HST)

was performed by Conselice et al. (2005). The aim was to study the structural properties
and sizes of LGRB host galaxies, and to compare those galaxieswith non-GRB hosts at the
same redshift in theHubbleDeepField (HDF). For all galaxies, themodel-independentCAS
(concentration, asymmetry, clumpiness) parameterswere used to determinemorphological
class: E/S0, spiral, and irregular/peculiar/merging (e.g., Schade et al., 1995; Abraham
et al., 1996). The results showed that LGRBhost galaxies occur in all types of field galaxies,
not solely restricted to irregulars. Approximately 68% of the host galaxies were CAS-
associated with spirals or peculiar/merging galaxies, and the remaining 32% early type or
forming early type elliptical galaxies.
As to the evolution of galaxies, at z < 1.2, LGRB host galaxieswere significantly smaller

(Petrosian radius of 6.5 ± 5.2 kpc or 4.5 ± 1.5 kpc, depending on sample) than the typical
HDF galaxies (Petrosian radius of 12.0 ± 8.5). For z > 1.2, the average Petrosian radius
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for LGRB hosts was 6.8 ± 4.0 kpc, fairly similar to the average HDF galaxy with Petrosian
radius of 7.1 ± 2.0 kpc. Thus, the size of LGRB host galaxies does not appear to vary
significantly with redshift. However, the concentration parameter of the hosts did vary; in
the sample with z > 1.2, LGRB hosts had a significantly higher concentration of light than
similar redshift HDF galaxies. At lower redshifts, the concentrations decreased in the host
galaxies. This suggests that the high redshift host galaxies may be either massive or blue
compact galaxies, different than the host galaxies at low redshift, but still those with high
star formation rates.

6 COSMOLOGICAL IMPLICATIONS?

Themost distantLGRBobserved todate is one recently seen at redshift z = 6.29 (Tagliaferri
et al., 2005). As bright events seen out to large distances, LGRBs have been sought after
to measure cosmology. Several empirical relations have been derived. One such proposal
(Ghirlanda et al., 2004) relates the observedpeak energy, E obs

peak , to the collimation-corrected
energy Eγ ,iso:

Eobs
peak(1 + z) ∝ E0.7

γ ,iso . (2)

Another empirical relation utilizes the temporal behaviour of bursts. A variability para-
meter, V, is defined for bursts using statistical methods (Reichart et al., 2001). Interestingly
(perhaps) is the fact that luminosity and variability scale together by the relation, L ≈ V 3.3,
somewhat analogous to existing Cepheid-variability relations, and provides a possible dis-
tance indicator. We shall have to wait and see if these patterns continue to exist in the
Swift-era of observations, as more LGRBs with measured redshifts are detected, and if any
physical explanation evolves, before measuring cosmology with them.

7 CONCLUSIONS

Remarkable progress has been made in the field of LGRBs in recent years, particularly due
to the multi-wavelength nature of observations once the gamma-ray are detected. After-
glows have been necessary to determine the LGRB association with with SNe-HNe events
and redshift measures, and hopefully will yield more results to constrain the progenitor’s
evolution and central engine mechanism. The brightness and distance of observed LGRBs
make them valuable in the field of galactic evolution and, perhaps, in cosmology. The
next few years should see a remarkable influx of data from the Swift satellite and multi-
wavelength follow-ups, and in addition increase our understanding of SGRBs as well as
LGRBs.
As our theoretical understanding of GRBs develops, we wait to see whether, “The world

is more complicated than most of our theories make it out to be,” (Edmund C. Berkeley)
or whether we shall take consolation in the fact that, “Nature uses as little as possible of
anything” (Johannes Kepler).
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ABSTRACT
Relativistic Keplerian orbital frequency (νK) and the related epicyclic frequencies
(radial νr, vertical νθ ) play an important role in the physics of accretion discs orbiting
Kerr black holes. We examine in detail their properties in Kerr spacetimes and dis-
cuss some possible observational implications resulting from their behaviour in the
black hole case. Characteristics of the fundamental orbital frequencies of Keplerian
motion are also analysedwith the intention tofind the phenomenawhich couldobser-
vationally distinguish a hypothetical naked singularity from black holes. We explore
the significant differences in behaviour of the epicyclic frequencies. These suggest
that oscillations of discs orbiting Kerr black holes and naked singularities could be
very different, and the information, given through X-ray variability of the source,
could distinguish between the naked singularities and the black holes in general.

Keywords: black holes – naked singularities– theory – observations
X-ray variability

1 INTRODUCTION

Quasiperiodic oscillations (QPOs) of X-ray brightness have been observed at low (Hz)
and high (kHz) frequencies in some low-mass X-ray binaries containing neutron stars or
black holes; for a review articles see, e.g., McClintock and Remillard (2004) in the case
of black hole binaries and van der Klis (2000) in the case of neutron star binaries. Since
the observed high frequencies are close to the orbital frequency of the marginally stable
circular geodesic representing the inner edge of Keplerian discs orbiting black holes (or
neutron stars), strong gravity effects must be relevant if trying to explain high frequency
QPOs (Abramowicz et al., 2004b). In the context of discs oscillations (Okazaki et al., 1987;
Nowak andWagoner, 1991, 1992) both the warped discs (trapped) oscillations (Kato and
Fukue, 1980; Kato, 2004b) and resonant oscillations (Abramowicz and Kluźniak, 2001;
Abramowicz et al., 2004b) has been considered for explainingQPOs.
In the case of microquasars containing stellar mass black holes, the observed ratio of

the twin peak frequencies is exactly, or almost exactly, 3 : 2; therefore, some resonant
effects are probably involved in oscillating accretion discs of microquasars (Kluźniak and

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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Abramowicz, 2000, 2001).1 It was shown that the parametric resonance of vertical and
radial oscillations at epicyclic frequencies related to the Keplerian motion could be the
most probable explanation of the observed microquasars phenomena (Török et al., 2005).
On the other hand, the forced resonance of the epicyclic frequencies or some other kind
of resonance with ratios given by small integral numbers, e.g., 2 : 1, 3 : 1, 5 : 2, etc.
could also explain observed QPOs frequencies (with the same 3 : 2 ratio), if combinational
(“beat”) frequencies are considered (Abramowicz and Kluźniak, 2001; Török et al., 2005;
Aschenbach, 2004). The puzzle of this 3 :2 ratio kHz frequencies has still not been definitely
solved and other possible explanations, like warped-disc oscillations (see Kato, 2004a) or
simple p-mode oscillations (Rezzolla, 2004), can not be excluded.
The mechanisms for triggering the oscillations in epicyclic frequencies were treated suc-

cessfully both for thin (see Kato et al., 1998) and thick discs (e.g., Matsumoto et al., 1989;
Abramowicz et al., 2003b; Rezzolla, 2004; Šrámková, 2005). Nevertheless, sophisticated
three-dimensional magnetohydrodynamic simulations (3-MHD) of accretion flows usually
do not show any twin peak kHz QPOs resembling those observed (Igumenshchev et al.,
2003; de Villiers et al., 2003 and others). Only very recently Kato (2004c) has reported a
view of the 3 :2 twin peaks in 3-MHD simulations.
In addition, it has recently been shown by Bursa et al. (2004) that the possible resonant

oscillations of the torus could be directly observable in X-ray modulation when they occur
in the inner parts of accretion flow around a black hole or neutron star, even if the source of
radiation is steady and perfectly axisymmetric.
Apparently, the vertical and radial epicyclic frequencies of the Keplerian motion play a

crucial role for both thin Keplerian discs and thick toroidal discs. Their properties have
been extensively studied in the case of accretion discs orbiting Kerr black holes both in
worksmentioned above and inmany others, yet continue to be very hot outstanding topic in
recent astrophysics. On theother hand, it is natural to extend the concept of disc oscillations
in the epicyclic frequencies around other physical objects.
According to the cosmic censorship hypothesis (Penrose, 1969) and the uniqueness

black-hole theorems (Carter, 1973), the result of the gravitational collapse of a sufficiently
massive rotating body is a rotating Kerr black hole, rather than a Kerr naked singularity.
Although the cosmic censorship is a plausible hypothesis, there is some evidence against
it. In modelling the collapse of rotating stars, it was shown that in some situations mass
shedding and gravitational radiation will not reduce the angular momentum of the star
enough to lead to the formation of a Kerr black hole (Miller and de Felice, 1985). Some 2D
numerical models of collapsing, rotating supermassive objects imply that a Kerr-like naked
singularity could develop from objects when rotating rapidly enough (Nakamura et al.,
1987).
It is generally believed that black holes are stable against perturbations that would

transfer them into naked singularities (Bardeen, 1973; Thorne, 1974; Wald, 1974; Co-
hen andGautreau, 1979; Israel, 1986; de Felice andYu, 1986). However, recently presented
gedanken experiments concerning electrically charged, Reissner–Nordström black holes

1 Interestingly, the same 3 : 2 ratio seems to be present in the case of neutron stars sources, indicating the same
origin of the observed quasiperiodic oscillations (Abramowicz et al., 2003a; Belloni et al., 2005; Bulik, 2005;
Abramowicz et al., 2005; see also Fig. 10).
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put this belief in doubt. It was shown that an extremeReissner–Nordströmblack hole could
be transformed into a Kerr–Newman naked singularity by capturing a flat and electrically
neutral spinning body that plunges in radially with its spin aligned to the radial direction
(de Felice and Yu, 2001). Moreover, the possible existence of naked singularities is suppor-
ted by general mathematical studies concerning scalar fields around Reissner–Nordström
naked singularities (see, e.g., Stalker and Tahvildar-Zadeh, 2004).
Therefore, naked-singularity spacetimes related to the black-hole spacetimes with a

nonzero charge and/or rotation parameter could be considered conceivable models for
some exotic Galactic binary systems or, onmuch higher scale, of quasars and active galactic
nuclei, so they, too, deserve some attention. Of particular interest are those effects that
could observationally distinguish a naked singularity from black holes. Therefore, we shall
discuss here in detail the properties of the vertical and radial epicyclic frequencies of the
Keplerian circular motion in the field of Kerr black holes and naked singularities, in order
to find astrophysically relevant differences between the black-hole and naked-singularity
cases.

2 EPICYCLICOSCILLATIONSOFKEPLERIANDISCS

In the case of oscillating Keplerian discs three orbital frequencies are relevant: Keplerian
orbital frequency νK = ΩK/2π, radial epicyclic frequency νr = ωr/2π, and vertical epi-
cyclic frequency νθ = ωθ/2π. For discs orbiting Kerr black holes or naked singularities,
corresponding angular velocities ΩK, ωr, ωθ are given by the well-known formulae (e.g.,
Nowak and Lehr, 1998),

ΩK =
(

GM0

r3
G

)1/2 (
x3/2 + a

)−1
, (1)

ω2
r = αrΩ

2
K , (2)

ω2
θ = αθ Ω

2
K , (3)

where

αr(x, a) ≡ 1 − 6x−1 + 8ax−3/2 − 3a2x−2 , (4)
αθ (x, a) ≡ 1 − 4ax−3/2 + 3a2x−2 , (5)

and x is introduced as dimensionless radial coordinate

x = r/M . (6)

We use Boyer–Lindquist coordinates (t, r, θ,φ). We rescale the central object mass with
M = GM0/c2 = rG and the central object angularmomentumwith a = J0c/GM2

0 . Here,
the parameters M0 and J0 give the mass and the internal angular momentum of the Kerr
black hole or naked singularity.



318 G. Török and Z. Stuchlík

Figure 1. In the gravitational field of a central object, test particle on a circular orbit starts oscillate
after a small perturbation. Frequencies of these oscillations (radial νr and vertical νθ ) are fundament-
ally different in Newton’s and Einstein’s gravity. In Newtonian physics these epicyclic frequencies
must always be equal to the Keplerian frequency of circular orbit and the resulting trajectory is an el-
lipse,while in Einstein’s theory they differ and the trajectory is not closed. Left panel shows behaviour
of these epicyclic frequencies while right one illustrate behaviour of the Keplerian frequency νK. For
both left and right panel the curves are spaced by 0.2 in a.

In the limit of the Schwarzschild black holes (a = 0), we arrive at

αr(x) = 1 − 6
x

, (7)

αθ (x) = 1 , (8)

so thatΩK(x) = ωθ (x). In the field of Kerr black holes (a ̸= 0), there is

ΩK(x, a) > ωθ (x, a) > ωr(x, a) (9)

in the rangewhere the frequencies are well defined (Fig. 1 – right panel).
The properties of ΩK, ωr, ωθ for Kerr black-hole spacetimes are reviewed, e.g., in Kato

et al. (1998). We can summarize that

• the Keplerian frequency is a monotonically decreasing function of radius for the whole
rangeof black hole rotational parametera ∈ (−1, 1)2 in astrophysically relevant radii above
the photon orbit (Fig. 1 – left panel);
• for slowly rotating black holes the vertical epicyclic frequency is amonotonically decreas-
ing function of radius in the same radial range as well; however, for rapidly rotating black
holes this function has amaximum (Fig. 1 – left panel);
• the radial epicyclic frequency has a localmaximum for alla ∈ (−1, 1) (Fig. 1 – left panel).

For Kerr naked singularities the behaviour of the epicyclic frequencies is different. In the
next sections we show that the vertical frequency can have two local extrema, and the radial
one even three. For completeness, we shall discuss the properties of the functionsΩK (x, a),
ωr(x, a), andωθ (x, a) for both naked singularities and black holes.

2 Here and henceforth values of a > 0 correspond to corotating orbits, while a < 0 give counterrotating orbits.
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Obviously, all three frequencies (1)–(3) have the general form,

ν =
(

GM0

r3
G

)1/2

f (x, a)
.= 32.3

(
M0

M⊙

)−1
f (x, a) kHz . (10)

Thus for the reader’s convenience we express the frequency as ν [Hz] M/(10 M⊙) in every
quantitative plot of frequency dependence on the radial coordinate (6); i.e., displayed value
is the frequency relevant for a central object with a mass of 10 M⊙, which could be simply
rescaled for anothermass by just dividing the displayed value by the respectivemass in units
of ten solar mass.

3 PROPERTIESOF THEEPICYCLIC FREQUENCIES

First, it is important to find the range of relevance for the functionsΩK(x, a),ωr(x, a), and
ωθ (x, a) above the event horizon located at

x+ = 1 +
√

1 − a2 (11)

for black holes, and above the ring singularity located at

x = 0 (θ = π/2) (12)

for naked singularities.
The circular geodesics in the field of Kerr black holes were discussed in Bardeen et al.

(1972), while in the case of Kerr naked singularities the circular geodesics were discussed
in Stuchlík (1980). We can summarize that circular geodesics can exist in the range of

x ∈ (xph(a),∞) , (13)

where

xph(a) = 2
[
1 + cos

(
2
3 arccos(−a)

)]
(14)

gives loci of photon circular geodesics. Stable circular geodesics, relevant for theKeplerian,
thin accretion discs exist in the range of

x ∈ (xms(a),∞) , (15)

where xms(a) denotes the radius of the marginally stable orbit, determined (in an implicit
form) by the relation

1 − 6x−1 + 8ax−3/2 − 3a2x−2 = 0 , (16)

which coincides with the condition

αr(x, a) = 0 . (17)
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For toroidal, thick accretion discs the unstable circular geodesics can be relevant in the
range

xmb ≤ xin < x < xms , (18)

being stabilized by pressure gradients in the tori. Here,

xmb = 2 − a + 2
√

1 − a (19)

is the radius of the marginally bound circular geodesic that is the lower limit for the inner
edge of thick discs (Kozłowski et al., 1978; Krolik andHawley, 2002).
Clearly, the Keplerian orbital frequency is well defined up to x = xph(a). However, ωr is

well defined, if αr ≥ 0, i.e., at x ≥ xms(a), andωr(x) = 0 at xms. We can also show that for
x ≥ xph, there is αθ ≥ 0; i.e., the vertical frequencyωθ is well defined at x > xph.

3.1 Local extrema of epicyclic frequencies

Denoting byRK,Rr,Rθ the local extrema of Keplerian νK and epicyclic νr, νθ frequencies,
we can give the extrema by the condition

∂

∂r
νi = 0 ⇔ ∂

∂x
νi = 0 for Ri , i ∈ {K, r, θ} , (20)

where x is dimensionless coordinate (6). From (1)–(3), we find that the corresponding
derivatives3 are

Ω ′
K = −3

2

√
GM0

r3
G

√
x

(x3/2 + a)2 , (21)

ω′
j = 3

2

[
2βj√
α j

−
√
αj x

(x3/2 + a)

]

ΩK , (22)

α′
j = 6βj/αj , (23)

where j ∈ {r, θ}, and

βr(x, a) = 1
x2 − 2

a
x5/2 + a2

x3 , (24)

βθ (x, a) = a
x5/2 − a2

x3 . (25)

Clearly, Ω ′
K < 0 for x > 0; i.e., the Keplerian frequency is a monotonically decreasing

function of the radial coordinate for any value of the rotational parameter a.

3 After introducing ′ as d/dr .
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Relations (20) and (22) imply the condition determining extrema R j (a) of the epicyclic
frequencies:

βj (x, a) = 1
2

√
x

x3/2 + a
αj (x, a) , j ∈ {r, θ} . (26)

Because we have checked that in the case of counterrotating orbits (a < 0), the extrema
Rθ are located under the photon circular orbit and the extremaRr are just extensions of the
Rr for corotating case (a < 0), we focus mainly on the case of corotating orbits in the next
discussion. In Figs 2 (3) we show curvesRk

r (a), k ∈ {1, 2, 3} (Rl
θ (a), l ∈ {1, 2}) implicitly

determined by the relations (26); indices k, l denote different branches of the solution of
(26). The radial epicyclic frequency has one localmaximum for Kerr black holes

−1 ≤ a ≤ 1 , (27)

Figure 2. Left panel: The locations Ri
r of the radial epicyclic frequency local extrema. Right panel:

detailed view. Here, in the next Fig. 3 and henceforth we use the following convention for both kinds
of extrema of the radial (Ri

r) and the vertical (R
i
θ ) epicyclic frequencies: odd or missing superscript

denotes a local maximum and even-numbered one means a local minimum. The question whether in
the case of naked singularities themaximum is global one can be addressed by the left panel in Fig. 6.

Figure 3. The locations Ri
θ of the vertical epicyclic frequency local extrema. The right panel gives

exact information about the positions of important points.
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but it has two localmaxima and one localminimum for Kerr naked singularities with

1 < a < ac(r)
.= 1.025 , (28)

and again one localmaximum for

a ≥ ac(r) and a < −1 . (29)

The vertical epicyclic frequency has a localmaximum at x > xph for Kerr black holes with

a > aph(θ)
.= 0.748 , (30)

and at x > xms for

a > ams(θ)
.= 0.952 . (31)

The local maximum of ωθ (x, a) is relevant in resonant effects for a > ams(θ). Note thatRθ

has amaximumat

amax(Rθ )
.= 0.852 ; (32)

therefore, the situation with function ωθ (x, a) is more complicated than seems to be in-
dicated in Fig. 1: for high values of the black hole rotational parameter a, curves ωθ (x, a)
cross each other as is shown in the left panel of Fig. 4, while Fig. 1 does not show such
detail because of hi-spacing between curves. In the Kerr naked singularity spacetimes, the
functionωθ (x, a) has a localminimum and a localmaximum for

1 < a < acθ

.= 1.089 , (33)

Figure 4. Left panel: “unlikely” effects resulting from the existence maxima of Rθ (the point E on
Fig. 3). Curves νθ (r) after a .= 0.852 cross each other (curves differ in rotational parameter here
by 0.05), see also Fig. 1 for comparison. The right panel displays an example of epicyclic frequency
behaviour for Kerr naked singularity with a = 1.009; all allowed extrema are present. Note that
the minimum νθ is very close but not identical to the point of contact, which is also present (see
Subsection 3.4 for details).
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and has no astrophysically relevant local extrema for

a ≥ acθ and a < −1 . (34)

Using properties of Rr(a) and Rθ (a), we can conclude that two qualitatively different
types of behaviour exist for the epicyclic frequencies in the Kerr black-hole spacetimes
alongwith three qualitatively different types of their behaviour in theKerr naked-singularity
spacetimes. Examples of the behaviour of the epicyclic frequencies for Kerr black holes are
given in Fig. 1 (see also Fig. A1).
An example of the behaviour of the epicyclic frequencies inKerr naked-singularity space-

times is shown in Fig. 4 (right panel) for the case when all the local extrema mentioned
above are present, while for an example of the case when the number of the local extrema is
lowest, see Fig. 8. The complete set of figures systematically representing the evolution of
the character of the epicyclic frequencies with rotational parameter increasing is included
in the Appendix which consists of Figs A1 (black holes) and A2 (naked singularities); the
evolution of derivatives (22) and of the ratio νθ/νr of the epicyclic frequencies is also in-
cluded. This set of figures represents classification of the Kerr spacetimes according to
the properties of the epicyclic frequencies that is fully given in Section 4. Note that in the
black-hole case it is important to distinguish the cases when the local maximum of νθ (x, a)

is located above xms, and under xms.
Clearly, the behaviour of the epicyclic frequencies substantially differs for Kerr naked

singularities in comparisonwith Kerr black holes.

3.2 Ratio of epicyclic frequencies

The ratio of epicyclic frequencies νθ and νr needs to be defined well for some models of
QPOs (e.g., Abramowicz et al., 2004b; Kato, 2004b). It is well known (see, e.g., Kato et al.,
1998) that for the Kerr black holes (−1 ≤ a ≤ 1) the inequality

ωr(x, a) < ωθ (x, a) (35)

holds, i.e., the equation

ωr(x, a) = ωθ (x, a) (36)

does not have any real solution in the whole range of black hole rotational parameter
a ∈ (−1, 1) and

νθ

νr
> 1 (37)

for any Kerr black hole. Furthermore, this ratio is a monotonic function of radius for any
fixed a ∈ (−1, 1) (see Fig. 5 – left panel). However, the situation is different for Kerr naked
singularities, see Section 3.4.
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3.3 Implications for the orbital resonance models in the field of Kerr black holes

The orbital resonancemodels forQPOsproposed byAbramowicz andKluźniak (2001); Ab-
ramowicz et al. (2004b) are particularly based on resonance between epicyclic frequencies
which are excited at a well defined resonance radius rp:q given by the condition
ωθ

ωr
(a, rp:q ) = p

q
, (38)

where p : q is 3 : 2 in the case of parametric resonance and arbitrary rational ratio of two
small integral numbers (1, 2, 3, . . .) in the case of forced resonances. Notice that in the
case of arbitrary forced resonance the combinational (“beat”) frequencies could also be
observed including the 3 : 2 ratio (Abramowicz and Kluźniak, 2001; Török et al., 2005).
Such resonance radii are monotonically decreasing functions of the rotational parameter
a (see Fig. 5 – left panel). Resulting resonant frequencies are given generally as a linear
combination of epicyclic frequencies at rp:q . In Török et al. (2005) it is reported that
the resonant frequencies (both observed frequencies, the upper and the lower) are not
monotonic function of a for the case of 3 : 1 and 5 : 1 (5 : 2) forced resonance models, while
for other resonancemodel ratios (e.g., 2 :1, 3 :2), it is amonotonic function of the rotational
parameter a.
For the observational consequences, it is important to determine the limiting value of

the frequency ratios ωθ/ωr = p/q, which separates the monotonic and non-monotonic
dependence of the resonant frequencies on the rotational parameter.
Indeed, this monotonicity of some resonant frequencies results from the non-monotonic

character of the epicyclic frequencies. It is known that the radial epicyclic frequency has
a local maximum at rmax(r) ≡ Rr for a ∈ (−1, 1) and its value νr(max)(a) increases with
the rotational parameter (see Fig. 1 – right panel). Moreover, outside its maxima it is
monotonically decreasing with the radius. From the left panel of Fig. 5, we conclude that
rp:q (a)must be amonotonically decreasing function of a. If the horizontal line representing
some ratio p : q is fixed, then this figure implies a necessarily monotonically decreasing
function rp:q (a). Because of this, the resulting resonant frequency, which is just multiple
of the radial frequency, must bemonotonically increasing for rp:q located outside (or at) the
maximumof the radial epicyclic frequency.
For Schwarzschild black holes the ratio between the epicyclic frequencies at the radius

of maximal radial frequency is exactly νθ/νr = 2 (x = 8) and then changes slightly with
the rotational parameter growing to reach the value νθ/νr ∼ 1.8 for extremely rotating Kerr
black hole (a = 1). This gives the limit in the sense that for p : q > 1.8, the radius rp:q is
certainly located above the maximumof νr.
On the other hand, an analogical consideration shows that νθ (or νr, if the resonance

condition (38) is satisfied) is surely decreasing with the rotational parameter, if rp:q is
located under the location of the maximum of νθ . The ratio of the epicyclic frequencies at
the maximum of νθ is shown in the left bottom panel of Fig. 5. Its minimum is reached for
extremely rotating Kerr black holes at νθ/νr(rmax) ∼ 2.18. It means that for black holes the
resonance is surely non-monotonic if p/q ≥ 2.18.
It is clear from the discussion above that the limit for non-monotonicity must be located

between the values of p/q ∈ (1.8, 2.18). We numerically checked the loci of eventual non-
monotonicity and find that the limit is very close to the upper value; i.e., nonmonotonicity of
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Figure 5. Left top panel: the behaviour of ratio νθ/νr of the epicyclic frequencies, with curves spaced
by 0.2 in rotational parameter. Right top panel: Location of three epicyclic resonances and resonance
between vertical epicyclic frequency andperiastronprecession frequency recently introducedbyBursa
(2005). Left bottom panel: the ratio between epicyclic frequencies at maxima of νθ . Right bottom
panel: the examples of the behaviour of frequency νθ for three cases of forced resonances with
p/q = 5, 3, and 2.2.

Figure 6. Left panel: the radial epicyclic frequency at particular extrema as a function of rotational
parameter a between a = 1 and a = 1.025. We can see that for a < 1.012 the global maximum
is situated at R1

r (a) while for a > 1.012 it is at R3
r (a). The middle panel exposes the behaviour

of the function νθ/νr(x) typical for Kerr naked singularities. With increasing parameter a the local
maximum of this function is shifted to higher radii. The right panel illustrates that the value of
maximum νθ/νr is rapidly decreasing with the rotational parameter growing. The upper limit for
unambiguity of a resonance in the case of p :q = 3 :1, 2 :1 and 3 :2 is denoted.
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the function νθ/νr(rp:q , a) in dependence on a is relevant for forced resonances with

p : q ≥ 2.18 . (39)

Figure 5 (right bottompanel) illustrates this limit by examples of behaviour of νθ (a, rp:q) for
three different forced resonances,which embody thenon-monotonic (in the sensedescribed
above).

3.3.1 The black hole spin and 1/M scaling in the resonance models

It is well known and often argued that relativistic orbital frequencies scale inversely with the
mass as ν ∼ c/rG ∼ 1/M (see, e.g., Abramowicz et al., 2004a, 2005). On the other hand,
these frequencies depend on other parameters of the metric as well whereas in the case of
Kerr spacetimes the only one remaining parameter is the black hole spin which strongly
affects such simple 1/M scaling.
The influence of the spin on the 1/M scaling is illustrated in Fig. 7 – we can immediately

see that for Kerr spacetimes the role of the spin on the observed frequencies in the resonant
phenomena is crucial.

Figure 7. The influence of the Kerr spacetime spin on the parametric resonance frequencies. Left
(adopted fromAbramowicz et al., 2005): 12 neutron star sources in the slope-shift diagram (particular
source is approximated by linear relation νupp = Aνdown + B). Mass of the neutron stars vary in
factor of about 1.5 under the assumption that eigenfrequencies of the resonance scale inversely with
the mass. Shaded microquasars area is denoted for frequencies observed in low mass black hole
binaries. Right: If the observed frequencies for the 3 : 2 parametric epicyclic resonance are identified
directly with the eigenfrequencies and assuming that the neutron star spacetimes are given by the
Schwarzschild metric, we obtain the typical neutron star mass ∼ 1M⊙ (dashed line). Of course this
is rather approximate estimate as the spacetime description is not quite realistic. Nevertheless, we
can rescale the A–B diagram directly for microquasars as their mass is known, being in the interval
6–18 M⊙ (dark shaded region ∼ 100 Hz). Taking into account the black hole spin, this region is
substantially shifted into the light shaded area a ∼ 0.95, which is plotted for the same range of the
mass, but the frequency is rescaled with the spin at the orbit fixed by the condition νθ/νr = 3 : 2.
We note that analogical rescaling can be done for the vertical precession resonance (Bursa, 2005) and
spin ∼0.7, but the typical neutron starmass would be about two times higher.
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3.4 Strong resonant frequency

It is shown in Section 3 that for Kerr naked singularities with a > ac(θ)
.= 1.089 the

behaviour of epicyclic frequencies is formally similar to Kerr black holes. However, for
any naked singularity with a ≥ 1, the epicyclic frequencies (2), (3) can satisfy the equality
condition

ωr(a, x) = ωθ (a, x) (40)

giving a strong resonant phenomenon,4 which occurs at the critical radius

xsr = a2 (a ≥ 1) . (41)

This means that for any Kerr naked singularity the epicyclic frequency ratio νθ/νr(r) is a
nonmonotonic function that reaches value 1 at the point given by (41) (see Fig. 6 – middle
panel). The loci of this point are compared with locations of some other important points
as shown in Fig. 8 – the right panel; while the left panel shows an example that illustrates
radial extension of the strong resonant phenomenon.
Using the relation (41) in (2), (3) we find a strong resonant frequency that, in terms of

the corresponding angular velocity, reads

ωsr ≡ ωr(a, a2) = ωθ (a, a2) =
(

GM0

r3
G

)1/2 √
a2 − 1

a2
(
a2 + 1

) , (42)

and the frequency can be expressed in the form

νsr = 32.3
(

M⊙
M

) √
a2 − 1

a2(1 + a2)
kHz . (43)

4 Intuitively clear attribution is well founded in the last Subsection 3.6.

Figure 8. Left panel: behaviour of epicyclic frequencies for a = 2.3, the regionwhere frequencies are
identical with accuracy of 1%. The right panel illustrates the location of the strong resonant frequency
(dotted curve a2) in relation to extrema of epicyclic frequencies (thin curve Rk

r , thick one Rl
θ ). The

critical radius is always located (in radial order) between the first maximum of ωr and the minimum
ofωθ (if these exist). The notation of the important points [A. . . J] accords with Figs 2, 3.
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Figure 9. Left panel: the behaviour of strong resonant frequency shows remarkablemaximum for the
rotational parameter a ∼ 1.2. From themiddle panelwe can see the evolution of area (around critical
radius) where epicyclic frequencies are close, while the right panel shows the same in the proper
distance to marginally stable orbit.

We note that this strong-resonance phenomenon represents a crucial difference between
Kerr naked singularities and the case of Kerr black holes for which the ratio ωθ/ωr(r) is
determined as amonotonic function for fixed a (Fig. 5 – left panel).
Thebehaviour of the epicyclic frequency ratioωθ/ωr(r) typical ofKerr naked singularities

is shown in Fig. 6 (middle panel). In right panel in Fig. 6 we plot the value of the local
extrema of the ratioωθ /ωr as a function of the rotational parameter a. For high values of the
rotational parameter, the radial and vertical epicyclic frequencies are very close each other
in large radial range around rsr. This example is given in Fig. 8 (left panel). We plot the
strong-resonance frequency as a function of the rotational parameter in Fig. 9 (left panel).
It approaches zero value for an extremely rotating Kerr black hole and has a maximum for
naked singularities with rotational parameter

asrc
.= 1.207 , (44)

with the corresponding value of the epicyclic frequency determined by the relation

νsrc
.= 6.1

(
M

M⊙

)−1
kHz . (45)

In the middle panel of Fig. 9, location of the critical radius xsr = a2 is shown together
with location of the marginally stable orbit and extension of the instability region of r
(see Section 3.6), where the difference between values of the radial and vertical epicyclic
frequencies is smaller then 1%. However, for the values of rotational parameter a ∼ 1,
it is more convenient to express the region of the disc with 1% difference of the epicyclic
frequencies in terms of the proper radial distance r̃ , which has direct physical meaning.
There is

r̃ =
∫ r1

r0

√
grr dr , (46)

where grr denotes the radial metric coefficient of the Kerr metric in the standard Boyer–
Lindquist coordinates; the distance ismeasured from the inner edge of the thin discs located
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at rms. The result is represented by the right panel in Fig. 9; we found that the strong-
resonance is closest to the inner edge of the Keplerian disc for a naked singularity with

ar̃
.= 1.105 . (47)

For this value of the rotational parameter, the strong resonant frequency is

νsr in
.= 4.3

(
M

M⊙

)−1
kHz , (48)

which is about 70% of the maximum at asr max given by (45). However, the critical radius is
always located outside of the innermost part of the disc (see Fig. 8, right panel).

3.5 Implication for other resonant effects

ForKerr naked singularitieswith any rotational parameter a, the ratioωθ/ωr < (ωθ/ωr)max
being fixed can appear at three different radii. This kind of behaviour results from the ex-
istence of the strong resonance frequency (ωθ = ωr) for any Kerr naked singularity; i.e., it
is not restricted to the cases when local extrema of ωθ , ωr exist. This implies an important
consequence for the resonant phenomena: in the case of slowly rotating Kerr naked singu-
larities, an eventual resonance orbit rp:q (with p, q being small integral numbers) is defined
ambiguously. In the range of frequencies (ωθ/ωr)max(a) ≥ ωθ/ωr ≥ 1, the resonant effects
with the same rational ratio p :q can occur at three different radii rp:q . Using the behaviour
of the function (ωθ/ωr)max(a) (Fig. 6 – right panel) we can conclude that three radii rp:q
could occur in the field of Kerr naked singularities with a ≤ 1.0012 for p : q ≤ 3 : 1, with
a ≤ 1.012 for p :q ≤ 2 :1, andwith a ≤ 1.062 for p :q ≤ 3 :2.

3.6 Possible instability of the accretion disc around Kerr naked singularities

The orbital resonance model (Kluźniak and Abramowicz, 2002) demonstrates that fluid
accretionflows admit two linear quasi-incompressible modes of oscillations, vertical and ra-
dial, with corresponding eigenfrequencies equal to vertical and radial epicyclic frequencies
for free particles. In a particular model of slender torus, the general properties of these
modes can be shown: the vertical mode corresponds to a periodic displacement in which
the whole torus moves as a rigid body up and down the equatorial plane and each fluid
element has a vertical velocity that periodically changes in time, but does not depend on the
position. The frequency of the vertical mode is equal to the vertical epicyclic frequency that
a ficticious free particle orbiting at the circle of maximum pressure in the torus equilibrium
position would have. Behaviour of the radial mode is similar to the vertical one, and in the
linear regime these two modes are formally uncoupled. Kluźniak and Abramowicz (2002)
argue that in the case of more realistic description that includes non-linear effects given by
pressure and dissipation, these effects couple the two epicyclic modes that may result in a
resonance.
One possible resonance, the parametric resonance, seems to be the most probable ex-

planation of the 3 : 2 double peak kHz QPOs observed in some galactic microquasars
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(Abramowicz et al., 2004b). The effect itself is described by the Mathieu equation (Landau
and Lifshitz, 1976). After denoting the time derivative d/dt by dot, we obtain the relation

δθ̈ + ω2
θ [1 + h cos(ωrt)] δθ = 0 , (49)

which can be formally derived by considering small deviations of fluid streamlines from
planar circularmotion governed by a set of equations (Rebusco, 2004; Horák, 2004)

δr̈ + ω2
r δr = ω2

r fr(δr, δθ, δṙ , δθ̇) ,

δθ̈ + ω2
θ δθ = ω2

θ fθ (δr, δθ, δṙ , δθ̇) , (50)

for a particular choice of fr and fθ , corresponding to

δr̈ + ω2
r δr = 0 , δθ̈ + ω2

θ δθ = −ω2
θ δθδr . (51)

From the theory of the Mathieu equation it is known that the parametric resonance is then
excited when5

ωr

ωθ
= νr

νθ
= 2

n
, n = 1, 2, 3, . . . (52)

The effect is strongest for the smallest possible value of n (Landau and Lifshitz, 1976).
Because in the field of black holes νr < νθ (see Section 3), the smallest possible value for
resonance is n = 3, i.e., 2νθ = 3νr, which explains the 3 : 2 ratio observed in microquasars
very well (Abramowicz andKluźniak, 2004; Török et al., 2005).
As shown above, the point where radial epicyclic frequency equals vertical epicyclic

frequency exists for any Kerr naked singularity. Obviously, at such a point the Eq. (52) is
satisfied (νr/νθ = 1/1 = 2/n; n = 2), and the parametric resonance (between the radial
and vertical epicyclic frequency) eventually excited at this point is the strongest possible
parametric resonance excited between the epicyclic frequencies in the field of Kerr naked
singularities. Such 2 :2 resonancemust also be stronger than the 3 :2 parametric resonance
in the black hole case (Landau and Lifshitz, 1976).
From this, and from the fact that the radial region with epicyclic frequencies that are

nearly equal is rather large, one can expect that at this region both radial and vertical
oscillations could be strongly amplified, leading to an instability of the accretion disc.6

4 CONCLUSIONS

For counterrotating Keplerian orbits, properties of the epicyclic frequencies are the same
for all Kerr black holes and naked singularities. Radial epicyclic frequency always has a
localmaximum,while the vertical epicyclic frequency has no local extrema at x > xph.

5 We note that the same condition holds for internal resonance, which describes systems with conserved energy
(Horák, 2004).
6 Such a claim is motivated by experience from known situations related to the parametric or forced resonance in
complex non-linear systems observed in Earth physics (Landau and Lifshitz, 1976). Examples of mathematically
possible resonances causing damaging bridges, wings, etc. with no specific physical coupling mechanism known
are discussed in Nayfeh andMook (1979).
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On the other hand, for corotatingKeplerian orbits, properties of the epicyclic frequencies
strongly depend on the rotational parameter of the Kerr spacetimes. The most important
difference between spacetimes with a < 1 and a > 1 is the change of inequality

ωθ (x) > ωr(x) (a < 1) → ωθ (x) ≥ ωr(x) (a > 1) . (53)

We have also to distinguish different possibilities according to the existence and relative
locations of the local extrema of the epicyclic frequencies.
In the case of Kerr black holes, the classification according to the properties of the

epicyclic frequencies is given in the following way:

BH1 (Fig. A1a, 0 < a < 0.748) ωr(x, a) has one local maximum, ωθ (x, a) has no local
extrema above the photon circular orbit xph.

BH2 (Fig. A1b, 0.748 < a < 0.952) ωr(x, a) with one local maximum, ωθ (x, a) with
one localmaximum at x < xms.

BH3 (Fig. A1c, 0.952 < a < 1) ωr(x, a) with one local maximum, ωθ (x, a) with one
localmaximumat x > xms.

In all the cases, the function (ωθ/ωr)(x, a) which is relevant for resonant effects, has a
monotonic (descending) character (Fig. A1). Therefore, for a given rotational parameter
a, there is only one radius allowed for any p : q resonance. However, we have shown
that the resulting resonant frequencies are nonmonotonic functions of a for p : q > 2.18,
which could contradict eventual spin estimate in some resonancemodels. In addition, curve
Rθ (a) has a local maximum at a .= 0.852 so we can conclude that the functionsωθ (x, a1),
ωθ (x, a2)with a1, a2 fixed and higher than a ≃ 0.85 cross each other, which can be also of
observational interest.
In the case of Kerr naked singularities, the classification is given as follows:

NaS1 (Fig. A2a, 1 < a < 1.012) ωr(x, a) has two local maxima and one local minimum
between the maxima; ωr(max)(xr(in), a) < ωr(max)(xr(out), a) < ωθ(max), where xr(in) ≡
R3

r , xr(out) ≡ R1
r . ωθ (x, a) has one local minimum and one local maximum. There is

xθ(max) ≡ R1
θ < xr(out).

NaS2 (Fig. A2b, 1.012 < a < 1.024) ωr(x, a) has two local maxima and a local min-
imum in between, ωr(max) (xr(out), a) < ωr(max)(xr(in), a) < ωθ(max). ωθ (x, a) has one
localminimum and one localmaximum, with xθ(max) < xr(out).

NaS3 (Fig. A2c, 1.024 < a < 1.025) The same as inNaS2, but with xθ(max) > xr(out).
NaS4 1.025 < a < 1.047 ωr(x, a) with one local maximum. ωθ (x, a) with one local
minimum and one localmaximum;ωθ(max) ≥ ωr(max).

NaS5 (Fig. A2d, 1.047 < a < 1.089) The same asNaS4, but withωθ(max) < ωr(max).
NaS6 (Fig. A2e, a > 1.089 ωr(x, a)) with one local maximum, ωθ (x, a) with no local
extrema. This class is formally similar to the class BH1, but with the crucial exception of
the point xsr.

We conclude that the properties of the radial and vertical epicyclic frequencies of the
Keplerian motion in the case of Kerr naked singularities differ substantially from the case
of Kerr black holes, which can have strong observational consequences for both resonant
phenomena and the stability of accretion discs aroundKerr naked singularities.
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Properties of the epicyclic frequencies and general resonant phenomena in the case of
oscillations in the discs around Kerr naked singularities are substantially different from
the black hole case not only for spacetimes with a ∈ (1, 1.025), as the strong resonance
effect can occur for any Kerr naked singularity. The strong resonant frequency of disc
oscillations around Kerr naked singularities always arise at the descending part of the
function ωr(x, a), in vicinity of a local minimum of ωθ , if this exists; i.e., it is always
located above the innermost part of the disc. We stress that this phenomenon represents
the strongest parametric resonance between the epicyclic frequencies possible in the field
of Kerr naked singularities, stronger than in the case of Kerr black holes. Moreover, the
area where the effect occurs is large which implies strong influence on the stability of the
Keplerian disc itself.
It follows from the existence of the strong resonant frequency that the function

(ωθ/ωr)(x, a) has the same character for all Kerr naked singularities with one local max-
imum (ωθ/ωr)max > 1, and one local minimum at (ωθ/ωr)min (xsr = a2, a) = 1 corres-
ponding to the strong resonant frequency. Because of this, some resonant effects can occur
at three different radii rp:q with the same rational ratio p : q; i.e., resonant effects with the
same ratios could be induced by very different physical phenomena at different parts of the
accretion disc.
We stress that the strong resonant frequency represents the phenomenon which we

searched for in particular – i.e., the effect which could clearly indicate whether an observed
X-ray is emitted from the accretion disc orbiting a naked singularity. If the resonant explan-
ation of black-hole double peak QPOs is right, for naked singularities one can expect that
the 1 : 1 strong resonance should significantly modulate in X-ray spectra one unique peak
instead of two different peaks.
The observational data from microquasars, i.e., the low mass binary systems containing

a black hole, indicate strongly the relevance of the exact 3 : 2 resonance phenomena (Török
et al., 2005). The recent results concerning analysis of data from neutron star binaries
bring a strong support for the relevance of the 3 : 2 phenomena in this systems as well.
Although, the situation is more complex than for the case of accreting black holes, as twin
peak kHz QPOs with frequency ratios different from 3 : 2 are observed in the neutron star
binary systems. For a given source, the frequency ratios are concentrated around the value
of 1.5 (Abramowicz et al., 2003a; Belloni et al., 2005; Bulik, 2005) and the linear fits of
particular sources in the ν-ν plane seem to be anticorrelated (Abramowicz et al., 2005).
An important clue to understanding the resonant phenomena in the neutron-star systems
was found quite recently by one of authors (GT, work with Didier Barret in preparation).
For the few atoll sources considered so far the energy contained in the upper frequency
oscillations is higher then in the lower frequency oscillationswhen the frequency position is
below the intersection of Bursa line7 with 3 : 2 line, the energy is balanced when the source
is passing this intersection and the higher energy is contained in the lower oscillationswhen
frequencies are above this intersection (see Fig. 10).
This observational phenomenon could indicate a significant role of the parametric res-

onance and its possible combination with forced resonances, caused, e.g., by an accretion

7 Linear fit of the source in ν-ν plane (see, e.g., Abramowicz et al., 2005).
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Figure 10. Illustration of the neutron star binary case from the presentwork of one of the authors (GT)
andDidier Barret (followingBarret et al., 2005). The plotted is difference between rms amplitudes of
the lower and upper peak of the kHzQPO frequencies for two neutron star atoll sources 4U 1728−34
and 4U1636−53 (colours denote different groups of data). Note that the∆rms changes its signwhen
the source is passing critical pointwhere upper QPO frequency is 1.5 times higher than lower one.

column on the surface of an accreting neutron star. In principle, such forcing can “pump”
more energy into the upper (lower) frequency; the modelling of the forced resonant phe-
nomena in combination with parametric resonance is under the study now. On the other
hand, in the black-hole systems, the gravitational forcing can be caused by the binary part-
ner only, being in some situations weaker in the vicinity of the central body than in the case
of a neutron star accretion column, except the case of close binary systems. Therefore,
in black hole systems only the parametric resonance seems to be relevant. Of course, the
perturbing force acting in the accretion disc can also be of magnetic origin.
Finally, we should note that in difference to 3 : 2 resonance in the black hole and neutron

star case, the resonant 1 :1 phenomena allowed for Kerr naked singularities do not have any
circumstantial evidence in the observation till this time.
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APPENDIXA: CLASSIFICATIONOF THEKERRSPACETIMES (DUE TO
EPICYCLIC FREQUENCIES)

Figure A1. Classification of the Kerr black-hole spacetimes. The behaviour of the epicyclic frequen-
cies (left panel), their first derivatives (middle panel), and their ratio νθ/νr (right panel) are shown for
four representative values of rotational parameter a, including the extreme Kerr black hole, the left
margin of plots is always situated at the photon circular orbit rph, while themarginally stable orbit rms
is denoted by a dashed vertical line.
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Figure A2. Classification of the Kerr naked-singularity spacetimes. The behaviour of the epicyclic
frequencies (left panel), their first derivatives (middle panel), and their ratio νθ /νr (right panel) are
shown for five representative values of rotational parameter a. An example of the class NaS4 which
differs from the classNaS3 by the absence of the “radial pair”maximum–minimumis not shown.
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ABSTRACT
Thediscussionof the latitudinal andradial photonmotion in theKerr–deSitter (KdS)
spacetime is examined by using the “Chinese boxes” technique. Only the case with
a positive cosmological constant is considered. The latitudinal motion is discussed
by using a new motion constant Q vanishing for motion in the equatorial plane.
This will be more comfortable for the next discussion of the photon off-equatorial
motion in KdS spacetime. For the radial motion an “effective potential” governing
the photon radial motion is used, circular photon orbits are determined and their
stability is discussed.

1 INTRODUCTION

Wide range of cosmological observations (Ostriker and Steinhardt, 1995; Spergel et al.,
2003) indicate that recent Universe is dominated by a dark energy that can effectively be
described by a repulsive (Λ > 0) cosmological constant. The properties of the black
hole (or related spherically symmetric, static spacetime naked singularity) spacetimes with
(Λ > 0) were studied extensively for Schwarzschild–de Sitter spacetime (SdS: Stuchlík,
1983; Stuchlík and Hledík, 1999), Reissner–Nordström–de Sitter (RNdS: Stuchlík and
Hledík, 2001, 2002), axisymmetric rotating Kerr–de Sitter (KdS: Stuchlík and Calvani,
1991; Stuchlík and Slaný, 2004; Stuchlík, 2005) and Kerr–Newman–de Sitter (KNdS:
Stuchlík andHledík, 2000). Basic properties of the geometry and its relation to the geodesic
motion are thusmapped.
However, recent observations of quasiperiodic oscillations (QPOs) in the vicinity of the

black hole in the centre of our Galaxy (Aschenbach, 2004) and the proposal of observing
QPOs coming from the central parts of active galactic nuclei with giant black holes (Ab-
ramowicz and Kluźniak, 2004; Török et al., 2005; Török, 2005a,b), where the effects of
(Λ > 0) could be relevant and observable, calls for a detailed study of the optical effects
in KdS spacetimes that could be appropriate to describe the spacetime structure in such
situations. The special case of the equatorial photon motion was treated in Stuchlík and
Hledík (2000). Here we start our investigation of the off-equatorial general photon motion
in the KdS spacetimes. First, we present discussion of the latitudinal motion in terms of
the motion constant Q vanishing for the equatorial motion. Then the radial motion in the

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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equatorial plane is discussed and a classification of the KdS spacetimes is given relative to
the properties of the equatorial photon motion. In a forthcoming paper the off-equatorial
radialmotion will be treated for the case of KdS black holes using the results obtained in the
present work.

2 KERR–DESITTERSPACETIMES

The Kerr–de Sitter (KdS) solution of the Einstein equations represents black holes and
naked singularities in spacetime with a non-zero cosmological constant that is repulsive
(Λ > 0). This spacetime is asymptotically de Sitter and contains one cosmological hori-
zon, behind which the spacetime must be dynamic. By using standard Boyer–Lindquist
coordinates (t, r, θ,φ) and geometric units (c = G = 1) the KdS geometry is given by the
line element

ds2 = − ∆r

I 2ρ2

(
dt − a sin2 θ dφ

)2
+ ∆θ sin2 θ

I 2ρ2

[
a dt − (r2 + a2) dφ

]2
(1)

+ ρ2

∆r
dr2 + ρ2

∆θ
dθ2 , (2)

where

∆r =
(
1 − 1

3Λr2) (r2 + a2)− 2Mr , (3)
∆θ = 1 + 1

3Λa2 cos2 θ , (4)
I = 1 + 1

3Λa2 , (5)
ρ2 = r2 + a2 cos2 θ . (6)

M is the mass of the central black hole, a is its specific angular momentum (a = J/M)
and Λ > 0 is the repulsive cosmological constant. In spacetimes with the cosmological
constant, it is convenient to introduce a new dimensionless cosmological parameter

y = 1
3ΛM2 (7)

and redefine the following quantities: s/M → s, t/M → t , r/M → r and a/M → a; so
we express these quantities in units of M .
The loci of event horizons are given by the condition ∆r = 0, from which we obtain

(Stuchlík and Slaný, 2004)

yh(r; a) ≡ r2 − 2r + a2

r2(r2 + a2)
. (8)

The function yh diverges at r = 0 and for r → ∞ it approaches to zero. For a2 > 0 and
r → 0 holds yh → ∞, for a2 = 0 and r → 0 the function yh → −∞.

The zero points of yh(r; a) are determined by

a2 = a2
z(h)(r) ≡ 2r − r2 . (9)
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The zeros of a2
z(h)(r) are located at r = 0 and r = 2. The extreme (maximum) of a2

z(h)(r) is
located at r = 1with a2

z(h)(r = 1) = 1. This corresponds to the extreme Kerr black hole.
The local extrema of yh(r; a) are determined by the condition (∂yh/∂r = 0), which gives

us

a2 = a2
ex(h)±(r) ≡ 1

2

{
−2r2 + r ±

√
r2(8r + 1)

}
. (10)

The function a2
ex(h)+ has one extreme at r = 1.61603 with a2

ex(h)+(r = 1.61603) =
1.21202. The zero points are located at r = 0 and r = 3.
The Carter equations in separated and integrated form can be used as the equations of

latitudinal and radial motion of test particles and photons (Carter, 1973; Stuchlík, 2002).

3 LATITUDINALMOTIONOF TESTPARTICLESANDPHOTONS

The Carter equation of the latitudinalmotion is given by the well known formula

ρ2 dθ
dλ

= ±
√

W (θ; K , y, a, m, E,Φ) , (11)

where

W (θ) = (K − a2m2 cos2 θ)(1 + ya2 cos2 θ) − (Ia E sin2 θ − IΦ)2

sin2 θ
. (12)

E and Φ are the constants of the motion connected with symmetries of the geometry, λ is
the affine parameter along the geodesics. The constant of the motion E and Φ cannot be
interpreted as energy and the axial component of the angular momentum in infinity, since
the geometry is not asymptotically flat, but is asymptotically de Sitter. The discussion of the
latitudinal motion in terms of the constant of motion K is given in great detail in Stuchlík
(1983). However, for our purposes of discussing general motion of photons, a new motion
constant can conveniently be introduced by the relation

Q = K − (1 + ya2)2(a E −Φ)2 . (13)

Then

W (θ) = Q(1 + ya2 cos2 θ)

+ cos2 θ

{
I 2
[

a2 E2 − Φ2

sin2 θ
+ ya2(a E −Φ)2

]
− a2m2(1 + ya2 cos2 θ)

}
. (14)

Notice that Q = 0 for the motion in the equatorial plane, where θ = π/2. In order to find
the character of the latitudinal motion, the loci of turning points (where dθ/dλ = 0) must
be found. FromEq. (11) we obtain condition

W (θ) = 0 , (15)
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which implies the turning points to be where

Q = Qt ≡ cos2 θ

{
a2m2 − (1 + ya2)2

1 + ya2 cos2 θ

[
a2 E2 − Φ2

sin2 θ
+ ya2(a E −Φ)2

]}
. (16)

Qt(θ; E,Φ, a, m,Λ) represents a five-parameter family of curves in the Q-θ plane. The
latitudinalmotion is allowed for Q > Q t, where W (θ) ≥ 0.
It is advantageous to introduce new parameters (constants of motion):

qt = Qt

(a E)2 , (17)

b = Φ

a E
, (18)

γ = E
m

, (19)

and for simplicity we denote∆θ = 1 + ya2 cos2 θ . Then the five-parameter family reduces
to four-parameter family,

qt(θ; y, a, γ , b) = cos2 θ

{
1
γ 2 − I 2

∆θ

[
1 − b2

sin2 θ
+ ya2(1 − b)2

]}
. (20)

Behaviour of this family of curves can be studied by “Chinese boxes” technique. We find
the regions of reality of the function qt, its local extrema and its divergences. First we shall
study the case of non-zero rest mass particles (m ̸= 0) and after that we shall study the
geodesicsmotion of photons (m = 0). Note that it is clear from Eq. (20) that the behaviour
of the curves qt and all their characteristicsmust be symmetricwith respect to the equatorial
plane (θ = π/2).

3.1 Test particles

The zero points of qt are located at θ = π/2 and θ satisfying the condition

b = bz±(θ; y, a, γ ) ≡
−ya2 sin2 θ ± sin2 θ

√
y2a4 −

(
∆θ

I 2γ 2 − I
)

1−ya2 sin2 θ
sin2 θ

1 − ya2 sin2 θ
. (21)

The reality condition of the function bz± is given by the relation

y2a4 −
(
∆θ

I 2γ 2 − I
)

1 − ya2 sin2 θ

sin2 θ
≥ 0 , (22)

fromwhichwe obtain

γ 2 ≥ γ 2
zrc(θ; y, a) ≡ 1 − ya2 sin2 θ

(1 + ya2)2 . (23)



The latitudinal and radial geodetical motion in KdS spacetime 343

The reality condition of γ 2
zrc then implies

a2 < a2
zrc(θ; y) ≡ 1

y sin2 θ
. (24)

This function has one extreme (minimum) located at θ = π/2, where a2
zrc(π/2, y) = 1/y

and diverges at θ = 0,π.
The extrema of γ 2

zrc are located at θ = 0,π (two maxima given by γ 2
zrc(θ = 0,π; y, a) =

1/(1 + ya2)2) and θ = π/2 (minimumgiven by γ 2
zrc(π/2; y, a) = (1 − ya2)/(1 + ya2)2).

The zero points of γ 2
zrc are located at

θzzrc = arcsin

√
1

ya2 . (25)

Themarginal value of θ , where bz+ = bz−, is located at

θmz = arcsin

√
1 − γ 2(1 + ya2)2

ya2 . (26)

The zero points of both functions bz+ and bz− are determined by the condition

γ 2 = γ 2
zz±(θ; y, a) ≡ 1 + ya2 cos2 θ

(1 + ya2)3 . (27)

The extrema of γ 2
zz± are located at θ = 0,π –maximawith

γ 2
zz±(θ = 0,π; y, a) = 1

(1 + ya2)2 (28)

and at θ = π/2 –minimumwith

γ 2
zz±(θ = π/2; y, a) = 1

(1 + ya2)3 . (29)

The extrema of qt(θ; y, a, γ ) are given by the relation

b = bex±(θ; y, a, γ ) ≡
sin2 θ

[
−ya2 sin2 θ ±

√
1 − 1+ya2 cos 2θ

γ 2 I 2

]

1 + ya2 cos 2θ
. (30)

The reality condition is given by

γ 2 ≥ γ 2
Rex(θ; y, a) ≡ 1 + ya2 cos 2θ

(1 + ya2)2 . (31)

The extrema of γ 2
Rex are at θ = 0,π –maximumwith

γ 2
Rex(θ = 0,π; y, a) = 1

1 + ya2 (32)
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Figure 1.Behaviour of curves γ 2
Zex, γ

2
Rex (a) and bex± (b)–(d) for given typical values of γ 2.

and at θ = π/2 –minimumwith

γ 2
Rex(θ = π/2; y, a) = 1 − ya2

(1 + ya2)2 . (33)

Behaviour of curves γ 2
Rex, γ

2
Zex is illustrated in Fig. 1a. The marginal values, where bex+ =

bex−, are at θmex determined by

θmex = 1
2

arccos
[
γ 2(1 + ya2)2 − 1

ya2

]
. (34)

The zero points of bex± are at θ = 0,π and at θ given by the condition

γ 2 = γ 2
Zex(θ; y, a) ≡ ∆2

θ

I 3 = (1 + ya2 cos2 θ)2

(1 + ya2)3 . (35)

The zero points of γ 2
Zex are given by the function

a2
zZex(θ; y) = − 1

y cos 2θ
, (36)
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which has its extrema located at θ = 0,π/2,π and diverges at θ = π/4, 3π/4. The values
of the extrema are common at θ = 0 and θ = π, where

γ 2
Zex(θ = 0,π; y, a) = 1

1 + ya2 . (37)

For θ = π/2, there is

γ 2
Zex(θ = π/2; y, a) = 1

(1 + ya2)3 . (38)

The character of the extrema of γ 2
Zex is given by the relation between a and y. At θ = π/2

the extreme is a minimum for arbitrary values of a and y.
Behaviour of the functions γ 2

Rex and γ
2
Zex can be divided into two parts according to the

relation between a and y.

3.1.1 y ∈ ⟨0, 1/a2⟩
The extreme at θ = π/2 is always positive, Fig. 1a, and

γ 2
Rex(θ = π/2) < γ 2

Zex(θ = π/2) < γ 2
Rex(θ = 0) . (39)

This three values separate the range of γ 2 into four parts.
For γ 2 > γ 2

Rex(0), the curves of bex± are defined everywhere, Fig. 1b.
For γ 2 ∈ (γ 2

Zex(π/2), γ 2
Rex(0)) the curves of bex± are defined just for θ ∈ ⟨θm,π/2) and

have got two zero points, Fig. 1c.
For γ 2 ∈ (γ 2

Rex(π/2), γ 2
Zex(π/2)) the curves of bex± are defined for θ ∈ ⟨θm,π/2) too,

but have no zero points and their values are negative, Fig. 1d.
The curves of bex± are not defined for γ 2 < γ 2

Rex(π/2).

• First we will discuss the case b = 0. There are three cases possible. For γ 2 > γ 2
Rex(0),

the extrema of qt are located at θ = 0,π/2,π, Fig. 2a. The curve of bex± is defined
for all θ and its zero values are located at θ = 0,π, where the minima of qt appear. For
γ 2 ∈ ⟨γ 2

Zex(π/2), γ 2
Rex(0)⟩, there exist twoanother extrema (minima) located at specified θ ,

Fig. 2b. It is easy to find that the vorticalmotion is allowed there (Bičák andStuchlík, 1976).
The third case occurs for γ 2 < γ 2

Zex(π/2) and the extrema are located at θ = 0,π/2,π,
Fig. 2c. The vortical motion is not possible in this case.
• If b ̸= 0 and the b = const line intersects the curves of bex±, the function of qt has one
maximum at θ = π/2 (the orbits are not stable here) and twominima, Fig. 2d. The vortical
motion is allowed in this case.
• If b ̸= 0 and the b = const line does not intersect the curves of bex± (or if the curves are
not defined), then the curve of qt has got just one extreme (minimum) at θ = π/2, Fig. 2e.
The equatorial orbits are stable.

Behaviour of the “effective potential” of the latitudinal motion, related to the constant
of motion Q, is represented in Fig. 2 in typical situations. Note that the orbital motion
means that the particle crosses the equatorial plane, while the vortical motion is restricted
above or below the equatorial plane. It is important to distinguish these families of orbits in
connection withmodelling accretion discs located in the equatorial plane.
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Figure 2.Behaviour of qt for given values of a, γ , y, b.

3.1.2 y ∈ ⟨1/a2, ∞⟩
The values of γ 2

Rex(π/2) = (1 − ya2)/(1 + ya2)2 are negative for this range of y, Fig. 3a.
The zero points of γ 2

Rex(π/2) are located at θzero = [arccos(−1/ya2)]/2 and γ 2
Rex is defined

for θ ∈ ⟨0, θzero) ∪ (π − θzero,π⟩. The function bex− diverges at θzero. The curve γ 2
Zex is

defined for all values of θ .
There exist three sets of γ 2. First range is for γ 2 > γ 2

Rex(0). The curves bex± are defined
for all θ and the null points of bex+ are located at θ = 0,π, Fig. 3b. The second range is for
γ 2 ∈ (γ 2

Zex(π/2), γ 2
Rex(0)). The functions bex± are defined at a limited range of θ , Fig. 3c.

The third range is for γ 2 ∈ (0, γ 2
Zex(π/2)). The values of bex+ have got negative values,

only (Fig. 3d).
Behaviour of qt for b > bex−(π/2) and b < bex+(π/2) is illustrated in Fig. 4a. The

vortical motion is allowed, and the motion in the equatorial plane is unstable.
For b ∈ (bex+(π/2), bex−(π/2)) the motion in the equatorial plane is stable, Fig. 4b.
We can divide the special case b = 0 into three cases according to the value of γ 2. For

γ 2 > γ 2
Rex(0) the extrema are at θ = 0,π/2,π. The zero point is at θ = π/2 only, Fig. 4c.

For the case where γ 2 ∈ ⟨γ 2
Zex(π/2), γ 2

Rex(0)⟩, there are two another extrema at θ , which
are the solution of the equation bex+ = 0, Fig. 4d. In the case γ 2 ∈ ⟨0, γ 2

Zex(π/2)⟩ the
motion in equatorial plane is stable, Fig. 4e.

3.2 Photons

Assumingm = 0, we arrive at the three-parameter family of curves

qt(θ; b, y, a) = cos2 θ

{
− I 2

∆θ

[
1 − b2

sin2 θ
+ ya2(1 − b)2

]}
. (40)
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Figure 3.Behaviour of curves γ 2
Zex, γ 2

Rex (a) and bex± (b)–(d) for given values of γ 2.
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Figure 4.Behaviour of qt for given values of a, γ , y, b.
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Figure 5. Behaviour of bex± and qt for photons in spacetimes, where y < 1/a2, and for given values
of a, y, b.

The loci of extrema of qt(θ; b, y, a) are at θ = π/2 and in the b-θ plane they are described
by the equations

bex+ = sin2 θ , (41)

and

bex− = − (1 + ya2) sin2 θ

1 + ya2 cos 2θ
. (42)

It is interesting that bex+ does not depend on y and a. The extrema of bex± are located
at θ = 0,π/2,π. At θ = π/2, bex+(π/2, y) = 1 (a maximum) and bex−(π/2, y) =
−(1+ya2)/(1−ya2) (aminimum). The commonpoints are located at θ = 0,π. Behaviour
of curves bex± is illustrated in Fig. 5a.

3.2.1 y ∈ ⟨0, 1/a2⟩
The value of bex−(π/2, y) is always negative for this range of y.
For b > 1 and b < (1 + ya2)/(ya2 − 1) the characteristic section of qt(θ; b, y, a) is

illustrated in Fig. 5c. The curves of b = const do not intersect the curves of bex±, and that
is why the curve of qt has just one extreme, which is zero and it is located at θ = π/2. The
latitudinalmotion is allowed in region where q ≥ qt.
For b ∈ (0, 1), the section of qt(θ; b, y, a) is given by Fig. 5d. The curves of b =

const intersect bex± at two points, therefore, two other extrema arise, located at θ =
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arcsin(±
√

b). The minima of qt correspond to the stable orbits and permit the existence of
the so called PNC photons (Bičák and Stuchlík, 1976). The orbit at θ = π/2 is unstable.
For b ∈ (bex−(π/2), 0), the behaviour of qt will be nearly the same, only the location of

the minima of qt will be shifted.
The special case b = 0 is illustrated in Fig. 5e.

3.2.2 y > 1/a2

The extreme of bex−(π/2) will be positive, Fig. 5b. The function of bex− has two points of
discontinuity at θn andπ − θn, where

θn = 1
2

arccos
(

− 1
ya2

)
. (43)

The discussion of behaviour of qt will be the same as in the case y > 1/a2 of the motion of
test particles.

4 EQUATORIALMOTIONOFPHOTONS

The Carter equation for radialmotion in the equatorial plane can be written in the form

ρ2 dr
dλ

= ±
√

R(r; y, a, E) , (44)

where (for photons)

R(r; y, a, E) = I 2
{[

(r2 + a2)E − aΦ
]2

−∆r (a E −Φ)2
}

. (45)

4.1 The effective potential of the radial motion

The motion of photons is independent of the constant of the motion E . The equatorial
motion is fully governed by the impact parameter l = Φ/E , E ̸= 0. However, it is
convenient to introduce a redefined impact parameter

X ≡ Φ

E
− a . (46)

Then

R(r; y, a, E, X) = I 2 E2
[
(r2 − a X)2 −∆r X2

]
. (47)

In the dynamic regions, where∆r < 0, there is R(r) > 0, and there are no turning points of
the radial motion. In the stationary regions, where∆r ≥ 0, the turning points of the radial
motion exist and they are determined by the “effective potential” (Stuchlík and Hledík,
2000).

X±(r; y, a) = r2

a ∓ √
∆r

. (48)
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In the following discussion of the behaviour of X±, we will assume a ≥ 0.
In the regions, where a2 −∆r > 0 (and X+ > 0), the radialmotion is allowed, if

X > X+(r; y, a) or X < X−(r; y, a) . (49)

In the regions, where a2 −∆r < 0 (and X+ < 0), the radialmotion is allowed, if

X > X+(r; y, a) and X < X−(r; y, a) . (50)

We will use the “Chinese boxes” technique, as in the case of discussion of the latitudinal
motion, and we will concentrate on the behaviour of the potential in the regions where
r > 0.

First, we will discuss the reality condition of the effective potential. The potential is well
defined in stationary regions, where∆r ≥ 0. At the boundaries∆r = 0 the common points
are located. These points are thus located at the event horizons of the geometry. One more
common point exist at r = 0, it is the only point, where both potentials X±(r; y, a) = 0.
At the event horizons (r = rh), there is

X±(rh) = rh
2

a
. (51)

The local extrema of the effective potential determine the loci and impact parameters of
the circular photon orbits. They are given by condition ∂X±/∂r = 0, which implies the
relation

y = yex±(r; a) ≡ 1
a2r2

{
−r(r + 3) ± 2

√
r(3r2 + a2)

}
. (52)

For r → ∞, both yex± → −1/a2.
The reality of these functions is given by

√
r(3r2 + a2) ≥ 0, fromwhichwe obtain

a2 ≥ a2
r(ex) ≡ −3r2 . (53)

There are no divergent points of yex±. The zero points of yex±, which determine photon
circular orbits in the Kerr spacetimes, are given by

a2 = a2
z(ex)(r) ≡ r(r − 32)

4
. (54)

The function a2
z(ex)(r) diverges for r → ∞, the zeros are located at r = 3 and the extrema

are for r = 1 (maximum) where a2
z(ex)(r = 1) = 1 and for r = 3 (minimum and zero point

together).
The local extrema of the function yex± are given by

a2 = a2
ex(ex)±(r) ≡ 1

2

{
−2r2 + r ±

√
r2(8r + 1)

}
≡ a2

ex(h)±(r) . (55)

Therefore, the local extrema of the functions yh(r; a) and yex±(r; a) coincide.
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Finally we determine the divergent points of the effective potential. Only X+(r; y, a) can
diverge. The loci of divergent points are given by the relation

y = yd(r; a) ≡ r − 2
r(r2 + a2)

. (56)

For r → ∞, this function goes to zero from above. The function yd(r; a) diverges for
r → 0, where yd → −∞. The zero point is located at r = 2.

The local extrema of yd(r; a) are determined by

a2 = a2
ex(d)(r) ≡ r2(r − 3) . (57)

The function of a2
ex(d)(r) has no divergent point, the zero point is located at r = 3 and its

local extreme is at r = 2 (minimum). This function is positive for r ≥ 3.

4.2 Classification

We propose a classification of the Kerr–de Sitter spacetime according to the properties of
the effective potential X±(r; y, a) governing the photonmotion in the equatorial plane. We
use the systematic study of the properties of the functions founded in a few last pages. The
important features of the classificationwill be the number of the event horizons, the number
of divergences of the effective potential and the number of its local extrema.
For y > 0 a cosmological horizon exists behind which the spacetime is dynamic. The

effective potential is well defined up to the cosmological horizon.
For the separating the black hole and naked singularity spacetimes the criterion of the

number of event horizons is important. The event horizons are determined by the function
yh(r; a). As you can see from the behaviour of yh(r; a) at least one event horizon must
exist in spacetime with a2 > 0 and it is a cosmological horizon. The black-hole horizon can
exists, if yh(r; a)has local extrema. The extrema are given by function a2

ex(h)+ which has its
maximumat r = 1.61603with the corresponding critical value

a2
crit = 1.21202 . (58)

So the black-hole spacetimes can exist for a2 < a2
crit and for y ∈ (yhmax, yhmin), respectively

for y ∈ (yhmax, 0) in case (c), see below. There are two black-hole horizons and one
cosmological horizon.
If y = yhmin, the twoblack-hole horizons coincide and the geometry describes an extreme

black hole. If y = yhmax, the outer black-hole horizon and the cosmological horizon
coincide and we obtain an extreme black hole geometry again. For y < yhmin or y > yhmax
the geometry describes the naked singularity.
The characteristic functions a2(r) which are relevant to determine the behaviour of the

functions y(r; a) are illustrated in Fig. 6a. We restrict ourselves to the regions where the
functions a2(r) are non negative.
It follows from the behaviour of the characteristic functions a2(r) that there are three

different cases of the behaviour of the characteristic functions y(r; a). We denote them in
the following way:
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Figure 6. The characteristic functions a2(r) (a) and y(r; a) for values a2 given in (b)–(d).

(a) a2 > a2
ex(h)+max ≡ a2

ex(ex)max, a2 > 1.21202,
(b) a2 ∈ ⟨a2

ex(h)+max, a
2
z(h)max ≡ a2

z(ex)max⟩, a2 ∈ ⟨1.21202, 1⟩,
(c) a2 ∈ ⟨a2

z(h)max, 0⟩, a2 ∈ ⟨1, 0⟩.

4.2.1 a2 > a2
ex(h)+max

Behaviour of the characteristic functions yh, yd, y(ex)+ is given in Fig. 6b and can be found
from the behaviour of the characteristic functions a2

ex(h)+, a2
ex(d), a2

z(ex), a2
z(h). We find that

yd has got one local extreme (maximum) and one zero point (always located at r = 2). The
function y(ex)+ has got just one zero point.
Behaviour of the effective potential X± in this region can be divided in two cases (we

don’t consider negative values of y.) In both cases there exists one horizon determining
the naked singularity spacetime, Figs 7a,b. In first case for y > ydmax there will be none
divergent points of the effective potential. In both cases there exists one circular orbit which
is stable relative to the radial perturbations.

4.2.2 a2 ∈ ⟨a2
ex(h)+max, a2

z(h)max⟩
Behaviour of the characteristic functions yh, yd, y(ex)+ is given in Fig. 6c. We find that yd
has got one local extreme (maximum) and one zero point (always located at r = 2) as in the
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Figure 7. Behaviour of the effective potential X+ (represented by the full curves) and X− (broken
curves) for the values a2, y given in figures. The shade bold full curve represents the event horizon.

first case. The function y(ex)+ has got just one zero point and two extrema (one maximum
and oneminimumwith positive values) common for yh, too.
Behaviour of the effective potential X± can be divided into four cases.

• For y > yhmax the effective potential has got one extreme (corresponding to a stable
circular orbit) and one horizon determining the naked singularity spacetime, Fig. 8a. The
situation will be nearly the same as for y ∈ ⟨yhmin, ydmax⟩, Fig. 8c.
• For y ∈ ⟨yhmax, yhmin⟩ there will be three horizons determining the black hole spacetime,
three extrema (three stable circular orbits) and no divergent point, Fig. 8b.
• For y ∈ ⟨ydmax, 0⟩ therewill be one horizon (naked singularity), two divergent points and
one stable circular orbit, Fig. 8d.

4.2.3 a2 ∈ ⟨a2
z(h)max, 0⟩

Behaviour of the characteristic functions yh, yd, y(ex)+ is given in Fig. 6d. The function yd
has got the same characteristic as in the last two cases. The function y(ex)+ has got three
zero points and two extrema, one maximum with positive value and one minimum with
negative value. Both extrema are common for y(ex)+ and for yh. The function yh has got
two zero points.
Behaviour of the effective potential X± can be divided into three cases.

• For y > yhmax the effective potential has got one extreme (stable circular orbit) and one
horizon representing the naked singularity spacetime, Fig. 9a.
• For y ∈ ⟨yhmax, ydmax⟩ there will be three horizons (black hole spacetime), three extrema
(stable circular orbits) and no divergent point, Fig. 9b.
• For y ∈ ⟨ydmax, 0⟩ there will be three horizons (black hole spacetime), three extrema
(stable circular orbits) and two divergent points, Fig. 9c.
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Figure 8. Behaviour of the effective potential X+ (represented by the full curves) and X− (broken
curves) for the values a2, y given in figures. The shade bold full curve represents the event horizon(s).
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Figure 9. Behaviour of the effective potential X+ (represented by the full curves) and X− (broken
curves) for the values a2, y given in figures. The shade bold full curve represents the event horizon(s).

5 CONCLUDINGREMARKS

We have discussed the latitudinal motion of test particles and photons in terms of the
motion constant Q, whichmust be zero for the equatorial motion, simplifying substantially
discussion of the general off-equatorial radial motion. In order to prepare a detailed study
of the optical effects in the KdS black-hole spacetimes, we summarize the classification of
the equatorial photon motion in the KdS black-hole spacetimes. Such a classification will
be very helpful in the very complex analysis of the general, off-equatorial photon motion.
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ABSTRACT
Equations of state for neutron-star matter at densities above nuclear-matter density
are usually joined onto an equation of state for matter at lower densities calculated
using a different physical treatment. Since the way of making the join is not clearly
defined, we have tested the sensitivity of derived neutron-star models to the way in
which the matching is made. We consider the joining between Skyrme equations
of state for the higher densities and the Baym–Bethe–Pethick equation of state for
densities between the neutron-drip point and nuclear-matterdensity. Three different
prescriptions for making the join are tested, and it is shown that the radius of the
neutron starmodel can depend substantially on the details of the matching, whereas
themass is almost independent of the prescription used.

1 INTRODUCTION

The interior of a neutron star consists of various types of matter. As the pressure increases
moving inwards from the surface, the form and behaviour of the matter change. There
is an iron crust at the surface which we describe using the Feynman–Metropolis–Teller
equation of state (Feynman et al., 1949); then, with increasing pressure, progressivelymore
neutron-rich nuclei start to appear (we use the Baym–Pethick–Sutherland equation of state
for describing this, Baym et al., 1971b) and at the density ρdrip = 4.3 × 1011 g cm−3 free
neutrons start to drip from nuclei (the value is given by condition for inverse β decay).
Beyond this point, free neutrons exist in equilibrium with nuclei and for this density range
we use the Baym–Bethe–Pethick (BBP) equation of state (Baym et al., 1971a). At still
higher densities, the nuclei merge and dissolve into a sea of free neutrons and protons
together with electrons and, later, muons. In the present work, we have used three types of
Skyrme force to describe the inter-particle interactions in this high-density matter.

80-7248-334-X © 2005 – SU inOpava. All rights reserved.



358 M.Urbanec, J. C. Miller and J.Říkovská Stone

Theway inwhich the transition occurs from themixture of nuclei, neutrons and electrons
to a mixture of neutrons, protons and electrons is not usually calculated in a self-consistent
way; rather, separate calculations are made for the two regimes and then a join is made
between the two, making a matching at some suitable pressure. The joining together
of different equations of state calculated for different density ranges and using different
methods is far from being a precise procedure. Ideally, one would like to have an equation
of state calculated using the same methodology throughout the entire density range, thus
avoiding the necessity for making artificial joins, but at present such calculations are not
available. Frequently in the literature, joins have been made in a very rough way. The
present work investigates the sensitivity of the calculated values for the mass and radius of
neutron-star models when different types of equation-of-state matching are used.
In Section 2 we describe how we construct the neutron star models. In Section 3 we

give a short overview of the equations of state being used and present the different types of
matching being investigated. Section 4 contains results and conclusions.

2 NEUTRONSTARMODEL

Our simple neutron star models describe non-rotating, cold (T = 0) neutron stars without
magnetic field. The line element in standard Schwarzschild coordinates (t, r,ϑ,ϕ) is

ds2 = −e2ν dt2 + e2λ dr2 + r2(dϑ2 + sin2 ϑ dϕ2) , (1)

where ν and λ are functions only of r . To get the equation of hydrostatic equilibrium, we
need the Einstein field equation

Gµν = Rµν − 1
2

Rgµν = 8πG
c4 Tµν , (2)

where Gµν is Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, G is the grav-
itational constant, c is the velocity of light and Tµν is the energy-momentum tensor. For a
perfect fluid,

T νµ = (P + ρc2)uνuµ + Pδνµ (3)

where uν is the four-velocity, P is the pressure and ρc2 is the energy density. For a spheric-
ally symmetric, static configuration, the energy-momentum tensor takes the form

T νµ = (−ρc2, P, P, P) . (4)

The conservation of energy andmomentum is expressed by

T νµ;ν = 0 . (5)

The equation of hydrostatic equilibrium can be derived from Eqs (2) and (5); we get

dP
dr

= − Gm(r)ρ

r2

(
1 + P/ρc2) [1 + 4πr3 P/m(r)c2]

1 − 2Gm(r)/rc2 , (6)
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where

m(r) =
∫ r

0
4πr2ρ dr (7)

is the mass inside radius r . Equation (6) is the Tolman–Oppenheimer–Volkoff (TOV)
equation of hydrostatic equilibrium.
For obtaining our neutron-star models, we need to integrate Eq. (6) from the centre out

to the stellar surface (where P → 0). For given central conditions (central energy density ρ
and the corresponding pressure P) we obtain a neutron-star model and its gross properties
(mass M , radius R, total baryon number A, etc.). To integrate the TOV equation (6), we
need the equation of state giving the relation between pressure and energy density.
The total number of baryons inside the object A is calculated using

A =
∫ R

0

4πr2nb(r)
[
1 − 2Gm(r)/rc2

]1/2 dr , (8)

where nb(r) is the baryon number density at radius r . The total number of baryons inside
the star plays an important role for calculating the binding energy Eb which is given by
relation Eb = (Am0 − M)c2 where m0 is the rest-mass per baryon. For a neutron star
formed by collapse of an iron core, the binding energy liberated in the collapse is given
approximately by this expression with m0 taken as the mass per baryon of 56Fe. Note that
for having consistent values of M and A, it is necessary for P, ρ and nb to obey the correct
thermodynamic relations within the joining regime.

3 EQUATIONSOF STATEUSED

As mentioned above, because of the wide range of densities and different types of matter
in neutron stars, it is usually necessary to join together several different equations of state,
each calculated for different restricted density regimes, except in the case of some simplified
approximations such as uniform density profiles or polytropic and adiabatic equations of
state (Stuchlík, 2002; Hledík et al., 2004; Mrázová et al., 2005). We here briefly summarize
the equations of state used for the present work (more details can be found in the references
quoted). For densities above nuclear matter density, we focus attention on equations state
derived using Skyrme forces and do not include here the possible appearance of hyperons
or quarkmatter at high densities.
The equations of state used are the following:

• Feynman–Metropolis–Teller equation of state for 7.9 " ρ " 104 g cm−3 where matter
consists of e− and 56

26Fe (Feynman et al., 1949)
• Baym–Pethick–Sutherland equation of state for 104 " ρ " 4.3 × 1011 g cm−3 with
coulomb lattice energy corrections (Baym et al., 1971b)
• Baym–Bethe–Pethick equation of state for 4.3 × 1011 " ρ " ×1014 g cm−3: e−, n and
equilibriumnuclei calculated using the compressible liquid dropmodel (Baymet al., 1971a)
• Skyrmeequations of state forρ ! 1014 g cm−3. Weuse three types of Skyrmeequationof
state SkI3 (Reinhard and Flocard, 1995), SkT5 (Tondeur et al., 1984), and Sly4 (Chabanat,
1995).
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3.1 Skyrme equation of state

The energy of nuclear matter can be written as the integral of a density functionalH which
is a function of empirical parameters, and is given by

H = K + H0 + H3 + Heff + · · · , (9)

where K is the kinetic-energy term, H0 the zero-range term H3 the density dependent
term , Heff effective-mass dependent term. These terms are functions of nine parameters
t0, t1, t2, t3, x0, x1, x2, x3 and α and are given by:

K = h̄2

2m
τ , (10)

H0 = 1
4 t0
[
(2 + x0)n2 − (2x0 + 1)

(
n2

p + n2
n
)]

, (11)

H3 = 1
24 t3nα

[
(2 + x3)n2 − (2x3 + 1)

(
n2

p + n2
n
)]

, (12)

Heff = 18 [t1(2+x1) + t2(2+x2)] τn + 1
8 [t2(2x2+1) − t1(2x1+1)] (τpnp + τnnn). (13)

3.2 Matching of equations of state

The objective here is to investigate the effect of using non-optimal matching between equa-
tions of state in the different density regimes. At the joins between the three lower-density
regimes, we use the matchings given by BBP but we experiment with the join between the
BBP and Skyrme equations of state. For doing this, we consider a “best” matching and two
rather extreme non-optimal ones. The pressure has to be continuous inside the object and
so we set by hand the “matching pressure” and find corresponding densities for the BBP
equation of state and for the Skyrme equation of state. The three types of matching used
(see Fig. 1) are

• Low: matching at a low pressure. There is a discontinuity in density with a jump to a
higher value.
• Continuous (Cont): matching at the point where both equations of state give the same
value of density for the matching pressure (the “best matching”).
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Figure 1.The three different types of matchingLow, Cont (continuous) andUp (from left to right and
top to bottom).
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• Up: matching at a higher value of pressure. There is a discontinuity in density with a
jump to a lower value.

All of the matching values of the pressure are in the range where either equation of state
could reasonably be thought to be valid.

4 RESULTSANDCONCLUSIONS

The results of using the three different types ofmatching are shown in Figs 2–4. FromFig. 2
it can be seen that the different types of matching do not influence very much the curves
of mass against central density. The curves of radius against central density (see Fig. 3)
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Figure 2. Behaviour of the neutron star mass M (in solar masses) as a function of the central energy
density ρc for three Skyrme equations of state SkI3, Sly4 and SktT5 (from left to right and top to
bottom).
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Figure 3.Behaviour of the neutron star radius R (in km) as a function of the central energy densityρc
for three Skyrme equations of state SkI3, Sly4 and SktT5 (from left to right and top to bottom).
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Figure 4.Behaviour of the neutron starmass M (in solarmasses) as a function of the radius R (in km)
for three Skyrme equations of state SkI3, Sly4 and SktT5 (from left to right and top to bottom).
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are also not affected greatly if the low matching is used instead of the continuous one but
they are significantly affected if the up matching is used. Corresponding effects are seen
in the mass-radius curves (Fig. 4). Using the up matching leads to the lower mass models
being more compact than they would otherwise be. The matching with continuity in the
density can be thought of as being like a second order “phase transition” with the other
types of matching being analogous to first order transitions. It would be very desirable to
have equations of state calculated consistently with a single methodology both above and
below nuclearmatter density so that no artificial joining needs to be done in this region.
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1 OVERVIEW

The discovery of the double pulsar J0737−3039 (Burgay et al., 2003; Lyne et al., 2004) has
been a very exciting event for relativistic astrophysics since measurements connected with
it are giving the best direct tests so far of the validity of general relativity (see Kramer et al.,
2005) and are also allowing new constraints to be placed on the equation of state of neutron
starmatter (see Podsiadlowski et al., 2005 and references therein). In this paper, we discuss
the background to this and describe the results obtained.

2 BINARYPULSARS

So far, there are three close binary systems containing a pulsar for which the system para-
meters are known to high accuracy. In each case, it is thought that the companion is also
a neutron star. The first of these systems to be discoveredwas the famousHulse/Taylor bin-
ary pulsar PSRB1913+16 (Hulse and Taylor, 1975) which, for the first time, revealed evid-
ence for gravitational radiation being emitted in accordancewith the predictions of general
relativity. The components of this system have masses of 1.441 M⊙ and 1.387 M⊙, the or-
bital period is ∼8 hours and the pulsar period is 59 ms. PSRB1534+12 (Wolszczan, 1991;
Stairs et al., 2002)was the second one to be found and hasmasses 1.333 M⊙ and 1.345 M⊙,
orbital period ∼ 10 hours and pulsar period 38 ms. The quite recently discovered double
pulsar PSR J0737−3039 (Burgay et al., 2003; Lyne et al., 2004) has masses 1.249 M⊙ and
1.338 M⊙, orbital period ∼2.4 hours (separation less than amillion kilometres) and pulsar
periods 23 ms and 2.8 s. Themassmeasurements for these binary pulsars havemuchhigher
precision than is normally possible for astronomical measurements.
Since we will be focusing here on the double pulsar PSR J0737−3039, it is useful to list

some further details of it:

• eccentricity of the binary orbit: 0.087778
• viewing angle: sin i = 0.9995 ± 0.0004
• periastron advance: 16.9 degrees/year

80-7248-334-X © 2005 – SU inOpava. All rights reserved.
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• merger predicted in 85 Myr

All of the values quoted here for this system come from the paper by Kramer et al. (2005)
which gives updates on values quoted previously. (As more data is accumulated with time,
the derived parameter values become progressively more precise.)

3 FINDINGPARAMETERVALUES FORABINARYPULSAR

Finding the parameter values for a binary system is actually easier for binary pulsars in
close orbits than for ordinary stars because these systems contain a very accurate clock (the
pulsar) and relativistic effects give extra pieces of information. Figure 1 is a schematic
picture showing the geometry of the system.
From timing data giving the changing Doppler shift of the pulse-period of the observed

pulsar as it moves round its orbit, it is possible to derive its radial velocity curve giving the
variation of its projected radial velocity with time. This immediately gives the orbital period
of the binary Pb and the semi-amplitude of the curve v̄2 also plays an important role in the
following analysis. A non-zero eccentricity e of the orbit leads to a deviation of the curve
away from a sinusoidal form and e can be determined from this if it is sufficiently large.
To a first approximation, the motion of these systems can be described with Newtonian

theory. Using Kepler’s laws, one obtains themass function:

f (M1) = (M1 sin i)3

(M1 + M2)
2 = Pb v̄3

2
(
1 − e2)3/2

2πG

which can be evaluated using the above observational data. Two further pieces of informa-
tion are then required in order to solve completely for the two masses, M1 and M2, and the

2M M

To  Observer

a a

c.m.

21

1

i

Figure 1. Schematic picture of the binary as viewed in the orbital plane of the system. The observed
pulsar hasmass M2, the other star hasmass M1 and distances a1 and a2 aremeasured from the centre
of mass (c.m.) of the system.
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viewing angle i . (If we have the radial velocity curves for both objects, then we can calculate
twomass functions f (M1) and f (M2), fromwhich themass ratio R can be determined, and
only one further piece of information is then needed.) By making long-term pulsar-timing
measurements, it can become possible to pick out post-Newtonian corrections to the basic
Keplerianmotion and these can then be used to provide the additional pieces of information
required.

4 POST-KEPLERIANPARAMETERSANDTESTINGGRAVITY THEORIES

Thepost-Newtonian correctionsmentioned above involve the so-calledpost-Keplerian (PK)
parameters:

• ω̇ – rate of precession of the periastron
• γ – gravitational redshift parameter of the system
• Ṗb – rate of change of the orbital period of the binary (related to emission of gravita-
tional waves)

• r – Shapiro time delay parameter (time)
• s – Shapiro time delay parameter (angle)

In the case of the Double Pulsar, values for all of these PK parameters have been extracted
from the pulsar-timing data for the more massive component, known as Pulsar A (see
Kramer et al., 2005), and have been used to determine the values of the system parameters
quoted earlier. For a given post-Newtonian gravity theory, each of the PK parameters gives
rise to a curve on the phase-plane for the masses of the two pulsars (with the masses of the
two pulsars plotted on the two axes). Uncertainties in the measured parameter values give
rise to a finite width of the allowed strip in the phase-plane related to each parameter and
all of the allowed strips should intersect if the gravity theory is correct. The figure presented
by Kramer et al. (2005) gives impressive confirmation of general relativity but it should be
noted that gravity is here only being tested at a particular range (the range of separation
of the two binary components) and that significant discrepancies might still arise on other
length-scales.

5 HOWDID THEDOUBLEPULSAREVOLVETO ITS PRESENTSTATE?

In this section we discuss how the Double Pulsar probably reached its present state and
use this picture in order to derive constraints on the equation of state of neutron star
matter. (A more extensive presentation of the arguments involved can be found in our
paper: Podsiadlowski et al., 2005.) The suggested formation scenario must explain the
following:

• The binary system was not disrupted by the supernova explosions.
• Pulsar Awas spun up, giving a period in the millisecond range (23 ms).
• The binary separation became small enough so that gravitational-wave emission could
start to drive a significant inspiral of the system.
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• The orbital eccentricity is small, implying that there was only a small kick velocity when
the second neutron star was formed.

• Pulsar B has extremely low mass, 1.249 ± 0.001 M⊙ (the smallest accurately-measured
mass for any known pulsar).

Based on this, we proposed two likely evolutionary routes involving interacting binary sys-
tems with the hydrogen envelopes being stripped from both stars after their main-sequence
phase. The later stages are very similar in the two scenarios, with a helium star (the progen-
itor of Pulsar B) transferring matter onto the already-formed Pulsar A and spinning it up.
It is suggested that the subsequent supernova which produced Pulsar B was an electron-
capture supernova which would be consistent with the very low mass of Pulsar B and with
the kick velocity being small.
Electron-capture supernovae occur for helium stars when the central density of the Oxy-

gen/Neon/Magnesiumcore reaches the threshold for electron captures onmagnesiumnuc-
lei. The electron captures reduce the pressure in the core and lead to the onset of core
collapse. This mechanism occurs for only a small mass range of helium stars and at a
well-defined pre-collapse ONeMg core mass. Very little material is lost during the collapse
(typically around 10−3 M⊙, although this is a little controversial) and so the baryon num-
ber of Pulsar B is known to rather good accuracy (estimated as being within about 1%,

Figure 2.Relation between the gravitationalmass MGof neutron starmodels and their baryonicmass
M0, measured in units of the solar massM⊙, for various equations of state. The constraint which we
have derived ismarked by a rectangle.
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taking all of the uncertainties into account). Knowing both the baryon number and grav-
itational mass of Pulsar B then allows constraints to be placed on the equation of state of
neutron star matter since any equation of state predicts a particular relationship between
these quantities. We have examined representative members from four classes of equations
of state:

I Non-relativistic many-body calculationswith “realistic” potentials
II Relativistic mean-field calculations including hyperons
III Non-relativistic Skyrmemodels
IV Some other phenomenological non-relativistic potentials

(Full details of the equations of state used are given in our paper.) Each of these gives
a curve in the plane of gravitational mass MG plotted against baryon number A which
ought to intersect the “experimental” error box given by the measured gravitational mass
of Pulsar B and its baryon number, derived on the basis of our assumed model. Results are
shown in Fig. 2 (where, for convenience, we have plotted the “baryonic mass” M0 rather
than A itself, where M0 is equal to A multiplied by the atomicmass unit).
It should be stressed that the constraint obtained applies if our hypothesis about Pulsar B

having been formed in an electron-capture supernova is correct. However, we think that this
hypothesis is rather well-founded and that the constraint is a plausible one. Clearly, it has
some interesting consequences.

6 CONCLUSIONS

Wehave discussed here some implications of the very interesting observations of the double
pulsar J0737−3039, noting that they lead to a very good confirmation of general relativity
at the length-scales tested and also to useful constraints on the equation of state of neutron
star matter if our hypothesis about the formation process for Pulsar B is correct. Further
timing measurements may make it possible to measure the spin-orbit coupling correction
for Pulsar A and hence to determine its moment of inertia I (Morrison et al., 2004). The
relationshipbetween I and MG has a variationof ∼70%dependingon the equationof state,
as compared with a variation of ∼ 5% for the relationship between M0 and MG considered
here. Any reasonably accuratemeasurement of I would give a very important constraint on
the equation of state.
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