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PREFACE

RAGtime – the series of the Relativistic Astrophysics Group workshops and proceedings
– which started in 1999 at Institute of Physics in Opava, the Institute of Physics in Opava
of the Silesian University in Opava, Czech Republic, has become after two decades of its
existence a well-established and respected meeting with a strong tradition mainly devoted
to relativistic astrophysics, but recently expanding also to some additional areas related to
the relativistic and more generally also theoretical physics. This volume presents an edi-
tion of the workshop proceedings associated with a triad of annual events organised during
the years 2018, 2019, and 2020. The progress of research at this period has been rather
outstanding. Just after the celebrations of the Centenary of the Einstein’s General Theory
of Relativity and, it demonstrates spectacular achievements in both theory and related ob-
servations, this time concentrated on direct observations of the closest neighbourhood of
the black hole event horizon in the large observational projects such as the Event Horizon
Telescope and GRAVITY, which in a fascinating way confirm the theoretical predictions
in the area of the strongest gravity effects. Naturally, there are a number of additional,
very important achievements in the area of both theory and observations, which confirm
the expectations based on general relativity, and sometimes further challenge the research
at the borderline of the modern theoretical physics, astrophysics, and particle physics. It
is a great pleasure to say that the present edition of proceeding papers brings a significant
contribution to most up-to-date research activities carried out in these fields.

The present volume is focused on the processes taking place in strong gravitational and
electromagnetic fields in the vicinity of black holes and neutron stars, or various types
of even more exotic compact objects. The solutions of general relativity are extended to
viable alternatives, such as string theories and supersymmetry, or to the cases combining
general relativity with possible variants of non-linear electrodynamics that are able to pre-
dict the so-called regular black holes, which do not contain a central physical singularity.
The astrophysical processes are treated in the test-particle or fluid-configuration approxi-
mations. One of the central points are the observable optical phenomena and their most
relevant demonstrations, namely the high-frequency quasi-periodic oscillations observed
in the low-mass X-ray binaries containing accreting black holes or neutron stars, or in the
case of supermassive black holes in active galactic nuclei, and furthermore also optical
phenomena connected to the appearance of the spectroscopy and polarimetry of the emerg-
ing radiation signal. Special attention has been devoted to complex structures of corotating
and counterrotating fluid tori around supermassive rotating black holes. Important studies
are related to the acceleration ultra-high energy cosmic rays, or to the relation of chaos
and regularity in the motion of matter in gravo-magnetic fields around black holes. The
equilibrium of charged fluid tori has been investigated within the analytical and numerical
frameworks in situations related to the magnetized compact objects. Black holes have been
considered in the context of cosmology and neutron stars in the context of hybrid config-
urations combining the neutron and quark matter, or in the context of a charged fluid. In
addition to the standard variety of works in the field of relativistic physics, this proceed-
ings also includes a study relating the ideas of the so-called soliton solutions as applied to
quantum informatics and to molecules relevant for the replications of DNA.



Most of the presented contributions have been obtained thanks to the collaboration of the
research groups at the Silesian University in Opava, the Astronomical Institute of the Czech
Academy of Science, the Faculty of Mathematics and Physics of the Charles University in
Prague, and furthermore our colleagues at many other foreign institutions. The RAGtime
participants from a wide international community have represented Observatoire de Paris,
The Joint Institute for Nuclear Research in Dubna, The International Space Science In-
stitute in Bern, Osservatorio Astronomico di Roma, University of Cologne, University of
Oxford, The Ulugh Beg Astronomical Institute in Tashkent and others.

We thank the Editorial Board members for their valuable advice and assistance, and all
the authors for the careful preparation of their contributions. We are also indebted to the
Ministry of Education of the Czech Republic and the European Social Fund in the Czech
Republic for providing the financial support for the workshops and participants’ activi-
ties, namely within the INTER-EXCELLENCE project No. LTI17018, the ESF projects
No.CZ.02.2.69/0.0/0.0/18 058/0010238, CZ.02.2.69/0.0/0.0/18 056/0013364,
CZ.02.2.69/0.0/0.0/18 054/0014696, and the internal grants of the Silesian University in
Opava No. SGS/13,14/2019 and IP/15/19.

Opava, December 2020 Z. Stuchlı́k, G. Török and V. Karas
editors
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Zdeněk Stuchlı́k in the pursuit of beauty

Marek Abramowicz
Göteborg University, Sweden, Silesian University, Opava, Czech Republic,
and N. Copernicus Astronomical Centre, Warsaw, Poland
marek.abramowicz@physics.gu.se

Zdeněk Stuchlı́k is a very successful, award-winning, university educator, adored by
generations of students and peers for his role as a professor, lecturer, supervisor of doctoral
theses and as a long-time proficient Dean of the Faculty of Philosophy and Science and
the Director of the Institute of Physics at the Silesian University in Opava. He is widely
recognized as the creator and leader of a distinctly original and productive circle of assis-
tants and collaborators that he established in Opava. Working together with foreign visitors
to Opava and colleagues abroad, Stuchlı́k and his Opavian team have spent the best part
of three decades spearheading research into Einstein’s General Relativity, most impressive
in its scope and scale. Indeed, to the global community of physicists and astrophysicists,
Zdeněk Stuchlı́k is simply a Czech scientist, a well-known and respected black hole theorist
from Opava. And yes, many of them know that in addition Stuchlı́k sometimes goes awol,
takes pictures and even shows them at exhibitions in respected art galleries and museums.

Because his photography is so fine and neatly sophisticated, people outside of the com-
munity of physicists, who attend these exhibitions, usually consider Stuchlı́k as somebody
whose main occupation is solely photography. They assume that a Czech with his artistic
talent must obviously belong to the world-esteemed mob of legendary Czech photogra-
phers, and are surprised to discover that he is not also — but primarily — a well renowned
respected scientist.

Stuchlı́k is, of course, connected institutionally to Opava’s world-famous Institut tvůrčı́

fotografie (The Institute of Creative Photography), where Jindřich Štreit, and other best
known contemporary Czech photographers, work and teach. Stuchlı́k and Štreit are close
friends; they were among a small team of visionary pioneers who created out of nothingness
the Silesian University in Opava — at times of the great optimism and hope just after the
Velvet Revolution. Today, their University is considered to be the best among all provincial
universities in the Republic.

So many papers written and countless labours of love, all in the pursuit of exploring
stunning beauties of reality — physical, mathematical and intellectual — all gorgeously
presented in scholarly attempts to share these excitements with others!

During the years, I have witnessed Zdeněk’s sure and brilliant acting in many of his
distinguished social roles, but I see him, most of all, as my darling friend and a classy
gentlemen, whom I trust in important matters of life and profession.

Happy birthday, Zdeněk.

978-80-7510-433-5 © 2020 – SU in Opava. All rights reserved. ‰y ‰‰ ‰y ÂÂ ? o n 6
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ii M. Abramowicz

1 STUCHLÍK THE ARTIST: SMOOTHER PEBBLES AND PRETTIER
SHELLS.

An internal pre-requisite that compels those like Stuchlı́k to undertake so many di↵erent
intellectual activities, has been metaphorically described in the profoundly modest words
by Sir Isaac Newton:

– I do not know what I may appear to the world, but to myself I seem to have been only like a

boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a

prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

Zdeněk has been exhibiting his photographs of smoother pebbles and prettier shells in
Opava, Prague and other Czech cities, as well as in Wrocław, Warsaw, Vilnius, Riga, Tri-
este, Frankfurt and Oxford. His artistic creations have been already discussed in books,
including one devoted solely to him. One of his quite often displayed photos, paints my
silhouette portrait in a hotel window, against the background of the famous Copacabana
beach in Rio de Janeiro. Thank you, Zdenku, for the Macho in the window.

Here in Opava, in January-February 2015, he had an exhibition Neurčitý prostor (Unde-
fined space) together with Jerzy Olek, a top Polish artist-photographer and art theoretician.
I wrote an introduction to its Catalogue, saying that the joint exhibition of photos taken by
these friends of mine showed their utterly dissimilar ways of perceiving reality. Such strik-
ing di↵erences cannot be explained through sole recourse to the stereotypical assumption
that a scientist surveys the world by number, weight and measure, applying a cool eye to
things and phenomena, whereas an artist sees reality in a way which is subjective, emo-
tional and altogether irrational. There, at this exhibition, the stereotype was simply false.
The unaware viewer would never have been able to guess which photos were taken by the
“artist” and which ones by the “scientis”.

Indeed, Zdeněk Stuchlı́k as an artist simply accepts the world along with its amazing
complexity. He does not try to explain or even tentatively order reality. He does not strive
to improve it. His photos represent faithful, unprocessed images of specific things. Some
unyielding and eternal as seas, rocks or castles, others registered in a snapshot, and no-
ticed exclusively by him. All Stuchlik’s “things and voyages” constitute his own private
catalogues of reality wherein he can accommodate portraits of his friends, views of Rio de
Janeiro, as well as abstract light reflections in the fogs over the Gulf of Trieste. Stuchlı́k
shows to us the beauty of the reality which is boundless, unique and inexplicable. He does
his job humbly. He does not try to educate. Instead, he arranges his photographs in se-
quences whose deliberate lack of order imitates the puzzling and confusing randomness of
the real world.

2 STUCHLÍK THE SCIENTIST: NAKED SINGULARITIES.

In its 19th December 2020 issue, The Spectator published a remarkable interview with
Sir Roger Penrose by Dr Thomas Fink. In the interview, Penrose says that the Nobel
Committee in Stockholm may have jumped the gun stating that they awarded him the Prize
“for the discovery that black hole formation is a robust prediction of the general theory of
relativity”.

‰y ‰‰ ‰y ÂÂ ? o n 6



Zdeněk Stuchlı́k in the pursuit of beauty iii

– I never proved black holes could be there, generically – smiles Penrose – What I proved was
that singularities had to be there.

In the interview, Penrose carefully corrects this surprisingly common, and quite old, mis-
conception that he has proved the existence of black holes, i.e. the existence of compact
objects with the event horizon. No, he has not — and nobody ever has. Neither has he
proven his own cosmic censor hypothesis, stating that singularities are always hidden in-
side event horizons, so that they cannot be visible from the outside. His original 1965
singularity theorem is quite remarkable, for it is based only on a few very general assump-
tions: it does not need even to assume Einstein’s field equations! Indeed, a scrupulous and
accurate student of the theorem would notice that all Roger Penrose needed for his proof
was:

(1) The existence of the 4D space-timeM with a Lorentzian metric.
(2) An existence in M of a compact, 2D trapped surface T such that both the ingoing

and outgoing congruences of null geodesics emerging from T converge, in the sense of the
negative expansion invariant, θ < 0.

(3) The gravity is attractive in the sense that along any congruence of null geodesics,
dθ/dµ < 0, where µ is the affine parameter along the congruence.

(4) There exists a non-compact Cauchy surface (this is roughly equivalent to say that
the space-time has a trivial topology, for example it is not wrapped in space into a cylinder).

Note that usually instead of (3) one assumes the weak energy condition RabXaXb > 0,
with Xa being a null vector and then one uses the Raychaudhuri equation, together with
ω = 0, in order to conclude that dθ/dµ < 0. Note also that ω = 0 is not an extra assumption,
as it must be ω = 0 at the trapped surface T for the congruence in question (the congruence
emerges from the surface T orthogonally) and thus, from the Newman Penrose equation for
dω/dit follows that ω = 0 everywhere along this congruence.

I prefer to use the assumption dθ/dµ < 0 rather than RabXaXb > 0, as it avoids (seemingly
only, but this is all right) the murky subject of the energy condition, the cosmological
question of Λ, and so on.

One should be aware of the important point here: the Penrose theorem is far more gen-
eral than most of the commentators, even those with a Ph.D. in physics, say (or know). The
theorem works in all Lorentzian, and not only strictly Einsteinian, space-times in which
gravity is attractive, which admit trapped surfaces, and which have a trivial topology (non-
compact Cauchy surfaces). In such space-times singularities, defined as null geodesic in-
completeness, are unavoidable. The Einstein field equations play no role in the proof when
one assumes dθ/dµ < 0 instead of the usual RabXaXb > 0.

The space times and circumstances considered by Penrose are far more general than
those strictly consistent with Einstein’s theory. This was, perhaps still another reason for
Penrose’s delicate smile when he quoted Nobel Committee’s wording of their explanation
why they awarded him the Prize...

Nobody has proved that the Penrose cosmic censor hypothesis holds even in the standard
Einstein’s relativity. Could it therefore be so, that in our Universe the naked singularities
are present? And if they are present, what would be their observable signatures? This is one
of a few fundamental questions that have occupied Stuchlı́k’s mind for a long time. Even

!" !! !" ## ? $ % &



iv M. Abramowicz

years before the Event Horizon Telescope time he and his collaborators in Opava were
calculating images of naked singularities that would be in principle eventually possible to
observe.

They found that the naked singularity images have features that are qualitatively (topo-
logically) different than those that black holes may be consistent with. This is independent
of all uncertainties with the emissivity properties of matter that surrounds these objects and
is the source of photons emitted there, which are eventually detected by the EHT. Today
the resolution is still too weak to dig out these features, but it will quickly, in a matter of a
few years, improve.

I have only mentioned the naked singularities here, because they are so closely con-
nected to this year’s Nobel Prize in physics. But Stuchlı́k and colleagues are studying other
possibilities as well: wormholes, strange stars, horizontless objects in alternative gravity
theories... All these subjects belong to new, the brave and marvellous, future of physics.
Very near future. Observations by EHT, Ligo-Virgo, Gravity and other astrophysical in-
struments alike, together with the purely theoretical insight coming from the directions that
Zdeněk Stuchlı́k pioneered long ago and which are now the main subject of many, will
soon open the flood gates. I hope to see successful and direct observational testing of the
sweet dreams of XX and XXI century physics: you better watch out — quantum gravity is
coming to town!

3 STUCHLÍK THE EDUCATOR.

Theoretical physics is not a profession like others, but almost an existential condition, a
necessity of life. It requires a passionate commitment to conduct research, continuous
and persistent self-education and joyful teaching of students at all university levels. The
latter aspect is as important as the two first. Every theorist must be personally involved in
education: preparing solid and interesting lectures, even when teaching is not an obligation
arising from his university employment.

Dennis Sciama, John Wheeler, Richard Feynman and Lev Landau were probably the
most charismatic and successful teachers of university physics in the XX century. I had the
privilege to spent many years in Sciama’s group, first in Oxford and then in Trieste, and
two years in Wheeler’s group in Austin, Texas. I have experienced first hand their tradition
and attitude towards teaching physics, the quality of their courses and their unique style of
shaping friendly and helpful master-student relations. To me, it is obvious that the way of
teaching physics at Opava under Zdeněk, compares well with these best-in-class examples.
Stuchlı́k has been able to create the school in which, at all stages of education, students
are in the safe hands of their professors who offer each of them an individual plan to learn.
Students enjoy academic freedom, but at the same time have well defined duties, and are
involved not only in learning, but also, step by step, in participating in the Department’s
research and even in some administrative work. Stuchlı́k devotes a lot of extra- curricular
time, giving himself personal tutorials to all students who need help.

And, of course, everyday we all go together for lunches, often for dinners, and sometimes
to the Slezské divadlo (‘ ‘it’s an opera”).
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4 ZDENĚK, MY CZECH REFERENCE POINT.

o conclude, let me say something rather personal. I am a Pole who does not speak Czech,
but who throughout his whole adult life, was fascinated by Czech culture, literature, way
of life and customs. When I think of the personalities important in Czech culture and
science who influenced me most of all, I remember, of course, Johannes Kepler, Jehuda
Löw, Jan Hus, Franz Kafka, Christian Doppler, Alfons Mucha, Egon Erwin Kisch, Karel
Čapek, Emil Zátopek, Bohumil Hrabal, Milan Kundera, Václav Havel, Marta Kubišová,
Miloš Forman, Helena Vondráčkova, Jiřı́ Bičák and Jara Cimrman... Then Praga magica
where once I lived alone in a large, nice apartment at Malá Strana, through all seasons of
the year changing one after the other. And, of course, Zdeněk Stuchlı́k who is my most
important Czech reference point.

One day, Zdeněk and I enjoyed an evening in U Krbu , our favourite restaurant in Opava,
in the company of a few colleagues, mostly from the University, and a few students. We all
were a bit drunk. Not much, of course, just a tiny bit. – Zdenku – I asked – tell me please,
taking into account just everything you could think of: which country in Europe would you
consider to be the best to live a happy life?
– The Czech Republic. – he replied immediately
– Really? And why not Switzerland? – I expressed my surprise.
– Because our mountains are smaller.

!" !! !" ## ? $ % &
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Zdeněk Stuchlı́k, Macho in the Window (Rio de Janeiro, 2003)
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This book is especially dedicated to Professor Zdeněk Stuchlı́k and his work as a

celebration of his 70th birthday.

‰y ‰‰ ‰y ÂÂ ? o n 6











Proceedings of RAGtime 20–22, 15–19 Oct., 16–20 Sept., 19–23 Oct., 2018/2019/2020, Opava, Czech Republic 1
Z. Stuchlı́k, G. Török and V. Karas, editors, Silesian University in Opava, 2020, pp. 1–9

Charged particle dynamics in the vicinity
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ABSTRACT
The charged particle motion in Reissner-Nordström spacetime has been discussed.
Equation of motion for charged particle around electrically (ECBH) and magnet-
ically (MCBH) charged black holes has been considered by using the Hamilton-
Jacobi formalism. The parameters of the innermost stable circular orbit (ISCO) such
as energy, angular momentum, and position of particle have been explicitly inves-
tigated. The dependences of the energy efficiency, the velocity of charged particle,
and the capture cross-section of charged particle by RN black hole on the charge
coupling parameter are shown.

Keywords: Reissner-Nordström spacetime – black hole – charged particle

1 INTRODUCTION

New data from observations of black holes provide new motivations for studying the dy-
namics of particles in the framework of the General relativity. Because the motion of the
test particles clearly describes the properties of the spacetime of the black hole and the hid-
den singularity. The motion of uncharged and spinless sample particles is controlled only
by geodesic equations and directly determines the geodesic structure of spacetime. How-
ever, charged test particles can experience not only gravitational, but also an electromag-
netic field, and accordingly can provide information about the electromagnetic properties
of a black hole. In this work, we studied the circular motion of charged test particles around
spherically symmetric, electrically and magnetically charged non-rotating black holes. By
using the Hamilton-Jacobi formalism, we obtain the basic equations governing the inner-
most stability of circular orbits and the associated energies, angular moments, and also the
particle velocities in these orbits.

The detailed analyses of neutral particle motion Pugliese et al. (2011a), dynamics
charged of particle Bini et al. (2007); Pugliese et al. (2011b, 2017); Das et al. (2017) in
Reissner-Nordström spacetime has been studied. In the Ref. Grunau and Kagramanova
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(2011) geodesics of electrically and magnetically charged test particles in the Reissner-
Nordström spacetime has been investigated. The capture cross-section of massless and
massive particles by the charged black hole has been investigated in Zakharov (1994).
The innermost stable circular orbits of charged spinning test particles have been analyzed
in Zhang and Liu (2019). In Ref. Zaslavskii (2010) the effect of charged particles accelera-
tion by the black holes in Reissner-Nordström spacetime has been studied. In Refs. Zajaček
et al. (2018); Ghosh et al. (2020) the significance of the electric and magnetic charge of the
astrophysical black hole has been discussed. In Ref. Stuchlı́k et al. (2020) dynamical mo-
tion of charged particle in the vicinity of rotating black hole in the presence of external
magnetic field has been investigated.

In the present research, we are interested in investigating of charged particle motion
around electrically (ECBH) and magnetically (MCBH) charged black holes. One of the
simple candidates for such black holes is described by the Reissner-Nordström metric as

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2

(

dθ2 + sin2 θdφ2
)

, f (r) = 1 −
2M

r
+

Q2

r2
, (1)

where M is the gravitational mass of a black hole, Q is its total charge which can be either
the electric charge (Q = Qe) or magnetic charge (Q = Qm). In these cases, the components
of the associated vector potential of the electromagnetic fields are given as

At = −
Qe

r
, Aφ = Qm cos θ, (2)

Note that the metric (1) together with (2) are, fully, satisfied the Einstein-Maxwell field
equations. The radius of outer spacelike horizon can be calculated, from equation f = 0, as
r+ = M2 +

√

M2 − Q2. Notice that throughout the paper, we use system of a geometrized
units, G = c = 1.

2 HAMILTON-JACOBI EQUATION

The Hamilton-Jacobi equation for charged particle of mass m and charge q is given by

gαβ
(

∂S

∂xα
− qAα

) (

∂S

∂xβ
− qAβ

)

= −m2, (3)

with solution, S = −Et + Lφ + S r + S θ, then

−
1

f

(

E +
qQe

r

)2

+ f

(

∂S r

∂r

)2

+
1

r2

(

∂S θ

∂θ

)2

+
(L − qQm cos θ)2

r2 sin2 θ
= −m2 . (4)

where E, L are the energy and angular momentum of test particle at the infinity, respec-
tively. S r and S θ are the radial and angular functions. Here one can see that equation
(4) is fully separable into radial and angular parts. Hereafter performing simple algebraic
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manipulations, one can show that

S r =

∫

dr

f

√

(

E +
qQe

r

)2

− f
(

m2 +
K

r2

)

, (5)

S θ =

∫

dθ

√

K −
(L − qQm cos θ)2

sin2 θ
, (6)

where K is the Carter constant of motion.
Before go further, we introduce the following useful notations:

E =
E

m
, L =

L

mM
, K =

K

(mM)2
, Q =

Q

M
, (7)

and the radial coordinate is normalized as r → r/M. Now we write components of momen-
tum as pα = gαβ(∂S/∂xβ), on the other hand pα = mẋα = m(dxα/dλ), where λ is an affine
parameter. Finally, taking into account all facts above, equations of motion can be written
as

ṫ =
1

f

(

E +
σe

r

)

, φ̇ =
L − σm cos θ

r2 sin2 θ
, (8)

ṙ2 =

(

E +
σe

r

)2

− f

(

1 +
K
r2

)

≡
R(r)

r4
, R(r) ≥ 0, (9)

θ̇2 =
1

r4

[

K −
(L − σm cos θ)2

sin2 θ

]

≡
T (θ)

r4
, T (θ) ≥ 0, (10)

where the charge coupling parameters are defined as

σe =
qQe

mM
, σm =

qQm

mM
. (11)

According to Refs. Shapiro and Teukolsky (1983); Misner et al. (1973), the spatial com-
ponents of velocity of particle measured by a local observer can be determined as

vr̂ =

√

−
grr

gtt

dr

dt
=

√

1 − f
r2 +K

(rE + σe)2
, (12)

vθ̂ =

√

−
gθθ

gtt

dθ

dt
=

√

f

rE + σe

√

K −
(L − σm cos θ)2

sin2 θ
, (13)

vφ̂ =

√

−
gφφ

gtt

dφ

dt
=

√

f

rE + σe

L − σm cos θ

sin θ
, (14)

which allows to write

E =
√

f
√

1 − v2
−
σe

r
, v2 = v2

r̂ + v2
θ̂
+ v2
φ̂
. (15)

Notice that near the horizon i.e. f = 0, the radial velocity will be vr̂ = 1, while angular
componets vanish vθ̂ = vφ̂ = 0.
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3 INNERMOST STABLE CIRCULAR ORBIT (ISCO)

It is important to compute the radius of the stable circular orbit of test particle so-called
innermost stable circular orbit (ISCO) radius. In order to find the ISCO radius for test
particle one can use the following conditions:

R(r) = 0,
dR(r)

dr
= 0,

d2R(r)

dr2
= 0, (16)

T (θ) = 0,
dT (θ)

dθ
= 0,

d2T (θ)

dθ2
= 0, (17)

where the first equations in (16) and (17) provide the particle motion to be in the circular
orbit (i.e. ṙ = θ̇ = 0), while the first order derivatives with respect to coordinates (r, θ) rep-
resent the stationary points of the functions R(r),T (θ). Finally, the last conditions in (16)
and (17) correspond the minimum of the radial and angular functions. For simplicity, as-
sume that black hole charge is negligibly small to change background spacetime, (Q2 → 0,
so that the lapse function will be f (r) = 1−2M/r), however, contribution of the interaction
terms are large enough in dynamics particle orbiting around black hole.

3.1 Charged particle in the vicinity MCBH

We first discuss charged particle motion around MCBH with σm ! 0 and σe = 0. Hereafter
using the conditions (17), we obtain

θ0 = tan−1















σm

L
,±

√

L2 − σ2
m

L















, K = L2 − σ2
m . (18)

Then after eliminating the Carter constant, the radial function takes a form:

R(r) =
(

E2 − 1
)

r4 + 2r3 −
(

L2 − σ2
m

)

r2 + 2
(

L2 − σ2
m

)

r, (19)

Recalling the conditions (16), and performing simple algebraic manipulations, one can
obtain

E = f

√

r

r − 3
, L =

√

r2

r − 3
+ σ2

m, r = 6, (20)

Finally, parameters of the ISCO such as the energy E0, angular momentum L0, angle θ0
and radius r0 for charged particle orbiting around MCBH take the form:

E0 =
2
√

2

3
, L0 =

√

12 + σ2
m, θ0 = tan−1













±
2
√

3

σm













, r0 = 6 . (21)

As one can see from equation (21) a position of the ISCO for charged particle orbiting
around MCBH is located at rISCO = 6 and θISCO = tan−1

(

2
√

3/σm

)

. Figure 1 draws
dependence of ISCO positions from the charge coupling parameter.
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On the other hand, it is easy to show that the orbital velocity measured by the local
observer at the ISCO will be independent of coupling parameter σm, and it equals half of
the speed of light, i.e. v = 1/2 as for neutral particle.

It is also an interesting task to demonstrate capture cross-section of charged particle by
the black hole. According to Ref. Zakharov (1994), the impact parameter of a massive
particle, b, can be found as,

b2 = αL2, α =
1

E2 − 1
, (22)

which allows to determine capture cross section σ = πb2. Taking into account definition
(22), the radial functions can be rewritten as, R = αR/r, or

R(r) = r3 + 2αr2 −
(

b2 − ασ2
m

)

r + 2
(

b2 − ασ2
m

)

, (23)

The existence condition for multiple roots is equivalent to vanishing of the discriminant
of cubic equation (23), after simple calculations, one can obtain the explicit expressions for
the impact parameter of charged particle orbiting around MCBH .... in the form:

b2 =
1

2

[

27 + 18α − α2 + (α + 9)
√

(α + 9) (α + 1)
]

+ ασ2
m, (24)

In comparison with the expression for impact parameter in Ref. Zakharov (1994), there
is additional term in equation (24) given as ασ2

m which arises due to the electromagnetic
interaction between the black hole and particle. From here one can conclude that capture
cross-section of charged particle by MCBH increases for α > 0, while it decreases for
α < 0 in comparison with that for a neutral particle.

3.2 Charged particle in the vicinity ECBH

Now we focus on charged particle motion around ECBH with σe ! 0, σm = 0. Again after
using the conditions in (17), one can find that particle is located in an equatorial plane with
θ0 = π/2 and K = L2. Then the radial function takes a form:

R(r) =
(

E2 − 1
)

r4 + 2 (1 − Eσe) r3 −
(

L2 − σ2
e

)

r2 + 2L2r, (25)

Hereafter using conditions (16), one can obtain

E = f

√

r

r − 3
+

σ2
e

4 (r − 3)2
−

1

2
σe

r − 4

r (r − 3)
, (26)

L2
± =

r2

r − 3

















1 ± σe f

√

r

r − 3
+

σ2
e

4 (r − 3)2
+

1

2
σ2

e f
1

r − 3

















, (27)

and

(

r2 − 4r + 6
)

σ2
e ± (r − 6) (r − 2)σe

√

4r (r − 3) + σ2
e − 2r (r − 3) (r − 6) = 0, (28)
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Figure 1. Dependence of the ISCO positions for charged particle orbiting around ECBH and MCBH
on the charge coupling parameters (σe,σm) ≡ (Qe,Qm)(q/mM).
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Figure 2. Dependence of the orbital velocity (left panel), the energy efficiency (centeral panel) and
the impact parameter (right panel) of charged particle orbiting around ECBH and MCBH on the
charge coupling parameters (σe,σm) ≡ (Qe,Qm)(q/mM).

which allows finding the ISCO radius for charged particle. Unfortunatly, it is difficult to
find analytical solution of the equation (28). However, careful numerical analyzes show that
the ISCO for charged particle orbiting around will be always greater than that for neutral
particle. Figure 1 draws dependence of the ISCO radius on the charge coupling parameters
(σe,σm).

The orbital velocity measured by the local observer at the ISCO will be dependent on
coupling parameter σe, and this dependence is expressed as follows:

v =

√

fL
rE + σe

. (29)
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Figure 2 illustrates the dependence of the orbital velocity of charged particle measured by
a local observer at the ISCO on the coupling parameter σe. It shows that for the positive
value of the coupling parameter orbital velocity at the ISCO will be smaller than a half of
the speed of light, v = 1/2, (which is responsible for neutral particle), and it decreases up to
value v ∼ 0.16, while for a negative value of coupling parameter it increases almost linearly
and becomes larger than the speed of light for σe < −1.23, which corresponds to so-called
superluminal motion. However, from the physical point of view, a massive particle can not
move faster than the speed of light that is why at a sudden value of velocity charged particle
starts to radiate and loses its energy.

In order to determine capture cross-section of particle by ECBH, we again write the
radial function in the form:

R(r) = r3 + 2
(

α − σe

√

α(1 + α)
)

r2 −
(

b2 − ασ2
e

)

r + 2b2 . (30)

As we mentioned before that the discriminant of the equation above should vanishes. Since
the expression for the impact parameter is not simple, we decided to solve numerically. Fig-
ure 2 shows the dependence of the impact parameter on the charge coupling parameter for
the case when α is equal to 0.1. The graph shows that the capture cross-section of charged
particle by ECBH strongly depends on the charge coupling parameter, and increases with
decreasing it.

3.3 Energy efficiency

It is also interesting to analyze the energy efficiency of the test particle, the ratio of the
binding energy mc2 − EISCO, and the rest energy mc2, can be found as, η = 1 − E0. As
we show before that the ISCO energy for charged particle orbiting around MCBH is the
same as for neutral particle, which means the energy efficiency should be the same. So
that one can obtain ηMCBH ∼ 6%. On other hand, the detailed analyses show that the en-
ergy efficiency for charged particle orbiting around ECBH strongly depends on the charged
coupling parameter σe, that can reach a maximal value of ∼ 12% as shown in Fig.2.

4 CONCLUSIONS AND FUTURE OUTLOOK

We investigated charged test particle motion in Reissner-Nordstrom spacetime. Using
the Hamiltonian formalism, equation of motion for charged particle orbiting around both
ECBH and MCBH has been explicitly derived. It is shown that the charge coupling param-
eter dramatically changes the behavior of particle in the vicinity of the black hole.

The parameters of the innermost stable circular orbit (ISCO) such as specific energy,
specific angular momentum, and position of particle have been explicitly discussed. It is
shown that the ISCO position for charged particle is located in an equatorial plane and will
be greater than that for a neutral particle in the vicinity of ECBH, while in the vicinity of
MCBH, it is the same as that for a neutral particle, but displaced from the equatorial plane.
It is also shown that charged particle at the ISCO moves around MCBH with half of the
speed of light, independently from the coupling parameter σm, like a neutral particle. How-
ever, the orbital velocity of charged particle moving at the ISCO around ECBH strongly
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depends on the charge coupling constant. It increases with decreasing couple parameter,
even becomes than the speed of light for the value σe < −1.23, which corresponds to so-
called superluminal motion. However, from the physical point of view, a massive particle
can not move faster than the speed of light that is why at a sudden value of velocity charged
particle stars to radiate and loses its energy.

It has been shown that the dependence of capture cross-section on the charge coupling
parameter, it can be seen that capture cross-section of charged particle by MCBH depends
on square of the charge coupling parameter, and it decreases by decreasing α parameter.
But, unlike the case for MCBH, the capture cross-section of charged particle by ECBH
depends from the charge coupling parameter, and detailed analyses showed that this de-
pendence will be stronger by increasing of the energy parameter α.

It is also shown that the energy efficiency of charged particle orbiting around MCBH
will be independent of charge parameter, i.e ηMCBH ' 6%, while in the vicinity of ECBH,
it strongly depends on charged parameter, σe, that can reach a maximal value of ηECBH ∼
12%.
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Flux ropes in SANE disks
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ABSTRACT
Three-dimensional numerical simulations of a hot accretion flow around a supermas-
sive black hole are performed using the general relativity magneto-hydrodynamic
(GRMHD) code Athena++. We focus on the case of SANE, with the initial mag-
netic field consisting of multiple loops with oppositely directed poloidal magnetic
field in the torus. Using the simulation data, we investigate the formation of flux
ropes, follow the forming of flux ropes atop the disk, and their release into corona.

Keywords: accretion, accretion discs – black hole – MHD

1 INTRODUCTION

In the accreting systems, large scale jets are usually steady, while episodic jets are some-
times related to flares, which are observed on the smaller scale. One such example is
Sgr A*, a massive black hole in the Galactic centre, where we observe radio, infrared and
X-ray flares several times a day. It was concluded that delays in peaks in the light curves
at different wavebands and their fast rise and slow decay in the brightness and polarisation
are related to the ejection and expansion of plasmoids from the accretion flow. Knots in the
jets are also observed, e.g. in 3C 120 and M87, and could be related to episodic emission.
There are models, like e.g. Blandford and Znajek (1977) and Blandford and Payne (1982)
for continuous jets, but we still do not have a viable model for episodic jets. In Yuan et al.
(2009), such a model was proposed, in analogy with Coronal Mass Ejections (CMEs) in
the Sun, with the closed magnetic field lines emerging from the main body of the accretion
flow, expelled to the corona region: The foot-points of the magnetic loops are positioned
in the turbulent accretion flow, and their twisting results in magnetic reconnection, forming
the flux ropes. Because of the ongoing reconnection below such a flux rope, the magnetic
tension force weakens, and the initial equilibrium between the magnetic tension and the
magnetic pressure is not maintained. The flux ropes will be accelerated outwards, forming
the episodic jet. The flares, observed from such jets, are from the emission originating
from the electrons accelerated by the reconnection. In Shende et al. (2019), another model
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Figure 1. We use static mesh refinement for the grid, to obtain largest resolution where it is most
needed. Resolution is R × θ × ϕ = (288 × 128 × 64) grid cells in spherical coordinates, in a physical
domain reaching to 1200 gravitational radii. The different refinements used in this grid are shown.

was proposed, in analogy with Toroidal Instability from tokamak research and also used to
model the CMEs.

Nathanail et al. (2020) present results of two-dimensional (2D) GRMHD simulations
with the Black Hole Accretion Code (BHAC, Porth et al. (2019)), with Adaptive Mesh
Refinement (AMR) of both Magnetically Arrested and Standard and Normal Evolution
(MAD and SANE) discs. Different initial magnetic field configurations and resolutions are
chosen. They find the formation of copious plasmoids and describe their outward motion.
Similar simulations based on the same code, but with the physical resistivity included, are
presented in Ripperda et al. (2020). They show no difference in results between the ideal
and weakly resistive simulations. They conclude that 2D ideal MHD simulations, with only
the numerical resistivity dissipating the magnetic field, can capture the physics.

In this work, we perform 3D GRMHD simulations to investigate the formation of mag-
netic flux ropes, checking the scenario proposed by Yuan et al. (2009).

2 NUMERICAL SIMULATIONS SETUP

We perform numerical simulations using the GRMHD code Athena++ (White et al., 2016)
in full 3D, solving the ideal MHD equations in the Kerr metrics, in Kerr-Schild (horizon
penetrating) coordinates. Resolution is R × θ × ϕ = (288 × 128 × 64) grid cells in spherical
coordinates, in a physical domain reaching to 1200 gravitational radii, rg = GM/c2. We
use different refinements in this grid, as shown in Fig. 1. The staggered mesh Constrained
Transport (CT) method is applied to maintain the divergence-free magnetic field. Static
mesh refinement is used for the grid, to obtain largest resolution where it is most needed.
Initial configuration of density and magnetic field in our SANE simulation is shown in
Fig. 2. The central object is not rotating.
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Figure 2. Left panel: The initial setup in our SANE simulation. The color denotes the density,
solid lines denote the poloidal magnetic field with arrows showing the field direction. Middle panel:
a zoomed-in snapshot in the result after t = 18500 rg/c. The positions of two magnetic islands are
marked with the cross of two dotted black lines and two dotted red lines, respectively. Right panel:
Same with the middle panel, but the color shows the plasma β = Pgas/Pmag. The two magnetic islands
are located at the surface with plasma β ∼ 1.

Figure 3. Left panel: Outward motion of the magnetic island in our simulation, in different colatitu-
dinal planes. Right panel: Spiralling-out of the magnetic island in a schematic plot of the trajectory
in 3D. Positions of the blue circles are chosen to approximately represent magnetic islands from the
left panel.

3 FORMATION AND MOTION OF THE FLUX ROPE

Interchanging directions of the initial magnetic field in the torus prevent the field to grow
too large, and magneto-rotational instability can provide the dissipation for successful
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14 M. Čemeljić, F. Yuan, H. Yang

Figure 4. Time evolution of the position of the center of magnetic island (left panel) and velocity of
the material near the center of magnetic island (middle panel) for two magnetic islands from Fig. 2.
Slopes of the least square fits shown in dashed lines in the left panel are 0.03 c and 0.01 c for the black
and red lines, respectively. In the middle panel, least square fits of the radial velocity components
are shown by the corresponding color thin solid lines. In the right panel are shown forces, along
the radial direction, on the material in the flux rope above the disk mid-plane, near the center of the
magnetic island at t = 18500 rg/c.

accretion of material towards the central object. We perform our simulation until t =

40000 rg/c. A snapshot at t = 18500 rg/c during the evolution of the accretion flow is
shown in Fig. 2. We find magnetic islands in the colatitudinal (R, θ) planes, at different
azimuths ϕ, after the relaxation from the initial conditions and stabilization of the flows.
Such magnetic islands start forming after about t = 15000 rg/c. They periodically emerge
from the disk surface at similar radii (azimuthal angle ϕ changes with the rotation of the
disk), with period of about t = 1000 rg/c. The magnetic islands are extended in the az-
imuthal direction, forming magnetic flux ropes of various lengths. We trace the extension
of the flux ropes in ϕ direction, which is typically about 120◦ or less, and perform slices in
the middle of their length at different times–as shown in Fig. 3. In the same Figure we give
a sketch in 3D of the counter-clockwise spiral trajectory of the indicated flux rope cross-
sections. To understand the launching and motion of the flux rope, we measure positions
of the magnetic islands and velocity of the material near their centers in time–see Fig. 4.
Forces acting on the material in the magnetic islands in radial direction are also shown. The
pressure gradient and Lorentz forces push the rope radially outwards.

The launching of the flux rope is caused by the reconnection in the disk, near the disk
surface, as shown in the left panel Fig. 5. In the right panels in the same Figure is shown
the reconnection signature in the magnetic field and velocity components perpendicular
to the reconnection layer: all three magnetic field components and both poloidal velocity
components change sign. Reconnection occurs throughout the disk and in the corona, but
its effect on the matter depends on the value of plasma β = Pgas/Pmag. Only in the locations
where it is about unity, material from the disk will be pushed by reconnection. In the
rarefied corona, plasma β is much smaller, and in the dense disk, it is much larger than
unity.

Inside the disk, which is accreting because of magneto-rotational instability (MRI) pro-
viding the sufficient dissipation, reconnection layers which are brought close to the disk
surface, can result in the formation of flux rope and its further ejection into the corona.
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Figure 5. Two reconnection layers with a magnetic island between them in a snapshot at t =

19500 rg/c in our simulation are marked with the black and red dotted lines in the left panel. In
the right panels are shown the velocity and magnetic field components at the same time, along a part
of the black dotted line circle passing through the reconnection layer. A signature of reconnection,
change in the direction of poloidal velocity and all three components of magnetic field, is visible in
the projections in θ-direction. A similar signature is obtained in the reconnection layer positioned at
the intersection of red dotted lines.

Once lifted into the rarefied corona, the flux rope can be expelled outwards or break. In
both cases it would be observed as episodic emission from the vicinity of the black hole.

In addition to the reconnection layer below the magnetic flux rope, there is another re-
connection layer, above the magnetic flux rope in our simulations–see Fig. 5. It helps the
opening of the magnetic field lines and ejection of the flux rope.

4 CONCLUSIONS

We have performed 3D ideal GRMHD numerical simulations of a hot accretion flow around
a black hole, to study formation and motion of flux ropes. During the time-evolution until
t = 40000 rg/c, magnetic flux ropes of the azimuthal extension of about 120◦ or less are
formed, which show as magnetic islands in 2D slices in colatitudinal planes at different
azimuthal angles. These flux ropes are created by reconnection close to the disk surface,
where the plasma β, defined as the ratio of the gas to magnetic pressure, is close to unity.
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16 M. Čemeljić, F. Yuan, H. Yang

Because of the reconnection and disk differential rotation, the flux ropes are twisted
and pushed radially outwards and launched into the corona, spiralling-out from the central
object. The radial velocity of their outward propagation is of the order of 0.01 c.

Ejection of the flux ropes from the disk surface repeats periodically in our simulation,
with the period of about 1000 rg/c. It could cause episodic flaring from the vicinity of the
disk around a black hole.

In addition to the reconnection layer near the disk surface, which forms the flux rope,
another reconnection layer above the flux rope can form, helping its outward launch.
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ABSTRACT

We have explored the dynamics of test particles around electrically charged Reissner-
Nordström (RN) nonrotating black hole (BH). Particularly, we have studied the mo-
tion of charged particles around charged RN BH. It was found that there are two
boundary conditions for specific angular momentum of stable circular orbits corre-
sponding to innermost stable circular orbits (ISCO) and outermost stable circular
orbits (OSCO). We have also shown that the accretion disk is originated between
these two orbits. It was obtained the upper and lower limits for the values of the
electric charge of the matter in the accretion disk around the extreme charged Reiss-
ner Nordström BH.

Keywords: Reissner-Nordström spacetime – black hole – test charged particle –
particle dynamics –ISCO –OSCO

1 INTRODUCTION

Just after the discovery of general relativity two exact solutions of the Einstein field equa-
tion have been obtained by Schwarzschild describing non-rotating point-like massive object
– black hole (BH) and by Reissner and Nordström independently describing the electrically
and magnetically charged non-rotating black hole. However, these solutions have singular-
ity at the center of the black hole (r = 0), which cannot be resolved within the theory. Other
electrically and magnetically charged regular black hole solutions avoiding the singularity
have been obtained within the framework of general relativity coupled to non-linear elec-
trodynamics by several authors Bardeen (1968); Ayon-Beato (1999); Wang and Maartens
(2010).
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a From astrophysical point of view the study the charged particles motion around charged
BH and/or BH in external magnetic field is one of the important task. Recently, the motion
of charged Rayimbaev et al. (2020); Turimov et al. (2020); Stuchlı́k et al. (2020); Tursunov
et al. (2016), magnetized Rayimbaev (2016); de Felice and Sorge (2003); Abdujabbarov
et al. (2020); Vrba et al. (2020); Rayimbaev et al. (2020) particles around black holes
with different parameters in an external asymptotically uniform magnetic field in various
theories of gravity have been studied. Particularly, the charged particle motion around
Reissner-Nordström black hole has been studied in Pugliese et al. (2010, 2011).

In this paper we study the charged particle orbits around RN BH. The paper is orga-
nized as follow: in Sec. 2 we have considered charged particle motion in the spacetime of
a charged black hole. In Sec. 3 we summarize the obtained results.

Throughout the work we use spacelike signature (−,+,+,+) for the space-time and sys-
tem of units where G = 1 = c . Latin indices run from 1 to 3 and Greek ones from 0
to 3.

2 MOTION OF CHARGED PARTICLES AROUND REISSNER-NORDSTRÖM
BLACK HOLE

The geometry of the spacetime around electrically and magnetically charged RN BH in
spherical coordinates (xα = {t, r, θ, φ}) is given in the following form

ds2 = − f dt2 + f −1dr2 + r2
[

dθ2 + sin2 θdφ2
]

, (1)

with the following gravitational metric function

f = 1 −
2M

r
+

Q2

r2
, (2)

and associated with the four vector potential of the electromagnetic field around the elec-
trically charged BH

Aα =
Q

r

{

1, 0, 0, 0
}

, (3)

where M and Q are the total mass and electric charge of the RN BH, .
Here we study the charged particle with rest mass m and electric charge e around charged

BH. The Lagrangian for the charged particle in the electromagnetic field in the BH envi-
ronment has the following form

L =
1

2
mgµνu

µuν + euµAµ. (4)

The conserved energy and angular momentum can be found by

gtt ṫ + qAt = E, (5)

gφφφ̇ = L, (6)
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where E = E/m and L = L/m are the specific energy and angular momentum of the
particle, respectively, q = e/(mc) is the specific electric charge of the particle with mass m

and electric charge e.
The equation of motion for charged particles with the Lagrangian (4) can be found using

the Euler-Lagrange equation Pugliese et al. (2010)

uµ∇µu
ν = qFνσuσ, (7)

where Fµσ = Aσ,µ − Aµ,σ is the electromagnetic field tensor. Using the equations (5-7)
one may easily find the equation of motion of the charged particles at the equatorial plane
(θ = π/2) in the following form:

ṫ =
1

f

(

E −
qQ

r

)

,

ṙ2 =

(

E −
qQ

r

)2

− f

(

1 +
L2

r2

)

,

φ̇ =
L

r2
. (8)

The effective potential for charged particle in the equatorial plane (where θ = π/2 and
θ̇ = 0) can be found solving equation E = Veff (ṙ = 0):

V±eff(r) =
qQ

r
±

√

f

(

1 +
L2

r2

)

. (9)

Now we will study the positive root of the effective potential V+eff : (i) In the case of
∣

∣

∣

qQ
r

∣

∣

∣ <
√

f
(

1 + L
2

r2

)

the second root of the effective potential V−e f f will be negative and (ii)

in the case of
∣

∣

∣

qQ
r

∣

∣

∣ >
√

f
(

1 + L
2

r2

)

the effective potential V−e f f has neither maximum nor
minimum.

Figure 1 illustrates the charged and neutral particles trajectories in similar bounded states
with the same initial conditions r0 = 7M and θ0 = 1.6. In this figure, the grey area implies
the hypothetical surface of the BH–horizon of the BH and dashed line for the region where
bounded circular orbits are allowed. Here, we have aimed to show the bounded orbits for
the different (charged and neutral) particles, by changing the angular momentum of the
particles. One can easily see that for the neutral particle (black solid orbits at the middle
row in Fig.1) the bounded orbits exists with specific angular momentum L = 3.5 and
energy E = 0.95, while the orbits of positively charged particles q = 1 are bounded for the
values: L = 4.33 and E = 0.93, and orbits of negatively charged particles p = 1 are bound
for the values L = 2.53 and E = 0.98 due to the different feature of Coulomb interaction.

Stable circular orbits

Here we will study the stable circular orbits using following standard conditions

Veff = E , V ′eff = 0 , V ′′eff = 0. (10)

!" !! !" ## ? $ % &



22 A. Demyanova et al.

-10 -5 0 5 10

-10

-5

0

5

10

x

y

-10 -5 0 5 10

-10

-5

0

5

10

x

z

ℒ≐4.33, ℰ≐0.93

r0≐7., θ0≐1.6

0 2 4 6 8 10 12
-6

-4

-2

0

2

4

6

x

z

q≐1.

-10 -5 0 5 10

-10

-5

0

5

10

x

y

-10 -5 0 5 10

-10

-5

0

5

10

x

z

ℒ≐3.5, ℰ≐0.95

r0≐7., θ0≐1.6

0 2 4 6 8 10 12
-6

-4

-2

0

2

4

6

x

z

q≐0.

-10 -5 0 5 10

-10

-5

0

5

10

x

y

-10 -5 0 5 10

-10

-5

0

5

10

x

z

ℒ≐2.53, ℰ≐0.98

r0≐7., θ0≐1.6

0 2 4 6 8 10 12
-6

-4

-2

0

2

4

6

x

z

q≐-1.

Figure 1. Trajectories of charged particles around Reissner-Nordström black hole with Q = 0.5M.

At the equatorial plane the circular orbits can be stable for the critical value of angular
momentum Lcr which is the solution of the equation V ′eff = 0 and have the following form:

L2
± =

1

2
(

r (r − 3M) + 2Q2
)2

[

Q2r3
((

q2 − 2
)

r − 2M
(

q2 − 5
))

+ 2Mr4(r − 3M) (11)

+
(

q2 − 4
)

Q4r2 ± qQr2
(

r (r − 2M) + Q2
)

√

4r(r − 3M) +
(

q2 + 8
)

Q2
]

.

One can see from equation (11) that for positive charges L2
+ < L

2
− and for negative

charges L2
− > L

2
+. We also have

L2
+|q<0 = L

2
−|q>0 < L

2
+|q>0 = L

2
−|q<0 . (12)

This can be interpreted as follow: the circular orbits exist at the values of angular mo-
mentum for positive charge with angular momentum in the range L2

− ≤ L
2 ≤ L2

+ and
negative charge with angular momentum in the range L2

− ≥ L
2 ≥ L2

+. The value of critical
angular momentum for neutral particles (q = 0) has the following form

L2
± =

r2
(

Mr − Q2
)

r (r − 3M) + 2Q2
, (13)
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and in the case when Q = 0, we will get the Schwarzschild solution and the angular mo-
mentum takes the standard form

L2
± =

Mr2

r − 3M
. (14)

Now we will analyze the solution (11) and look for the condition where bothL2
± are real.

For this we require the expression inside the square root to be non-negative:
(

q2 + 8
)

Q2 − 4r(3M − r) ≥ 0 . (15)

Thus, for the critical value of specific angular momentum L we consider two cases:
Case 1 – since

(

q2 + 8
)

Q2 is always positive, then the we require the condition r > 3M0
for all values of q, including neutral particles (q = 0).

Case 2 – for the case when r < 3M we require the condition
(

q2 + 8
)

Q2 > 4r (3M − r)

which will be satisfied for a large values of electric charge.
From the condition (15) one may get the lower limit for radius of the circular orbit of

particle (at the same time the radius equals to the radius of photon circular orbits) when L
is still real

rcrit =
3

2
M















1 +

√

1 −

(

q2 + 8
)

9

Q2

M2















. (16)

In expression (16), in order to have real value for rcrit we require the expression under
the square root to be non-negative: 9M2 −

(

q2 + 8
)

Q2 ≥ 0. This will give us the interval
for the allowed values of the electric charge of the particles:

−

√

9 − 8 Q2

M2

Q/M
≤ q ≤

√

9 − 8 Q2

M2

Q/M
. (17)

Expression (17) indicates the allowed value of the charge of the test particle required for
circular stable orbits.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

Q/M

r

M q=0.3

q=0.5

q=1

q=1.4

Figure 2. The dependence of radius of photon circular orbits on the charge of BH Q for the different
values of the particle charge, q.

Figure 2 illustrates the dependence of the value of the radius of photon circular orbits
from the electric charge of the BH Q for the different values of the particle charge q. One
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Figure 3. ISCO and OSCO radius as a function of black hole charge for positively charged particles.

can see that the radius decreases with the increase of the value of Q. From the Figure 2
one can also see that for the neutral test particle we get rcrit = 3M (the Scwarzchild case).
It can be also seen from the figure that for the large values of Q and q, the photon sphere
radius decreases very fast, depending both black hole and particles charge. The critical
radius decreases with the increase of the black hole charge and reaches the value of 2M for
Q = M for neutral particle.

Now we will study the radius of stable circular orbits using the condition V ′′eff ≥ 0. There
are bounds for stable circular orbits corresponding to two roots of L2. One of them called
innermost stable circular orbits (ISCO) and the other one called outermost stable circular
orbits (OSCO). Inner stable circular orbits requires large angular moments, while outer
ones requires smaller angular momentum. Obviously, according to equation (12), L2

+ for
negative charges and L2

− for positively charged particles correspond to OSCO and L2
+ for

positively charged particles and L2
− for negatively charged particles correspond to ISCO.

Taking into account above estimations we can calculate ISCO and OSCO equations using
condition for circular stable orbits (10) in the following form

2q Q −

(

r2
(

L2
± + Q2

)

+ 2L2
±Q2 − Mr3 − 3L2

±Mr
)2

r
(

L2
± + r2

)3/2 (

r(r − 2M) + Q2
)3/2

+
3r2

(

L2
± + Q2

)

+ 10L2
±Q2 − 2Mr3 − 12L2

±Mr

r
√

(

L2
± + r2

)

[

r(r − 2M) + Q2
]

≥ 0 (18)

So, within the range risco ≤ r ≤ rosco there is an accretion disk contains the charged particles
with the different specific angular momentum.

Now, we will analyze ISCO and OSCO radius for both positively and negatively charged
particles.

Figure 3 illustrates the dependence of the ISCO and OSCO radius on the charge of the
RN black hole charge for positively charged particles. One can see that in both cases
q = 1.4 and q = 0.8 ISCO radius decreases with the increase the value of black hole charge.

!" !! !" ## ? $ % &



Characteristic orbits around charged black holes 25

[h!]

0.0 0.2 0.4 0.6 0.8 1.0

6

8

10

12

14

Q/M

r

M

risco

rosco

q=-1.4

0.0 0.2 0.4 0.6 0.8 1.0

6

8

10

12

14

Q/M

r

M

risco

rosco

q=-0.8

Figure 4. ISCO and OSCO radius as a function of black hole charge for negatively charged particles.
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Figure 5. q − Q diagram for different values of ISCO (left panel) and OSCO (right panel) radius of
a charged particle.

In case when q = 0.8 the radius of OSCO decreases with the increase of Q, while when
q = 1.4 increases and tends to infinity at some upper values of (qQ)upper due to domination
of the Coulomb interaction.

Figure 4 illustrates the dependence of ISCO and OSCO radius on black charge for nega-
tively charged particles. One can see that in both case q = −1.4 and q = −0.8 ISCO radius
decreases with the increase of the value of black hole charge. The behavior of the radius
of OSCO differs from the case of positive charge: for all negative charge of particles the
radius of OSCO increases with the increase of the module of the charge.

In Figure 5 we present the relation between the particle’s and the black hole’s charges
for the fixed values of ISCO and OSCO. One can see from the diagram that OSCO may not
exist below the radius 6M from the central object for negatively charged particles and for
positively charged particles with value more than q = 2. One can also see from the right
panel of the Figure 5 OSCO radius (at the range 4M ≤ rosco ≤ 6M) can be the same for
different charged particles (2 ≤ q ≤ −3) for the fixed value of black hole charge.

Now we study thed istance between ISCO and OSCO corresponding to the size of ac-
cretion disk ∆r = rosco − risco.
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Figure 6. The dependence of the accretion disk size on black hole charge

In Figure 6 we show the relation between black hole charge, Q, and the size of the
accretion disk which contains positively charged particles with values q = 0.8 and q = 1.4.
From the Figure 6 one can see that size of accretion disk for the charge with the value
q < 1 is always less than one in the case when q > 1. As it was shown in Figure 6 in case
of when q = 0.8 the size ∆r increases with the increase of Q, reaches its maximum then
starts to decrease. However, the size increases with the increase of Q up to ≈ 0.45M then
starts to increase due to increase the Coulomb force. Moreover, one can see that the delta
r increases with increasing the particle charge. In the other words, the as sizeable specific
charge of particles as wider the width of their allowed circular orbits in the accretion disk.

3 CONCLUSION

In this work, we have studied circular motion of charged particles around Reissner-Nordström
black hole and the following main results are obtained:

• Upper and lower limits for the value of charged particle at circular orbits for the given
value of RN black hole charge have been found.
• It was shown that the critical radius of circular orbits depends on particle charge.
• It was found that there are two critical values for the specific angular momentum for
charged particles. One of them corresponds to the lower boundary and the other to the
upper boundary of the stable circular orbits.
• It was shown that OSCO radius of positively charged particles increases with the increase
of Q for q > 1 and it decreases with the increase of Q fr q < 1. However, OSCO radius for
negatively charged particles increases with the increase of the black hole charge Q.
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ABSTRACT
We consider electrostatic effect on the fluid distribution of compact star. We modify
the energy-momentum tensor including the electric field and current density terms
and get a set of hydrostatic equilibrium equations which are an extended version of
Tolman-Openheimer-Volkoff (TOV) equations. We expect that solutions of set of
hydrostatic equations will lead to a mass-radius relation of the compact star config-
uration.

Keywords: electrostatic effect – modified energy momentum tensor –charge fluid
configuration – charged neutron star

1 INTRODUCTION

Compact stellar objects such as neutron stars are the laboratories for study the physics in
extreme conditions, being the crossroad of various disciplines of the contemporary physics.
In the recent years, using the multi-wavelength and multi-messenger observations of neu-
tron stars a large amount of data has been collected, stimulating an interest in testing var-
ious theories and theoretical models. The direct detection of gravitational waves in the
event GW170817, from a binary neutron star merger (Abbott et al., 2017) opened up a new
avenue in the investigation of these remarkable objects, on the other hand, restricting the
applicability of some of the theories (see, e.g. Radice et al., 2018).

Neutron stars are compact stars with tremendously high densities, in which most of
protons and electrons fuse together producing neutrons. However, closer to the surface of
the neutron star, where the densities are expected to be less than in the center, some portion
of charged particles, like protons and electrons may survive under certain conditions, so
the local charge neutrality cannot be imposed (Rotondo et al., 2011). In this contribution
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we focus on the possibility of the neutron star to have non-negligible electric charge and
corresponding electric field, which eventually modifies the conditions for the relativistic
hydrostatic equilibrium.

The net charge contribution in case of the neutron stars is often neglected in the literature,
justified by lack of astrophysical mechanisms for charging of this object to such values, for
which the energy-momentum tensor of electromagnetic field would become comparable
with those of the gravitational field of the neutron star. This problem is quite similar to
the fact that the Reissner-Nordström spacetime metric for compact objects like black holes
is not often used in realistic models. Neglecting the charge also simplifies the equations
governing the hydrostatic equilibrium of neutron stars known as the Tolman-Oppenheimer-
Volkoff (TOV) equation. However, in addition to the purely conceptual interest in studying
charged compact star configurations, one can point out at least two realistic mechanisms of
charging of compact stars, which we briefly summarize below.

The first mechanism is based on Arthur Eddington’s idea formulated in Eddington (1926).
Difference of masses of protons and electrons by a factor of almost 2 × 103 leads to the
charge separation in the stellar atmosphere. Therefore, stars should possess a small and
positive electric charge to prevent protons and electrons from further separation. Eddington
estimated the charge of a star of the order of 100 C per solar mass. Later in 1978, Edding-
ton’s idea was generalized by Bally and Harrison (1978), concluding that any macroscopic
cosmic body, including galaxies, stars and also the neutron stars bear a positive electric
charge of the order of 100 C per solar mass. In this case, the positive charges of cosmic
objects are compensated by negatively charged particles, i.e. electrons distributed in the in-
tergalactic and interstellar media. Indeed, for ordinary stars, the density of charge obtained
in this mechanism is negligibly small due to large stellar surface. However, due to compact-
ness of neutron stars, having relatively small surface area, the charge density corresponding
even to 100 C per solar mass might have some non-negligible impact. Moreover, similar
charging mechanism has been recently applied also to black holes (see, e.g. Zajaček et al.,
2018; Zajacek and Tursunov, 2019). It has been shown that the charge in case of black
hole is not only measurable, but has quite important astrophysical consequences related to
the acceleration of cosmic rays (Tursunov et al., 2020a; Tursunov and Dadhich, 2019) and
interpretation of observational data of black holes (Tursunov et al., 2020b).

In addition to the above mentioned mechanism, the presence of the charge in neutron
stars can be justified by using relativistic approach. Neutron stars are strongly magne-
tized with the strength of magnetic fields reaching up to 1018 G. If the highly magnetized
neutron star is rotating (which is often the case, as observed e.g. in pulsars), this causes
the induction of non-zero electric charge density, known as the Goldreich-Julian charge
density, given by the relation

ρGJ =
1

2πc
ΩB, (1)

where Ω is the angular velocity of the star (Goldreich and Julian, 1969). The relativistic
rotation of a neutron star in the presence of strong and highly ordered magnetic field aligned
with the rotation axis induces an electric field as in the case of the classical Faraday’s
unipolar dynamo, which causes charge separation in the neutron star matter leading to
subsequent electric charge density given by Eq. (1).
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At a high density of matter of a neutron star, the kinetic energy of electrons may become
very high, so that it allows them to escape from the surface of the neutron star. The limit on
this charge, thus, should be given by the electro-hydro-static equilibrium equations. There-
fore, in both Newtonian and relativistic approaches neutron stars bear non-zero electric
charge, motivating us to seek for corresponding modifications of the TOV equations.

The modifications of TOV equations by the presence of an electric charge of the neutron
star have been previously studied by several authors. We briefly introduce some of these
works. Bekenstein (1971) have shown that the metric corresponding to the spherical dis-
tribution of charged perfect fluid matches with the standard exterior Reissner-Nordström
spacetime metric. Malheiro et al. (2004); Ray et al. (2006) found that strongly charged
neutron star configurations (charge tending to its maximal limit) is possible, although such
configuration is likely leads to the collapse of the star and subsequent formation of charged
black hole. Bhatia et al. (1969) estimated the electric field on the surface of the star by the
value of around ∼ 120 V/cm by solving the hydrostatic equilibrium equations including
electrostatic interaction. Lemos et al. (2015) solved electrically modified TOV equation
with an assumption of proportionality of the charge to the energy density distributions. Our
approach somewhat follows the work of Lemos et al. (2015) with the difference that we
include an additional interaction term in the stress-energy tensor expressed in terms of the
four-current density and electromagnetic four-potential. When we neglect the additional
term, resulting modified TOV equations match with those obtained by Lemos et al. (2015).

2 RELATIVISTIC BACKGROUND

The metric of the static spherically symmetric star can be written in the following general
form

ds2 = − f (r)c2dt2 + l(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (2)

Here, f (r) and l(r) are the function of a radial coordinate only, due to the spherical symme-
try of the central object. The hydrostatic equation that we derive should be in accordance
with the Einstein-Maxwell equations, which read

Gµν =
8πG

c4
Tµν, ∇νFµν =

4π

c
jµ, (3)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor and Fµν = ∂µAν − ∂νAµ is the Faraday-

Maxwell tensor written in the terms of the electromagnetic potential Aµ. Here jµ = ρcuµ

is the four-current of an electromagnetic field, where ρc is the charge density and uµ is
the four-velocity normalized by the condition uµu

µ = −c2, which we can write as uµ =

(c
√
−gtt, 0, 0, 0) in the static case. Note, that we use physical units throughout the paper.

We assume a static neutron star configuration with non-vanishing net charge density of
the star, so that the four-current can be written as

jµ =
(

cρc

√

−gtt, 0, 0, 0
)

. (4)
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2.1 Energy-momentum tensor

The total energy-momentum tensor can be represented as the sum of two terms

Tµν = T M
µν + T EM

µν , (5)

where T M
µν corresponds to the energy-momentum tensor of a matter and T EM

µν is an elec-
tromagnetic energy-momentum tensor. In the present paper we consider a matter to be
a perfect fluid with the total mass density ρ, pressure P, and four-velocity uµ. Then the
matter energy-momentum tensor T M

µν takes the form

T M
µν =

(

ρ + P/c2
)

uµuν + Pgµν. (6)

The energy-momentum tensor responsible for the electromagnetic part can be found by
variation of the action

S =
1

c

∫

LEM

√
−gd4x, (7)

with respect to the metric, where the Lagrangian is given by

LEM =
1

16π
FµνF

µν + Aµ jµ. (8)

Here the first term of Eq. (8) is the pure contribution due to the electromagnetic field and the
second term is responsible for the interaction of charged particles with an electromagnetic
field. For the interaction term of the Lagrangian, one can find the corresponding energy-
momentum tensor by using the Noether’s theorem (Noether, 1971). It basically states that
for each differentiable symmetry of the action of a physical system associates a conserva-
tion law. Generalization of the Noether’s theorem to non-local field theories was studied
in Krivoruchenko and Tursunov (2019). For the first term, describing the field, the energy-
momentum tensor is calculated in a standard manner by variation of the action Eq. (7) with
respect to gµν and putting on the boundaries δgµν = 0, which gives

1

2

√
−gTµν =

∂
√
−gL
∂gµν

−
∂

∂xλ
∂
√
−gL
∂g
µν
,λ

. (9)

Thus, one can write the total energy-momentum tensor for electromagnetic field with the
interaction in the following form

T EM
µν =

1

4π

(

F
.γ
µ Fνγ −

1

4
gµνFγβF

γβ

)

+ Aµ jν. (10)

One should note, that the symmetric property of the energy-momentum tensor requires that
in the last term of Eq. (10) both Aµ and jν correspond to the same source.

Due to the spherical symmetry of the star, only nonzero component of an electric field
should be Er which implies that the nonzero components of a tensor of electromagnetic
field are Ftr = −Frt. Thus, the non vanishing components of the total energy-momentum
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tensor Eq. (5) take the form

Ttt = ρc
2 f (r) +

1

8π
l−1(r)F2

rt + At(r) jt(r), (11)

Trr = Pl(r) −
1

8π
f −1(r)F2

rt, (12)

Tθθ = r2

(

P +
1

8π
f −1(r)l−1(r)F2

rt

)

, (13)

Tφφ = r2

(

P +
1

8π
f −1(r)l−1(r)F2

rt

)

sin2 θ. (14)

Now, let us rewrite the Maxwell equation given in Eq. (3) as

∂ν
(√
−gFµν

)

=
4π

c
jµ
√
−g . (15)

Here g is the determinant of metric tensor gµν. If we solve the Maxwell equation then we
get

∂r

( √

l(r) f (r)r2Ftr
)

= 4πρcr2
√

l(r),

⇒ Ftr =
Q(r)

r2
√

l(r) f (r)
. (16)

The above equation can be rewritten as,

dAt(r)

dr
=

Q(r)

r2

√

f (r)l(r) , (17)

where

dQ(r)

dr
= 4πr2ρc

√

l(r) . (18)

3 HYDROSTATIC EQUATIONS

Let us assume the function l(r) in the spacetime metric satisfies the following relation

1

l(r)
= 1 −

2Gm(r)

c2r
+

GQ2(r)

c4r2
, (19)

which coincides with the external Reissner-Nordström metric.
Now we try to find the differential equation concerning mass of the stellar object consid-

ering Ftr from Eq. (16). Einstein equation for Gtt = (8πG/c4)Ttt is given by

f (r)
(

rl′(r) + l2(r) − l(r)
)

r2l2(r)
=

8πG

c4
f (r)ρ(r)c2 +

G f (r)Q2(r)

c4r4
+

8πG

c4
At(r) jt(r) . (20)
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Using the form of metric as per expression Eq. (19) we get,

dm

dr
= 4πr2ρ(r) +

Q(r)

c2r

dQ(r)

dr
+

4πr2At(r) jt(r)

c2 f (r)
. (21)

Taking the solution of Maxwell equation, Ftr from Eq. (16), we write Einstein equation for
Grr = (8πG/c4)Trr as

r f ′(r) − f (r)l(r) + f (r)

r2 f (r)
=

8πG

c4
l(r)P(r) −

Gl(r)Q2(r)

c4r4
. (22)

By manipulating above equation we get,

d f (r)

dr
=

8πG

c4
r f (r)l(r)P(r) −

f (r)

r
+

f (r)l(r)

r
−

G f (r)l(r)Q2(r)

c4r3
. (23)

Now we are interested to see the radial dependence of pressure inside the star. For this
we introduce the energy-momentum conservation equation as

∇µT µν = 0 . (24)

For ν = 1 we get,

dP(r)

dr
= −

(

ρ(r)c2 + P(r)
)

f ′(r)

2 f (r)
+

Q(r)

4πr4

dQ(r)

dr
−

At(r) jt(r) f ′(r)

2 f 2(r)
. (25)

Eqs. (17), (18), (21), (23), and (25) are the set of five governing equations which we have
to solve simultaneously in order to obtain mass-radius relation.

3.1 Set of equations to be solved

Using Eq. (19) we can simplify Eq. (23) as follows

d f (r)

dr
=

f (r)
(

8πGrP(r)
c4 +

2Gm(r)
c2r2 −

2GQ2(r)
c4r3

)

(

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

) . (26)

From Eq. (4) we can write

jt = cρc(r)gtt

√

−gtt = −cρc(r)
√

f (r) , (27)

and substituting Eqs. (18), (26) and (27) into the pressure equation Eq. (25) we get

dP(r)

dr
= −

(

ρ(r)c2 + P(r)
) (

4πGrP(r)
c4 +

Gm(r)
c2r2 −

GQ2(r)
c4r3

)

(

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

)

+ ρc
Q(r)/r2

√

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

+
cρcAt(r)

(

4πGrP(r)
c4 +

Gm(r)
c2r2 −

GQ2(r)
2c4r3

)

√

f (r)
. (28)
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Below we summarize a set of equations which we have to solve in order to describe the
configuration

dAt(r)

dr
=

Q(r)

r2
, (29)

dQ(r)

dr
=

4πr2ρc
√

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

, (30)

dm

dr
=4πr2ρ(r) +

4πrρcQ(r)

c2

√

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

−
4πr2ρcAt(r)

c
√

f (r)
, (31)

d f (r)

dr
=

f (r)
(

8πGrP(r)
c4 +

2Gm(r)
c2r2 −

2GQ2(r)
c4r3

)

(

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

) , (32)

dP(r)

dr
= −

(

ρ(r)c2 + P(r)
) (

4πGrP(r)
c4 +

Gm(r)
c2r2 −

GQ2(r)
c4r3

)

(

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

)

+ ρc
Q(r)/r2

√

1 − 2Gm(r)
c2r
+

GQ2(r)
c4r2

+
cρcAt(r)

(

4πGrP(r)
c4 +

Gm(r)
c2r2 −

GQ2(r)
2c4r3

)

√

f (r)
. (33)

3.2 Density profile of mass and charge

We have five differential equations to be solved to find At(r), Q(r), m(r), f (r), P(r), ρ(r)
and ρc(r). So we have to get rid of two unknowns to close the system. At first we calculate
for constant density inside distribution i.e.

ρ(r) = constant . (34)

We assume

ρc(r) = βρ(r) , (35)

where β is a dimensionless parameter describing the charge fraction in the distribution.
As now we know ρ(r) and ρc(r) from Eqs. (34) and (35), we finally have five equations

for five unknowns. Therefore the system is closed.

3.3 Initial and boundary conditions

At the center of the star we can consider that m(0) = 0, Q(0) = 0, At(0) = 0 and l(0) = 1.
We also consider that P(0) = P0, ρ(0) = ρ0 and ρc(0) = ρc0 where Pc is the central pressure,
ρ0 is the central mass density and ρc0 is the central charge density.
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We have to consider the pressure of the distribution vanish at the surface i.e. P(R) = 0,
where R is the radius of the star. Apart from that it must be taken into account that the
electric field at infinity is zero, i.e. r → ∞, At → 0 and the spacetime is asymptotically flat
which means r → ∞, f → 1.

Following these initial and boundary conditions if we solve system of equations numer-
ically then we can find mass-radius relation and maximum mass that can be supported by
this configuration. We leave the numerical calculations for further studies.

4 SUMMARY

We revisited the problem of charged neutron star which might be realistic and astrophysi-
cally relevant. We have derived modified TOV Eqs. (29) - (33), governing quantities of our
interest. These equations together with Eqs. (34) and (35) can be simultaneously solved
numerically, which we will complete in the future work, where we also plan to use realistic
equations of state.
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Zajaček, M., Tursunov, A., Eckart, A. and Britzen, S. (2018), On the charge of the Galactic centre
black hole, Mon. Not. R. Astron Soc., 480(4), pp. 4408–4423, arXiv: 1808.07327.

!" !! !" ## ? $ % &

http://dx.doi.org/10.1080/00411457108231446
http://www.arxiv.org/abs/1711.03647
http://www.arxiv.org/abs/nucl-th/0604039
http://www.arxiv.org/abs/1106.4911
http://www.arxiv.org/abs/1905.05321
http://www.arxiv.org/abs/2004.07907
http://www.arxiv.org/abs/1912.08174
http://www.arxiv.org/abs/1904.04654
http://www.arxiv.org/abs/1808.07327


Proceedings of RAGtime 20–22, 15–19 Oct., 16–20 Sept., 19–23 Oct., 2018/2019/2020, Opava, Czech Republic 39
Z. Stuchlı́k, G. Török and V. Karas, editors, Silesian University in Opava, 2020, pp. 39–53

Propagation of waves in polytropic disks

Jiřı́ Horák
Astronomical Institute, Academy of Sciences, Bočnı́ II 141 31 Prague, Czech Republic

ABSTRACT
We derive an analytic dispersion relation for waves in three-dimensional polytropic
disks. The problem can be separated to two one-dimensional problems of radial and
vertical wave propagation. For the vertical problem, we use and generalize first-
order perturbation method for waves near the vertical resonance introduced previ-
ously by several authors. Based on comparison of the analytical solutions with nu-
merical integration, we find a surprisingly large region of validity of our dispersion
relation including both p-mode and g-mode oscillations.

Keywords: perturbation methods – disk dynamics

1 INTRODUCTION

One of the most prominent observation features of galactic black-hole candidates is a rapid
and strong X-ray variability. Apart from the chaotic fluctuations, the signal occasionally
also contains relatively coherent discrete features known as the quasi-periodic oscillations
(QPOs) superimposed on a broad-band noise continuum in the power density spectra. In
addition to the most prominent QPOs observed at low frequencies (from 0.1Hz to 30Hz),
the accreting objects also occasionally show a variability at frequencies of few hundreds
Hz that correponds to dynamical timescales of the flow in the vicinity of the central black
hole.

Perhaps the most advanced theoretical models of high-frequency QPOs are based on the
relativistic diskoseismology that deals with oscillation modes and wave propagation in ge-
ometrically thin accretion flows (Kato, 2001; Kato et al., 2008; Wagoner, 2008). Different
types of oscillation modes are most easily discussed with the aid of the local dispersion
relation for vertically isothermal accretion disks (Okazaki et al., 1987),

ω̃2c2
s k2

r −
(

ω̃2 − κ2
) (

ω̃2 − jΩ2
⊥

)

= 0. (1)

Here, the background flow has sound speed cs and orbital velocity Ω, a particular mode is
described by its oscillation frequency ω, azimuthal wavenumber m and vertical quantum
number j, the oscillation frequency with respect to the flow is given by ω̃ = ω − mΩ, and
finally κ and Ω⊥ are the radial and vertical epicyclic frequencies determined by the gravity
of the central object. For given values of ω, m and j, the dispersion relation (1) gives
value of the squared radial wavevector k2

r . The oscillations can radially propagate as free
waves when k2

r > 0. The case k2
r < 0 corresponds to evanescent waves. It is obvious from
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equation (1) that for j ≥ 1 there exist two types of freely propagating waves: g-modes for
which ω̃2 < κ2 and p-modes with ω̃2 > jΩ2

⊥. For j = 0, there exists only p-modes with
ω̃2 > 0. The terminology is derived from the nature of the main restoring forces: in the case
of p-modes, it is pressure gradient, and therefore they are essentially acoustic waves, in the
case of g-modes it is mostly gravity and inertial forces. The dispersion relation also reveals
three important resonances where kr either vanish, or is infinite. The Lindblad resonance
correspond to radii where ω̃ = ±κ. In the case of the vertical resonances ω̃ = ±

√
jΩ⊥.

Finally, the corotation resonance occurs at the radius where oscillation frequency matches
the local orbital frequency, and thus ω̃ = 0.

In this note, we will derive a dispersion relation similar to equation (1) describing the
waves propagating in polytropic disks. This subject has been touched by several authors
already. Korycansky and Pringle (1995) studied propagation of axisymmetric waves in
polytropic disks with vertical stratification of the entropy. The authors derive numerical
dispersion relation. Ortega-Rodrı́guez et al. (2002) investigated p-modes in relativistic
disks and introduced the perturbation method that is used here. The same method was
also used by Kato (2010) to study nearly vertical m = 2 disk oscillations.

The plan of the paper is as follows. In section 2 we introduce the separation to the radial
and vertical problems. Section 3 deals with the vertical problem and its solution in some
special cases. The main results of this work are in section 4 that deals with the approximate
solution of the vertical problem for a general polytropic index. The last section 5 is devoted
to conclusions.

2 RADIAL AND VERTICAL WAVE PROPAGATION

The problem of adiabatic linear oscillations of a purely rotating inviscid flows leads to a
single linear partial differential equation for the enthalpy perturbations h,

∂

∂r

(

rρ

D

∂h

∂r

)

−
r

ω̃2

∂

∂z

(

ρ
∂h

∂z

)

−
[

rρ

c2
s

+
m2ρ

rD
+

2m

ω̃

∂

∂r

(

ρΩ

D

)]

h = 0. (2)

Here the cylindrical coordinates {r, φ, z} are employed and the equilibrium state of the disk
is described by the density ρ(r, z), the sound speed cs(r, z) and the angular velocity Ω(r).
The perturbation is assumed to depend on the time and azimuthal angle through the factor
exp[i(mφ − ωt)], where m is the azimuthal wave number and ω is the angular frequency of
the perturbation with respect to static observers. The angular frequency with respect to the
flow is Doppler-shifted to the value ω̃ = ω − mΩ and D = κ2 − ω̃2 is the determinant of
the rφ block of the Euler equations with κ being the radial epicyclic frequency. Equation
(2) is valid for arbitrary angular momentum distribution. In the case of geometrically thick
(toroidal) flows, the substitution W = h/ω̃ leads to the well-known Papaloizou-Pringe
equation (Papaloizou and Pringle, 1984).

In the case of cold geometrically thin Keplerian disks, the radial pressure gradient is
negligible with respect to inertial forces. Consequently, the equilibrium structure of the
flow varies slowly in the radial direction while it changes quickly in the vertical one. The
ratio of the horizontal to vertical pressure gradients are typically of the order of r/H, where
r is the radial coordinate and H ∼ cs0/Ω & r is the vertical scale-high of the disk and cs0
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is the equatorial value of the sound speed. On the other hand, a typical wavelength of the
perturbation is of the order of cs0/Ω and therefore it is comparable with the scale-height H.
Under these circumstances, the equation (2) is nearly separable and the problem is tractable
using a radial WKBJ approximation.

To outline this procedure, in the following we adopt the two-scale approach. In addition
to the ‘slow’ radial coordinate r, we introduce ‘fast’ radial scale θ(r) (WKBJ ‘phase’) de-
scribing the fast radial variations of the perturbation on the scale ∼ H. While the quantities
describing the unperturbed disk depend solely on slow scale r, the enthalpy perturbation is
allowed to vary on both of them, h = h(θ, r). Consequently, we rewrite the radial derivative
as

∂h

∂r
→

dθ

dr

∂h

∂θ
+
∂h

∂r
. (3)

A particular functional dependence θ = θ(r) will be fixed later, here we just assume that
∂h/∂θ ∼ r(∂h/∂r) and therefore the strong radial gradient of the perturbation is transferred
to gradient of the variable θ. The approximation works as long as the two scales are well
separated, that is rθ′ ) 1. The equation (2) becomes

θ′2
∂2h

∂θ2
︸!︷︷!︸

O(hθ′2)

+

√

Dθ′

rρ

∂

∂r





√

rρθ′

D

∂h

∂θ





︸!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!︸

O(hθ′/r)

+
D

rρ

∂

∂r

(

rρ

D

∂h

∂r

)

︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸

O(h/r2)

−
2mΩ

rω̃

∂

∂r

(

ln
ρΩ

D

)

h

︸!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!︸

O(h/r2)

−
m2

r2
h

︸︷︷︸

O(h/r2)

−
Dh

c2
s

︸︷︷︸

O(h/H2)

−
D

ρH2ω̃2

∂

∂y

(

ρ
∂h

∂y

)

︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸

O(h/H2)

= 0, (4)

where y ≡ z/H. In this work, we assume that ω̃ ∼ Ω and D ∼ Ω2 what corresponds
to radii sufficiently far away from the corotation and Lindblad resonances. Magnitudes
of individual terms in this case are indicated in equation (4). Clearly, the last two terms
dominate the preceding three because H & r. Similarly, the first term dominates the
second one because rθ′ ) 1. Therefore we demand θ′ to be of the order of 1/H. Then the
leading order terms (the first and the last two) are of the order of O(h/H2), the second term
is by factor of ∼ H/r smaller and the rest is smaller by factor of ∼ (H/r)2. We will look for
the solution in the form of successive approximations,

h(θ, r) = h(0)(θ, r) + h(1)(θ, r) + h(2)(θ, r) + . . . , (5)

where similarly h(n) = O[(H/r)n]. The leading and first-order approximation are governed
by

θ′2
∂2h(0)

∂θ2
−

Dh(0)

c2
s

−
D

ρH2ω̃2

∂

∂y

(

ρ
∂h(0)

∂y

)

= 0, (6)

θ′2
∂2h(1)

∂θ2
−

Dh(1)

c2
s

−
D

ρH2ω̃2

∂

∂y

(

ρ
∂h(1)

∂y

)

= −

√

Dθ′

rρ

∂

∂r





√

rρθ′

D

∂h(0)

∂θ




. (7)

!" !! !" ## ? $ % &



42 J. Horák

The equation (6) is separable in the variables θ and y because the quantities describing the
stationary disk (ρ and cs) are functions of r and y only. Hence, putting

h(0)(θ, y, r) = f (0)(θ, r)g(y, r), (8)

we find

θ′2

f (0)

∂2 f (0)

∂θ2
=

D

c2
s

−
D

H2ω̃2ρg

∂

∂y

(

ρ
∂g

∂y

)

≡ k2
r (r), (9)

where k2
r (r) is a slowly changing separation variable. Equation (9) introduces radial and

vertical problem. The radial part f (0) is governed by

θ′2
∂2 f (0)

∂θ2
− k2

r f (0)
= 0. (10)

This equation has a particularly simple solution when we fix the variation of the function
θ(r) so that θ′ = kr. Then we get

f (0)(θ, r) = a0(r)e−iθ
+ b0(r)eiθ, θ =

∫ r

kr(r)dr (11)

with a0 and b0 being yet undetermined functions of r only. This result shows physical
meaning of the functions θ(r) and kr: θ(r) is a quickly changing WKBJ phase and kr(r)
is the local radial wavevector of the perturbations. The case k2

r > 0 corresponds to freely
radially propagating waves. When k2

r < 0, the solution consists of growing and decaying
exponentials describing evanescent waves. Actual value of kr for given frequency of oscil-
lations arises as an eigenvalue of the vertical problem. Before determining it, we discuss
the solution of the first-order equation (7).

Substituting solution (11) into equation (7), we find

k2
r

∂2h(1)

∂θ2
−

Dh(1)

c2
s

−
D

ρH2ω̃2

∂

∂y

(

ρ
∂h(1)

∂y

)

=

= i

√

Dkr

rρ





∂

∂r




a0

√

rρkr

D




e−iθ −

∂

∂r




b0

√

rρkr

D




eiθ




g(y, r). (12)

Making the ansatzs

h(1)(θ, y, r) = f (1)(θ, r)g(y, r), ρ(r, y) = Σ(r)ρy(y), (13)

where Σ(r) is the column density and ρy(y) describes the vertical density profile. We find
that the vertical part g(y, r) can be factorized out and we are left with

∂2 f (1)

∂θ2
− f (1)

= i

√

Dkr

rΣ





∂

∂r




a0

√

rΣkr

D




e−iθ −

∂

∂r




b0

√

rΣkr

D




eiθ




. (14)

Since the right-hand side contains terms varying as e±iθ, the solution would vary as θe±iθ

causing non-uniformity of the expansion (5) when θ ∼ (r/H). Nevertheless, these terms
can be eliminated by putting

a0

√

rΣkr

D
= const ≡ a, b0

√

rΣkr

D
= const ≡ b. (15)
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This way the functions a0(r) and b0(r) in the zero-th order approximation are determined
and we also find that f (1)(θ, r) = 0. Hence, the zeroth order approximation

f (0)(θ, r) =

√

D

rΣkr

[

ae−iθ
+ beiθ

]

(16)

solves the problem even up to the first order in H/r.

3 VERTICAL PROBLEM AND DISPERSION RELATIONS

As follows from equation (9), the vertical part g of the perturbation is governed by

1

ρ

∂

∂y

(

ρ
∂g

∂y

)

+
ω̃2H2

c2
s

(

1 +
c2

s k2
r

D

)

g = 0. (17)

The equation (17) should be supplied with appropriate boundary conditions at the surface
of the disk. Typically, we require the Lagrangian pressure variations ∆p to vanish at the
surface of the flow (a free surface boundary),

∆p = 0 as p→ 0. (18)

For fixed r and ω̃, the equation (17) represents the eigenvalue problem for distinct values
of kr. The algebraic relation φ(ω̃, kr, r) = 0 is the dispersion relation.

3.1 Isothermal case

In the simplest case of a vertically isothermal accretion disk the sound speed does not vary
with height cs(r, y) = cs0(r) and the density profile is Gaussian, ρ(r, y) = ρ0(r) exp(−y2/2).
The vertical thickness of the disk is given by H ≡ cs0/Ω⊥, whereΩ⊥ is the vertical epicyclic
frequency. The equation (17) takes the form of Hermite differential equation

∂2g

∂y2
− y
∂g

∂y
+Cg = 0, C ≡

ω̃2

Ω2
⊥

(

1 +
c2

s k2
r

D

)

(19)

and the boundary condition (18) translates to

(

g −
ω̃2

Ω2
⊥

y
∂g

∂y

)

e−y2/2 → 0 as y→ ±∞. (20)

When |y| → ∞, a general solution of equation (19) behaves as g(y) ∼ ayC + bey2/2 with
a and b being constants. The boundary condition is satisfied when b = 0 on both sides.
This happen only for particular values of C, given by non-negative integer values, C ≡
j = 0, 1, 2, . . . . We therefore recover the dispersion relation (1). The eigenfunctions are
Hermite polynomials, g(y) = He j(y).
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3.2 Incompresible case

In the incompressible limit, the density is constant ρ(r, y) = ρ0(r) for |y| ≤ 1, pressure
varies as p(r, y) = p0(r)(1 − y2) and sound speed is infinite. The vertical thickness H is a
free parameter of the model. The equation (17) takes a remarkably simple form,

∂2g

∂y2
+ k2

z g = 0, k2
z ≡
ω̃2k2

r

D
, (21)

where kz is the vertical wavenumber. A general solution when k2
z > 0 reads

g(y) = a cos (kzy) + b sin (kzy) (22)

and the boundary condition (18) becomes

g ∓
ω̃2

Ω2
⊥

∂g

∂y
= 0 at y = ±1. (23)

Both boundary conditions are satisfied when

(

ω̃2

Ω2
⊥

kz − ctgkz

) (

ω̃2

Ω2
⊥

kz − tgkz

)

= 0, (24)

what, after substituting for kz from equation (21), becomes the dispersion relation. The first
term and second term in equation (24) corresponds to even and odd modes, respectively. In
the case k2

z < 0, the equation (21) with boundary conditions (23) gives only trivial solutions.
Consequently, p-modes for which D < 0 are absent in the incompressible flows and only
modes with D > 0 (g-modes) may exist.

3.3 General polytropic case

Both isothermal and incompresible flows are special (and singular) cases of more general
flows made by polytropic gas governed by equation of state of the form p ∝ ρ1+1/n, where
n is the polytropic index. The isothermal case corresponds to the limit n → ∞, while
incompresible flow corresponds to n = 0. In the case of a general polytropic index, the
density and sound speed vary as ρ(r, y) = ρ0(r)

(

1 − y2
)n

and c2
s (r, y) = c2

s0(r)(1 − y2). The
half-thickness of the disk is H =

√
2ncs0/Ω⊥. The equation (17) becomes

(

1 − y2
) ∂2g

∂y2
− 2ny

∂g

∂y
+

[

A + B
(

1 − y2
)]

g = 0 (25)

with

A ≡
2nω̃2

Ω2
⊥
, B ≡

c2
s k2

r

D
A (26)

and the boundary condition (18) reads

(

1 − y2
)n

(

g −
A

2n

∂g

∂y

)

→ 0 as y→ ±1. (27)

!" !! !" ## ? $ % &



Waves in polytropic disks 45

The behavior of a general solution of equation (25) close to singularities at y = ±1 is
g(y) ∼ a + b(y ∓ 1)1−n. The boundary condition (27) therefore selects the solutions with
b = 0. This can be done on both sides only for particular values of the parameter A.
Unfortunately, for nonzero values of B, the equation (25) does not represent any well known
type of eigenvalue problem, for which solution is known in a closed form. However, we
will attempt to find its approximate solution in the next section.

4 APPROXIMATE SOLUTION

4.1 Qualitative discussion based on WKBJ approximation

Because the parameters A and B are connected to the oscillation frequency ω̃ and radial
wavevector kr through definitions (26), it is good to remind that for real-valued ω̃, A cannot
be negative. The limiting case A = 0 corresponds to the corrotation resonance where ω̃ = 0.
At Lindblad resonances we have D = κ2 − ω̃2 = 0 corresponding to A = 2nκ2/Ω2

⊥. Finally,
the vertical resonances occurs when B = 0. The waves can propagate freely in the radial
direction when the squared radial wavevector k2

r is positive, i.e. when B and D have the
same signs. The case B < 0, A > 2nκ/Ω⊥ correponds to p-modes, while B > 0 and
A < 2nκ/Ω⊥ for g-modes. In the remaining regions the waves are evanescent.

In the equation (25), the first-derivative term can be eliminated by a substitution

g(y) = (1 − y2)−n/2g̃(y). (28)

Then the equation (25) becomes suitable for WKBJ approximation,

∂2g̃

∂y2
+ k2

z (y)g̃ = 0, k2
z (y) = −

n(n − 2)

(1 − y2)2
+

A + n(n − 1)

1 − y2
+ B. (29)

Here k2
z is the squared vertical wavevector. The perturbation can propagate as a wave in the

vertical direction when k2
z > 0, when k2

z < 0 the perturbation is evanescent. Depending on
the values of the parameters A and B and polytropic index, one of five possible situations
occurs (see Figure 1).

For n < 2, the singularity at the surface of the disk (y = 1) is in the wave-propagation
region. The function k2

z (y) is monotonic in the range 0 ≤ y < 1. In the mid-plane (y = 0)
we have k2

z (0) = A+ B+ n. Therefore, when B < −A− n the mid-plane is in the evanescent
region and there is a turning point at

yt1 =
[

1 + x +
√

x2 + n(n − 2)/B
]1/2
, x ≡

A + n(n − 1)

2B
. (30)

This case will be further referred as the case 1!. When B < −A−n the waves can propagate
in entire domain corresponding to the case 2!. Because A > 0 (being a product of positive
quantities), case 1! corresponds to oscillations with B < 0 and therefore D < 0. Therefore,
the case 1! describes p-modes. Their oscillations are concentrated mostly close to the
surface of the disk. On the other hand, g-modes with D > 0 and B > 0 correspond to
the case 2! and one may expect variability in the whole vertical range of the disk. The
parameter space for n > 2 is shown in the upper-right panel in Figure 1 using gray color.
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1 2
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1 5

3
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3 4 5

Figure 1. Five possible cases of vertical propagation of perturbations in a disk with general poly-
tropic index n. The first and second row corresponds to n < 2 and n > 2, respectively. Each panel
shows the squared vertical WKBJ wavevector k2

z (y) by purple line. Due to the mid-plane symmetry,
only range 0 ≤ y < 1 is shown. The wave-propagation regions, where k2

z (y) is positive are indicated
by blue wavy lines. The locations of the turning points are given by equations (30) and (31) (see text).
The upper-right panel shows domains of each case in the (A, B)-plane. The gray and blue symbols
correspond to n < 2 and n > 2, respectively. The separating curves are given by B = −A − n (gray)
and B = −[A + n(n − 1)]2/[4n(n − 2)] (blue). The vertical dotted line corresponds to B = 0.

The situation is more complex for n > 2. In that case, the surface of the disk is in
the wave-evanescent region. The mid-plane is in the wave-propagation region when B >
−A − n. In addition, when A > n(n − 3), the function k2

z (y) has a local maximum between
y = 0 and 1. Therefore, the function k2

z (y) may in principle change sign in zero, one or two
points in each half of the disk, depending on the actual values of the parameters A, B and
n.

When B > −A−n, the function k2
z (y) has a single root in the range 0 ≤ y < 1 correspond-

ing to a single turning point separating wave-propagating and wave-evanescent regions.
This is the case 3! that describes mostly all g-modes and also p-modes near the vertical
resonances. The location of the turning point is given by

yt2 =
[

1 + x −
√

x2 + n(n − 2)/B
]1/2
, (31)

where x is defined in equation (30). The oscillations can freely propagate around the mid-
plane being evanescent in the vicinity of the disk surface. Because the radiation emerging
from the disk has to pass through the evanescent region, this fact could have some impact
on the observability of the oscillations in this case.
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When −[A + n(n − 1)]2/[4n(n − 2)] < B < −A − n, function k2
z (y) has two roots in

the range 0 ≤ y < 1 corresponding to the case 4!. This corresponds to limited ranges of
free wave propagation, surrounded by evansescent regions around the mid-plane and the
surface. Locations of the turning points are given by equations (30) and (31). This case is
relevant for p-modes with high negative B (i.e. for those far from the vertical resonances).

Finally, when B < −[A + n(n − 1)]2/[4n(n − 2)], the function k2
z (y) has no root in the

range 0 ≤ y < 1 and whole disk is in the wave-evanescent region corresponding to the case
5!. Consequently, no oscillation modes exist.

Although the local WKBJ approximations is very helpful to get a qualitative insight
in the vertical propagation of oscillations, it does not give any quantitative results. In
particular, it does not provide the dispersion relation φ(A, B) = 0, from which allowed
values of the radial wave-vector arises. To find them, one needs to solve global vertical
problem (25) together with boundary conditions (27). One way would be to use global
WKBJ approximation as Perez et al. (1997) did. This approach needs a special treatment at
the singularity at the surface of the disk and turning points. Another way is to use the exact
solution of the equation (25) for B = 0 expressible in terms of the Gegenbauer polynomials,
and extend it for non-zero values of B perturbatively. This approach has been adopted by
Ortega-Rodrı́guez et al. (2002) and later by Kato (2010) for the lowest order modes. In the
following section, we will adopt the latter way and generalize it to modes of arbitrary order.

4.2 Approximation using Gegenbauer polynomials

The equation (25) can be written in the form

L̂g +
(

Ã − By2
)

g = 0, L̂ ≡
(

1 − y2
) d2

dy2
− 2ny

d

dy
, Ã = A + B. (32)

The operator L̂ is self-adjoint with respect to the scalar product

〈g1|g2〉 ≡
∫ 1

−1

g1g2

(

1 − y2
)n−1

dy. (33)

for any smooth functions that obey boundary conditions (27). When B = 0, equation (32)
coincides with the Gegenbauer differential equation, L̂g + Ãg = 0, for which solutions
satisfying boundary conditions (27) are known to be

Ã j ≡ Ã
(0)
j = j( j + 2n − 1), g j(y) ≡ g

(0)
j (y) = a jC

(n−1/2)
j (y). (34)

Here j is non-negative integer labeling the modes (vertical quantum numbers), C(λ)
j are the

Gegenbauer polynomials and a j are normalization constants such that 〈g(0)
j |g

(0)
k
〉 = δ jk,

a j =
2n−1Γ(n − 1/2)

√
π

[

j!( j + n − 1/2)

Γ( j + 2n − 1)

]1/2

. (35)

The vertical quantum number describes number of nodes (‘zeros’) of the eigenfunctions in
the vertical direction.
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In the following, we apply a standard perturbation technique to the equation (32) with pa-
rameter B being a small expansion parameter as outlined bellow. We look for the solutions
(Ã j, g j) in terms of power series

Ã j = Ã
(0)
j + BÃ

(1)
j + B2Ã

(2)
j + . . . , (36)

g j = g
(0)
j + Bg

(1)
j + B2g

(2)
j + . . . . (37)

By substituting these expansions to equation (32) and comparing the coefficients of the
same powers of B, we obtain a sequence of equations governing the s-th approximations
A

(s)
j and g

(s)
j

L̂g(s)
j + Ã(0)

j h(s)
j = −

s∑

i=1

Ã(i)
j g(s−i)

j + y2g(s−1)
j . (38)

Next, we expand the s-th approximation in the basis of the zeroth-order eigenfunctions as

g(s)
j =

∑

k

α(s)
jk

h(0)
k
, (39)

with α(s)
jk

being the coordinates of the s-th approximation of the eigenfunction of the j-
th oscillation mode with respect to the basis {g(0)

k
}. The result is further projected on the

eigenfunctions g
(0)
m . This way we find an algebraic equation determining the successive

approximations A(s)
j , α(s)

jm,

(

Ã
(0)
j − Ã(0)

m

)

α(s)
jm = −

s∑

i=1

Ã
(i)
j α

(s−i)
jm +

∑

k

α(s−1)
jk

〈

g(0)
m |y

2g
(0)
k

〉

. (40)

The scalar product in the second term on the right-hand side can be found using well-known
recurrence relations for the Gegenbauer polynomials Thompson (2011),
〈

g(0)
m |y

2g
(0)
k

〉

= qkδmk−2 + dkδmk + qk+2δmk+2, (41)

where

q j ≡ 〈h(0)
j−2
|y2h

(0)
j 〉 =

[

j( j − 1)( j + 2n − 2)( j + 2n − 3)

(2 j + 2n − 1)(2 j + 2n − 3)2(2 j + 2n − 5)

]1/2

, (42)

d j ≡ 〈h(0)
j |y

2h(0)
j 〉 =

2 j( j + 2n − 1) + 2n − 3

4 j( j + 2n − 1) + (2n + 1)(2n − 3)
. (43)

The equation (40) then reduces to algebraic equation for A
(s)
j and h

(s)
j ,

(

Ã
(0)
j − Ã(0)

m

)

α(s)
jm = −

s∑

i=1

Ã
(i)
j α

(s−i)
jm + qmα

(s−1)
jm−2
+ dmα

(s−1)
jm + qm+2α

(s−1)
jm+2
. (44)

Putting s = 1 and remembering that α(0)
jm = δ jm, the equation (44) becomes

(

Ã
(0)
j − Ã(0)

m

)

α(1)
jm = −

(

Ã
(1)
j − dm

)

δ jm + qmδ jm−2 + qm+2δ jm+2. (45)
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When m = j we find the first-order correction to the eigenvalues, A(1)
j = d j, while for m ! j,

we obtain the correction to the eigenfunctions,

α(1)
jm =

q j

Ã(0)
j − Ã

(0)
j−2

δm j−2 −
q j+2

Ã(0)
j+2
− Ã(0)

j

δm j+2. (46)

The coefficient α(1)
j j remains undetermined, however it affects only normalization of the

eigenfunction of the perturbed problem. Consequently, we may put α(1)
j j = 0 without lose

of generality. In principle, one may continue this procedure to higher orders, however
already the first-order correction provides very good results as will be demonstrated in the
next section.

4.3 First-order dispersion relation

The first-order solution of the eigenvalue problem reads

Aj = A
(0)
j +

(

d j − 1
)

B. (47)

Figure 2 shows the analytic relations (47) for four lowest-order modes along with the so-
lutions obtained by direct numerical integration of equation (25) combined with a simple
shooting method to find the eigenvalues Aj. The value of the polytropic index is n = 3
what corresponds to a radiative pressure dominated flow. Positions of resonances sepa-
rating the regions of evanescent and freely propagating waves are shown by dashed lines.
Not surprisingly, our analytic formula (47) (shown by dotted line) gives exact values Aj at
the vertical resonances where B = 0. However, we find also a very good agreement for
g-modes trapped between two Lindbblad resonances and even for p-modes not too far from
the vertical resonances.

Using relations (26), (32) and (34), the dispersion relation (47) can be written in a more
familiar form,

β j

(

ω̃2 − κ2
)
[

ω̃2 −
j ( j + 2n − 1)

2n
Ω

2
⊥

]

= ω̃2c2
s0k2

r (48)

with

β j =
4 j( j + 2n − 1) + (2n + 1)(2n − 3)

2 j( j + 2n − 1) + 2n(2n − 3)
. (49)

Coefficient β j is positive for j ≥ 0 and n ≥ 0. For fixed j and n → ∞, the coefficient
β j → 1 and the dispersion relation coincides with the one for the isothermal case. The
waves propagate freely when k2

r > 0, what corresponds to either

mΩ − κ ≤ ω ≤ mΩ + κ, (50)

for g-modes with j ≥ 1, or

ω ≤ mΩ −
[

j ( j + 2n − 1)

2n

]1/2

Ω⊥ or ω ≥ mΩ +

[

j ( j + 2n − 1)

2n

]1/2

Ω⊥ (51)
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Figure 2. Dependence of the eigenvalues Aj on the parameter B for four lowest order modes with j =

0, 1, 2 and 3 (from left to right) for a polytropic disk with n = 3. Analytic first-order approximations
are shown by dotted lines, numerical solutions correspond to solid lines. Domains of p-mode and
g-modes are separated from regions where the waves are evanescent by Lindblad (‘LR’) and vertical
(‘VR’) resonances. The Lindblad resonances occur for A = 2nκ/Ω⊥. Here we put κ = Ω⊥ what
corresponds to Newtonian disks. In the case of relativistic disks, Lindblad resonances are shifted to
A < 1 because κ < Ω⊥. The line A = 0 denotes the corrotation (‘CR’) resonance. The analytic
approximations provides very good results in entire g-mode domain and for p-modes of not too high
frequencies.

for p-modes with j ≥ 1, or

ω ≤ mΩ − κ or ω ≥ mΩ + κ, (52)

for p-modes with j = 0.

4.4 Vertical eigenfunctions

The eigenfunctions are labeled by the vertical number j giving number of the nodes of
g j(y) in full range −1 < y < 1. According to equations (37), (39) and (46), the first-order
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Figure 3. Vertical enthalpy perturbations g(y) for different values of parameters B and n and vertical
mode number j. In each panel, the result of numerical calculations is shown by the solid line, the
analytic first-order approximation is shown by the dashed line. Each column corresponds to a differ-
ent case according to classification introduced in Sec. 4.1, particular case is indicated. The first two
columns correspond to the value of the polytropic index n = 3/2, the latter two are for n = 3. The
first, second and the third raw are for j = 0, 1 and 2. Positions of the turning points are indicated by
vertical dotted lines.

eigenfunctions can be expressed as

g j = g(0)
j +

1

2
B







[

j( j − 1)( j + 2n − 2)( j + 2n − 3)

(2 j + 2n − 1)(2 j + 2n − 3)4(2 j + 2n − 5)

]1/2

g(0)
j−2

−
[

( j + 2)( j + 1)( j + 2n)( j + 2n − 1)

(2 j + 2n + 3)(2 j + 2n + 1)4(2 j + 2n − 1)

]1/2

g(0)
j+2






(53)

In particular, the eigenfunctions of the fundamental ( j = 0) mode and the first overtone
( j = 1) are

g0 = a0

[

1 +
1 − (2n + 1)y2

2(2n + 1)2
B

]

, g1 = a1(2n − 1)y

[

1 +
3 − (2n + 3)y2

2(2n + 3)2
B

]

. (54)

In figure 3 the first-order vertical eigenfunctions g j(y) are compared with those obtained
by direct numerical integration for j = 0, 1, 2. First two columns correspond to the gas-
pressure dominated disk with n = 3/2, the latter two are for radiation-pressure dominated
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disk with n = 3. In each panel, the parameter B has been chosen so that the eigenfunctions
correspond to particular cases according to classification introduced in Sec. 4.1. Its highest
value B = −70 corresponds to the case 4! of the j = 2 mode. Interestingly, the first-
order approximation gives acceptable results even for such high value of the parameter B.
Generally, the accuracy of the approximation improves with increasing n and j.

5 DISCUSSION AND CONCLUSIONS

In this work, we have reviewed the problem of wave propagations in polytropic disks. We
have concentrated on cold geometrically-thin Keplerian disks, where significant difference
between radial and vertical scales on which properties of the flow vary allows to find the
solution in the separable form. The separation has been done using the method of two
scales. The radial problem can be treated with aid of the WKBJ approximation because the
perturbation typically vary on much shorter scales than the equilibrium flow. The vertical
problem resembles the Sturm-Liouville eigenvalue problem from which the squared radial
wave-vector k2

r arises as the eigenvalue and the shape of the enthalpy perturbarion in the
vertical direction as the eigenfunction.

We have discussed basic characteristics of the vertical propagation of the enthalpy per-
turbations using local WKBJ approximation. We have identified 5 possible types based on
occurence of the wave-propagation and evanescent regions. We have also generalized the
analytic perturbation method used by Ortega-Rodrı́guez et al. (2002) and Kato (2010) to
arbitrary order of the mode j. This allowed us to construct a general dispersion relation
(48) describing propagation of waves of arbitrary vertical number j in three-dimensional
polytropic disks.
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746 01 Opava, Czech Republic.

2Research Centre for Theoretical Physics and Astrophysics, Institute of Physics,
Silesian University in Opava, Bezručovo nám. 1150/13, 746 01 Opava, Czech Republic

3Institute of Experimental and Applied Physics, Czech Technical University in Prague,
Husova 240/5, 110 00 Prague 1, Czech Republic

4Physics Department, Dawson College, Montreal, Quebec, Canada H3Z 1A4
5Theoretical Chemistry Group, South Parks Road, Oxford OX1 3TG, UK
abelaxx@gmail.com
bfilip.blaschke@fpf.slu.cz
ckarponius@gmail.com
dsvec@hep.physics.mcgill.ca
*Passed away on September 2nd, 2020

ABSTRACT

By performing a Majorana transformation on the total molecular Hamiltonian op-
erator for electrons adiabatically following nuclear motion, the electrons in a hy-
drogen bond in DNA can be treated as a chain of quasiparticles resulting in a Kitaev
chain with a delocalized fermion state. Delocalized fermions define Majorana qubits
which can give rise to entanglement and form the foundation of molecular quantum
information processes. During transcription and replication of DNA hydrogen bonds
are severed. This process can be investigated by employing the soliton model for
DNA proposed by Peyrard and Bishop. The e↵ects of solitons in the DNA double
helix are studied and, in particular, their e↵ects on decoherence.

Keywords: Quantum information – Majorana fermions – hydrogen bonds – soli-
tons – DNA – transcription and replication of DNA

1 INTRODUCTION

The nature of the life and what distinguishes it from the inanimate is notoriously di�-
cult to identify with any precision (Schrödinger, 1944; Cleland and Chyba, 2002; Tirard
et al., 2010; Benner, 2010; Prossr, 2012). In his famous lectures delivered in Dublin in
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1943, Schrödinger (Schrödinger, 1944) put the problem succinctly with the question “How
can the events in space and time which take place within the spatial boundary of a living
organism be accounted for by physics and chemistry?”

Today, whilst the relationship between the mathematical and physical sciences, on the
one hand, and the life and mind sciences, on the other, has elucidated much of the com-
plexity of living processes and the dynamical chemical reactions underpinning them, as
Nurse (Nurse, 2008) has observed, a “comprehensive understanding of many higher-level
biological phenomena remains elusive”. There is, however, an emerging consensus that
information is a key property of the life phenomenon (Szathmáry, 1989; Küppers, 1990;
Yockey, 2002; Davies, 2005; Hazen et al., 2007; Walker and Davies, 2013; Walker et al.,
2017; Davies and Walker, 2016; Davies, 2019). There has also been renewal of interest in
quantum biology (see, for example Marais et al. (2018); Jim Al-Khalili (2016)) a field of
research begun in 1965 by Löwdin (Löwdin, 1963) as a “field of research which describes
the life processes and the functioning of the cell on a molecular and submolecular level”
(Löwdin, 1963). Here we continue to develop our suggestion (Hubač et al., 2017) on the
role of quantum information in biomolecules.

In this paper, we suggest the potential exploitation of quantum information in living
processes and, in particular, the role of emergent quasiparticles called Majorana fermions
associated with the hydrogen bonds in the DNA molecule. This paper builds on our pre-
vious study Hubač et al. (2017) of quantum information in biomolecules by investigating
transcription and replication of DNA using a soliton model.

In section 2, Majorana fermions are associated with the hydrogen bonds in DNA and
associated with the possibility of quantum information being exploited in biomolecules. In
section 3, the transcription and replication of DNA is considered using a soliton model.
Specifically, we use the Peyrard-Bishop model (Peyrard and Bishop, 1989) and make
a small amplitude expansion.

2 MAJORANA FERMIONS AND QUANTUM INFORMATION IN DNA

Recent years have witnessed renewed interest in Majorana fermions and their realization
in condensed matter systems has been intensively studied (Wilczek, 2009; Franz, 2013;
Leijnse and Flensberg, 2012; Elliott and Franz, 2014; Alicea, 2012). Although initially
introduced over 80 years ago by Etore Majorana (Majorana, 1937) as solutions of the Dirac
equation (Dirac and Fowler, 1928) describing a neutral spin 1

2 particle which is its own
antiparticle and distinct from the Dirac solutions, for a long time Majorana fermions were
regarded as rather abstract entities. (A review of the original work of Majorana is given in
the recent volume by Esposito (Esposito, 2014).) Majorana fermion has been extensively
investigated in nuclear and particle physics. Over the past decade, Majorana fermions have
been realized as emergent quasiparticles (Wilczek, 2009; Franz, 2013; Leijnse and Flens-
berg, 2012; Elliott and Franz, 2014) in certain condensed matter systems. Specifically, they
were studied in p-wave superconductivity by Leijense and Flensberg (Leijnse and Flens-
berg, 2012), using the Kitaev chain (Kitaev, 2007). The Kitaev chain is a one–dimensional
model of a topological superconductor developed by Kitaev in 2001 and illustrated in Fig-
ure 2.
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As can be seen from this Figure, the Kitaev chain is chain of fermions, which are strongly
delocalized. This delocalization is an important property which makes the study of Majo-
rana fermions very interesting. The Kitaev chain or delocalized Majorana fermions is very
stable system. However, the delocalization can be lost by decoherence. The stability of
the Kitaev chain makes it interesting for quantum information. If we are able to construct
a qubit from these delocalized Majorana fermions, the system is very stable and has the
potential play an important role in quantum information. The delocalization property of
Majorana fermions were studied in connection with non-adiabatic processes by Scheurer
and Shnirman (Scheurer and Shnirman, 2013).

In this paper, we use the delocalization property of the hydrogen bonds in the DNA (De-
oxyribonucleic acid) molecule and try to use Majorana fermions as a source of quantum
information in biomolecules. DNA is the information storage medium for most organ-
isms. Genetic information is encoded in a sequence of pairs of nitrogenous bases which
are held together via hedrogen bonds: adenine - thymine (A-T) and guanine - cytosine
(G-C). Each base is attached to a five-carbon sugar forming a nucleoside which in turn
is attached to a phosphate group creating a nucleotide. Nucleotides are arranged in two
antiparallel strands of polynucleotides in a right-handed double-helix structure. In a given
DNA molecule each polynucleotide strand is held in place by interactions between comple-
mentary base pairs. Genetic information is copied when the strands separate during DNA
replication and in transcription, which is the first step in protein synthesis. DNA opens
locally allowing only a segment of the sequence to be copied by a ribonucleic acid (RNA),
messenger RNA (mRNA). The sense strand of the DNA molecule has the same sequence
as the mRNA (mRNA) whilst the antisense strand provides its template. The sequence of
nucleotides in mRNA is identical to that in the sense strand of the corresponding DNA ex-
cept that uracil is used instead of thymine. In both replication and transcription processes
the hydrogen bonds between the bases are severed. The area of partially separated DNA
strands is known as the denaturation bubble.

The study of replication or transcription of DNA at a quantum mechanical level is a dif-
ficult problem because of the complexity of DNA molecule. Progress can be made by
constructing low-resolution model descriptions of DNA, which facilitate computationally
tractable schemes for investigating these phenomena. One popular choice is a mechanical
model of DNA in which the nucleotides are represented by point masses.

The key advantage of such simplified models is that the dynamics of DNA are rendered
solvable numerically and can be used to investigate non-linear phenomena, which might
gain us some insight into how the denaturation bubble (a precursor for RNA transcrip-
tion) might form. a staple of non-linear phenomena is the presence of solitons, which are
particle-like non-linear waves representing a moving pattern of highly concentrated energy.

In our recent paper Hubač et al. (2017) (see also Hubač and Svrček (1988, 1992b,a);
Hubač and Wilson (2008)), we introduced the non-adiabatic Hamiltonian for molecular
systems. The relation between this molecular Hamiltonian and the solid state non-adiabatic
Hamiltonian was also explored. Our derivation is based on a supersymmetric transforma-
tion. We began with a ‘crude’ adiabatic Hamiltonian, then we introduced new creation and
annihilation operators which were functions of the normal coordinates B. Furthermore, we
made these new operators functions of the corresponding momentum B̃.

!" !! !" ## ? $ % &



58 I. Hubač et al.

āp =
∑

q

Cpq

(

B, B̃
)

aq (1)

ā†p =
∑

q

Cpq

(

B, B̃
)

a†q. (2)

āp =
1
2

(

γp,1 + iγr,2

)

(3)

ā†p =
1
2

(

γp,1 − iγr,2

)

, (4)

We see that the creation and annihilation operators correspond to delocalized fermions;
delocalization being realized through B and B̃. We identify these delocalized operators with
Majorana fermions. A similar approach was followed by Scheurer and Shnirman (Scheurer
and Shnirman, 2013) in their study of non-adiabatic processes in condensed matter sys-
tems. We focus our attention on the hydrogen bonds in the DNA molecule. There are
several studies which describe the hydrogen bonds in DNA as a non-adiabatic system, with
the hydrogen bonds being strongly delocalized (McKenzie, 2014). We therefore found it
interesting to apply the quasiparticle concept of Majorana fermions to the hydrogen bond.
We investigate Majorana fermions which have been discussed widely in the condensed
matter and solid state literature (Wilczek, 2009; Leijnse and Flensberg, 2012; Franz, 2013;
Elliott and Franz, 2014; Zuo and Mourik, 2016; Kitaev, 2007; Finck et al., 2012; Nadj-
Perge et al., 2014; Bunkov and Gazizulin, 2015; Williams et al., 2012; Rokhinson et al.,
2012; Deng et al., 2012; Das et al., 2012; Knez et al., 2012), as emergent quasi–particles in
quantum molecular systems and, in particular, associated with the hydrogen bonds in the
DNA biomolecule.

The hydrogen bond in DNA is characterized by double-well potential such as that shown
in Figure 1. In early work in the field of quantum biology, Löwdin (Löwdin, 1963) con-
structed double-well potentials for the hydrogen bonds in DNA by a superposition of two
Morse potentials. Delocalization occurs between the two minima and we, therefore, place
the Majorana fermions, γ1 and γN , into these minima. In some respect this is Kitaev chain
between γ1 and γN . By this concept we were able to define qubits and entangled states
(Hubač et al., 2017).

There is extensive discussion in literature about proton tunnelling between two double-
well minima (see, for example Löwdin (1963); Godbeer et al. (2015)). It is assumed that
proton tunnelling can play a role in both mutation and replication of DNA. But even recent
sophisticated calculations (Godbeer et al., 2015) using density functional theory (DFT) to
model the double-well potential, did not support the role of proton tunnelling. The lack of
evidence for proton tunneling supports our assumption that it is not, in fact, a proton but
a highly delocalized fermionic quasiparticle which constitutes each of the hydrogen bonds
between the DNA strands.

In this paper, we study the effect of solitons on the Majorana fermions associated with the
hydrogen bonds in DNA and their possible role in mutation and replication. As described
in our previous work Hubač et al. (2017), two hydrogen bonds in DNA represent one qubit
and three hydrogen bonds give rise to entangled states. We were therefore able to introduce
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γ1

γN

Figure 1. Double-well potential representation of the hydrogen bond. Asymmetric double-well po-
tential obtained by superposition of two Morse potentials. Majorana fermions γ1 and γN are associ-
ated with the two minima.

quantum entropy and quantum information. In the present work, we show that solitons can
push the delocalized Majorana fermions close to each other leading to decoherence and
to a decoupling of the strong electron-phonon interaction. We note that decoherence on
a double well potential was demonstrated in the recent work of Marais et al. (Marais et al.,
2018) (see their Figure 2 on the photosystem II reaction centre in higher plants).
In this way the quantum information associated with the Majorana fermions can be changed.
We note that the question of the role of information flow in the cell and and how information
is communicated was recently addressed by Nurse (Nurse, 2008).
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3 SOLITONS ON DNA

An advantage of the drastic simplification adopted in this work is that the dynamics of DNA
becomes (at least numerically) solvable and we can look for non-linear phenomena, which
might gain us some insight into how the denaturation bubble (a precursor for RNA tran-
scription) might form. A staple of non-linear phenomena is the presence of solitons, which
are particle-like non-linear waves representing a moving pattern of highly concentrated
energy. Furthermore, solitons are ubiquitous in all media where dispersion can be com-
pensated by non-linear effects. As such, DNA can be also regarded as non-linear medium
and both existence and utility of solitons has been anticipated a long time ago (Englander
et al., 1980). In particular, the role of solitons in emergence of denaturation bubbles has
been studied extensively (Tabi, 2016) (for fuller description see the report by Manghi and
Destainville (Manghi and Destainville, 2015a) and references therein).

Many approximate models of DNA were proposed over the years in order to illuminate
the role and importance of non-linear excitations (solitons) on DNA processes.
Yakushevich (Yakushevich, 2006) presented a hierarchy of important models. In these
models, the focus is on torsion modes. In the continuous limit, the equations govern-
ing these models transform into either the famous sine-Gordon (sG) equation or equations
related to it. As is well known, sG equation has analytic solitonic solutions. A comple-
mentary model, the so-called Peyrard-Bishop model (Peyrard and Bishop, 1989) has also
attracted considerable attention and many studies have been devoted to its properties (see
Zdravkovic (2011) and references therein).

In this paper, we propose that solitons may be also critical for quantum information
specifically regarding braiding of qubits on the hydrogen bonds. As we mentioned, solitons
in DNA has been studied for their capacity of promoting local openings, i.e. denaturation
bubbles. However, they can also serve in the opposite way of creating small depressions
where the strands of DNA are squeezed together. In particular, here we focus on collisions
of solitons with regard to this issue. A squeezing of DNA strands may result in braiding
of the qubits on hydrogen bonds, giving us a basic form of quantum computing. Quantum
computing based on Majorana fermions is discussed in recent paper by Robinson et al.

(Robinson et al., 2019). Our Majorana model of DNA is very similar to quantum computa-
tion model presented in Figure 2 of that paper (Robinson et al., 2019). Left vertical bubbles
correspond to a A-T base pair (i.e. two hydrogen bonds). Horizontal bubbles correspond to
a C-G base pair (i.e. entangled states) and right bubbles correspond to a T-A base pair (i.e.

two hydrogen bonds).
As this is all highly speculative, in the following subsection we will work in the sim-

plest setting possible to make our presentation concise. To that end, we will work within
the Peyrard-Bishop model in the continuous limit. We first demonstrate the existence of
solitons using Renormalization Group (RG) perturbation expansion technique developed
by Chen, Goldenfeld and Oono (Chen et al., 1994). Then we discuss their properties and
in the last subsection we show our numerical results regarding their collisions.
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3.1 Peyrard-Bishop model

In the Peyrard-Bishop (PB) model, DNA strands are represented as two parallel chains
of point masses. Along each chain the points are coupled together via harmonic force
representing covalent bonds between nucleotides, while the hydrogen bonds between the
strands is modelled via the Morse potential. Since the masses of the different nucleotides
(i.e. with different bases A, T, C and G) do not differ from each other dramatically (about
4% (Zdravkovic, 2011)), it is convenient to adopt only the mean mass for every nucleotide.
Moreover, since the covalent bonds are far stronger than the hydrogen bonds, the PB model
assumes only transversal motion disregarding longitudinal and torsion movements which
effectively reduces the problem to a single dimension.

Indeed, if we denote the deviation form the equilibrium distance of the two strands at the
n-th site as yn the PB model can be written as

H =
∑

n

{

m

2
ẏ2

n +
k

2
(

yn − yn−1
)2
+ D

(

e−a
√

2yn − 1
)2
}

. (5)

From here on we adopt the following values for the parameters of PB model (taken from
Zdravkovic (2011))

k = 12
N
m
≈ 0.74892

eV

Å
2 , m = 307.2 a.m.u. , (6)

a = 1.2 Å
−1
, D = 0.07eV , l = 3.4 Å . (7)

Here, k is the spring constant for harmonic potential, m is the average mass of the nu-
cleotides, a and D are the inverse length and depth of the Morse potential, respectively.
Lastly, l is the distance between adjacent sites along the strands.

The equation of motion reads

mÿn = k (yn+1 + yn−1 − 2yn) + 2
√

2aD
(

e−
√

2ayn − 1
)

e−
√

2ayn . (8)

Being both discrete and non-linear this equation is very difficult to solve. However,
since we only want to illustrate how solitons could lead to decoherence of qubits we will
take a continuous limit to simplify matters as much as possible. Hence, we take the dis-
tance between sites l to zero, while we keep k̃ ≡ kl2 finite (and numerically equal to
k̃ = 8.6575 eV). Further, let us denote the continuous variable tracing the distance along
strands as nl → x and the field variable which replaces transversal motion at the n-th side
as yn(t) ∼ y(nl, t)→ y(x, t). In this way, the equations of motion becomes

m∂2
t y − k̃∂2

xy = 2
√

2a D
(

e−a
√

2y − 1
)

e−a
√

2y . (9)

In the dimensionless units defined as

t ≡
√

m

2a
√

D
t̃ ≈ 28 t̃ [ps] , x ≡

√
k̃

2a
√

D
x̃ ≈ 4.63 x̃ [Å] , (10)

y =
ỹ

a
√

2
≈ 0.59 ỹ [Å] , (11)
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the equation takes especially simple form

∂2y =
(

e−y − 1
)

e−y , (12)

where we dropped all˜ signs for brevity and where we used relativistic notation ∂2 ≡ ∂µ∂µ =
∂2

t − ∂
2
x. For future purposes it is advantageous to use substitution y = log

(

1 + u
)

, which
transforms (12) into

(1 + u) ∂2u − ∂µu∂µu + u = 0 . (13)

3.2 Small amplitude expansion

Let us study small amplitude perturbations of Eq. (13). Inserting a series expansion

u = ε
(

u0 + εu1 + ε
2u2 + . . .

)

, (14)

where ε is a bookkeeping parameter which we assume to be small |ε| ' 1, we obtain
a hierarchy of equations

H0un+1 =

n∑

k=0

(

∂µun−k∂
µuk − un−k∂

2uk

)

, (15)

where H0 = ∂
2 + 1.

For the zero order, let us start with a monochromatic wave, i.e.

u0 = A0eiθ + c.c. , θ ≡ qx − ωt , (16)

with ω =
√

q2 + 1.
Solving the hierarchy up to the second order we get

u1 = 4 |A0|2 , (17)

u2 = −2A0 |A0|2 eiθ
(

ξθ̄2 + i (1 − ξ) θ
)

+ c.c. (18)

Here, ξ is an arbitrary constant and we have introduced an auxiliary variable θ̄ ≡ ωx−qt ,
which appears in u2 as a part of the so-called secular term. This term is a sign of resonance
phenomena and arise due to the identity

1
∂2 + 1

eiθ = −
1
2

eiθ
(

ξθ̄2 + i (1 − ξ) θ + c
)

, (19)

where c is an arbitrary constant.
The presence of secular term is a bad news for our perturbation series since – as the name

indicates – secular term quickly outgrow any other terms with increasing t (or x) casting
a doubt on the convergence of our series.

In order to eliminate terms like u2 we employ Renormalization Group (RG) method
developed by Chen, Goldenfeld and Oono (Chen et al., 1994). This method calls for in-
troduction of artificial renormalization scales θ0 and θ̄0 via innocuous shifts in the secular
term:

θ̄2 → θ̄2 − θ̄20 + θ̄
2
0 , θ → θ − θ0 + θ0 . (20)
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Now we redefine the so-called ‘bare’ amplitude A0 in terms of ‘dressed’ amplitude A in
such a way that the dependence on the second instances of θ0 and θ̄0 disappears:

A0 =
(

1 + 2ε2 |A|2
(

ξθ̄20 + i (1 − ξ) θ0
)

+ O
(

ε4
))

A , (21)

In other words, the renormalization scales only shows up in the combinations θ − θ0 and
θ̄2− θ̄20. This is important, since, as we will see, we want to ultimately set θ0 = θ and θ̄0 = θ̄.
Because the renormalization scales are completely artificial, meaning that the solution does
not depend on them, we can make this identification. However, since A ≡ A(θ0, θ̄0) can be in
principle an arbitrary function of renormalization scales we must enforce the independence
of the solution by ensuring that

∂u

∂θ0
=
∂u

∂θ̄0
= 0 , ∀x, t , (22)

holds. These conditions gives us the Renormalization Group Equations (RGE’s):

∂A

∂θ0
= −2iε2a |A|2

(

1 − ξ
)

+ O(ε4) , (23)

∂A

∂θ̄0
= −2ε2a |A|2 ξθ̄0 + O(ε4) . (24)

However, solving these equations would give us wrong global behaviour since these are
not slow motion equations, meaning that the derivatives can get arbitrary large. A proper
RGE is therefore a differential consequence of these equations, which is the famous non-
linear Schrödinger (NLS) equation:

i
∂A

∂θ0
−

1
2
∂2A

∂θ̄20
= 2ε2a |A|2 + O(ε4) . (25)

Solving NLS equation and plugging it into the expansion we arrive at a single soliton
solution in the form

uR =
u0

cosh
(

u0√
2

x−VEt√
1−V2

E

) cos







1 −
u2

0

4





t − VE x
√

1 − V2
E





+
u2

0

cosh2
(

u0√
2

x−VEt√
1−V2

E

) . (26)

Several comments are in order:
i) This solution is independent on ε due to the fact that it can be rescaled away via scale
invariance of NLS; however, the solution is still only valid for small u0 – the core amplitude
of the soliton. This is as it should be since ε was only a bookkeeping parameter and not
a true parameter of the equation of motion.
ii) The parameter q has been replaced in favor of the envelope velocity via q = VE/

√

1 − V2
E .

iii) This solution has a manifestly Lorentz symmetry structure, i.e. it is a boost of a standing
wave solution with modulated amplitude. This is due to the underlying Lorentz symmetry
of the equation of motion even though NLS is not Lorentz invariant.
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iv) The width of the soliton is roughly ∼ 10
√

2
(

1 − V2
E

)

/u0, while its core height is u0+u2
0.

Of course, not all values of u0 is physically acceptable. In Zdravkovic (2011) it is argued
that a typical length of a DNA segment participating in a transcription bubble is between
8 to 17 nucleotides. This translates into a typical width of the soliton between 27 to 58 Å.
This means that the width of the soliton (in dimensionless units) is in the range 6 − 12.
v) The energy of a single soliton (at leading order) is given as (in dimensionful units)

E = 2D

√

2
1 − V2

E

u0 + O
(

u2
0

)

, (27)

which is again fully consistent with special relativity, making the solitons rest mass to be√
2Du0.

3.3 Scattering of solitons in the continuous PB model

In this subsection, we broadly outline key features of soliton scattering in continuous PB
model. At least qualitatively, findings presented here should be the same to that of discrete
PB model for reasons which we outline below.

In the continuous PB model the interesting thing about scattering of solitons is its mun-
daneness. We have performed numerous numerical simulations where initially well-separa-
ted solitons of various sizes (parametrized by u0) are sent against each other with various
speeds (controlled by VE). From these studies it became clear that solitons interact with
each other only minimally and after they pass through each other they rapidly regain their
original shapes. The only impact of the interaction is a slight phase shift and delay com-
pared with completely noninteracting solitons, as can be seen on Figure 3. Furthermore,
these differences are less and less pronounced as the velocity increases due to the fact that
for larger velocities the effective interaction time between the solitons becomes smaller.

This behaviour is paramount to scattering of solitons in integrable theories. As it is
well known, NLS equation can be solved via the inverse scattering method (Zakharov and
Shabat, 1972). The implication is that NLS equation is an integrable theory and soliton
scattering has the features which makes solitons solitons, i.e. rapid shape recovery with
only a phase shift gained through the interaction. On the other hand, in a generic, non-
integrable model with solitons, we typically observe a wealth of interesting associated phe-
nomena, such as soliton bouncing, formation of bound states and others (for details see
a recent paper on collisions solitons in the Montonen-Sarker-Trullinger-Bishop (MSTB)
model (Izquierdo, 2017) and references therein).

Our observations in the continuous PB model can be therefore explained as a result of
an approximate integrability for small amplitudes, which is inherited from NLS. Since the
solitons in discrete PB model are also governed by NLS equation we can thus claim that
the same should be (and indeed is) observed in the discrete PB model.

Here, we are interested in assessing whether collision of solitons can lead to a substantial
squeezing of DNA strands. To this end we will focus only on the case where the colliding
solitons are of the same size and starts with the same phase, so that their internal oscillations
positively interfere at the point of collision. Further, we explore the collisions for various
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Figure 3. A typical outcome of soliton scattering where two well-separated but otherwise identical
solitons are sent against each other with velocity VE . Compared with noninteracting solitons (yellow
dashed line and green dotted line) we see that the only marks of interaction are slight time delay.

sizes u0 and envelope velocities VE in order to pinpoint the best circumstances for the most
negative values of y.

The results are sumarized in Figure 4. There, we show minimal values ymin ≡ Min[y(0, t)]
which the field reaches when the solitons collides. We show the results for initial sizes
u0 = {0, 1, 0.2, 0.3, 0.4} and for various velocities VE .

A minimal value of y for a single soliton is 1√
2a

log
(

1 − u0 + u2
0
)

+ O(u3
0). Therefore we

expect that for two roughly non-interacting overlapping solitons the theoretical minimum
is twice as low. Indeed, if u0 = 0.1 this theoretical minimum is ≈ −0.11 Å which is almost
reached for VE = 0.75 and above. This is due to the fact that for larger velocities, the time
for non-linear effects of PB model to kick in is smaller and solitons behaviour is more in
accordance with the above expectations. As we increase the size, however, two effects grow
in importance. First, the approximate initial solitonic solution becomes more unreliable and
deformations start to develop even before the collision. Typically, the solitonic wave tend
to settle into more accurate shape (described by higher-order corrections to the approximate
solution) and, in the process, emit small waves. Second, as the field probes the negative
half of the Morse potential it feels more of the exponential suppression to the negative

!" !! !" ## ? $ % &



Quantum information in biomolecules 67

Figure 4. Minimal values of the field ymin ≡ Min[y(0, t)] attained at the time of collision between
equal solitons for various sizes u0 and velocities VE .

deviations compared with only polynomial suppression for positive deviations. Therefore,
for higher u0 solitons cannot attain even their theoretical minima. These expectations are
fully manifested in Figure 4 as, for example, for u0 = 0.4 the observed minimum ymin never
approaches theoretical one ≈ −0.323 Å even at high velocities.

Our findings suggest that local squeezing of DNA strands is propagated by solitons and
can be enhanced via soliton collisions. However, let us stress that we are talking about
very small depressions, e.g. |y| ≤ 0.3Å. We were not able to find larger depressions
within the limitations of our approach. Nevertheless, it is quite possible that even a mild
squeezing of DNA strands can influence the distance of minima of the double-well potential
for hydrogen bonds sufficient to cause decoherence of associated Majorana fermions or to
trigger braiding. To quantify this precisely is, however, far outside the scope of this work.

Furthermore, there are additional reasons to mistrust the picture of events we are painting
here when deformations get larger. For instance, we have completely neglected rotational
degrees of freedom. It is easy to imagine, that trying to squeeze DNA strands would at some
point just result in rotation of the bases or slight twisting/untwisting of the double helix
and would not manifest in reducing their distance. Another matter, which we completely
neglect here, and which can heavily impact the dynamics of solitons is viscosity. It is
clear, that viscosity would play a major role in the motion and lifetime of solitons, perhaps
rendering soliton collisions untenable. Again, this is outside the scope of our study and we
recommend the paper by Manghi and Destainville (Manghi and Destainville, 2015b), where
the impact of viscosity on mechanical models of DNA are summarized. Let us, however,
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say that for the small amplitudes to which our study is confined, it is quite plausible that
the damped motion of sugar-phosphate backbone of DNA would not play as a significant
role on small deformations of hydrogen bonds we are interested in.

4 CONCLUDING REMARKS

In this article, we have developed further our ideas about quantum information in biomole-
cules. These ideas are based on the observation that the hydrogen bonds in the DNA
molecule are strongly delocalized systems characterized by double well potential. If this
double well potential is described by the non-adiabatic Hamiltonian, fermion quasiparti-
cles are obtained which we can identified with Majorana fermions. This result then allows
us to introduce qubits. We found similarities between this fermion quasiparticles and Ma-
jorana quasiparticles. Both are emergent quasiparticles and are delocalized. Our idea is
also supported by the fact that proton tunelling was not found. This is due to the effect
of delocalization and coupling of electrons and vibrations (phonons). The two hydrogen
bonds associated with the base pairs A-T or T-A represent one qubit and the three hydrogen
bonds associated with C-G or G-C represent entangled states. In this way, we can introduce
quantum information and quantum entropy.

It is expected that solitons play a role in the transcription and replication of DNA. We
have, therefore, studied the effects of solitons on our model. Specifically, we have used
the Peyrard and Bishop model of DNA. Solitons may be critical for quantum information,
in particular, with regard to the braiding of qubits on the hydrogen bonds. Solitons can
play a role in decoherence of delocalized Majorana fermions. We note that decoherence
on a double well potential was demonstrated in the recent work of Marais et al. (Marais
et al., 2018) (see their Figure 2). These effects may be important for quantum computa-
tion. We also studied solitons in DNA for their capacity of promoting local openings, i.e.

denaturation bubbles. Our results are presented in Figures 3 and 4.
The solitons in the PB model are natural candidates for agents of quantum computation

on DNA molecule because they are coherent, extended and stable wave patterns where
energy is concentrated. Here, we have shown that during their collisions the strands of
DNA do become closer compared with the isolated soliton if only for a brief time. If
sufficiently large solitons participate in collision, the negative deviation can reach values
such that braiding or decoherence of qubits on the hydrogen bonds may take place. As we
have already mentioned, we have kept our analysis in the present work at the most basic
level as a proof-of-concept.

Building on the emerging consensus that information is a key property of the life phe-
nomenon, we have continued to develop our suggestion that quantum information has a role
in biomolecules and, in particular, in DNA.
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Hubač, Svec and Wilson (2017), Quantum entanglement and quantum information in biological sys-

tems (dna), Proceedings of RAGtime17-19: Workshops on black holes and neutron stars.
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Hubač, I. and Wilson, S. (2008), The Non-Adiabatic Molecular Hamiltonian: A Derivation Using

Quasiparticle Canonical Transformations, pp. 403–428, ISBN 978-1-4020-8706-6.
Izquierdo, A. (2017), Reflection, transmutation, annihilation and resonance in two-component kink

collisions, Physical Review D, 97.
Jim Al-Khalili, J. M. (2016), Life on the edge: The coming of age of quantum biology.
Kitaev, A. (2007), Unpaired majorana fermions in quantum wires, Physics-Uspekhi, 44, p. 131.
Knez, I., Du, R.-R. and Sullivan, G. (2012), Andreev reflection of helical edge modes in inas/gasb

quantum spin hall insulator, Physical review letters, 109, p. 186603.
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ABSTRACT

In this paper, the process of acceleration of an ultrahigh-energy proton in the ac-
tive galactic nucleus is briefly considered. The full cycle of collisionless acceleration
of a proton up to the maximum energy Emax includes the primary acceleration in the
region of the light cylinder up to the energy E2/3

max and additional acceleration in the
region of the relativistic jet base where the proton reaches its maximum energy Emax.
Different regimes of acceleration of protons in a jet have been discovered, depend-
ing on the values of the amplitudes of the electric and magnetic fields. The obtained
theoretical estimates were confirmed by the data of the Pierre Auger collaboration,
as well as by the IceCube collaboration when evaluating the neutrino energy on a jet
subparsec scale.

Keywords: Cosmic rays – active galactic nuclei – black holes

1 INTRODUCTION

High-energy protons make up up to 90% of the composition of ultra-high-energy cosmic
rays. The most probable sources and mechanisms of origin of protons with energies > 1019

eV has been an extensive discussion for decades. The detection of protons of such energies
is hampered by the remoteness of objects, as well as by the natural dissipation of relic ra-
diation by photons, called the Greisen-Zatsepin-Kuzmin effect. The most likely candidates
for high-energy proton sources are active galactic nuclei (AGN), the astrophysical scales
of which make it possible to form an optimal accelerating medium. It is assumed that the
most likely mechanism responsible for the proton reaching such energies is stationary ac-
celeration by an electric field in the vicinity of massive objects such as supermassive black
holes (SMBH). This mechanism allows the proton to reach energies > 1020 eV, due to the
presence of weak magnetization with magnetic fields in the vicinity of the SMBH, as well
as a large potential difference between the SMBH and the relativistic jet. The explana-
tion of this mechanism is based on the Blandford-Znaek process (Blandford and Znajek
(1977)). This is based on the assumption of extracting rotational energy from the SMBH.
For comparison, Fermi acceleration of a proton on a shock wave can reach no more than
1015 eV (F. A. Aharonian. (2004)). The detection of high-energy protons is less bright and
more difficult due to the much lower synchrotron losses compared to electrons. This is also
an advantage when reaching the ultimate energies.
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The calculations used a kinetic approach to describe the motion of a charged particle.
This is a key difference from MHD modeling, since in the kinetic approach, the action of
inertial forces is important, especially in the area of the light cylinder.

2 ELECTROMAGNETIC FIELD

Acceleration process starts from the inner boundary of the ISCO disk (Istomin and Sol
(2009)). Due to turbulent accretion the primary protons achieved 10-100 eV. With an in-
crease in the accretion rate Ṁ, a part of the accreting matter forms a jet propagating along
the axis of rotation of the BH. In terms of the topology of the electromagnetic field, the
SMBH has a uniform split-monopole structure. A toroidal field arises in the magneto-
sphere, which, due to the slower decay of Bφ ! r−1 in comparison with the poloidal field
Br ! r−2, reaches a significant value in the region where matter reaches relativistic veloci-
ties namely light cylinder (Fig. 1). This specific area where the electric field becomes equal
to the magnetic field E = H and linear velocity v becomes equal to light velocity c. Due
to centrifugal force the proton shifting to the light cylinder surface and its energy increase
asymptotically. A similar structure is well known in neutron stars (Goldreich and Julian
(1969)).
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Figure 1. The magnetic field structure in the light cylinder

A relativistic jet is formed in the SMBH region of the corona above the surface of the
light cylinder. In this region, the electromagnetic field is also inherited from the magneto-
sphere Br, Bφ, Eθ into the jet Bz, Bφ, Eρ. The structure of the magnetosphere electromag-
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netic field is fully described in the work Istomin and Gunya (2020a), the structure of the jet
electromagnetic field is fully described in the work Istomin and Gunya (2020b).

3 PARTICLE ACCELERATION

The trajectory of a full cycle of proton acceleration is the sum of the acceleration in the
magnetosphere and the acceleration in the jet. The centrifugal force due to acceleration
shifted the proton to the light cylinder with radius RL = ΩF/c, where c is the speed of light,
the magnetic field angular velocity ΩF is determined by the angular velocity of the SMBH
ΩH as ΩF ! ΩH/2 (Blandford and Znajek (1977)). When the proton reaching the light
cylinder, the energy increases to γ(2/3)

max asymptotically shifted to the boundary of the light
cylinder and then leaves it, passing into the jet region. The pre-accelerated proton begins to
increase its energy up to the maximum value γ(1)

max when it reaches the plane of intersection
of the parabolic and conical jet profiles (Kovalev et al. (2020)). Upon reaching and crossing
the jet boundary, the proton passes through the maximum potential difference, which gives
the maximum energy.

The motion of particles with mass m and charge q in an electromagnetic field is described
by the equations

dp

dt
=q

(

E +
1

c
[v,B]

)

,

dr

dt
=

p

mγ
, (1)

γ2 =1 +
p2

m2c2
.

Here r and p are coordinates and momentum of a charged particle, γ is its Lorentz factor.
The motion of a proton in the magnetosphere (Istomin and Gunya (2020a)) is described

by equations (3). Here r and p are the coordinate and the momentum of a particle, γ is its
Lorentz factor. It is convenient for us to introduce dimensionless time, coordinates, velocity
and momentum,

t′ =
ωct

γi

, r′ =
r

rL

, v′ =
v

c
, p′ =

p

mcγi

. (2)

The initial value of the Lorentz factor is γi, the nonrelativistic cyclotron frequency of a
particle rotation in the B0 field is ωc = qB0/mc. Let us also introduce the value of the
Lorentz factor relative to the initial energy, γ′ = γ/γi. In these variables, the equations of
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motion (3) in spherical coordinates r, θ, φ (primes are omitted) have the form

dpr

dt
=
κ

rγ

(

p2
θ + p2

φ

)

+
sα

rγ
pθ,

dpθ

dt
= −

κ

rγ

(

pr pθ − p2
φ cot θ

)

−
s

r
sin θ +

s

r2γ
pφ −

sα

rγ
pr,

dpφ

dt
= −

κ

rγ
(pr + pθ cot θ) pφ −

s

r2γ
pθ, (3)

dr

dt
=
κ

γ
pr,

dθ

dt
=
κ

rγ
pθ.

Here s = sign|z|.
The equations of a proton motion in a jet (Istomin and Gunya (2020b)) is described by

equations (5).
The dimensionless time, coordinates and variables

t′ =
c

RJ

t, ρ′ =
ρ

RJ

, z′ =
z

RJ

,

p′ =
c

ωcRJ

p

mc
, γ′ =

c

ωcRJ

γ. (4)

The value of ωc is the nonrelativistic frequency of rotation of a particle in the magnetic
field. The relation c/ωc is the cyclotron radius of a nonrelativistic particle. It is significantly
smaller than the jet radius RJ , c/ωcRJ << 1. Omitting the primes, we move to the equations
of particle motion in the fields Bz = B0, Bφ, Eρ

dpρ

dt
=

p2
φ

ργ
+

pφ

γ
− α

pzρ(1 − ρ)
2

γ
+ βρ(1 − ρ)2,

dpφ

dt
= −

pρpφ

ργ
−

pρ

γ
,

dpz

dt
= α

pρρ(1 − ρ)
2

γ
,

dρ

dt
=

pρ

γ
, (5)

dφ

dt
=

pθ

ργ
,

dz

dt
=

pz

γ
.

The dimensionless equations (3) and (5) uncluding dimensionless parameters. Magnetic
field parameter α = Bφ/B0, where B0 is the radial field Br for the magnetosphere or the
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Figure 2. The magnetosphere toroidal momemtum versus the radial distance r sin θ. The numerical
parameters considered as an example κ = 10−2 and α = 10−2. The light cylinder surface is located at
10 on the abscissa axis.

longitudinal field Bz for the jet. The parameter of the electric field amplitude in the jet β
and the magnetization parameter κ = ΩF/ωc << 1 in the magnetosphere, characterizing
the cyclotron frequency of the particle ωc much higher than the angular velocity of the
magnetic field ΩF .

Analysis of the toroidal moment Pφ on the figure (2) shows that centrifugal acceleration
Pφ >> Pr + Pθ is predominant in the area of the light cylinder RL.

Analysis of the proton acceleration trajectory showed that the main energy increment
occurs in the near-boundary region of the light cylinder (Fig. 3). The thickness of this area:

∆r = −
sκγmax

sin2 θ

pr

pθ
|r=1/ sin θ . (6)

The calculation of the dependence of the proton energy on the distance to the light cylin-
der revealed that the proton leaves the acceleration region on the light cylinder when γ(2/3)

max

is reached for the magnetosphere with a significant dominance of the toroidal field Bφ over
poloidal Br, which is typical for systems with AGN and a jet, and γ(1/2)

max for systems with
an insignificant toroidal field, which is typical for inactive nuclei without a jet.

In a jet, the trajectory of displacement and the increment of energy occur mainly in the
radial direction at different (Fig. 4).

Three acceleration regimes are determined depending on the values of the dimensionless
amplitudes of the electric and magnetic fields.
(1) β2−α2 > a2

2 = 36 – protons in the ”untrapped” regime acquire the total energy γ = γmax,
(2) 19 = a2

1 < β
2 − α2 < a2

2 = 36 – protons in the ”trapped” regime cyclically increase and
lose energy, oscillating between the boundary and the axis of jet γ = 0.74γmax,
(3) β2 − α2 < a2

1 = 19 – protons are not accelerated in the jet and move with the energy
previously acquired in the magnetosphere, γ = γ2/3

max along the jet axis with insignificant
oscillation.
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Figure 3. The magnetosphere Lorentz factor versus the radial distance r sin θ. The numerical param-
eters considered as an example κ = 10−2 and α = 10−2. The light cylinder surface is located at 10 on
the abscissa axis.
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Figure 4. Particle trajectories on the plane (ρ, z). The figure shows particle trajectories in the regimes:
untrapped, trapped and nonaccelerated.

4 AGN

The energy achieved in the magnetosphere and the jet, as well as the acceleration regime
for a real AGN, is determined by the potential U generated by the SMBH and transferred
along the magnetic field lines from the magnetosphere to the jet. Thus, the U is also
the total potential difference between the region of the ergosphere of the SMBH in the
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magnetosphere and the boundary of the jet. The SMBH potential (Thorne et al. (1986),
Landau and Lifshitz (1984)) is

U = Bpr2
gΩH/2c. (7)

The angular velocity of rotation of the black hole is proportional to the angular momentum
of rotation of the black hole J = j(M2G/c), where j is the specific angular momentum of
the black hole, j < 1,

ΩH =
2c

rg

j

1 + (1 − j2)1/2
. (8)

The quantity rg is the gravitational radius of a SMBH with mass M,

rg =
2GM

c2
= 3 · 105 M

M$
cm = 3 · 1014M9 cm. (9)

The value M9 denotes the mass represented in units of 109M$. Accordingly, ΩH =

2 · 10−4M−1
9 j/[1 + (1 − j2)1/2] s−1.

The energies are defined as follows. For a proton accelerated in the ”untrapped” regime,
the energy is

Emax[eV] = 300 · U[cgs]; (10)

for a proton accelerated in the ”trapped” regime, the energy is

Emax[eV] = 0.74 · 300 · U[cgs]; (11)

and finally, for a proton moving in the ”nonacceleration” regime

Ei[eV] = 0.94 GeV ·

(

U[eV]

0.94 GeV

)2/3

(12)

is the initial energy acquired in the magnetosphere. Parameters such as mass M9, magnetic
field B4, specific angular momentum j, potential U, energies Emax, Ei.

5 SUMMARY

It has been proved that the main energy of the high-energy cosmic ray proton is accumu-
lated in the region of the light cylinder RL of the SMBH magnetosphere in the process of
collisionless stationary electromagnetic acceleration. The astrophysical scales of the mag-
netosphere of the AGN core and its surroundings, including the jet and the inner boundary
of the ISCO disk (Istomin and Sol (2009)), accelerate charged particles most effectively.
The conversion of the rotational energy of the SMBH into the rotation of the magnetic field
lines of the poloidal field Bp is possible thanks to the Blandford-Znajek process, direct
numerical simulations of which (Komissarov (2001)), (Komissarov (2005)) confirmed the

!" !! !" ## ? $ % &



80 Y. Istomin, A. Gunya

Table 1. Enrgies and acceleration regimes in the AGNs

Object Emax Ei regime
[eV] [eV]

OQ 530 3.6 · 1019 2.4 · 1014 trap./untrapped
S5 2007+77 5.1 · 1019 3.0 · 1014 trap./untrapped
S4 0954+ 5 8.4 · 1019 4.2 · 1014 trap./untrapped
NGC 1275 1.9 · 1021 3.3 · 1015 untrap./trapped
NGC 4261 1.4 · 1020 5.9 · 1014 untrap./trapped
NGC 4486 1.6 · 1020 6.4 · 1014 untrap./trapped
3C 371 1.3 · 1021 3.2 · 1015 untrapped
3C 405 9.6 · 1020 2.6 · 1015 untrapped
NGC 6251 2.9 · 1021 5.5 · 1015 untrapped
3C 120 4.0 · 1021 6.7 · 1015 untrapped
BL Lac 9.3 · 1021 1.2 · 1016 untrapped
3C 273 5.4 · 1021 6.7 · 1015 untrapped
3C 390.3 9.8 · 1021 1.2 · 1016 untrapped
3C 454.3 8.1 · 1020 1.9 · 1015 trap./untrapped
1H 0323+342 5.2 · 1020 1.7 · 1015 untrapped

SS433 6.7 · 1020 2.0 · 1015 untrapped

efficiency and possibility of this process, as well as an immediate impact on the forma-
tion of a jet (Sob’yanin (2019)). The rotation of the poloidal magnetic field lines provides
the generation of a polar electric field Eθ, which makes it possible to accelerate the pro-
ton to γ(2/3)

max . The total potential difference U ends already at the jet boundary, where the
radial electric field Eρ is inherited from the initially generated SMBH polar field Eθ. In
the ”untrapped” regime, the proton escape out of the jet, accelerating to the limit value
γ

(1)
max. In the table 1 shortly represented energies and regimes for diffrent real AGNs. The

more complete set of parameters is presented in work Istomin and Gunya (2020b). The
obtained data of the total energy Emax proton from table 1 also correspond to the data ob-
tained from several sources by PA collaboration (Pierre Auger Collaboration and Abraham
(2008)), (Abreu (2010)), (Nagar and Matulich (2008)), (Aab (2018)), (Zaw et al. (2009)).
Note that due to natural constrains (Pierre Auger Collaboration and Abreu (2013)) named
GZK-effect (Zatsepin and Kuz’min (1966)), not all sources can be associated with the pre-
dicted energies. Also according to IceCube results (Plavin (2020)), the neutrino energy in
the subparsec region at the base of the jet corresponds to the maximum energy of colliding
protons Ep ! 1016−1017 eV, which corresponds to orders of magnitude energy acquired by
protons in the region of the SMBH magnetosphere (third coloumn (Tab. 1)). Eventually the
proton acceleration algorithm directly depends on the activity of the galactic nucleus (5).
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Figure 5. UHECR proton acceleration algorythm for diffrenet galaxyes activity

The acceleration of a proton in a non active nuclei to energy E1
max is also assumed to

possibly occur in a Fermi bubble, which will be considered by the authors in the next
paper.
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ABSTRACT

Black holes are the final stage of gravitational collapse process, and due to the
cosmic censorhip conjecture, they are created inevitably if a trapped surface has
formed in the space-time. The solutions of Schwarzschild and Kerr are describing
the spacetime metric for the gravitational field of a spherically symmetric, or ro-
tating black hole. Astrophysically, the rotating black holes of stellar mass are end
products of stellar evolution, when the progenitor star was massive enough and pos-
sessed a substantial amount of angular momentum. They can be discovered when
leaving behind a luminous transient in a form of gamma ray burst, which is fol-
lowed by an afterglow emission at lower energies and associated with the emerging
supernova-like spectra that trace the chemical composition of expanding shells from
the explosion. The gravitational binding energy of the massive progenitor star is
released in the supernova explosion, while the extraction of rotational energy of the
newly formed black hole drives the gamma ray burst. In the latter, magnetic fields
are the agent driving the process.

In this article, we study the gravitational collapse and formation of the Kerr black
hole from the rotating progenitor star. We follow the evolution of black hole spin,
coupled with its increasing mass. We study the effect of different level of rotation
endowed in the progenitor’s envelope, and we out some constraints on the final black
hole parameters.

Our method is based on semi-analytical computations that involve stellar-evolution
models of different progenitors. We also follow numerically the black hole evolution
and spacetime metric changes during the collapse, via General Relativistic MHD
modeling.

Keywords: Black hole physics – magnetic fields – accretion

1 INTRODUCTION

Stellar mass black holes reside in transient and persistent X-ray sources. Transient X-
ray sources transform the gravitational potential energy of the black hole into radiation of
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the accretion disk, fed by the companion star. From the analysis of the orbital motion in
the binary, astronomers obtain information about the gravitational mass, and an estimate
of the mass of the black hole. The typical masses of these black holes are around 6-10
Solar mass, while the most massive electromagnetic black holes have masses of 20 M!
(Reynolds, 2019). Various methods of spin estimates utilize the spectral analysis of radia-
tion from the accretion disk, namely the continuum fitting method or the X-ray reflection
spectrum modeling. These methods give consistent results but with a wide range of spin
determinations for individual black holes, from a = 0.3 to a ! 0.95.

The newly born black holes are engines of gamma ray bursts. These very energetic
events have a transient nature and are associated with a catastrophic collapse of the star.
The accretion power is transformed to the bulk kinetic energy of the jet launched along the
rotation axis of the black hole. This black hole must be at least moderately or very highly
spinning a ! 0.6 − 0.9 in order to provide an efficient power generation for the jet.

Apart from electromagnetic observations, black holes in the Universe are detected via
gravitational wave window. The existence of gravitational waves is predicted by General
Relativity. The accelerating objects generate changes in the spacetime curvature which
propagate outwards with the speed of light. These propagating ripples are called waves,
and the observer on Earth will also find the spacetime distorted once such a wave reaches
the Solar System. In the gravitational wave detectors, the strain is a measured displacement
between the test masses, relative to the reference length. The analysis of the signal is done
via numerical relativity methods, and it enables determination of the masses and projected
spins of compact objects whose coalescence is being observed.

Since 2015, the binary compact object mergers, including stellar mass black holes, have
been detected many times. These discoveries brought new information about the masses
and estimated spins of the black holes produced from stellar progenitors. In LIGO data,
a negative correlation between the black hole masses and the mean effective spins is found
(Safarzadeh et al., 2020). In general, the LIGO measurements disfavour large spins. Typical
spins are constrained to a " 0.4. For aligned spins, these constraints are tighter, and results
suggest a ∼ 0.1. On the other hand, masses of black holes detected through gravitational
waves are systematically larger than previously known. Most of them seem to be around
20− 30M!, while the most massive event detected recently was fitted with two black holes
weighing about 66 and 85 Solar masses (GW 190521).

In this contribution we are interested in quantifying the gravitational collapse of a mas-
sive star and determination of the mass and spin of the newly formed black hole. Our
analysis shows that these two quantities are anti-correlated and depend on the angular mo-
mentum content in the collapsing envelope.

We build our study following a series of works that have been previously published
(Janiuk and Proga, 2008; Janiuk et al., 2008, 2018; Murguia-Berthier et al., 2020). In
particular, Janiuk and Proga (2008) and Janiuk et al. (2008) explored the problem of how
fast the black hole can spin up via the collapse. This study addressed the long GRB as
a luminous transient powered by the spinning black hole. Depending on the accretion
scenario and the angular momentum content in the envelope, the maximum duration of
the GRB event can be determined. Basic condition that has to be satified for a successful
GRB, is that some part of the rotating envelope must contain enough angular momentum
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to exceed the critical limit:

lspec = l0 f (θ)g(r) (1)

where the normalization is scaled to l0/lcrit = x.

lcrit =
2GM

c

√

2 − a + 2
√

1 − A (2)

where A is the black hole dimensionless spin parameter. The rotating torus and BH spin
drive the GRB central engine, as long as the torus angular momentum is above the critical
value (Janiuk et al., 2008).

Various authors (Lee and Ramirez-Ruiz, 2006; Barkov and Komissarov, 2010) studied
the properties of rotating collapsar envelope in the context of long gamma ray bursts. In
particular, also spin-up of the envelope by a companion can be a source of enhanced ro-
tation to prolong the duration and/or provide more power to the transient. Some results
suggest that the binary companion black hole merged with the collapsar’s core might lead
to a gravitational wave event accompanied by a bright gamma ray burst (Janiuk et al.,
2017). On the contrary, other studies show that a certain fraction of massive O-type stars
can vanish without a trace (i.e. without a bright luminous transient), if only the slow ro-
tation of those stars prevents them from gaining an effective feedback from accretion disk
(Murguia-Berthier et al., 2020).

2 THE MODEL SET-UP

To describe the process of collapse in a proper way, we would need to start from the matter
distribution of an evolved star, and then follow gravitational collapse by solving the Einstein
equations for matter-field evolution, until the massive Kerr black hole is finally formed and
all matter is either accreted or expelled because of energy deposition, possible due to the
shock waves or magnetic reconnections. Such computations are currently beyond the scope
of theoretical and numerical astrophysics.

Some efforts have been made already to simulate a collapsar and involve the conservation
equation for the stress–energy tensor. They include the fluid and radiation fields, and the
metric evolution followed through the standard BSSN method. However, the black hole
growth was not followed in these works and the simulations stopped after the core collapse
(Ott et al., 2018). If the black hole was found and diagnosed by means of the baryon mass
enclosed inside a certain radius, this radius was identified with the Schwarzschild radius,
i.e. the black hole was by definition a non-rotating one. Its mass is then fixed and also the
metric is frozen (Kuroda et al., 2018).

In our approach, we focus on the further evolution of the black hole parameters, namely
its spin and mass, which are affecting also the Kerr metric changes. Our approach is there-
fore more precise than in the above cited works, as for the dynamical evolution studied in
General Relativity. On the other hand, the cost of this approach is a big simplification of
the matter field distribution. We are trying to tackle this problem in two ways.
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2.1 Matter configuration

First, we adopt the density distribution that is resulting from physical model of the pre-
supernova star, pre-calculated by means of the stellar evolution model. Second, we adopt
a spherical density distribution resulting from the radial accretion problem (i.e. the Bondi
solution). In both cases, we supply the collapsing cloud with a small angular momentum,
concentrated on the equatiorial plane, so that the star is rotating. Furthermore, in the Bondi
case, we equip the star with magnetic fields of a chosen geometry and strength. We study
the gravitational collapse as the sequence of quasi-stationary Kerr solutions for a growing
mass and changing spin of the black hole. The spin is changing because of rotating matter
is adding the angular momentum after it is transmitted through the black hole horizon.

Computations of the self-similar solutions based on the pre-computed stellar evolution
tables are performed with the numerical code adopted from (Janiuk and Proga, 2008).
The magnetized Bondi case is studied by means of the full general relativistic magneto-
hydrodynamical simulation, i.e. here the stress-energy tensor contains both matter and
electromagnetic parts. Numerics is tackled here with the generic MHD algorithm adopted
from the HARM code (Gammie et al., 2003) and further developed by (Janiuk et al., 2018).
This code is working in the MPI-parallelized version on the supercomputing clusters and
the evolutionary scheme is supplemented with the Kerr metric update embedded in the
code, as developed in 2018 by our Warsaw group.

2.1.1 Density distribution in a pre-supernova star

We use the pre-supernova models from Woosley and Weaver (1995) and also newer ones
from Heger et al. (2000); Woosley et al. (2002) and Heger et al. (2005). The ZAMS mass
of the star is 25 M!. First two of them did not take into account rotation during the stellar
evolution modeling, and neglected magnetic fields. The initial metallicity was 10−4, so the
mass loss was negligible. The third star model is magnetized.

The density distribution in these pre-supernova models is shown in Fig. 1. Subsequent
layers of elements synthesized in the stellar interior are traced by this density profile. The
innermost layer, consisting of pure Iron, is forming the core that represents initial black
hole born just at the start of collapse. The mass of this core is equal to 1.4 M!. The thin
Silikon shell located outside this layer accretes first. Further heavy shells are then made
of Oxygen with some contribution of Neon, Magnesium and Carbon, and accrete on the
newly born black hole. The outermost Helium shell accretes at the core at later times.
The Hydrogen envelope, located above radius of r ! 1011 cm, can be either accreted or
expelled.

2.1.2 Spherically symmetric inflow

We assume initially that the angular momentum of accreted fluid is negligible and its veloc-
ity has a non-vanishing component only in the radial direction. The equation of continuity
gives 4πr2ρ(r)ur(r) = −Ṁ, where the constant on the right-hand side has a meaning of
mass accretion rate.
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Figure 1. Density distribution in the pre-supernova stars used in our modeling. Left: Pre-SN spher-
ically symmetric stellar model from Woosley and Weaver (1995) taken as initial condition for ho-
mologous collapse simulation of Janiuk and Proga (2008). Right: three othe pre-SN stellar models,
taken from Heger et al. (2000); Woosley et al. (2002), and Heger et al. (2005). These latest models
include rotation or magnetic fields in the stellar evolution calculations.

The distribution of density as the function of radius comes from the solution of transonic
accretion flow in spherical geometry. The initial density profile and the radial component
of the velocity (ur) of the material is determined by the relativistic version of the Bernoulli
equation (Hawley et al., 1984). In this formalism, the critical point (rs), where the flow
becomes supersonic, is set as a parameter. Here we take the value of rs = 80rg. The fluid
is considered a polytrope with a pressure P = Kργ, where ρ is the density, γ = 4/3 is the
adiabatic index, and K is the constant specific entropy. Once the critical point, rs, is set, the
velocity at that point is:

(

ur
s

)2
=

GM

2rs
, (3)

where r is the radial coordinate, M is the mass of the BH and the sound speed is:

c2
s =

γ Ps

ρs

1 +
γ

γ−1
Ps

ρs

. (4)

The constant specific entropy can be obtained using the sound speed:

K =
c2

s

ργ−1γ
(5)

The radial velocity profile is obtained by numerically solving the equation (Shapiro and
Teukolsky, 1986):

(

1 +
γ

γ − 1

P

ρ

)2 (

1 −
2GM

r
+ (ur)2

)

= constant (6)

The radial velocity is given by:

(ur)2 =
GM

2r
. (7)
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Finally, the accreting material is endowed with small angular momentum scaled to the
one at the circularisation radius of rcirc, being the ISCO radius (equal to 6 rg for a non-
rotating black hole; see (Janiuk et al., 2018)). It is also scaled with polar angle to have its
maximum value on the equatorial plane, at θ = π/2:

l = S liscor2 sin2 θ (8)

where l is the specific angular momentum, defined as l = uφr2, lisco is the specific angular
momentum at the ISCO of the black hole, and θ is the polar coordinate.

3 STRONG GRAVITATIONAL FIELDS

Gravitational field of a black hole is described by Kerr metric, which can be written in the
well-known Boyer-Lindquist coordinate system (t, r, θ, φ) and the metric element is given
by:

ds2 = −
(

1 −
2Mr

R2

)

dt2 −
4Mra sin2 θ

R2
dtdφ+

+

(

r2 + a2 +
2Mra2

R2
sin2 θ

)

sin2 θ dφ2 +
R2

∆
dr2 + R2 dθ2 (9)

where R2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2. The inner horizon is located at rH =

1 + (1 − a2)1/2M, with a = J/M, and the condition about the presence of the outer event
horizon leads to the maximum value of the dimensionless spin, |a ≤ 1|. Note that here the
convention is used with G = c = 1. Here M denotes mass of the black hole, and the spin
parameter a of the Kerr metric describes its rotation. This spacetime is asymptotically flat
and the region far away from the ergosphere and event horizon experiences a negligible
gravitational influence.

In Kerr metric the axial symmetry about the rotation axis is assumed and the metric
elements are stationary in time. The very strong gravitational distorsion becomes infinite
and forms a singularity below the event horizon.

3.1 Evolution of Kerr metric

The mass and spin of the black hole are rapidly changing during the collapse process. In
the numerical simulations we update therefore the six non-trivial coefficients of the Kerr
matric, according to the change of these quantities. We neglect however the self-gravity
of the accreting fluid, and we assure that the only source of gravitational potential is the
dynamically changing black hole mass, M + ∆M:

∆M =
Mt

M0
− 1 (10)

Also, the black hole spin changes according to the inflow of angular momentum from the
rotating enevelope. Hence,

∆a =

(

J̇

Mt
−

at−dt

Mt
Ė

)

∆t (11)
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where Mt denotes the current black hole mass at time t, M0 denotes initial black hole mass,
and J̇ and Ė are the flux of angular momentum and energy flux transmitted through the
black hole horizon at a given time (Janiuk et al., 2018). The six non-trivial components of
the Kerr metric, namely gtt, gtr, gtφ, grr, grφ, gφφ, are updated at every time step and they
get new values. This is a simplified treatment of the process, and new simulations with the
self-gravity effects taken into account are planned to be the subject of our future work (Palit
et al., in prep.).

4 MAGNETIC FIELDS

In order to initiate the numerical code we employ an initially parabolic magnetic field which
is fully described by the only non-vanishing components of the four-potential,

Aφ ∝ (1 − cos (θ)) (12)

in dimension-less Boyer-Lindquist coordinates. The magnetic field (and the associated
electric component) are generated by currents flowing in the accreted medium far from the
black hole, as the latter does not support its own magnetic field. The four-potential vector
components define the structure of the electromagnetic tensor, Fµν ≡ A[µ,ν]; by projecting
onto a local observer frame one then obtains the electric and magnetic vectors E and B.
From the simple initial configuration, the numerical solution rapidly evolves into a complex
entangled structure, with field lines turbulent within the accreting medium. At the end of
the simulation, while the matter gets accreted into black hole and almost empty envelope
remains, the field lines become more organized again.

5 RESULTS

5.1 Homologous mass accretion in collapsar

The original paper by Janiuk and Proga (2008) included four models of the angular mo-
mentum profile, but did not consider the black hole spin changes during the collapse. Then
the subsequent work Janiuk et al. (2008) examined the black hole spin evolution, with the
number of models of angular momentum distribution limited to two cases. Here we present
the results of calculations for one of the models which was not included in the second paper,
with the angular momentum profile described by the function:

f (θ) ∝ sin2(θ). (13)

with several normalizations with respect to the critical vaue, lcrit (see (2)): x = 0.4, x = 1.0
and x = 1.4. Note that the same values are used in GRMHD simulations presented in te
next Section.

In this particular model we allowed for accretion of matter with super- and sub-critical
angular momentum at the same time, thus referring to a homologus accretion scenario. We
also did not terminate our calculations after there was no matter with sufficient amount of
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Figure 2. BH mass (left) and spin evolution (right) during collapse. Initial density distribution is
taken from the 25 M! pre-supernova model of Woosley and Weaver (1995). Accretion scenario
assumes homologous collapse with black hole spin-up, starting from either spin-less or moderately
spinning core (A0 = 0 or A0 = 0.3). Initial core mass is 1.4M!. Angular momentum in the envelope
is maximum at the equator, and scales with polar angle as sin2 θ, where θ = 0 and θ = π refer to the
poles. Normalisation of rotation with respect to the critical value, see (2), is denoted with x = 0.4, 1.0
and 1.4 (see blue, green and cyan lines in the right panel).

angular momentum to sustain the torus, so that no part of the Hydrogen envelope was ex-
pelled, and finally all the mass is accreted. We performed the calculations for two values of
the initial black hole spin: A0 = 0 and A0 = 0.3. The spin and the black hole mass evolution
are shown in Fig. 2. The black hole mass increase is the same for all the x normalization
values, because matter with sub- and super critical angular momentum accrete togethter.
The black hole spin evolution depends on both initial spin and initial angular momentum
of the matter. In case of x = 0.4 maximal spin is significantly higher for A0 = 0.3 than
for a non-spinning black hole. The difference between maximal spin values in the models
with A0 = 0.3 and A0 = 0 is smaller for higher x. In general, we note that the spin starts
to increase immediately at the beginning of the calculations, and the lower x value is, the
faster the spin reaches its maximum and then starts to decrease. The final spin value does
not depend on the A0.

5.2 MHD evolution of slowly-rotating inflow with Kerr metric update

In the HARM code GR MHD simulations, we set the outer boundary of the computational
domain at the radius 103rg, where the inflow is purely radial at initial time. The inner
boundary is set at ( 0.98rH, i.e. at below the horizon radius for the corresponding value
of spin a. The grid domain has been resolved at 256 × 256 points in (r, θ) coordinates. In
MHD models, we renormalize the magnetic intensity to determine the plasma parameter
β = pgas/pmag (smaller β corresponds to a more magnetized plasma).

Because of the perfect conductivity and the force-free approximation (apart from the
effective small-scale numerical dissipation), the magnetic field lines remain attached to
plasma. During the evolution, the β-parameter is not uniform across the computational
domain and it changes in time. In the limit of negligible magnetization (β = ∞) the grav-

!" !! !" ## ? $ % &



Magnetized collapsars and black hole spin-up 91

Figure 3. Density distribution in the late time of the simulation. Model parameters: black hole initial
spin A0 = 0.5, critical rotation parameter, S = 1.0. Model neglects magnetic fields. Rotationally
supported disk-like structure is present for a long time in the equatorial plane. Note the different
spatial scale of the left panel, which shows a zoom-in of the middle figure.

itational attraction of the black hole prevails. But in the case of equipartition between the
magnetic and hydrodynamic pressure (β ≈ 1) near the horizon the accretion rate is dimin-
ished (cf. Karas et al. (2020), this Proceeding).

Our collapsar simulations start from a spherically symmetric distribution of density of
a purely radial infall, which is quickly broken by the imposed roation. The flow concen-
trates towards the equator, forming a mini-disk structure. The flow is supersonic near the
black hole horizon, and in many cases, the multiple sonic surfaces are found with an as-
pherical shape (resembing an eight-letter). This feature refers to the inner sonic surface
which after some time gets accreted. In the models with critical and supercritical roation
(S ! 1.0), this initial transient shock is accompanied with some moderate variability of
the accretion rate. Another sonic surphace, located initially at 80 rg, expands outwards.
The expanding shock velocity is typically much lower than the escape velocity at the shock
radius.

The densest part of a roationally-supported mini-disk is enclosed within a small region
of r < 20rg (cf. Murguia-Berthier et al. (2020)). The sub-critical models (S ≤ 1.0) do
not contain enough angular momentum to form a mini-disk bubble, and the material from
both polar regions and equator can contribute to accretion and black hole mass grows more
quickly in these models. In case of super-critical accretion, only material from polar re-
gions accretes, while the angular momentum cannot be transported if magnetic fields are
neglected. The accretion rate in this case is rather low for the first part of the simulation,
while it grows later, when the bulk of material falling from the outer parts of the envelope
reaches the mini-disk and is able to overpass it above and beow the equatorial plane. This
phase (reached typicaly after t > 0.8 − 1 s, in physical time units) is also associated with
large spikes in the accretion rate. The mini-disk is destroyed, nevertheless in many simu-
lations we observe the existence of a long-living disk-like structure a the equatorial plane,
which is sustained until the end of the simulations (typically tend = 2 s). The detailed shape,
and time for which the feature is preserved, depends also somewhat on the value of initial
back hole spin A0 (for the highets probed value, A0 = 0.85, we found the longest timescale
of disk structure, t f = 4.5 s; see (Król and Janiuk, 2020)). In Fig. 3 we show the density
distribution in the late phase of the simulation, for one exemplary model. Parameters of
this model are A0 = 0.5 and S = 1.0.
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Figure 4. Results for magnetized model, with β = 1, initial black hole spin A0 = 0.5 and critical
rotation parameter, S = 1.0. Figures show angular momentum distribution and density field with
overplotted magnetic field lines at the beginning of the simulation (left and middle panels) and the
density structure, at the end of the simulation. Note the different spatial scale of the right panel, which
shows a zoom-out of the middle figure.

The evolution of the black hole spin is non-linear, as the rotation of the black hole can
both speed up and slow down, depending on the amount of angular momentum that is reach-
ing the horizon. The maximum value of the spin reached during the collapse temporarily,
as well as the final value, depends also on the assumed initial spin. For sub-critical rota-
tion models, only for smallest value of A0 = 0.3 we observed a temporal spin-up of the
black hole (up to A ∼ 0.4), while the end value was below the starting one (Af ∼ 0.15).
For super-critical rotation, the black hole could even spin-up maximally for some period
of time, but finally the spin was smaller. Typically A ∼ 0.7 was reached in case of angular
momentum in the envelope normalised to S = 1.4, which means that effectively the highly
spinning black hole at A0 = 0.85 did spin-down after the collapse.

The final black hole masses are oboviously limited by the total mass of he envelope,
assumed always to be 25 M!. They were between Mend

BH = 11 and 18 M! at the end of the
simulation, and in non-magnetized models the largest back hole masses were obtained for
sub-critical rotations, which also correlates with the smallest final spins. These values did
not differ much between the models with various initial spins. For super-critical rotation
of the envelope, the final black hole mass was smaller, and also decreased for large initial
black hole spins.

In order to reveal the changes of the magnetic field near the black hole, we study the
evolution of the strongly magnetized plasma, that is inflowing into the horizon. In Fig. 4
we present the MHD simulation results. Parameters of rotation in the envelope and initial
black hole spin are the same as in Fig. 3, but now the model is magnetized, and the magnetic
to gas pressure ratio in the accreting cloud is equal to β = 1.

As mentioned above, the initial configuration is the parabolic magnetic field solution,
but this configuration starts quickly changing once the inflowing plasma arrives in the do-
main, while the magnetic field is coupled to matter. The purely poloidal field changes and
develops a strong toroidal component (see Fig. 5).

We observe also that the magnetized jet wants to form in the polar regions, where the
open field lines are visible in the early stage of evolved configuration, together with dense
and turbulent torus structure in the equatorial plane (time t ∼ 0.1 − 0.15 s). Nevertheless,
because of large density in the envelope, the jet cannot break out of the collapsing star.
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Figure 5. Components of magnetic field 3-vector, at the late stage of the simulation. Parameters of
the run: β = 1, initial black hole spin A0 = 0.5, envelope rotation S = 1.0

Figure 6. Evolution of the black hole mass, its spin, and accretion rate onto BH horizon, during
the simulation. Parameters of the run: initial black hole spin A0 = 0.5, envelope rotation parameter
S = 1.0. Non-magnetized models are shown with purple lines. Magnetic field in magnetized model
was parameterized with β = 1 (green lines) or β = 100 (cyan lines).

The polar funnels are baryon-polluted, and quickly change the magnetic field configuration
back to radially-dominated, and the equatorial configuration of matter turns back to quasi-
spherical (at time t ∼ 0.5 s). We envisage, that full 3-dimensional simulations might be
needed to overcome this problem and allow to sustain a long-living, dense and magnetized
torus together with a jet-like funnel.

We also probed the effects of magnetic fields on the accretion rate, black hole spin, and
mass in the collapsar models. In Fig. 6 we show the evolution of these quantites, for initial
spin A0 = 0.5 and the critical rotation parameter S = 1.0. Parabolic magnetic field was
normalized to β = 1 or β = 100. For comparison, non-magnetized model of the same
parameters but β = ∞ is presented in the Figure. The main quantitative difference is that
the black hole spin is always smaller at its maximum in the magnetized models, than in
the non-magnetized, for the same set of other parameters. The final black hole spin is
also smaller if magnetic fields are included. On the other hand, the mass of the black hole
achieved larger values. This is the result of angular momentum transport via magnetic
fields, which allows matter to accrete not only from the polar regions, but also through the
rotating disk. The variability of accretion rate is more visible in the weakly magnetized
case (β = 100) than in the strongly magnetized. We suggest that this is an effect of a very
strong magnetic barrier in the latter.
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6 CONCLUSIONS

• We compute the collapsar model with slowly-rotating quasi spherical collapse with chang-
ing black hole spin and mass and Kerr metric update. We probed a range of angular mo-
mentum contents in the collapsars envelope, and range of initial black hole spins.
• Our method to follow collapse is fully GR MHD, while still not by exactly solving the
Einsteins equations, but it gives a good approximation to this problem
• Our test models out some constraints on the angular momentum content of the collapsing
progenitor star, with the resultant mass and spin of the BH.
• For supercritical rotation, we always observe spin up of the black hole at some stage of
the simulation. The dependence on the initial black hole spin is however not monotonic,
and at the end of simulation, the black hole can be effectively spun down with respect to
the initial spin value.
• The strongly magnetized collapsars reach lower maximum black hole spins, and even
for supercritical rotation in the envelope, the black hole may not reach the maximum Kerr
parameter.
• The growth of the black hole mass is largest when the envelope rotation is slow, and
when the black hole was at least moderately spinning initially.
• Two shock fronts were found with velocities are 0.014 c and 0.022 c. For the models with
sub critical envelope rotation we obtained higher velocities of the shock fronts: 0.04 c and
0.044 c, depending on BH spin (A0 = 0.5, 0.85). This trend seems opposite in comparison
to Murguia-Berthier et al. (2020) who studied non-spinning BHs.
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Silesian University in Opava, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

ajur0173@slu.cz
barman.tursunov@physics.slu.cz

ABSTRACT

In many astrophysical scenarios, the charge of the black hole is often neglected
due to unrealistically large values of the charge required for the Reissner-Nordström
spacetime metric. However, black holes may possess a small electric charge due
to various selective accretion mechanisms. In this paper we investigate the process
of ionization of a neutral particle in the vicinity of a weakly charged non-rotating
black hole and calculate the energy of an ionized particle in a chosen scenario. High
energy obtained by a charged particle after the ionization process can serve as a
distinguishing signature of the weakly charged black holes.

Keywords: Black hole – Electric charge – Ionization – Particle acceleration

1 INTRODUCTION

Recently, it has been pointed out that the ionization or decay of neutral particles in the
vicinity of a rotating Kerr black hole immersed into an external magnetic field can lead to
the acceleration of ionized particles to ultra high energies, with the Lorentz γ-factors of
particles exceeding 1012 (Tursunov et al., 2020a; Tursunov and Dadhich, 2019; Stuchlı́k
et al., 2020). The formalism of accelerating mechanism is based on the magnetic Penrose
process (Wagh et al., 1985; Parthasarathy et al., 1986) in its ultra-efficient regime (Tursunov
et al., 2020a), in which the energy of an ionized particle drives away the rotational energy of
the black hole through electromagnetic interaction. It was claimed that the driving engine
of the process is in the induced electric field generated by the rotation of the black hole in
the external magnetic field.

In this contribution we investigate whether the acceleration of ionized particles can be
achieved in a more simplified setting, namely, in the vicinity of a non-rotating Schwarzschild
black hole with a radial test electric field. By a test electric field we denote the field, whose
energy-momentum tensor can be neglected in the description of the gravitational field of the
black hole. This implies that the electric field influences the dynamics of charged particles
only, being negligible for the geodesics of neutral particles.
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Such a simplified setup is motivated by the following reasons. First of all, the no-hair

theorem states that the spacetime around black holes can be fully described by at most three
metric parameters - black hole mass, spin and electric charge. The later is usually neglected
in astrophysical scenarios, justified by unrealistically large values of the charge required for
its visible effect on the spacetime metric. Indeed, one can compare the gravitational radius
of a black hole with the characteristic length of the charge QG of the Reissner-Nordström
black hole, which gives the maximum charge value

√

Q2
G

G

c4
=

2GM

c2
, (1)

⇒ QG = 2G1/2M ≈ 1031 M

10M#
Fr. (2)

This value of the charge is unattainable in any known astrophysically relevant scenario.
Thus, the Reissner-Nordström spacetime metric is interesting, but astrophysically not vi-
able.

On the other hand, there exist several astrophysical mechanisms based on a selective ac-
cretion, in which a black hole can be weakly charged. Since protons are about 1836 times
more massive than electrons, the balance between the gravitational and Coulombic forces
for the particles close to the surface of the compact object is obtained when the black hole
acquires a positive net electric charge of the order of Q ∼ 3 × 1011Fr per solar mass (Za-
jacek and Tursunov, 2019; Bally and Harrison, 1978). Moreover, matter surrounding black
hole can be ionized and charged by the irradiating photons taking away some electrons
(Weingartner et al., 2006). Perhaps the most famous mechanism of charging of black holes
is based on the solution by Wald (1974), in which the charge is induced by the twisting of
magnetic field lines due to the frame-dragging effect. As a result, both the black hole and
surrounding magnetosphere should acquire an equal and opposite charge of the order of
Q ∼ 1018Fr per solar mass (see, e.g. Tursunov et al., 2020b). In all cases, the charge of the
black hole is much weaker than the maximal value (2) by many orders of magnitude (see,
e.g. for the Galactic center supermassive black hole in Zajaček et al., 2018), therefore, the
gravitational effect of the charge on the spacetime metric can be rightly neglected. One
should also note that our consideration of a weakly charged Schwarzschild black hole in
the current paper is reasonable and well justified unless the value of the black hole charge
is comparable with its maximum limit (2).

Below we will show that even such a weak electric field (Q & QG) cannot be neglected
in the description of the motion of charged particles. Moreover, it plays a crucial role in the
mechanism of acceleration of ionized particles. Hereafter we use the signature (−,+,+,+),
and the system of geometric units, in which G = 1 = c, unless the units are given explicitly
in physical units.
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2 DYNAMICS OF A CHARGED PARTICLE

2.1 Background setup & equations of motion

The Schwarzschild solution of the Einstein’s field equations, corresponding to a spherically
symmetric spacetime metric reads

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdφ2), (3)

where f (r) is a lapse function parametrized by the black hole mass M as follows

f (r) = 1 −
2M

r
. (4)

Let us assume the presence of the radial electric field with a corresponding small electric
charge Q at the center. Then, the only non-zero covariant component of the electromagnetic
potential Aµ = (At, 0, 0, 0) takes the following simple form

At = −
Q

r
. (5)

The anti-symmetric tensor of the electromagnetic field Fαβ = Aβ,α − Aα,β has the only one
independent nonzero component

Ftr = −Frt = −
Q

r2
. (6)

Let us now consider the motion of a charged particle of mass m and charge q in the
combined background of gravitational and electric fields. The motion of a charged particle
is governed by the Lorentz equation in curved spacetime

duµ

dτ
+ Γ

µ
αβu
αuβ −

q

m
F
µ
νu
ν = 0, (7)

where uµ is the four-velocity of the particle, τ is the proper time of the particle and Γ
µ
αβ –

Christoffel symbols.
Due to symmetries of the background Schwarzschild metric, one can introduce two in-

tegrals of motion, corresponding to temporal and spatial components of the canonical four-
momentum of the charged particle

Pt

m
= −E ≡ −

E

m
= ut −

qQ

mr
, (8)

Pφ

m
= L ≡

L

m
= uφ, (9)

where E and L denote specific energy and specific angular momentum of the charged par-
ticle. Since both gravitational and electric fields are spherically symmetric and there is no
preferred plane of the motion, one can fix the motion of the charged particle to the equato-
rial plane (θ = π/2), without loss of generality. Thus, three non-vanishing components of
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Figure 1. The radial dependence of the effective potential Ve f f for a charged particle around weakly
charged non-rotating black hole in the equatorial plane θ = π/2 for different values of the parameters
L and Q.

the equation of motion (7) can be found in the form

dut

dτ
=

ur [Qr − 2M (er + Q)]

r (r − 2M)2
, (10)

dur

dτ
=

eQ

r2
+
L2 (r − 2M)

r4
−

M
[

e2 − (ur)2
]

r (r − 2M)
, (11)

duφ

dτ
= −

2 L ur

r3
, (12)

where e = E −
qQ

mr
. (13)

Equations (10) - (12) are ordinary differential equations, which can be easily solved numer-
ically.

2.2 Effective potential

Using the normalization condition for a massive particle uµuµ = −1, one can derive the
effective potential for the charged particle moving around a weakly charged Schwarzschild
black hole in the form

Ve f f (r) =
Q
r
+

√

f (r)

(

1 +
L2

r2

)

, (14)

where Q = Qq/m is a parameter characterizing the electric interaction between the charges
of the particle and black hole. Without loss of generality, we set the mass of the black hole
to be equal to unity, i.e. M = 1.

Since the right hand side of the effective potential (14) is always positive one can distin-
guish two qualitatively different situations depending on the sign of the parameter Q. When
Q > 0, the charges of the particle and black hole have the same sign, so the electric inter-
action is repulsive. In the opposite case, when Q < 0, the charges of the particle and black
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hole have different signs, so the electric interaction is attractive. The term L2 under the
root of Eq.(14) means that the clockwise and counter-clockwise directions of the motion
are equivalent.

The radial profile of the effective potential is shown in Figure 1. One can see that the
effect of the charge parameter Q is similar to those of the angular momentum L, i.e. in-
creasing (or decreasing) both parameters Q and L one can increase (or decrease) the value
of the effective potential. It is interesting to note that taking into account the parameter Q
can mimic the effect of angular momentum (compare, e.g. red curve in the middle plot with
a very similar blue curve on the right plot of the Figure 1).

The stationary points of the effective potential Ve f f (r) are given by the equation

∂rVe f f (r) = 0. (15)

Note that in the case of a weakly charged Schwarzschild black hole all the local extrema of
the effective potential Ve f f are located in the equatorial plane θ = π/2. Eq. (15) leads to a
polynomial equation of the fourth order in the radial coordinate

r2(J − 1) +L2(r − 3) = 0, (16)

where J =
Q
r

√

(r − 2)
(

L2 + r2
)

r
. (17)

A solution of the equation (16) has four roots of L with two of them being independent

L2
± =

r

(r − 3)2

(

−Q2 − 3r +
Q2r

2
+ r2 ± Q

√

Q2 − 12r + 4r2

(

1 −
r

2

)

)

, (18)

2.3 Angular velocity measured at infinity

Noticing that in the equatorial plane the four velocity takes the form uα = ut(1, v, 0,Ω),
where v = dr/dt, Ω = dφ/dt and using the normalization condition uαuα = −k, where
k = 1 for massive particle and k = 0 for massless particle, we can obtain the following
equation

(ut)2
(

f −1(r)v2 − f (r) +Ω2r2
)

= −k. (19)

Simplifying the equation above, we can easily derive an equation for angular velocity mea-
sured by a static observer at infinity Ω = dφ/dt

Ω = ±
1

utr

√

(ut)
2 (

f (r) − f −1(r)v2
)

− k f 2(r). (20)

Allowed values of Ω are limited to

Ω− ≤ Ω ≤ Ω+, Ω± = ±
√

f (r)

r
. (21)

corresponding to the photon motion.
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Figure 2. Left: The position of the ISCO of the charged particle in the dependence on the charge
parameter Q. Middle: Angular momentum of the charged particle at ISCO against ISCO position.
Right: velocity of the charged particle at ISCO. In all plots, the red lines correspond to the positive
charge parameter Q > 0, while the black curves correspond to the negative charge parameter Q < 0.

2.4 Innermost stable circular orbit

An innermost stable circular orbit (ISCO) in the Schwarzschild spacetime is located at
rIS CO = 6M. In the case when the electric charge is included, it will be shifted out-
wards from 6M. The local extremum of the function L± determines the ISCO, namely,
its radius, angular momentum and energy. ISCO can also be found from the condition of
∂2

r Ve f f (r,L,Q) = 0, which gives

L2r2(J(r − 2) + 2) + r4(J(r − 2) − r + 3) +L4((r − 3)r + 3) = 0. (22)

Solving this equation with respect to r gives us four solutions for the ISCO with only two
of them being real and independent. One can also calculate the velocity v of the charged
particle at the ISCO, which is given by the formula

v =

√

√

√ 1

1 +
r2

isco

L2
isco

. (23)

Dependence of the ISCO position risco on the charge parameter Q and the change of the
values of Lisco and v on the ISCO position are shown in Figure 2. ISCO is increasing for
both positive and negative Q. Similar results have been also obtained recently by Hackstein
and Hackmann (2020), where the ISCO in a similar setting is properly discussed.

3 THE ENERGY OF THE IONIZED PARTICLE

3.1 Conservation laws

Let us now consider the decay of a particle 1 into two fragments 2 and 3 close to the horizon
of a weakly charged Schwarzschild black hole at the equatorial plane. One can write the
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following conservation laws before and after decay

E1 = E2 + E3, L1 = L2 + L3, q1 = q2 + q3, (24)

m1ṙ1 = m2ṙ2 + m3ṙ3, m1 ! m2 + m3, (25)

where dot indicates derivatives with respect to the particle’s proper time τ. Using the above
conservation laws, one can find the equation

m1u
φ
1
= m2u

φ
2
+ m3u

φ
3
. (26)

Noticing that uφ = Ωut = Ωe/ f (r), where ei = (Ei + qiAt)/mi, with i = 1, 2, 3 indicating the
particle’s number, the equation (26) will take the following from

Ω1m1e1 = Ω2m2e2 +Ω3m3e3. (27)

Solving the above equation with respect to the energy of one of the fragments, e.g. E3 we
find

E3 =
Ω1 −Ω2

Ω3 −Ω2

(E1 + q1At) − q3At, (28)

where Ωi = dφi/dt is an angular velocity of an ith particle, given by (20), with restricted
values (21).

3.2 The maximum energy of the ionized particle

To maximize the energy of the ionized particle we choose the particle 1 to be neutral, i.e.
q1 = 0. We are also free to choose the energy of the particle 1, which we set to its rest mass
energy, i.e. E1 = m1 or E1 = 1. In this case, the angular velocity (20) for the particle 1 will
take the following simple form

Ω1 =
1

r2

√

2(r − 2). (29)

We choose the ionized particle to be the particle 3. The energy of the ionized particle is
maximal, when the term (Ω1 − Ω2)/(Ω3 − Ω2) is maximized. This occurs when we set the
angular momentum of fragments to their limiting values. Then we find

Ω1 −Ω2

Ω3 −Ω2

∣

∣

∣

∣

max
=

1
√

2 rion

+
1

2
. (30)

We see that the ratio (30) is maximal, where the ionization point rion coincides with the
horizon of the black hole. Thus, at rion = 2, the ratio (30) is equal to unity. Finally, we
write the expression for the energy of the ionized particle in the form

E3 =

(

1
√

2 rion

+
1

2

)

E1 +
q3Q

rion
. (31)
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Figure 3. The ratio of energies of escaping proton and the neutral hydrogen and the energy of escap-
ing proton in GeV (left) scaled by factor 100 (right) plotted against the black hole charge Q for the
black hole mass M = 10M#. The colors of curves denote different positions of the ionization point;
blue: rion = 2GM/c2, red dashed: rion = 3GM/c2 and black dot-dashed: rion = 5GM/c2. The dotted
grey line corresponds to the rest energy of the proton.

It is useful to define the ratio between the energies of ionized and neutral particles, which
would represent the efficiency of the acceleration process. Writing the black hole mass and
the speed of light explicitly, we find

E3

E1
=

1

2
+

√

M

2 rion
+

q3Q

m1c2rion
. (32)

One can see that the energy of the ionized particle is increasing only when q3 and Q have
the same sign, which is also expected.

In order to estimate the process quantitatively, let us consider the ionization of a neutral
hydrogen atom consisting of a single proton and single electron in the vicinity of a stellar
mass black hole of mass 10M#. When the electron is separated from the atom, the attained
energy of the proton will depend on the charge of the black hole. The proton energy will
be larger than the energy of the initially neutral atom, when the charge of the black hole
is positive and decrease with increasing the distance between the ionization point and the
black hole. We plot the energy of proton after ionization of neutral hydrogen atom in Fig.3,
where we also give the ratio of energies of the proton and the neutral hydrogen. We clearly
see that the energy of the proton can increase more than 100 times already for the black
hole charge values above 1015Fr, which is still more than 15 orders of magnitude smaller
charge than the maximal Reissner-Nordström charge (2). Therefore, we conclude that a
weakly charged Schwarzschild black hole can act as a high-energy particle accelerator.
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4 CONCLUSIONS

We have studied the particle motion and ionization in the vicinity of a non-rotating Schwarz-
schild black hole carrying the small electric charge, whose gravitational effect on the space-
time metric is negligible. We started from the description of the motion of the charged
particle and showed that the effective potential in the case of a weakly charged black hole
increases (decreases) with increasing (decreasing) the electric interaction parameter Q. We
found that the innermost stable circular orbit (ISCO) of the charged particle increases for
both positive and negative values of the parameter Q. The results are in accord with previ-
ous similar studies by Pugliese et al. (2011); Zajacek and Tursunov (2019); Hackstein and
Hackmann (2020).

We have found that the energy of fthe ionized particle can be much greater than the initial
energy of the neutral particle if both charges of the ionized particle and the black hole have
the same sign. Thus, the similar acceleration process occurring in the magnetized Kerr
black hole spacetime and studied by Tursunov et al. (2020a) works also in the weakly
charged non-rotating black hole case. We also estimated the energy of a proton after the
ionization of the hydrogen atom in the vicinity of the stellar mass black hole. In this
particular situation, we demonstrated that the energy of the proton can increase more than
100 times with respect to the energy of neutral hydrogen when the charge of the black hole
is greater than 1015Fr, which is still about 16 orders of magnitude smaller charge than the
maximal Reissner-Nordström limit.
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CZ-14100 Prague, Czech Republic

2Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikow 32/46,
P-02-668 Warsaw, Poland

avladimir.karas@cuni.cz

ABSTRACT
Black holes attract gaseous material from the surrounding environment. Cosmic
plasma is largely ionized and magnetized because of electric currents flowing in
the highly conductive environment near black holes; the process of accretion then
carries the magnetic flux onto the event horizon, r ! R+. On the other hand, magnetic
pressure acts against accretion. It can not only arrest the inflow but it can even push
the plasma away from the black hole if the magnetic repulsion prevails. The black
hole does not hold the magnetic field by itself.

In this contribution we show an example of an equatorial outflow driven by a large
scale magnetic field. We initiate our computations with a spherically symmetric
distribution of gas, which flows onto the domain from a large distance, r " R+.
After the flow settles in a steady (Bondi) solution, we impose an axially symmetric
configuration of a uniform (Wald) magnetic field aligned with the rotation axis of
the black hole. Then we evolve the initial configuration numerically by employing
the MHD code that approaches the force-free limit of a perfectly conducting fluid.

We observe how the magnetic lines of force start accreting with the plasma while
an equatorial intermittent outflow develops and goes on ejecting some material away
from the black hole.

Keywords: black hole physics – magnetic fields – accretion

1 INTRODUCTION

Accretion is ubiquitous process in the Universe. By gradual accretion, various components
of highly diluted environment are gathered and brought onto cosmic bodies – planets, stars,
even galaxies (see, e.g., Fox and Davé, 2017; Shakura, 2018). Accretion is driven primarily
by action of gravitational and electromagnetic forces. Gravity of the central body acts at
long range and it attracts gas and dust, whereas the electric and magnetic components can

978-80-7510-433-5 © 2020 – SU in Opava. All rights reserved. !" !! !" ## ? $ % &

http://www.opava-city.cz/
vladimir.karas@cuni.cz


108 V. Karas, K. Sapountzis, A. Janiuk

act in a complex, mutually interrelated manner; they can cause either attraction or repulsion
of the plasma, depending on the conditions.

Astrophysical plasmas are characterized by their high conductivity which ensures that
the force-free condition is typically an excellent approximation to describe the cosmic en-
vironment (Beskin, 2010). Moreover, in magnetospheres of compact objects like neutron
stars and black holes there are regions where the energy density of the electromagnetic
field greatly exceeds the inertial (kinetic, rest-mass, and thermal) energy of matter. Plasma
motions follow the evolving magnetic field lines. Force-free electrodynamics describes
magnetically dominated relativistic plasma as long as the inertial forces can be neglected;
while this assumption is correct, in very diverse circumstances it becomes gradually vio-
lated in case of very low ionisation and low temperature, where the dissipation effects play
a role, and for ultra-relativistic acceleration near the light cylinder, where the particle mass
is important.

In the limit of vanishing magnetic field and sufficiently high density (short mean free
path) the hydrodynamical approach is adequate. The best-known analytical framework then
describes the stationary, spherically symmetric inflow, a.k.a. Bondi solution (Bondi, 1952),
where the actual form of the flow is determined by the boundary conditions at infinity and
at the black hole horizon. This has been generalized in several ways; in particular, Silich
et al. (2008) include the effect of additional source of energy from stars of the Nuclear Star
Cluster, which is relevant for many nuclei containing Nuclear Star Clusters, including the
Galactic center source Sgr A* (Schödel et al., 2014). On the other hand, in the limiting
case of zero density (electro-vacuum) the solution is described by the source-free coupled
Einstein-Maxwell equations. These are tractable only under very constraining assumptions
and symmetries, however, the problem can be simplified for electro-magnetic fields that
are weak (albeit non-vanishing) in comparison with the gravitational field (the assumption
valid in the vicinity of astrophysical black holes). Electro-magnetic test field solutions on
the fixed background of Kerr metric then provide an adequate description of magnetic fields
in interaction with the black hole gravity (Wald, 1974; King et al., 1975).

In this contribution we are interested in a gradually evolving structure of magnetic field,
as the system goes over from the initial, homogeneous solution to the interaction with the
force-free magnetosphere near an accreting Kerr black hole (Frank et al., 2002; Kato et al.,
2008). We deliberately impose axial symmetry along the black hole rotation axis for the
magnetic field and the inflowing medium (we employ a two-dimensional scheme). Al-
though this constraint will have to be relaxed to describe astrophysically realistic systems,
we want to reveal the transition from the initial state of magnetic lines running around the
black hole, i.e., the magnetic flux being expelled out of the horizon (partially in the case
of non-rotating or moderately rotating black hole, dimension-less spin parameter |a| < 1,
and completely in the case of extreme rotation, a = 1; see Bičák and Dvořák, 1976). As
the force-free plasma starts inflowing with spherical symmetry at the initial configuration,
the Meissner expulsion is immediately diminished and, at later stages, the magnetic lines
start to produce reconnection regions in the equatorial plane. Subsequently, localized blobs
emerge and they are eventually ejected away from the black hole due to the magnetic pres-
sure.

We build our study following a series of works that have been previously published by
various authors. In particular, Komissarov and McKinney (2007) explored the magne-
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tized, rotating black holes embedded in the plasma. By employing the general-relativistic
magneto-hydrodynamics 2D HARM code (Gammie et al., 2003; McKinney, 2006; Sa-
pountzis and Janiuk, 2019) they found that the Meissner expulsion indeed disappears due
to the presence of accreting medium even in the case of (almost) maximally rotating black
hole. Penna (2014) gave arguments to understand the essence of the Meissner–type mag-
netic field expulsion near black holes. Various authors (Pan and Yu, 2016; Gong et al.,
2016; Camilloni et al., 2020) studied the analytical properties of force-free black-hole mag-
netospheres especially in the context of jets emerging from the vicinity of the ergosphere.
Nathanail and Contopoulos (2014) and East and Yang (2018) noticed the formation of cur-
rent sheets near a black hole immersed in a magnetized plasma. Some results suggest that
the role of ergosphere is essential in producing the plasma structures and ejecting matter in
the force-free medium (Blandford and Znajek, 1977).

2 THE MODEL SET-UP

2.1 Strong gravitational and weak magnetic fields

Gravitational field is described by Kerr metric, which can be written in the well-known
Boyer-Lindquist coordinate system (t, r, θ, φ) (Misner et al., 2017; Chandrasekhar, 2002;
Wald, 1984). This spacetime is asymptotically flat and it obeys the axial symmetry about
the rotation axis and stationarity with respect to time; the singularity is hidden below the
event horizon. The mass M of the black hole is concentrated in the origin of the coordinate
system. The spin parameter a of the Kerr metric describes its rotation; the condition about
the presence of the outer event horizon at a certain radius, r = R+ (where the horizon
encompasses the singularity) leads to the maximum value of the dimensionless spin rate:
|a ≤ 1|. The solution can be then written in the form of the metric element (Misner et al.,
2017; Chandrasekhar, 2002)

ds2 = −
∆Σ

A
dt2 +

Σ

∆
dr2 + Σ dθ2 +

A sin2 θ

Σ
(dφ − ω dt)2 , (1)

where ∆(r) = r2 − 2r + a2, R+ = 1+
√

1 − a2, Σ(r, θ) = r2 + a2 cos2 θ, A(r, θ) = (r2 + a2)2 −
∆a2 sin2 θ, ω(r, θ) = 2ar/A(r, θ). Dimension-less geometrical units are assumed with the
speed of light c and gravitational constant G set to unity. In physical units the gravitational
radius is thus equal to Rg = c−2GM ≈ 4.8 × 10−7M7 pc; the corresponding light-crossing
time-scale tg = c−3GM ≈ 49 M7 sec, where M7 ≡ M/(107M)).

Kerr metric is a solution of Einstein’s equation for the gravitational field of a rotat-
ing black hole in vacuum. Even in the case of strongly magnetized gaseous environment
around the black hole the contribution of an astrophysically realistic magnetic energy to
the space/time curvature is negligible. We can thus neglect its effect on the metric terms
and assume a weak-field limit on the background of Kerr black hole; the space-time metric
is not evolved in our scheme. In order to initiate the numerical code we can employ an
initially uniform magnetic field (Wald, 1974; Bičák et al., 2007), which is fully described
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by two non-vanishing components of the four-potential,

At =Ba
[

rΣ−1
(

1 + cos2 θ
)

− 1
]

, (2)

Aφ =B
[

1
2

(

r2 + a2
)

− a2rΣ−1
(

1 + cos2 θ
)]

sin2 θ, (3)

in dimension-less Boyer-Lindquist coordinates and B is the magnetic intensity of the uni-
form field far from the event horizon. The magnetic field (and the associated electric
component) are generated by currents flowing in the accreted medium far from the black
hole, as the latter does not support its own magnetic field. The set of two non-vanishing
four-potential vector components defines the structure of the electromagnetic tensor, Fµν ≡
A[µ,ν]; by projecting onto a local observer frame one then obtains the electric and magnetic
vectors E and B.1 However idealized the initial configuration may be, the numerical solu-
tion rapidly evolves in a complex entangled structure, with field lines turbulent within the
accreting medium and more organized in the empty funnels that develop outside the fluid
structure.

2.2 Two limiting cases for the initial distribution of plasma

The plasma forms an accretion disk or a torus residing in the equatorial plane, so that the
axial symmetry is maintained. In a non-magnetized (purely hydrodynamical) limiting case
one can find the classical solution for the density distribution ρ ≡ ρ(r, z) and pressure P ≡
P(r, z), and the geometrical shape H ≡ H(r) of a non-gravitating barytropic torus P = Kρk.
Introducing enthalpy of the medium, W(P) ≡

∫

dP/ρ and setting Pin = Pout = 0 at the inner
and the outer edges of the density distribution (Abramowicz et al., 1978; Kozlowski et al.,
1978)

Wout −Win =

∫ Rout

Rin

l(R)2 − lkep(R)2

R3
dR = 0, (4)

where lkep(R) is the radial profile of the Keplerian angular momentum density in the equa-
torial plane. Several properties of this solution are worth mentioning (Abramowicz, 1971):
(i) The level surfaces of functions P, ρ, and W coincide; (ii) If the torus boundary P = 0
forms a closed surface, the torus center is defined by where dP/dR = 0, the pressure is
maximum; (iii) The shape of the torus can be found by integrating the vertical component
of the Euler equation.

Above a certain critical value, W > Wc, the torus forms a stable configuration (see the
shaded region), while for W < Wc matter overflows onto the central object even if we
neglect viscosity. This behaviour resembles the Roche lobe overflow in binary systems,
however, here it is a consequence of the non-monotonic radial dependence of the Keplerian
angular momentum in the relativistic regime near the black hole (Abramowicz et al., 1980;

1 Let us note that typical cosmic plasmas are ionized and perfectly conducting, and so the approximation of
force-free electromagnetic action is justified at high accuracy (e.g. Somov, 2012): E+ v × B = 0, where E and B
are electric and magnetic intensities, v is velocity of the plasma. Magnetic field is thus frozen in the plasma.
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Penna et al., 2013). Whereas the material inflowing from atmosphere of a primary com-
ponent of the binary system concentrates near the equatorial plane and naturally forms the
torus, in the case of a single, isolated central black hole matching the inner (toroidal) struc-
ture to the outer reservoir of matter depends on many circumstances at the outer boundary
region. This is also the case of super-masive black holes residing in nuclei of galaxies,
which are fed by interstellar medium from a surrounding (spheroidal) nuclear star cluster
and the galaxy bulge; flattening of the structure is a parameter that can vary from disk-
type equatorial inflow up to perfectly spherical (Bondi-type) inflow/outflow solution (Silich
et al., 2008; Różańska et al., 2017).

Unlike the above-discussed toroidal configuration, let us now assume that the angular
momentum of accreted fluid is negligible and its velocity has a non-vanishing component
only in the radial direction. At large radius, in our case suitable as a boundary condition,
we are allowed to consider the problem within the framework of spherically symmetric
Newtonian inflow with vr = v < 0 (positive v would correspond to a symmetrical problem
of an outflow or a wind). The equation of continuity gives 4πr2ρ(r)v(r) = −Ṁ, where the
constant on the right-hand side has a meaning of mass accretion rate. In the Euler equation,
density of the external force f has only the radial component, GMρ/r2 = − fr(r), and so we
can write

v
dv

dr
+

1

ρ

dP

dr
+

GM

r2
= 0. (5)

Introducing the sound speed by dP = c2
s (r) dρ the Euler equation can be manipulated into

the well known form

1

2

(

1 −
c2

s

v2

)

d v2

dr
= −

GM

r2

[

1 −
2c2

s r

GM

]

. (6)

The solutions can be classified according to their behaviour at the sonic point, where the
medium flows at the speed of sound, rs = GM/2c2

s (rs). For the spherical adiabatic accretion
one can find six qualitatively different solutions to the above equations in the (v, r)-plane.
Inflows (accretion flows) and outflows (ejection or stellar wind) are both possible; which
mode is realized in a particular situation depends on boundary conditions (in our case, only
accretion is possible at the inner boundary).

Let us note that the assumptions about constancy of l(r) and the vanishing magnetization,
β = ∞, are astrophysically unrealistic but they are useful to simplify calculations and allow
an analytical insight. The magnetization β parameter is taken here as ratio of total hydro-
dynamic pressure to the magnetic pressure within the magnetized fluid, i.e., β ≡ Utot/Umag.
Realistic models must relax the extreme assumptions about the strict geometrical symme-
try and stationarity to allow the system to evolve in time, which is a crucial aspect of the
mutual interaction between different components.

As mentioned above, to overcome some of the limitations we adopt the numerical scheme
by the HARM code (Gammie et al., 2003; McKinney, 2006).2 This allows us to explore

2 In this paper we explore an axially symmetric configuration, which is obeyed by all components of the system:
the gravitational field of the rotating black hole, the interacting electromagnetic field of external origin, and the
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Figure 1. The accretion rate on the horizon of the black hole initially grows and then saturates as the
steady state has been reached. The curves are normalized to an arbitrary value Ṁ0 and parameterized
by three values of the dimension-less spin a. Time is in geometrical units and scaled with the black
hole mass M.

the parameter space of the system. A fraction of the material injected spherically at the
outer boundary of the computational domain remains bound and it forms an accretion torus
or an accretion disk associated with the central black hole. This occurs at a relatively small
radius where relativistic effects play a crucial role and decide whether the gas falls onto the
black hole or becomes redistributed and ejected (we do not include radiative cooling in the
present work). The interplay between the frozen-in magnetic field and the infalling plasma
that thermalizes the mechanical energy and generates additional overpressure, eventually
determines the ratio between accretion and ejection.

3 RESULTS

3.1 Mass accretion rate

We set the outer boundary of the computational domain at the radius 103Rg, where the
inflow is purely radial at initial time. The inner boundary is set at ! 0.65Rg, i.e. a fraction
of gravitational radius and also inside the horizon radius for the corresponding value of
spin a. The grid domain has been resolved at 600 × 512 points in (r, θ) coordinates and
the polytropic index set to k = 4/3. We use the magnetic intensity B of the Wald field to

fluid surrounding the black hole. We thus employ the two-dimensional version of the code. Imposing the axial
symmetry allows us to examine the role of magnetic expulsion from the horizon of extreme Kerr black hole and
to observe how this effect is reduced by the accreted plasma. At the same time we are not confused by non-
axisymmetric effects, which are known to reduce the magnetic expulsion, too. It will be interesting to generalize
our discussion to a non-axisymmetric configuration of an oblique (inclined with respect to the rotation axis)
magnetic field.
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Figure 2. Gradually evolving accretion rate onto the magnetize black hole with the initial set-up of
the Bondi inflow and the imposed Wald magnetic field for three values of spin a. The magnetization
parameter β ! 0.1 (magnetically dominated medium) at t = 0. Long-term progress is shown in the
left panel; a detail of the initial phase in the right panel.

determine the plasma parameter β (in our notation, β closer to zero corresponds to a more
magnetized plasma).

In order to initialize the computation we employ the hydrodynamic (non-magnetized),
purely spherical inflow. We set β → ∞ and allow the inflow to build a steady-state Bondi
accretion at a certain level of Ṁ (see Fig. 1). Once the inflow stabilizes to a quasi-steady
state inflow, we impose the large-scale Wald magnetic field along the rotation axis, which
is then evolved further. Because of the perfect conductivity and the force-free approxima-
tion (apart from the effective small-scale numerical dissipation), the magnetic field-lines
remain attached to plasma. However, the evolution of the system can be strongly altered
if the magnetic field is strong enough, so that its repulsive tendency halts accretion. This
effect is governed by the magnetization β-parameter, which is not uniform across the com-
putational domain and changes in time. While the accretion is not much influenced in the
limit of negligible magnetization (β " 1), where the gravitational attraction of the black
hole prevails, in the case of equipartition between the magnetic and hydrodynamic pressure
(β ≈ 1) near the horizon the inflow is partially diverted into an outflow and the accretion
rate is diminished (see Fig. 2). Let us note that the mass and spin of the black hole are not
updated during the simulation because the amount of accreted material is tiny compared to
the black hole mass.

In the strongly magnetized case the accretion rate drops because an outflow develops in
the equatorial plane, where the field lines expand radially and carry plasma with them. The
field line expansion is not uniform across the integration domain, leading to the distortion
of the field lines and eventually to the formation of the current sheet and the reconnection
events happening in the equatorial plane (notice the associated spikes around t = 180). It
is illustrative to plot the inverse accretion rate, where we can clearly identify four different
phases of the system evolution (see Fig. 3). The section denoted A is where the initial
Bondi accretion prevails; in part B we notice the formation of the current sheet followed
by a rarefaction phase of the field lines in part C. Here, more matter is expelled from the
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Figure 3. Graph of inverse accretion rate 1/Ṁ exhibits four phases of the magnetized flow evolution.
The initial configuration starts with the Bondi spherical inflow from the outer boundary of the inte-
gration domain. The central black hole rotates with the Kerr spin parameter a and it is magnetized
by the Wald uniform magnetic field B. Spherical symmetry of the inflow is quickly lost by its inter-
action with the magnetic field but the axial symmetry is imposed in our 2D computations. In case of
a rapidly rotating black hole, the magnetic flux vanishes initially (Meissner effect) but it starts grow-
ing with accretion of the plasma. Part of the inflowing material is diverted to an outflow along the
equatorial plane and accelerated by reconnection events (they are caused by numerical resistivity);
the resulting accretion rate thus gradually drops and it exhibits some random glitches at later stages
of its temporal evolution (see the text for further details).

Figure 4. The magnetic flux Φ(t) (in arbitrary code units) across a hemisphere on the black hole
horizon. The initially frozen-in magnetic flux grows (in absolute value) due to accretion of plasma.
At later stages the flux starts decreasing as the magnetic intensity decreases and the field eventually
escapes to radial infinity.
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Figure 5. The initial phase of the flux evolution from the previous figure is shown in the semi-
logarithmic scale and the dimensionless units (scaled by the typical values). At time zero the magnetic
flux of the Wald configuration vanishes for Kerr black hole at extreme rotation (a→ 1) in agreement
with the Meissner effect. The magnetic expulsion is eliminated as soon as some plasma gets accreted,
even in the purely 2D configuration with the imposed axial symmetry.

black hole and it eventually ends up in a region of much lower density. In the D phase the
reconnection events occur and the outflow accelerates near the equator.

3.2 Magnetic flux across a hemisphere

In order to reveal the changes of the magnetic field near the black hole, we study the
evolution of the magnetic flux inflowing into the hemisphere located on the horizon. As
mentioned above, the initial configuration is the vacuum solution of the uniform flux tube
oriented in the direction parallel to the rotation axis, i.e. the Wald solution, but this con-
figuration starts quickly changing once the inflowing plasma arrives in the domain.3 As
also mentioned above, the initial configuration for the plasma inflow is the Bondi solu-
tion. As soon as a field line enters the ergosphere, it has to terminate at the event horizon.
Therefore, the magnetic field lines in a force-free magnetosphere are not expelled by even
extreme rotation of the black hole. Figure 4 shows the magnetic flux as a function of time
and Fig. 5 exhibits a more detailed view of the brief initial period. Finally we vary the
value of the Wald magnetic intensity B parameter to obtain more initially magnetized case
(lower plasma β). Notice that the code itself poses a limit β > 10−4 under which it starts in-
troducing artificial density floor in order to avoid numerical integration problems. Figures
6–7 show several snapshots of the magnetic field and plasma density at different resolution.
An equatorial outflow forms at late stages of the system evolution and it drives plasmoids
in the outward direction.

3 Some more complicated configurations were explored by Kološ and Janiuk (2020). Interestingly, these authors
found that a parabolic magnetic field also develops in the accretion torus funnel around the vertical axis, for any
initial magnetic field configuration.
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Figure 6. Four time steps (from top left to bottom right panels) with the magnetic field lines and
colour-coded plasma density near a rapidly rotating (a = 0.99) black hole with B = 8. Magnetic
field lines are expelled out of the horizon at t = 0 (before plasma starts to be accreted), but they
start crossing the horizon and accreting with the plasma as time passes. We intentionally select the
magnetically dominated system at the initial stage, β(t = 0) , 1, which is expected to support the
Meissner expulsion. Still, once some plasma arrives at the event horizon, we observe rapid accretion
of the magnetic flux which cannot inhibit the radial motion. At late stages the field lines adopt more
radial configuration near horizon and they eventually induce the ejection of plasma in the equatorial
plane. The logarithmic scale of density is shown on the colour bar in arbitrary units. Time (growing
in the three snapshots from left to right) corresponds to the code units.

4 CONCLUSIONS

Astrophysical black holes can be detected and their parameters constrained by observa-
tions in the electromagnetic domain only if the accretion process takes place, lights up the
system, and produces the characteristic spectral features and variability of the emerging
radiation signal. However, the properties of the cosmic environment vary in very broad
range: from magnetically dominated (almost) vacuum filaments of the organized field lines
to the force-free field lines frozen in the accreting medium.

In the present contribution we were interested to explore the transition between two
extreme states: from the initial configuration, where the Wald–type uniform field (aligned
with the black hole rotation axis) comes to the contact with the Bondi–type radial inflow
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Figure 7. Similar as in the previous figure but plotted here over a larger integration domain and longer
period of time. Ejection of equatorial material is observed in the form of plasmoids, which represent
a disk or a ring of outflowing material in the adopted 2D approximation. In the vicinity of the rotating
black hole ergosphere the frame-dragging effect acts on the plasma as well as the magnetic field lines.
As a result of the frame-dragging mechanism, the outflowing material adopts a toroidal component
of the orbital motion.

solution. The fluid drags the field lines onto the black hole, and simultaneously becomes
influenced and partly expelled by the evolving magnetic field until the final state is reached
after many dynamical periods. Let us note that the initial vacuum, ordered, homogeneous,
parallel to the rotation axis magnetic field is an idealized situation. It has been frequently
employed in order to define the starting configuration and we also use it as a test bed
solution that can represent a rotating black hole embedded into a large-scale (exceeding the
size of the horizon) magnetic filament, which allows us to model the rapid disappearance
of the magnetic expulsion once the conducing medium starts to be accreted. An interesting
development emerges as the magnetic lines are bent in the radial direction near the horizon
and they start reconnecting in the equatorial plane, thus accelerating the outflow in the
direction perpendicular to the rotation axis. In fact, the accretion of magnetic field lines
onto the black hole starts the process of their bending from the initial Wald configuration
to the split-monopole topology, which leads to the rapid disappearance of the Meissner
expulsion in our system.
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We can suggest that the resulting equatorial outflow is possible thanks to the fact that

the Meissner effect does not operate in the magnetosphere filled with plasma.

Let us note that accretion disk backflows have been observed in various circumstances
including the simulations of accreting black holes and stars (see Kluzniak and Kita, 2000;
Mishra et al., 2020). In several aspects the system discussed in our present work is rather
distinct: it does not include a magnetic star as a source of dipole-like magnetic field (we
considered a black hole in the centre, which was magnetized by external currents), neither
an equatorial accretion disk as the initial condition (Bondi spherical inflow was assumed
as the condition at the outer boundary). Indeed, we suggest that the backflows are rather
generic features that can occur in different accreting systems.

Abandoning the axial symmetry will be the next step towards a more realistic description.
Also, once an oblique magnetic field (inclined with respect to the rotation axis) and a
twisted (non-spherical as well as non-axisymetric) accretion flow are considered, we can
expect the outflowing plasmoids to be scattered in a wide range of directions.
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ABSTRACT
The study of the strange quark stars is an interesting subject as they are a new pos-
sible type of compact object in extreme conditions. Theoretical studies suggest that
the magnetic field inside the compact objects (neutron stars and SQS) may be of the
order of ∼ 1018G. This strong magnetic field can affect the shape, mass, and radius of
the compact objects. In the current work, we study the effect of the strong magnetic
field on the equation of state and the structure of SQS. We show that the maximum
gravitational mass of the SQS increases with increasing the magnetic field. Also,
we find that our model corresponds to the 2 solar mass gravitational mass which is
predicted for PSR J1614-2230 and PSR J0348+0432. It is notable that the maximum
gravitational mass in our model is ∼ 2.5M", that is comparable with the value that
is predicted by detection of the gravitational wave by LIGO/Virgo collaboration. In
addition, the results show that the star has an oblate shape under the effect of the
strong magnetic field.

Keywords: Strange quark star – compact objects –magnetic field – quark matter –
Landau effect

1 INTRODUCTION

Strange quark stars (SQS) are a possible type of compact object which remains after the
end of the life of supermassive stars. After the first explosion of a massive star if the density
of matter in the core of the star increases to the values above the nuclear saturation density
(∼ 1015) the quarks deconfine and a huge amount of energy (∼ 1054 erg) released, there is
a possibility that this energy leads to the second explosion which is super luminous and is
called Quark-Nova (QN). The object which remains after the QN is a SQS (Ouyed et al.,
2002; Ouyed and Staff, 2013; Nurmamat et al., 2019). Ouyed, Leahy, and Koning studied
CassiopeiaA as an excellent candidate for the QN. They showed that the second explosion
has happened some days after the supernova and leads to a transition from a neutron star to
a quark star (Ouyed et al., 2015).
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Compact object like hybrid stars and SQS contain strange quark matter (SQM) that can
exist in extreme conditions (high density and temperature, and the strong magnetic fields),
therefore the study of these objects has been undertaken by different groups in recent years.
These objects are real laboratories to study fundamental physics in extreme conditions. In
the current work, we study the effect of strong magnetic fields on the properties of the SQS.
Like neutron stars and hybrid stars (the compact objects with a quark core), the SQS may
have strong magnetic fields. If a massive star has a high magnetic field, during the core
collapse of the supernova the magnetic flux is conserved and the compact object is created
with a strong magnetic field. According to the theoretical studies the magnetic field in the
core of compact objects reaches ∼ 1018 G (Lai and Shapiro, 1991; Haensel et al., 1986;
Bocquet et al., 1995; Isayev, 2014).

It is notable that the properties of the star are affected by the strong magnetic field. There
are several studies on the microscopic and macroscopic properties of compact objects in
the presence of the magnetic field. Chatterjee, et al. studied the effect of a strong magnetic
field on the EOS and the structure of a neutron star and they showed that the magnetic field
breaks the spherical symmetry of neutron star(Chatterjee et al., 2015)

In the current paper, we study the effect of a strong magnetic field on the EOS and the
structure of SQS. In the next section, we calculate the EOS of the system consisting of SQM
(up, down, and strange quarks) in the presence of the strong magnetic field. In section 3 we
study the anisotropic energy-momentum tensor of the system and the structure equations
of SQS in a stationary, axisymmetric space-time. In section 4, we report the numerical
results and discuss the magnetic field effects. In last section, we summarize and conclude
our study.

2 THE EQUATION OF STATE OF STRANGE QUARK MATTER IN THE
PRESENCE OF THE STRONG MAGNETIC FIELDS

The system we consider consists of SQM (up, down and strange quarks and an ignorable
fraction of electrons ∼ 10−3). We calculate the EOS of this system by applying the MIT bag
model. The Fermi relations by considering the effect of a strong magnetic field, regarding
the Landau quantization effect (Mukhopadhyay et al., 2017; Landau and Lifshitz, 1977;
Lopes and Menezes, 2015), are given by the following relations.

The single-particle energy density is defined as follows

εi =
[

p2
i c2 + m2

i c4 (1 + 2JBD)
]1/2
, (1)

where pi and mi are the momentum and the mass of quarks (i represents u, d, s), the Landau
levels are denoted by J and the dimensionless magnetic field defined as BD = B/BC (BC =

m2
i c3/qi!, with qi the charge of quark i).
The number density of quarks is obtained as follows

ρ =

Jmax
∑

J=0

2qB

h2c
g(J)PF(J), (2)

where Jmax is the maximum Landau level (Jmax = (ε2Fmax − 1)/2micBD), g(J) and PF(J) are
the degenerecy and Fermi momentum of Jth Landau level. Therefore, the energy density
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of SQM in the presence of the strong magnetic field is defined as

εtot =
∑

i,j

ε
(j)

i
+ Bbag. (3)

The bag constant is denoted by Bbag and the kinetic energy density by εi ( j = +,− shows
the spin up and apin down particles). The kinetic energy density is defined as follows

ε
(j)

i
=

2BD

(2π)2λ3
mic

2
Jmax
∑

J=0

gJ(1 + 2JBD)η















X
(j)
F

(1 + 2JBD)1/2















, (4)

where

η(x) =
1

2

[

x
√

1 + x2 + ln
(

x
√

1 + x2
)]

(5)

and

x =
X

(j)
F

(1 + 2JBD)1/2
(6)

and

X
(j)
F
= (ε

(j)2
F
− 1 − 2JBD)1/2. (7)

To calculate the energy density of SQM in a zero magnetic field, we calculate the value of
number density and energy density when Jmax → ∞.

The bag constant Bbag is defined with a Gaussian relation

Bbag(ρ) = B̄∞ +
(

B̄0 − B̄∞
)

exp















−β

(

ρ

ρ0

)2














. (8)

In above relation β = ρ0 = 0.17 fm−3, and B̄0 = B̄(ρ0) is equal to 400 MeV/fm3. Also, B̄∞
depends the parameter B̄0 and is obtained by the LOCV method (Heinz and Jacob, 2000).

The pressure of system is given by

P(ρ) = ρ

(

∂εtot

∂ρ

)

− εtot. (9)

The EOS is plotted in Fig. 1 in the presence of magnetic fields 1017 G and 1018 G and
absence of magnetic field (B = 0). We can see the effect of magnetic field on the EOS in
comparison with B = 0. Also, the figure shows that the difference between the curves of
different magnetic fields is not significant.

3 THE STRUCTURE EQUATIONS

In this section, we briefly present the Einstein field equations within 3+1 formalism in a
stationary, axisymmetric space-time (Chatterjee et al., 2015).
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Figure 1. The pressure as a function of the energy density of SQM in the presence and absence of
magnetic field.

The metric is given by

ds2 = −N2dt2 + A2(dr2 + r2dθ2) + λ2r2 sin2(θ)(dφ − Nφdt)2, (10)

where N, A, λ, and Nφ are function of (r, θ). By applying 3+1 formalism we will have a set
of four elliptic partial differential equations

∆3 = 4πA2(ET + S r
r + S θθ + S

φ
φ) +
λ2r2 sin2(θ)

2N2
δNφδNφ − δνδ(ν + β), (11)

∆2[α + ν] = 8πA2S
φ
φ +

3λ2r2 sin2(θ)

4N2
δNφδNφ − δνδν, (12)

∆2[(Nλ − 1)r sin(θ)] = 8πNA2λr sin(θ)
(

S r
r + S θθ

)

(13)

and
[

∆3 −
1

r2 sin2(θ)

]

(

Nφr sin(θ)
)

= −16π
NA2

λ2

Jφ

r sin(θ)
+ r sin(θ)δNφδ(ν − 3β), (14)
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where ν = ln N, α = ln A, β = ln λ, and Jφ is electromagnetic current. In the above
equations, ET , and S i

j are total energy and stress, respectively. The notations ∆2 and ∆3 are
introduced

∆2 =
δ2

δr2
+

1

r

δ

δr
+

1

r2

δ2

δθ2
, (15)

∆2 =
δ2

δr2
+

2

r

δ

δr
+

1

r2

δ2

δθ2
+

1

r2 tan(θ)

δ

δθ
. (16)

The the matter properties affects the structure of star through the energy-momentum
tensor T µν. In the presence of the magnetic field by considering the interaction of the elec-
tromagnetic field with the matter (magnetization), the energy-momentum tensor is given
by

T µν =(ε + P)uµuν + Pgµν +
M

B

[

bµbν − (b.b) (uµuν + gµν)
]

+
1

µ0

[

−bµbν + (b.b)

(

uµuν +
1

2
gµν

)]

, (17)

where the two first terms are the perfect fluid contribution, the third term is the magneti-
zation contribution and the last term is the pure magnetic field contribution to the energy-
momentum tensor. In the Eq. (17), ε is the energy density, P is the pressure of the perfect
fluid, uµ is the fluid 4-vector, gµν is the metric coefficient, B is the magnetic field, and bµ is
the magnetic field 4-vector. In the above relation, M is the scalar quantity which is defined
as follows

M := µ0

mµ

bµ
, (18)

where mµ is magnetization 4-vector. Here the magnetic field points in z-direction and we
considered a non-rotating star. We can rewrite the energy-momentum tensor in the well-
known form

T
µ
ν = diag

(

ε +
B2

2µ0
, P − MB +

B2

2µ0
, P − MB +

B2

2µ0
, P −

B2

2µ0

)

. (19)

The energy-momentum tensor Eq. (19) shows that the magnetization term reduces the
total pressure of the star. It is also clear that the magnetic field reduces the parallel pressure
but the perpendicular pressure is increasing by increasing the magnetic field. Consequently,
the star will be deformed in the presence of a strong magnetic field.

In the next section we show the results of solving the equations by applying the LORENE
(Lorene/Codes/Mag eos star) and using the defined EOS in the previous section (Gour-
goulhon et al., 2016).
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4 THE NUMERICAL RESULTS

In this section, we investigate the effect of the magnetic field on the structure of SQS by
varying the current function k0 defined through jφ = Ω jt + (ε + P)k0, where Ω is the stellar
angular velocity. We study the structure of SQS in two cases,

i) The magnetic field just affects the structure of SQS,
ii) The magnetic field affects the structure and the EOS of SQS.
We have found that in our model the current function can reach 30000. In other words,

for k0 > 30000 the SQS is not in a stable configuration.

Figure 2. The surface magnetic field at the pole Bs as a function of the central magnetic field Bc.

In Fig. 2, we show the surface magnetic field of SQS in the pole Bs as a function of central
magnetic field Bc. It is shown that Bs and Bc increase with increasing the current function.
It is also shown that in the lowest value of k0 the two considered cases cover each other
and when k0 = 30000, the difference between the two considered cases (dash lines and
solid lines ) is non negligible. The figure shows that the maximum central magnetic field
is Bc ∼ 1018 G and that the maximum polar magnetic field at the surface Bs ∼ 4 × 1017 G
occurs at k0 = 30000.

The gravitational mass (Mg/M") versus the central enthalpy Hc is plotted in the top
panel of Fig. 3. The enthalpy can be translated to the baryonic density nB = (ε + P)eH .
The figure shows that the gravitational mass increases as a function of central enthalpy in
every considered case. The results show that the effect of the magnetic field on the EOS
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has a negligible effect on the gravitational mass of SQS. It is shown that Mg increaces with
increacing k0. The maximum gravitational mass is 2.35 M" at k0 = 0 (k0 = 0 means that
we are solving the TOV equations) and increaces to 2.48 M" at k0 = 30000.

We have found that our model for the compact objects describes 2 M" stars as it is ob-
served for the pulsars PSR J1614-2230 (M = 1.908 ± 0.016 M") and PSR J0348+0432

(M = 2.01 ± 0.04 M")(Demorest et al., 2010; Zhao, 2015), see Table 1. In addition, it is
interesting to notice that the maximum gravitational mass corresponding to the maximum
magnetic field in our calculations falls close to the predicted mass of the low mass compact
object, with a mass 2.5 to 2.67 M" at 90% confidence, of the compact binary coalescence
corresponding to the recent gravitational waves GW190814 detected by the LIGO/Virgo
collaboration. It is predicted at (Abbott et al., 2020).

In the bottom panel of Fig. 3, we show the mass-radius relation of SQS, and in Table1 we
give the properties of the maximum mass configurations for different values of k0, as well as
the radius of 1.4 M" and 1.6 M" stars. It is clear that the radius increases with increasing the
gravitational mass, when the gravitational mass reaches a certain value, the radius decreases
and SQS collapses. In this figure, we show the central magnetic field corresponding to the
maximum radius of SQS which increases from 4.60×1017 G to 9.15×1017 G. Forthermore,
one can see the mass-radius relation clearly follows R ∝ Mα where α ∼ 3 which is expected
for SQS.

The radius of the maximum mass configuration increases from radius of SQS is 12.13 km
for k0 = 0 to 13.16 km at k0 = 30000.

Table 1. The gravitational mass and radius of SQS in different current functions. Results for the
maxmium mass configuration and for the 1.4M" and 1.6M" stars are shown.

k0 Bc(1017 G) Mg,max(M") Rmax (km) R1.4 (km) R1.6 (km)

k0 = 0 2.35 12.13 10.74 11.10

k0 = 15000 5.24 2.38 12.35 10.81 11.35

k0 = 25000 9.02 2.43 12.80 11.13 11.59

k0 = 30000 10.60 2.48 13.16 11.33 11.86

In Table 1 we show the values of the maximum gravitational mass and the corresponding
radius in the third and fourth columns, respectively. We also give the radius of the stars
with gravitation masses of 1.4 M" (R1.4) and 1.6 M" (R1.6). These results show that our
model is compatible with the constraints imposed the GW170817 analysis, in particular,
the following constraints have been obtained 9.9 < R1.4 < 13.85 km (Annala et al., 2018),
8.9 < R1.4 < 13.2 km in (De et al., 2018) and 9.0 < R1.4 < 13.6 km in Tews et al. (2018).

On the other hand, our R1.4M" are within two sigma the predictions obtained from the
NICER observation of the pulsar PSR J0030+0451. Miller and et al have estimated that the
pulsar PSR J0030+0451 has a radius R1.4 = 13.02+1.24

−1.06
km for the gravitational mass M =

1.44+0.15
−0.14 M" within a 68% confidence interval (Miller et al., 2019). A different estimation
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Figure 3. The gravitational mass as a function of central enthalpy (top) and the gravitational mass as
a function of circumferential radius (bottom) for different values of the parameter k0. In the bottom
panel, we put the central magnetic field at the maximum radius (the critical point of the curve) in the
same color given for each curve.
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determined by Riley et al. (Riley et al., 2019) corresponds to a gravitational mass and
a radius of 1.34+0.15

−0.16
M" and 12.71+1.14

−1.19 km, respectively.
It has also been set a minimum radius of R1.6 ≥ 10.7 for 1.6 M" star from the interpre-

tation that the binary nS merger that gave rise to GW170817 did not result from a prompt
collapse to a black hole (Bauswein et al., 2017, 2019). In our study we have determined
that R1.6 > 10.7 independently of the magnetic field considered. We conclude, therefore,
that our model is also compatible with the constraint set on R1.6 .

Figure 4. The gravitational mass versus the ratio of the equatorial and polar radius of SQS.

We mentioned in Sec. 3 that the magnetic field affects the shape of SQS as the paral-
lel pressure is reduced and perpendicular pressure is increased according to the energy-
momentum tensor Eq. (19). In Fig. 4, The gravitational mass is plotted as a function of
Req/Rpol. We can see that by solving the TOV equations the SQS is completely in spheri-
cal symmetry, the ratio of equatorial and polar radius increases with increasing the current
function, and at k0 = 30000 this value reaches to 1.25. It is also clear that the effect of the
magnetic field on the EOS does not affect the shape of SQS.

In Fig. 5, the magnetic field lines (top panel) and the enthalpy profile (bottom panel) are
plotted in the plane (x, z). The profiles are plotted for the gravitational mass 2.48M" and
the polar surface magnetic field 4.25 × 1017 G. The bold line in both panels shows the
surface of SQS. The magnetic field profile shows how the strong magnetic field can deviate
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Figure 5. The profile of magnetic field lines (top) and the enthalpy profile (bottom) in meridional
plane (x, z) for the maximum value of magnetic field Bs = 4.25 × 1017 G and gravitational mass
Mg = 2.5 M".
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the shape of SQS from the spherical symmetry. In the enthalpy profile, the dash lines are
negative enthalpy and the solid lines are positive enthalpy inside the SQS.

5 CONCLUSIONS

In this work, we studied the effect of a strong magnetic field on the microscopic and macro-
scopic properties of SQS. We calculated the EOS of SQM with the Landau quantization
effect. To investigate the structure we assumed the stationary, axisymmetric space-time.
The microscopic properties of matter affect the structure through the energy-momentum
tensor. In the presence of the strong magnetic field, the energy-momentum tensor is in
an anisotropic form. It is shown that the parallel and perpendicular pressures are reduced
by the magnetization. The magnetic field reduces the parallel pressure and increases the
perpendicular pressure.

We have found that the magnetic field in the core of SQS reaches to ∼ 1018 G where
the maximum surface magnetic field at the pole is ∼ 4 × 1017 G. The results show that
the maximum gravitational mass and radius of SQS increase as the magnetic field becomes
stronger and may reach the value 2.48 M" and the radius 13.16 km, respectively, taking
the strongest field considered in the present study. This value of gravitational mass is
comparable with the predicted, by the LIGO/Virgo collaboration, smallest value for the
low mass object associated with the gravitational waves GW190814, in particular, at 90%
confidence this compact object should have a mass between 2.5 M" and 2.67 M". This
could indicate that this object is a strongly magnetized star. We have also shown that the
radius predictions obtained from our model for magnetized and non-magnetized stars with
a mass 1.4 M" and 1.6 M" is compatible with the values obtained from several different
analysis of the GW170817.

It is also clear that the strong magnetic field affects the shape of the star. The strong
magnetic field breaks down the spherical symmetry of the star. The ratio of equatorial and
polar radius reaches 1.25 in the maximum value of the central magnetic field 1018 G.
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ABSTRACT

In this article, we summarize two agnostic approaches in the framework of spa-
tially curved Friedmann-Robertson-Walker (FRW) cosmologies discussed in detail
in (Kerachian et al., 2020, 2019). The first case concerns the dynamics of a fluid
with an unspecified barotropic equation of state (EoS), for which the only assump-
tion made is the non-negativity of the fluid’s energy density. The second case con-
cerns the dynamics of a non-minimally coupled real scalar field with unspecified
positive potential. For each of these models, we define a new set of dimensionless
variables and a new evolution parameter. In the framework of these agnostic setups,
we are able to identify several general features, like symmetries, invariant subsets
and critical points, and provide their cosmological interpretation.

Keywords: Gravitation – cosmology – dynamical systems

1 INTRODUCTION

The dynamical system analysis is a powerful tool that has broad applications in different
fields of science. Dynamics itself was introduced by Newton through his laws of motion
and gravitation. These laws enabled Newton to tackle the two-body problem of the Earth’s
motion around the Sun. Later on, when scientists tried to address the three-body problem
of the Earth, the Moon and the Sun, they found it was too complicated to tackle it quanti-
tatively. In the late 19th century, Henry Poincaré suggested that celestial mechanics could
be studied by considering qualitative features of a system rather than quantitative founding
in this way the branch of dynamical systems (Strogatz, 2018). In the context of cosmology
dynamical systems analysis allows us to view the global evolution of a model, from its start
near the initial singularity to its late-time evolution (Wainwright and Lim, 2005).
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The observations indicate that the universe is homogeneous and isotropic (Aghanim
et al., 2018), which makes the Friedmann-Robertson-Walker (FRW) spacetime the relevant
metric to model its evolution. Even if the universe appears to be spatially flat, considering a
non-zero spatial curvature is still observationally viable and might help in alleviating some
cosmological tensions (Ryan et al., 2019; Di Valentino et al., 2020). Therefore, in our work
we used spatially curved FRW metrics.

According to Planck Collaboration et al. (2020), the total energy density of the universe
consist of ∼ 68.5% dark energy, ∼ 26.5% cold dark matter, and ∼ 5% baryonic matter.
There are three main approaches in order to understand the physics behind the dominant
substance of the universe, i.e. the dark energy: the constant vacuum energy or cosmological
constant, non-constant vacuum energy or scalar fields, and modified gravities. The cosmo-
logical constant scenario, expressed by the ΛCDM model, is considered as the standard
model for describing dark energy, but since it suffers from several issues (Carroll, 2001;
Bahamonde et al., 2018) there are plenty of models that compete with it. In this work, we
explore the dynamics of two such models in a rather general framework.

The first type of models we analyse concerns the dynamics of barotropic fluids with
ε ≥ 0 in spatially curved FRW without specifying the EoS (Kerachian et al., 2020). We
allow the pressure P of the fluid to attain negative values in order to be able to describe
cosmological models with accelerated expansion. In these models the speed of sound of
the fluid is not necessarily less than the speed of light, which implies exotic EoS.

The second type of models we analyse concerns a curved FRW geometry non-minimally
coupled to a scalar field with generic positive potential (Kerachian et al., 2019). A similar
analysis has been performed by Hrycyna and Szydłowski (2010) in the presence of matter
for flat FRW. Our formulation allows for several improvements in the aforementioned anal-
ysis by considering a generic spatially curved FRW model and a more general scalar field
potential.

2 THE DYNAMICAL SYSTEM FOR BAROTROPIC FLUIDS

The Friedmann and the Raychaudhuri equations for a FRW cosmology with only one fluid
component are given by

H2 +
k

a2
=
ε

3
, 2 Ḣ + 3 H2 +

k

a2
= −P , (1)

respectively and the continuity equation for the energy density reads

ε̇ + 3 H(P + ε) = 0 . (2)

In these equations, ε is the energy density, P is the pressure of the barotropic fluid, k is the
spatial curvature, a is the scale factor, H = ȧ

a
is the Hubble expansion rate and ˙ denotes

derivative with respect to the coordinate time.
By introducing the normalization D2 = H2 + |k|/a2, we are able to present well-defined

dimensionless variables, i.e. the variables which are valid for k > 0 and k ≤ 0. These new
dimensionless variables are

Ωε =
ε

3 D2
, ΩH =

H

D
, ΩP =

P

D2
, Ω∂P =

∂P

∂ε
, Γ =

∂2P

∂ε2
ε. (3)
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In order to investigate the evolution of the dimensionless variables. we define a new
evolution parameter τ as dτ = Ddt. This new evolution parameter is well-defined during
the whole cosmic evolution. Taking the derivative of the dimensionless variables with
respect to τ provides the autonomous system

Ω′ε = −ΩH

[

Ωp +Ωε

(

3 + 2

(

Ḣ

D2
+Ω2

H − 1

))]

, (4)

Ω′H =
(

1 −Ω2
H

)

(

Ḣ

D2
+Ω2

H

)

, (5)

Ω′P = −ΩH

[

3Ω∂P (ΩP + 3Ωε) + 2ΩP

(

Ḣ

D2
+Ω2

H − 1

)]

, (6)

Ω′∂P = −ΩH

(

ΩP

Ωε
+ 3

)

Γ . (7)

2.0.0.1 Positive curvature: For positive curvature k > 0, in terms of the new variables
the Friedmann and Raychaudhuri equations (1) become respectively

Ωε = 1,
Ḣ

D2
= −

1

2
(ΩP + 1) −Ω2

H . (8)

2.0.0.2 Non-positive curvature: For the non-positive spatial curvature k ≤ 0, in terms
of the new variables the Friedmann and Raychaudhuri equations (1) become respectively

Ωε = 2Ω2
H − 1,

Ḣ

D2
= −

1

2
(ΩP + 1) +

(

1 − 2Ω2
H

)

. (9)

From the definition of ΩH we have Ω2
H ≤ 1 and from the assumption ε ≥ 0, we get that

0 ≤ Ωε ≤ 1 and 1
2
≤ Ω2

H ≤ 1.

2.1 Critical points and their interpretation

The next step is to investigate the critical points ( i.e. those points for which Ω′ = 0) of the
autonomous system (4)- (7) and their stabilities. Once the critical points are determined, we
can look for their cosmological interpretation. To do that a useful tool is the deceleration

parameter

q = −1 −
Ḣ

H2
= −1 −Ω−2

H

Ḣ

D2
, (10)

in which we used the definition of ΩH .

2.1.0.1 Two de Sitter critical lines: There are two critical lines with a de Sitter behavior
located at {Ωε ,ΩH ,ΩP,Ω∂P} = {1,±1,−3,∀}. The critical line with ΩH = 1 (called A+) has
the typical cosmological constant behaviour (q = −1) and its eigenvalues are

{λA+
i } = {−2, 0,−3 (1 +Ω∂P)}, (11)
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while the critical line with ΩH = −1 (called A−) describes an exponentially shrinking
universe (q = −1) and its eigenvalues are

{λA−
i } = {2, 0, 3 (1 +Ω∂P)}. (12)

Eq. (11) and Eq. (12) imply that for Ω∂P < −1 the critical points along the lines A±
are saddle points. However, for Ω∂P ≥ −1 the stability of the points along A± can not
be determined even by the center manifold theorem. To discuss their stability numerical
examples for specific Γ have to be employed.

2.1.0.2 Static universe critical line: For positive spatial curvature, there is a critical line
(called B) located at {Ωε ,ΩH ,ΩP,Ω∂P} = {1, 0,−1,∀}. This critical line describes a static
universe, i.e a = const. and its eigenvalues are

{λB
i } = {0,−

√

1 + 3Ω∂P,
√

1 + 3Ω∂P}. (13)

Eq. (13) implies that for 1+3Ω∂P > 0, the critical points along the line B are saddle; for 1+
3Ω∂P < 0 these points are center; for Ω∂P = −1/3 the corresponding points are degenerate
and all eigenvalues are zero. Since the center manifold theory cannot be employed, we rely
on a numerical inspection which shows that this point is marginally unstable.

For negative curvature, there is another critical line (called B̄) corresponding to a static
universe located at {Ωε ,ΩH ,ΩP,Ω∂P} = {−1, 0, 1,∀}, but as discussed in Sec. 2.0.0.2, Ωε <
0 cases are not part of our study.

2.2 General features of Γ: invariant subsets and critical points

In this section let us assume that the function Γ has roots Ω̃∂P: this allows invariant subsets
lying on {ΩH ,ΩP} planes. For each root of Γ, we get a pair of critical points C± located
at {ΩH ,ΩP} = {±1, 3 Ω̃∂P}. Note that, for any new invariant subset {ΩH ,ΩP} there might
be an intersection with the critical lines A± and B; for simplicity we denote these resulting
critical points with the same name as the respective critical lines.

The scale factor for the critical point C+ grows as a ∼ (t− t0)
2

3 (Ω̃∂P+1) , while for the critical
point C− it decreases as a ∼ (t0 − t)

2
3 (Ω̃∂P+1) . At these points the deceleration parameter

reduces to q = 1
2
(3 Ω̃∂P + 1). C± according to q represent an accelerated universe when

Ω̃∂P < − 1
3

and a decelerated one when Ω̃∂P > − 1
3
.

The points C± have eigenvalues

{λC±
i } = {±3 (1 + Ω̃∂P),±(1 + 3 Ω̃∂P)}. (14)

Based on these eigenvalues on the invariant subset {ΩH ,ΩP} and one can see that for − 1
3
<

Ω̃∂P point C+ (C−) is a source (sink). For the case −1 < Ω̃∂P < − 1
3

instead C± are saddle.
Finally, for Ω̃∂P < −1 point C+ (C−) is a sink (source). These points can be seen in the
examples shown in Figs. 1 and 2.

Since the stability of the critical points (A±, B, and C±) of the system depends on the
value of Ω̃∂P, we split our analysis into the following three ranges

−
1

3
< Ω̃∂P, −1 < Ω̃∂P < −

1

3
, Ω̃∂P < −1. (15)
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and we are going to depict the invariant subset {ΩH ,ΩP} in these ranges. In Figs. 1, 2 we
choose one representative value of Ω̃∂P for each range, since the topology of the trajectories
is independent of the specific value inside each range. For simplicity we assume that the
function Γ has only one root.

In order to be able to investigate the asymptotic behaviour of ΩP, i.e. ΩP = ±∞, in
Figs. 1 and 2 we used the transformation

XP =
ζΩP

√

1 + ζ2Ω2
P

∈ [−1, 1], (16)

where ζ > 0 is just a constant rescaling parameter. The evolution equation for this variable
for positive curvature becomes

X′P =
ΩH

ζ

√

1 − X2
P

(

XP + 3 ζ
√

1 − X2
P

) (

XP − 3 ζ Ω∂P

√

1 − X2
P

)

, (17)

while for the non-positive curvature becomes

X′P =
ΩH

ζ

√

1 − X2
P

(

9 ζ2Ω∂P

(

1 − 2Ω2
H

) (

1 − X2
P

)

+

+ζ XP

√

1 − X2
P

(

1 − 3Ω∂P + 2Ω2
H

)

+ X2
P

)

, (18)

which along with the Eq. (5) define the compactified systems.

(a) Ω̃∂P = 0.5
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(b) Ω̃∂P = −0.6
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(c) Ω̃∂P = −1.4
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Figure 1. Invariant subsets for positive spatial curvature and ζ = 0.3 plotted for three representative
values of Ω̃∂P in the ranges given in Sec. 2.2.0.1. The orange thick lines are the separatrices of
the system and the green shaded regions denote the part of the variable space where the universe is
accelerating.

2.2.0.1 Positive curvature: Fig. 1 shows the invariant subsets {ΩH , XP} for the positive
curvature, on which two additional invariant subsets are located at ΩP = −3 and ΩP =

3 Ω̃∂P.
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2.2.0.2 Non-positive curvature For the non-positive curvature there are additional criti-
cal points once we consider the roots Γ(Ω̃∂P) = 0. The locations of these critical points are
{ΩH ,ΩP} = {± 1√

2
, 0} and they represent a Milne universe, since the deceleration parameter

q = 0 and the scale factor evolves as a = ± | k | (t + c1) for ΩH = ± 1√
2
.

(a) Ω̃∂P = 0.5
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X
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(b) Ω̃∂P = −0.6
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(c) Ω̃∂P = −1.4
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X
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Figure 2. Invariant subsets for negative spatial curvature and ζ = 0.3 plotted for three representative
values of Ω̃∂P in the ranges given in Sec. 2.2.0.2. The orange thick lines are the separatrices. The
blue shaded areas are the regions excluded by our assumption that Ωε > 0. The green shaded region
are the part of the variable space where we have accelerating universe.

The critical point with ΩH =
1√
2

denoted as D+ has eigenvalues

{

λD+
i

}

=















√
2,−
√

2

2

(

1 + 3 Ω̃∂P

)















, (19)

in the invariant subset {ΩH ,ΩP}, whiles the critical point denoted as D− has eigenvalues

{

λD−
i

}

=















−
√

2,

√
2

2

(

1 + 3 Ω̃∂P

)















. (20)

Eqs. (19) and (20) show that for − 1
3
< Ω̃∂P the critical points D± are saddles, while for

− 1
3
> Ω̃∂P, D+ is a source and D− is a sink.

3 THE DYNAMICAL SYSTEM FOR NON-MINIMALLY COUPLED SCALAR

FIELD

The action of a scalar field non-minimally coupled to gravity reads

S =

∫

d4x
√
−g

(

R

2
+Lψ

)

, (21)

where Lψ is the Lagrangian for the scalar field ψ:

Lψ = −
1

2

(

gµν ∂µψ∂νψ + ξRψ
2
)

− V(ψ), (22)
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and V(ψ) is a scalar field potential.
By variation of the action (21) with respect to gµν, we arrive to the Einstein field equa-

tions

Rµν −
1

2
R gµν = T

ψ
µν. (23)

where the stress-energy tensor T
ψ
µν for the non-minimally coupled scalar field reads

T
ψ
µν = (1 − 2 ξ)∇µψ∇νψ +

(

2 ξ −
1

2

)

gµν∇αψ∇αψ − V(ψ) gµν

+ ξ

(

Rµν −
1

2
gµνR

)

ψ2 + 2 ξψ
(

gµν ∇α ∇α − ∇µ ∇ν
)

ψ. (24)

By variation of the action with respect to the scalar field ψ we get the Klein-Gordon equa-
tion

∇µ ∇µ ψ − ξRψ −
∂V(ψ)

∂ψ
= 0. (25)

The Friedmann and the Raychaudhuri equations for the non-minimally coupled scalar
field in the FRW background read

3

(

H2 +
k

a2

)

= εψ,

(

2 Ḣ + 3 H2 +
k

a2

)

= −Pψ, (26)

respectively, while the Klein-Gordon equation reads

ψ̈ + 3 H ψ̇ + ∂ψV + 6 ξ ψ

(

Ḣ + 2 H2 +
k

a2

)

= 0. (27)

Here the εψ and Pψ are defined as

εψ =
1

2
ψ̇2 + V(ψ) + 3 ξ ψ

(

2 H ψ̇ + ψ

(

H2 +
k

a2

))

, (28)

Pψ = (1 − 4 ξ)
1

2
ψ̇2 − V(ψ) − ξ

(

4 H ψ ψ̇ + 2ψ ψ̈ + ψ2

(

2 Ḣ + 3 H2 +
k

a2

))

. (29)

We define a set of dimensionless variables which are well-defined for positive and non-
positive curvatures:

Ω =
ψ

√

1 + ξ ψ2
, ΩH =

H

D
, Ωψ =

ψ̇
√

6 D
, (30)

ΩV =

√
V

√
3 D
, Ω∂V =

∂ψV

V
, Γ =

V · ∂2
ψV

(∂ψV)2
(31)

!" !! !" ## ? $ % &



140 M. Kerachian, G. Acquaviva, G. Lukes-Gerakopoulos

where D2 = H2 +
|k|
a2 . Similarly as for the dynamical system in Sec. 2, for these dimension-

less variables the evolution parameter τ is defined as dτ = Ddt. By taking derivatives of
the dimensionless variables with respect to the evolution parameter we get

Ω′ =
√

6 Ωψ
(

1 − ξΩ2
)3/2

(32)

Ω′H =
(

1 −Ω2
H

)

(

Ḣ

D2
+Ω2

H

)

(33)

Ω′ψ =
ψ̈
√

6 D2
−ΩψΩH

(

Ḣ

D2
+Ω2

H − 1

)

(34)

Ω′V = ΩV















√

3

2
Ω∂V Ωψ −ΩH

(

Ḣ

D2
+Ω2

H − 1

)















(35)

Ω′∂V =
√

6 Ω2
∂V Ωψ (Γ − 1) , (36)

where Γ = V · ∂2
ψV/

(

∂ψV
)2

which is the so-called tracker parameter. This autonomous
system of equations differs only in the

ψ̈√
6 D2

and Ḣ
D2 terms for k > 0 and k ≤ 0. Namely for

positive curvature we get from Klein-Gordon and Raychaudhuri equations

ψ̈
√

6 D2
= −3 ΩH Ωψ −

√

3

2
Ω∂V Ω

2
V −

√
6 ξ Ω

√

1 − ξ Ω2

(

Ḣ

D2
+Ω2

H + 1

)

,

Ḣ

D2
+Ω2

H + 1 = −
1

1 − 2 ξ (1 − 3 ξ) Ω2

{

−
1

2

(

1 − 2 ξΩ2
)

+ ξΩ

√

1 − ξΩ2
(√

6ΩH Ωψ + 3Ω∂V Ω
2
V

)

+
3

2

(

1 − ξΩ2
) [

(1 − 4 ξ)Ω2
ψ −Ω

2
V

]

}

,

while for non-positive curvature these equations read

ψ̈
√

6 D2
= −3 ΩH Ωψ −

√

3

2
Ω∂V Ω

2
V +

√
6 ξ Ω

√

1 − ξ Ω2

(

1 −
Ḣ

D2
− 3Ω2

H

)

,

Ḣ

D2
+Ω2

H =
1

2
−Ω2

H +
1

1 − 2 ξ (1 − 3 ξ) Ω2

{

3 ξ2Ω2
(

1 − 2Ω2
H

)

− ξΩ
√

1 − ξΩ2
(√

6ΩH Ωψ + 3Ω∂V Ω
2
V

)

−
3

2

(

1 − ξΩ2
) [

(1 − 4 ξ)Ω2
ψ −Ω

2
V

]

}

.

The respective Friedmann equations differ as well, i.e. for k > 0

1 = 2 ξΩ2
(

1 −Ω2
H

)

+ 3 ξ















√

2

3
ΩH Ω +Ωψ

√

1 − ξΩ2















2

+ (1 − 3 ξ)Ω2
ψ

(

1 − ξΩ2
)

+Ω2
V

(

1 − ξΩ2
)

, (37)
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while for k ≤ 0

1 = 2
(

1 − ξΩ2
) (

1 −Ω2
H

)

+ 3 ξ















√

2

3
ΩH Ω +Ωψ

√

1 − ξΩ2















2

+ (1 − 3 ξ)Ω2
ψ

(

1 − ξΩ2
)

+Ω2
V

(

1 − ξΩ2
)

. (38)

3.1 General features of the system

3.1.0.1 Symmetries. The dynamical system (32)-(36) remains invariant under the simul-
taneous transformation

{Ω,ΩH ,Ωψ,ΩV ,Ω∂V }→ {−Ω,ΩH ,−Ωψ,ΩV ,−Ω∂V } . (39)

This symmetry, physically, is equivalent to the invariance under the transformation ψ →
−ψ. Since ΩV is not affected by this transformation (39), then it must hold that V(ψ) =
V(−ψ) > 0.

3.1.0.2 Singularities. In this system there are singular points arising from the decou-
pling of Raychaudhuri and Klein-Gordon equations, i.e. where the determinant of their
Jacobian vanishes. These singular points, in terms of dimensionless variables, correspond
to the vanishing of

Ω = ±
1

√

2ξ(1 − 3ξ)
. (40)

By substituting the former relation into the Friedmann constraints and solving for Ωψ one
gets

Ωψ =

√

6ξΩH +

√

(Ω2
H ∓Ω

2
V − 1)6ξ ±Ω2

V
√

1 − 6ξ
, (41)

where the upper/lower sign corresponds to negative/positive curvature. In the range ξ ∈
(0, 1/6), in both of these cases the coordinates

(

Ω,Ωψ
)

of the singularity remain finite . For
ξ > 1/6, Ωψ is complex. In the case of a flat spacetime ΩH = ±1 we call these singularities
S± respectively.

3.1.0.3 Invariant subsets. For the dynamical system. (32)-(36), one can identify some
invariant subsets of the system. These invariant subsets are ΩH = ±1 (flat spacetime) and
ΩV = 0 (free scalar field).

3.1.0.4 Critical points. Critical points and their physical interpretations of this system
are summarized in the table 1.
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Table 1. The critical elements of the system and their stability in the range 0 ≤ ξ ≤ 1/6.

Ωψ ΩH Ω ΩV Ω∂V Curvature q we stability

A+ 0 1 0 1 0 flat -1 -1 sink
A− 0 −1 0 1 0 flat -1 -1 source

B+ 0 1 0 < Ω2 < 1
2ξ

√

1−2ξΩ2

1−ξΩ2 − 4ξΩ
√

1−ξΩ2

1−2ξΩ2 flat -1 -1 sink

B− 0 −1 0 < Ω2 < 1
2ξ

√

1−2ξΩ2

1−ξΩ2 − 4ξΩ
√

1−ξΩ2

1−2ξΩ2 flat -1 -1 source

C± 0 ±1 ± 1√
2ξ

0 ∀ flat 1 1
3

saddle

D± 0 ± 1√
2

∀ 0 ∀ negative 0 - saddle

4 CONCLUSIONS

This work introduces general frameworks to analyze dynamical systems of:

• barotropic fluids with non-negative energy density and generic EoS,
• non-minimally coupled real scalar fields with generic potential in the absence of regular
matter,

both cases are treated in spatially curved FRW spacetimes without cosmological constant.
In both cases we have employed a general Γ function, which when specified reduces our
general frameworks to specific models. We were able to identify critical elements and basic
features of the systems for unknown Γ functions.
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ABSTRACT

Charged particle dynamics around Schwarzschild black hole with split monopole
magnetic field has been examined. Using an effective potential technique the posi-
tion of stable circular orbits off- and in-equatorial plane has been found. Equations
of motion for charged particle trajectories have been solved numerically and some
particle trajectories have been given. Also frequencies for perturbed particle circular
orbit has been calculated.

Keywords: charged particle – black holes – split magnetic monopole

1 INTRODUCTION

Weak test magnetic fields will have negligible effect on background spacetime or on the
motion of neutral particles. However, for the motion of charged test particles, the influence
of the magnetic field on particle dynamics can be really large. For charged test particle with
charge q and mass m moving in vicinity of a black hole (BH) with mass M surrounded by
magnetic field of the strength B, one can introduce a dimensionless quantity qBGM/mc4

that can be identified as relative Lorenz force. This quantity can be quite large even for
weak magnetic fields due to the large value of the specific charge q/m. In our approach the
”charged particle” can represent matter ranging from electron to some charged inhomo-
geneity orbiting in the innermost region of the accretion disk. The charged particle specific
charges q/m for any such structure will then range from the electron maximum to zero.

In this paper we will concentrate our attention on BH magnetosphere given by split
monopole solution Blandford and Znajek (1977). The radial profile of the split monopole
magnetic field configuration could be relevant for magnetic filed generated by thin accretion
disk around BH Komissarov (2004) or also for magnetosphere generated by another BH
accretion configurations but close to the BH horizon Komissarov (2005).
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magnetic monopole split magnetic monopole

Figure 1. Magnetic field lines for monopole (left) and split monopole (right) solutions.

Throughout the present paper we use the spacelike signature (−,+,+,+), and the system
of geometric units in which G = 1 = c.

2 CHARGED PARTICLE DYNAMICS

We describe dynamics of charged particle with charge q ! 0 in the vicinity of the Schwarzschild
BH embedded in magnetic field, using Hamiltonian formalism Kološ et al. (2015).

The gravity will enter to the equations of motion through Schwarzschild black hole (with
mass M) spacetime line element

ds2
= −

(

1 −
2M

r

)

dt2
+

(

1 −
2M

r

)−1

dr2
+ r2

(

dθ2 + sin2 θdφ2
)

. (1)

There are no magnetic monopoles in the classical theory of electromagnetism, and for
magnetic field we have

divB = 0. (2)

The source for magnetic monopole field, artificial magnetic monopole, will be located in
coordinate system origin. Split monopole solution is monopole solution, where we change
the orientation of magnetic field lines below equatorial plane (III and IV quadrants) and
hence the condition 2 will be satisfied, see Fig.1. The source for split monopole magnetic
field configuration will be some electric current floating around the coordinate system ori-
gin in infinitesimally thin disk located in equatorial plane. In this work, we consider BH
magnetosphere in the form of split monopole solution Blandford and Znajek (1977). The
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Figure 2. Effective potential Veff(x, z) for charged particle motion around BH with split monopole
magnetosphere.

covariant component of the electromagnetic four-vector potential Aµ has only one non-zero
component Aφ

Aµ = (0, 0, 0, ε | cos θ|), (3)

Here the parameter ε specifies the magnetic field intensity. Split monopole magnetic field
has same symmetries as the Schwarzschild BH background (1) - is static and spherically
symmetric.

Hereafter, we put M = 1, i.e., we use dimensionless radial coordinate r (and time coor-
dinate t). Cartesian coordinates can be found by the coordinate transformations

x = r cos(φ) sin(θ), y = r sin(φ) sin(θ), z = r cos(θ). (4)

The equations of motion for charged particle can be obtained using Hamiltonian formal-
ism

dxµ

dζ
=
∂H

∂πµ
,

dπµ

dζ
= −
∂H

∂xµ
, H =

1

2
gαβ(πα − qAα)(πβ − qAβ) +

m2

2
= 0, (5)

where the kinematical four-momentum pµ = muµ = dxµ/dζ is related to the generalized
(canonical) four-momentum πµ by the relation πµ = pµ + qAµ. The affine parameter ζ of
the particle is related to its proper time τ by the relation ζ = τ/m.

Due to the symmetries of the Schwarzschild spacetime (1) and the magnetic field (3),
one can easily find the conserved quantities that are particle energy and axial angular mo-
mentum

E =
E

m
= −
πt

m
= −gttu

t, L =
L

m
=
πφ

m
= gφφu

φ
+

q

m
Aφ. (6)
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Figure 3. Positions of off equatorial stable circular orbits for various values of magnetic parameter e.
The BH horizon is given by gray disk, while the points on each line denotes positions of stable circular
orbits for different angular momenta L.

Using such symmetries one can rewrite the Hamiltonian (5) in the form

H =
1

2
grr p2

r +
1

2
gθθp2

θ +
1

2
gttE2

+
1

2
gφφ(L − qAφ)

2
+

1

2
m2
= HD + HP, (7)

where we separated total Hamiltonian H into dynamical HD (first two terms) and potential
HP (last two terms) parts.

For the description of charged particle motion we will use parameters: particle specific
charge q̃, and magnetic field parameter e

q̃ = q/m, e = εq̃. (8)

Energetic boundary for particle motion can be expressed from the equation (7)

E2
= Veff(r, θ) (for pr = pθ = 0). (9)

We introduced effective potential for charged particle Veff(r, θ) by the relation

Veff(r, θ) ≡ −gtt

[

gφφ
(

L − q̃Aφ
)2
+ 1

]

=

(

1 −
2

r

) [

(L − e| cos θ|)2

r2 cos2 θ
+ 1

]

. (10)

The effective potential Veff(r, θ) combines the influence of gravitational potential (first term)
with the influence of central force potential given by the specific angular momentum L and
electromagnetic potential energy (terms in square brackets). The positive angular momen-
tum of a particle L > 0 means that the particle is revolved in the counter-clockwise motion
around the black hole in x-y plane. Example of effective potential Veff(r, θ) behavior can
be found in Fig. 2. For charged particle we distinguish two following situations: minus

configuration where e < 0 and plus configuration where e > 0.

!" !! !" ## ? $ % &



Charged particle motion around black hole with monopole magnetosphere 149

-10 -5 0 5 10
-10

-5

0

5

10

x

y

e = -1

-10 -5 0 5 10
-10

-5

0

5

10

x

z

ℒ≐3.5, ℰ≐0.94

r0≐7., θ0≐1.57

0 2 4 6 8 10

-4

-2

0

2

4

x

z

-10 -5 0 5 10
-10

-5

0

5

10

x

y

e = 1

-10 -5 0 5 10
-10

-5

0

5

10

x

z

ℒ≐3.7, ℰ≐0.95

r0≐7.82, θ0≐1.57

0 2 4 6 8 10

-4

-2

0

2

4

x

z

Figure 4. Example of stable circular equatorial and off-equatorial orbits around Schwarzschild BH
(gray disk) with split monopole magnetosphere (gray lines). Particle trajectories are given by black
curves, energetic boundary for the motion as dashed curves. Particle initially conditions are given in
the figure, we also use ur

(0) = uθ(0) = 0.

3 TRAJECTORIES

Particles on circular orbits around compact object can form Keplerian accretion disk, with
its inner edge given by innermost circular orbit (ISCO). The circular orbit parameters and
ISCO position can be determined by examination of effective potential Veff(r, θ) function.
The stationary points of the effective potential Veff(r, θ) function are given by

∂rVeff(r, θ) = 0, ∂θVeff(r, θ) = 0. (11)

For minus configuration e < 0 the second equation in (11) has only one root at θ = π/2.
In another word, there is extrema of the Veff(r, θ) function located in the equatorial plane
only.

For plus configuration e > 0 there is the second equation in the extrema condition (11)
has more solutions - off-equatorial plane minima of effective potential Veff can exist. The
positions of the off-equatorial plane minima, where stable off-equatorial plane circular or-
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Figure 5. Charged particle capture and escape form Schwarzschild BH with split monopole magne-
tosphere, see Fig. 4 for description.

bits are located, are given by

rmin =
1

2

(

L2 − e2
+

√

12e2 + e4 − 12L2 − 2e2L2 +L4

)

, (12)

θmin = arctan













√
L2 − e2

e













. (13)

The closest orbit to the BH horizon - the innermost off-equatorial plane stable circular orbit
roff ISCO is located at roff ISCO = 6M, see Fig.3.

Examples of charged particle circular orbits in and off-equatorial plane can be found in
Fig. 4. We also give trajectories of escaping particle and particle captured by BH in Fig. 5.
Magnetic monopole field has the same spherical symmetry as Schwarzschild BH metric
background and hence there are no chaotic trajectories.

4 FREQUENCIES

If charged test particle is slightly displaced from the equilibrium position, which is located
in a minimum of the effective potential Veff(r, θ) at r0 and θ0, the particle will start to
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Figure 6. Frequencies for perturbation of in and off-equatorial plane circular orbits are ploted as
function of radial position r. BH mass is take to be 10 solar masses.

oscillate around the minimum realizing thus epicyclic motion governed by linear harmonic
oscillations. For harmonic oscillations around the minima of the effective potential Veff ,
the evolution of the displacement coordinates r = r0 + δr, θ = θ0 + δθ is governed by the
equations

δ̈r + ω2
r δr = 0, δ̈θ + ω2

θ δθ = 0, (14)

where dot denotes derivative with respect to the proper time τ of the particle (ẋ = dx/dτ).
Locally measured angular frequencies of the harmonic oscillatory motion are given by

ω2
r =

1

grr

∂2HP

∂r2
, ω2

θ =
1

gθθ

∂2HP

∂θ2
, ωφ =

dφ

dτ
= Lgφφ + egtt, (15)

where we added also the Keplerian (axial) frequency ωφ. Frequencies for perturbations of
circular orbit in equatorial plane (e < 0) are

ω2
r =

r − 6

r4
, ω2

θ =
e2(r − 3) + r2

r5
, ω2

φ =
1

r3
, (16)

while for perturbations off-equatorial plane (e > 0) we have

ω2
r =

r − 6

r4
, ω2

θ =
e2(r − 3) + r2

r5
, ω2

φ =
e2(r − 3) + r2

r5
. (17)

The locally measured angular frequencies ωr,ωθ,ωφ, given by ωβ = dβ/dτ where β ∈
{r, θ, φ}, are connected to the angular frequencies measured by the static distant observers
(in the physical units) by the gravitational redshift transformation

νβ =
1

2π

c3

GM

dβ

dt
=

1

2π

c3

GM

ωβ

−gttE(r)
. (18)

Behavior of the frequencies νr(r), νθ(r) and νφ(r), as functions of the radial coordinate r, are
demonstrated in Fig. 6 for both positive and negative magnetic parameters. The charged
particle oscillations with frequencies νr(r), νθ(r) and νφ(r), could be used for fitting of still
unsolved quasi-periodic oscillations (QPOs) observed in many Galactic Low Mass X-Ray
Binaries (Kološ et al., 2015, 2017).
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5 CONCLUSIONS

As general relativistic magnetohydrodynamics simulations are showing, the real magnetic
field around BH can have quite complicated character Komissarov (2004, 2005). In this
work we used split monopole magnetic field as simple model for large scale BH magneto-
sphere with radial character.

Split monopole magnetosphere around Schwarzschild BH will influence charged particle
motion: for negative magnetic field parameter e < 0 we have standard stable circular orbits
located in equatorial plane, while for positive magnetic field parameter e > 0 we have
stable circular orbits located off-equatorial only. Innermost stable circular orbit is for both
cases at radius rISCO = roff ISCO = 6 M. Charged particle fundamental frequencies can be
significantly influenced by presence of split monopole magnetic field.
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ABSTRACT
Using general relativistic magnetohydrodynamics simulations we study evolution
of accretion torus around black hole endowed with five different initial magnetic
field configurations: contour, loop, parabolic, monopole, uniform. Due to accretion
of material onto black hole, parabolic magnetic field will develop in accretion torus
funnel around vertical axis, while turbulent and chaotic magnetic field inside
accretion torus will redistribute angular momentum inside torus and create corona
around it.

Keywords: GRMHD simulation – accretion – black hole – magnetic field

1 INTRODUCTION

There are two long range forces in physics: gravity and electromagnetism (EM) and both
of these forces are crucial for proper description of high energetic processes around black
holes (BHs). In realistic astrophysical situations the EM field around a BH is not strong
enough (< 1018 Gs) to really contribute to spacetime curvature and rotating BH can be
fully described by standard Kerr metric spacetime. Hence the EM field and matter orbiting
around central BH can be considered just as test fields in axially symmetric Kerr spacetime
background. While the distribution of matter around central BH can be well described by
thin Keplerian accretion disk or thick accretion torus, the exact shape of EM field around
BH, i.e. BH magnetosphere is more complicated. In the case of rotating neutron star
(pulsar) inclined rotating dipole field is used - such magnetosphere is generated by currents
flowing on the star surface. In the case of BHs one can assume the magnetosphere will be
generated by currents flowing around BH inside accretion disk or torus.

Historically, the question of BH magnetosphere has been solved as vacuum solution of
Maxwell equations in curved background. The solution of uniform magnetic field in Kerr
metric has been found by Wald (Wald, 1974), and can serve as zero approximation to
some more realistic BH magnetosphere. In elegant Wald uniform solution one can study
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combined effect of gravitational and Lorentz force acting on charged mass element.
Unfortunately such electrovacuum stationary test field BH magnetosphere has limited
astrophysical relevance - material orbiting around BH in the form of plasma should be
included. Plasma effect on BH force-free magnetosphere has been included in the
well-known work of Blandford & Znajek (Blandford and Znajek, 1977), where also the
electromagnetic mechanism of BH rotational energy extraction has been introduced.

Several numerical techniques has been also employed, but the exact shape and intensity
of BH magnetosphere, is still not yet properly resolved, although strong connection to the
accretion processes is evident (Punsly, 2009; Meier, 2012). Simple and elegant solution of
uniform magnetic field (Wald, 1974) could be used as first linear approximation to real
BH magnetosphere model, but from GRMHD simulations of accretion processes one can
expect the BH magnetosphere has more complicated structure and also changes in time
(Tchekhovskoy, 2015; Janiuk et al., 2018). At small scales the turbulent magnetic field
inside accretion disk is very important, since it enables the angular momentum transport
inside the accretion disk due to the magnetorotational instability (MRI) (Balbus and
Hawley, 1991; Sapountzis and Janiuk, 2019). At large scales one should use some analytic
approximation to real turbulent large scale BH magnetosphere outside the accretion disk.
The GRMHD simulations of magnetic field around BH (Nakamura et al., 2018; Porth
et al., 2019; Lančová et al., 2019) can provide motivation for heuristic analytic solution
for BH magnetosphere. Such analytic BH magnetosphere solution smooth out all small
scale and fast time discrepancies and can represent real magnetic field around BH on long
times and long scales. Inside this analytic BH magnetosphere one can then study fast
physical processes like charged particle jet acceleration (Stuchlı́k and Kološ, 2016;
Kopáček and Karas, 2018; Kopáček and Karas, 2020) which could be used as model for
Ultra-High-Energy Cosmic Rays (UHECR) (Tursunov et al., 2020; Stuchlı́k et al., 2020).

2 NUMERICAL SIMULATION OF ACCRETION ONTO BH

In this technical section we will introduce equations for our model of accretion torus around
BH. The equations will be given geometric units (G = c = 1) and as compared to the
standard Gauss cgs system, the factor 1/

√
4π is absorbed in the definition of the magnetic

field. Greek indices run through [0, 1, 2, 3] while Roman indices span [1, 2, 3].

2.1 Equations of ideal GRMHD in curved spacetime

In our simulations for this proceeding, black hole spin has been neglected, and
Schwarzschild geometry has been used for description of central compact object. In the
standard coordinates and in the geometric units Schwarzschild metrics takes form

ds2 = − f (r) dt2 + f (r) dr2 + r2(dθ2 + sin2 θ dφ2), f (r) = 1 −
2M

r
, (1)

where M gravitational mass of the central compact object. In the following, we put M = 1,
i.e., we use dimensionless radial coordinate r and dimensionless time coordinate t. In the
present paper we restrict our attention to the black hole spacetime region located above the
outer event horizon at rh = 2.
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The plasma orbiting around central Schwarzschild BH will be modeled using ideal
GRMHD equations, where electric resistivity, self-gravitational, radiative and all
non-equilibrium effects are neglected. The continuity, the four-momentum-energy
conservation and induction equations within GRMHD framework are:

(ρuµ);µ = 0, (T µν);µ = 0, (uνbµ − uνbν);µ = 0, (2)

The stress-energy tensor T µν is composed of gas and electromagnetic part

T
µν
gas = (ρ + ũ + p)uµuν + pgµν, T

µν
EM
= b2uµuν +

1

2
b2gµν − bµbν, (3)

T µν = T
µν
gas + T

µν
EM = (ρ + ũ + p + b2)uµuν +

(
p + b2/2

)
gµν − bµbν. (4)

Variables in Eqs. (2-4) are: uµ is gas four-velocity, ũ is internal gas energy density, ρ is
gas rest-mass density, p denotes gas pressure, and bµ is the magnetic four-vector. Magnetic
four-vector bµ is related to magnetic field three-vector Bi

bt = Biuµgiµ, bi = (Bi + btui)/ut. (5)

Strength of the magnetic field in the fluid-frame is given by b2 = bαbα, we can also define
magnetization σ = b2/ρ and the plasma-β parameter β = 2p/b2.

The equation of state (EOS) will be used in the form of ideal gas p = (γ̂ − 1)ũ, where γ̂
is the adiabatic index (Gammie et al., 2003); for simulations with non-adiabatic EOS see
(Janiuk, 2017).

2.2 Initial distribution of matter and EM field around central BH

Initial conditions in our simulation we will be toroidal perfect fluid configurations of
neutral matter around central BH in the form of Polish donut model (Kozlowski et al.,
1978; Abramowicz et al., 1978), while for magnetic field we will test various different
configurations. The time evolution and relaxation of accretion torus magnetized matter
and magnetic field into more realistic configuration will be studied using GRMHD
simulation.

Due to stationarity and axial symmetry of our problem Eq. (1) we will assume ∂tX = 0
and ∂ϕX = 0, with X being a generic spacetime tensor. In the equations for neutral matter
distribution Eq. (2), the continuity equation is identically satisfied and the fluid dynamics
is governed by the Euler equation only

(p + ,)uα∇αuγ + hβγ∇βp = 0, (6)

where ∇αgβγ = 0, hαβ = gαβ + uαuβ is the projection tensor.
Polytropic equation of state is assumed in this work, and the matter is in orbital motion

only uθ = 0 and ur = 0. The Euler equation (6) can be written as an equation for the
pressure p(,) as follows (Fishbone and Moncrief, 1976)

∂µp

, + p
= −∂µW +

Ω∂µl

1 −Ω-
, W ≡ − ln

(
−gtt − gφφΩ

2
)
+ l∗Ω, (7)
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where l∗ = l/(1 − Ωl) is constant through the accretion torus and Ω = uφ/ut is the fluid
relativistic angular frequency related to distant observers. The fluid equilibrium is regulated
by the balance of the gravitational and pressure terms versus centrifugal factors arising due
to the fluid rotation and gravitational effects of the BH background.

Relativistic formulation of Maxwell’s equations in curved spacetime is

∂αFµν + ∂νFαµ + ∂µFνα = 0, ∂αFαβ = µ0Jβ. (8)

where Jβ is electric current four-vector and electromagnetic tensor Fµν is given by

Fµν = ∂µAν − ∂νAµ, (9)

where Aµ is electromagnetic four-vector. Assuming axial symmetry and absence of electric
field, the only non-zero component of Aµ will be Aφ, and we can write Aµ = (0, 0, 0, Aφ).
The first of Maxwell’s equations (8) is satisfied identically, while the second is giving the
equation

r2 ∂

∂r

[(
1 −

2

r

)
∂

∂r
Aφ

]
+ sin θ

∂

∂θ

(
1

sin θ

∂

∂θ
Aφ

)
= −µ0Jφ r4 sin2 θ. (10)

This equation is Ampere’s law, but it can be also wield as special case of Grad—Shafranov
equation well known in MHD (Meier, 2012). Magnetic field three-vector B = (B̂r, Bθ̂, Bφ̂)
can be related to four-vector component Aφ using

B̂r =
1
√
−g

Aφ,θ Bθ̂ = −
(
1 −

2

r

)1/2
1

r sin θ
Aφ,r, Bφ̂ = 0. (11)

Magnetic field B is fully specified by electromagnetic four-potential Aµ, see Eq. (11). While
the GRMHD HARM code is using magnetic field B in the simulations, it is sometimes
more elegant to work with electromagnetic potential Aµ instead, for example visualization
of magnetic field B can be easily plotted using contour lines of electromagnetic potential

Aφ(r, θ) = const. (12)

2.3 HARM numerical code

HARM (High Accuracy Relativistic Magneto-hydrodynamics) is a conservative shock
capturing scheme, for evolving the equations of GRMHD, developed by C. Gammie et al.
(Gammie et al., 2003) and later improved and parallelized and released as HARM COOL
code by A. Janiuk and her team at CFT PAS in Warsaw (Janiuk et al., 2018; Palit et al.,
2019; Sapountzis and Janiuk, 2019).

Because stationary and spherically symmetric Schwarzschild BH metric (1) is not
changing during whole GRMHD simulation, we can divide the whole space into fixed
numerical grid. Moreover for our problem we restrict ourselves to two dimensional (r, θ)
subspace. In this proceeding we use simulation domain r ∈ [0.98 rh, 100], θ ∈ [0, π] with
resolutions 128 × 128 cells in nonlinear fixed grid.
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Figure 1. Stages of numerical GRMHD simulation of accretion torus in magnetic field following by
matter density contours. Initial, middle and final stage of numerical GRMHD simulation of accretion
torus in uniform magnetic field. Only 2D sections of full axially symmetric accretion torus are
plotted, with x on horizontal axis and z (axis of BH rotation) on vertical axis. Black curves represent
magnetic field lines, black circle at the origin of coordinates represent BH horizon. Different shades
of blue color represents logarithmic density of matter from accretion torus - the region with 99% of
maximal density (accretion torus itself) is bounded by thick red dashed curve. Time of the simulations
in the unis of M is given in the right up corner.

3 RESULTS OF GRMHD SIMULATIONS

In this short contribution we will try to examine magnetic field structure around accreting
BH using GRMHD simulations in HARM COOL code. As initial conditions for our
simulations we will use accretion torus in hydrodynamic equilibrium which will be
immersed into five different test magnetic field configurations.

Standard setting used in GRMHD simulations are: thick accretion torus around central
rotating Kerr BH with dimensionless spin parameter a = 0.9375; torus inner radius at
rin = 6 and the torus density maximum at rmax = 12 (Gammie et al., 2003; Porth et al.,
2019). Angular momentum distribution inside the torus is prescribed by Eq. (7) (Fishbone
and Moncrief, 1976). In this proceeding we would like to simulate accretion torus around
nonrotating Schwarzschild BH, but with similar central density as in Kerr BH case, hence
for our simulation we use accretion torus with inner radius at rin = 8 and density maximum
at rmax = 16.

As seed for torus inhomogeneities, we perturb thermal pressure inside torus by p∗ =

p (1 + Xp) function, where Xp is a uniformly distributed random variable between −0.02
and 0.02. We use ideal gas equation of state with an adiabatic index of γ̂ = 4/3. We will
run the simulations till final time t = 104, which is around 30 orbits around black hole
for matter from accretion torus. Since the accretion torus is in differential rotation we will
relate torus orbital period to torus density maximum - one free test particle circular orbit
around BH at r = 16 take t ∼ 363 time in geometric units used in our simulation.

Different magnetic field configurations will be tested as initial EM field in which the
accretion torus will be immersed. Some of them are solution of vacuum Maxwell equation
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Figure 2. Stages of numerical GRMHD simulation of accretion torus in magnetic field given by
current loop.

Figure 3. Stages of GRMHD simulation of accretion torus in split parabolic mag. field.

Figure 4. Stages of GRMHD simulation of accretion torus in split monopole mag. field.
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Figure 5. Stages of numerical GRMHD simulation of accretion torus in uniform magnetic field.
Some problematic behavior is observed for uniform magnetic field configuration. Contrary to the
previous four cases, the uniform magnetic field will disturb the accretion torus so much, that he
will be quickly swallowed by BH. After ten orbits (middle subfigure) only strongly destroyed torus
structure can be visible in the model.

in curved spacetime Eq. (10), some of them are just heuristic approximation. We will
start with standard initial setting for HARM torus simulation with poloidal magnetic field
following the contours of matter (Gammie et al., 2003; Porth et al., 2019), given by

Aφ =
ρ(r, θ)

ρmax
− 0.2. (13)

The magnetic field lines are closed curves focused around center at maximal torus density
radius, see Fig. 1. Magnetic field strength has been normalized to β = 2pmax/b

2
max = 100,

where pmax is gas pressure at torus density center (r = 16, θ = π/2) and b2
max is maximal

magnetic field magnitude located at point r ! 12, θ ! 1.72.
Another magnetic field configuration with closed magnetic field lines is magnetic field

generated by current loop located in equatorial plane at given radii r = R (Petterson, 1974),
see Fig. 2. We will use simplified formula (1st leading term in expansion) for this Petterson
current loop magnetic field (Kološ, 2017)

Aφ = B
R3r sin θ

(
R2 + r2

)3/2
, (14)

where B = 0.01726 is constant specifying magnetic field magnitude and R = 16.
GRMHD simulations of accretion processes around central BH (Nakamura et al., 2018;

Porth et al., 2019) are giving parabolic magnetic field as configuration inside the accretion
torus funnel. Analytic formula for split parabolic magnetic field is given by

Aφ = B rk (1 − | cos θ|), (15)

where we use coefficient k = 0.75 and constant B = 0.14347. Parabolic magnetic field with
its open field-lines is plotted in Fig. 3.
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Figure 6. Radial profiles of magnetic field strength b2 for all five magnetic field initial configurations.
Left figure is section through whole (r, θ) simulation domain in equatorial plane (θ ! 1.57), while
right figure is section for θ ! 1.72.

Well know split monopole magnetic field, already studied using test particle dynamic
approach in (Blandford and Znajek, 1977; Kološ et al., 2019), is given by

Aφ = B (1 − | cos θ|), (16)

where we use B = 1.09014. The magnetic field lines are straight radial lines pointing from
the BH above equatorial plane, while to the BH below eq. plane, see Fig. 4. This magnetic
configuration is solution of Maxwell equations (10), but current sheet in equatorial plane is
needed.

Classical Wald uniform magnetic solution (Wald, 1974) is given by

Aφ = B r2 sin2 θ, (17)

where B = 0.00398. The magnetic field lines are straight lines parallel with z-axis, see
Fig. 5. This magnetic field configuration is solution of vacuum Maxwell equation (10), and
has been extensively studied using test particle dynamic approach, see for example (Kološ
et al., 2015) and reference there.

The initial matter configuration (accretion torus) is the same in all five studied magnetic
field configurations and hence the plasma β = 2p/b2 can be derived from magnetic strength
b2. Magnetic field strength in contour configuration, Eq. (13), has been normalized and
plasma β-parameter has been set to β = 100. Maximal magnetic field strength b2

max =

5.0272 × 10−5 can be found at point r ! 12, θ ! 1.7. Uniform, monopole, parabolic and
loop magnetic fields Eqs. (14-17) have been normalized so they all will have magnetic
field strength b2 = 5.0272 × 10−5 at point r ! 12, θ ! 1.7. From radial profiles of magnetic
field strength b2 plotted in Fig. 6 we can see that b2 maximum for monopole, parabolic and
loop magnetic fields is located at BH horizon. Uniform magnetic field strength b2 is almost
constant, having maximum at outer edge of simulation domain r = 100.

Magnetic field strength b2 (magnetic field pressure) is closely related to magnetic field
energy density. While the contour magnetic field has been defined in the accretion torus
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Figure 7. Mass accretion rate onto magnetized BH with different initial magnetic field configurations
- see timeframes plotted at Figs. 1-5.

only, uniform/monopole/parabolic/loop magnetic fields exists through whole simulation
domain. Monopole, parabolic and loop magnetic fields are strong close to the BH horizon,
but they are decreasing in strength for larger r. On the another hand, the uniform magnetic
field energy density is approximately constant. One can assume that there is much more
energy located in uniform magnetic field configurations, then in another four studied cases.

As it could be seen from simulation results, presented in Figs. 1-5, from the beginning
of the simulation till circa fifteen orbital periods (t ∼ 5000) the accretion torus experience
turbulent regime, when our tested magnetic field configurations are trying to reach some
relaxed state. Contrary to the heuristic initial magnetic field configuration, the final relaxed
state will be solution of full set of ideal MHD equations (2), and hence can represent proper
realistic BH magnetosphere model. From twenty orbits (t ∼ 7500) till the end of the
simulation (t = 104) the accretion flow onto BH is stable and the accretion torus with
magnetic field is not changing dramatically for contour/loop/parabolic/monopole magnetic
field, see Fig. 7.

The evolution of uniform magnetic field configuration is different from another four
studied cases and torus configuration gets destroyed by accretion and excretion. In Fig. 7
we can see slightly increased accretion rate at the beginning but only till t ∼ 7000 after
which the accretion process will stop and only little bit of torus mass remains in the
simulation domain. Although the plasma β parameter is similar for all five studied
magnetic field configuration, the amount of magnetic field energy hidden in uniform
magnetic field is much bigger then in the another configurations.

The axially symmetric GRMHD simulations for our five different magnetic field
configurations shows similar time evolution. After fifteen orbits they will all evolved into
the more or less similar state with chaotic and turbulent magnetic field inside accretion
torus and regular parabolic magnetic field in accretion torus funnel. Only for uniform
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magnetic field initial configuration we can see different evolution. In this case the
accretion torus structure is quickly destroyed and only some low density corona will
remain around central BH.

In all tested cases the initial magnetic field configuration is quickly erased. After some
time, one can distinguish in relaxed state solution new formed regions which can be
classified according to the magnetic field shape and matter distribution.

Torus - Where the matter density in high ρ ∼ ρc and matter dominate over the magnetic
field. Magnetic field inside torus is turbulent and chaotic and contributes to the accretion
disk viscosity through magnetorotational instability.

Corona - Where the matter density is much lower ρ ≤ ρc, but matter still dominate over
the still turbulent magnetic field.

Jet funnel - Where the matter component is missing ρ ≤ 10−6ρc and regular magnetic
field with parabolic shape dominate the region.

Matter from corona low density region can be easily ionized at the jet funnel/corona
boundary and description of collisionsless charged test particle dynamic in given magnetic
field can be well applied in this jet funnel region. Funnel region with parabolic magnetic
field will be important for charged particles acceleration to ultra-relativistic velocities
(Stuchlı́k and Kološ, 2016; Kopáček and Karas, 2020).

4 CONCLUSIONS

In this short text we examined five different magnetic field configuration and tested their
evolution during matter accretion process. Simple asymmetric torus orbiting around
central BH has been penetrated by made up magnetic field configurations and using
GRMHD numerical simulations we studied matter accretion onto BH and tested magnetic
field evolution. Due to accretion of material onto BH, regular magnetic field with
parabolic shape has develop in accretion torus funnel around vertical axis. Turbulent and
chaotic magnetic field inside torus will redistribute angular momentum inside torus, create
corona around the torus and will initiate BH accretion process.

In future work we would like to use GRMHD numerical simulations not only to calculate
exact shape of BH magnetosphere but also to provide the distribution of different types of
elementary particles and their velocities inside accretion torus (Janiuk et al., 2018). At the
corona/jet funnel boundary, charged particles from the quasi-neutral accretion torus will no
longer feel the pressure forces, and they can start to move under the combined influence of
gravity and electromagnetic force. Hence charged particles can be accelerated and they can
escape with ultrarelativistic velocities along magnetic field lines toward infinity (Tursunov
et al., 2020; Stuchlı́k et al., 2020). Knowing the charged particles radiation losses over
their full path to Earth atmosphere (Tursunov et al., 2018), one could be able to calculate
the distribution of UHECR particles in the shower hitting Earth surface.
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ABSTRACT
Relativistic effects of compact objects onto electromagnetic fields in their vicinity
are investigated using the test-field approximation. In particular, we study the pos-
sible emergence of magnetic null points which are astrophysically relevant for the
processes of magnetic reconnection. While the magnetic reconnection occurs in the
presence of plasma and may lead to violent mass ejection, we show here that strong
gravitation of the supermassive black hole may actively support the process by suit-
ably entangling the field lines even in the electro-vacuum description. In this contri-
bution we further discuss the case of a dipole-type magnetic field of the neutron star
on the plunging trajectory to the supermassive black hole. While we have previously
shown that given model in principle admits the formation of magnetic null points,
here we explore whether and where the null points appear for the astrophysically
relevant values of the parameters.

Keywords: Black hole – neutron star – plunging trajectory – magnetosphere –
magnetic reconnection

1 INTRODUCTION

Strong gravity may significantly influence the structure of the electromagnetic fields. On
the other hand, the electromagnetic field contributes to the stress energy tensor Tµν, which
constitutes the source term in the Einstein field equations, and thus affects the geometry
of the spacetime. In general, we need to solve coupled Einstein-Maxwell equations to
determine the geometry given by the metric gµν and the electromagnetic field described by
the tensor Fµν. Nevertheless, the field intensities encountered in the astrophysical context
(including extreme magnetic fields of magnetars; Beskin et al. (2016)) allow to employ
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the test-field approximation which neglects its effect on the geometry of the spacetime and
Maxwell equations are solved independently to determine the electromagnetic field.

Curved spacetimes of compact objects (black holes or neutron stars) may substantially
deform the electromagnetic field in its neighborhood and several purely relativistic effects
arise. In particular, in the case of extremal rotating black hole any external axisymmetric
magnetic field is expelled from the event horizon. Expulsion of the field lines is known as
black hole Meissner effect and it was originally discussed for particular test-field solutions
and later also for several exact solutions describing magnetized black holes (Bičák and
Ledvinka, 2000; Karas and Vokrouhlický, 1991; Bičák and Janiš, 1985; Wald, 1974), and
recently it has been further generalized using the formalism of weakly isolated horizons
(Gürlebeck and Scholtz, 2018, 2017).

While the axisymmetry is crucial for the Meissner effect to operate, other types of rel-
ativistic effects may appear if we consider non-axisymmetric systems of magnetized com-
pact objects. In particular, it has been shown that rotating Kerr black hole set in uniform
motion in external asymptotically homogeneous magnetic field misaligned with the spin
axis creates extremely complicated structure of field lines leading to the close contact of
the lines of anti-parallel orientation and even to the formation of X-type null points (Karas
and Kopáček, 2009). Magnetic null points are typically associated with the process of mag-
netic reconnection occurring in plasma and presence of charged matter and electric currents
is essential for their emergence in classical magnetohydrodynamics. However, it appears
that relevant structure of magnetic field may be formed due to relativistic effects of frame-
dragging and spacetime curvature even in the electro-vacuum magnetospheres (Karas et al.,
2014, 2013, 2012).

More recently, the vacuum magnetosphere of a neutron star in the vicinity of a super-
massive black hole was considered in this context. In particular, it has been shown that
magnetic null points may form even in the Rindler approximation of this system (Kopáček
et al., 2018). Rindler limit neglects the spacetime curvature, which is justified in the very
vicinity of the black hole horizon, and gravitation of the static black hole is represented
solely by the acceleration (MacDonald and Suen, 1985). Rindler approximation is consis-
tent with the final stages of the plunging trajectory until the neutron star reaches the horizon
of the central massive black hole. While the formation of the magnetic nulls within the
magnetosphere could support the release of energy leading to the acceleration of charged
matter and high-power electromagnetic emission, the scenario in which a stellar mass com-
pact object is inspiralling and finally plunges into supermassive black hole (i.e., extreme
mass ratio inspiral; EMRI) also represents a promising source of gravitational waves for
the future space-based observatories like LISA (Babak et al., 2017).

In the previous paper (Kopáček et al., 2018), we employed the Rindler approximation to
find the solution of Maxwell equations for the plunging neutron star idealized as a rotating
conducting spherical source of dipolar magnetic field arbitrarily inclined with respect to
the axis of rotation. We discussed the solution in near zone (without the radiative terms)
and, in particular, we found that magnetic null points may emerge within such magneto-
sphere. Nevertheless, the system was treated in geometrized units scaled by the mass of the
central black hole and the consistency with the parameters of realistic astrophysical sys-
tems has not been verified. In this contribution we discuss physical values of parameters
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and check whether the formation of magnetic null points in the magnetosphere is indeed
astrophysically relevant.

2 PLUNGING NEUTRON STAR

We consider a neutron star at the final stage of its inspiral close to the horizon of the super-
massive Schwarzschild black hole. Near-horizon region of the Schwarzschild spacetime
may be approximated by the flat Rindler spacetime (D’Orazio and Levin, 2013; MacDon-
ald and Suen, 1985; Rindler, 1966) with metric given in Rindler coordinates (t, x, y, z) as
follows:

ds2
= −α2dt2

+ dx2
+ dy2

+ dz2, (1)

where the lapse function α is given as α = gHz and gH denotes the horizon surface gravity.
We use dimensionless geometrized units where the speed of light c = 1.
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Figure 1. Rindler coordinate z, measuring the proper distance from the event horizon of the black
hole, as a function of the Schwarzschild radial coordinate rs.

Relation between Rindler coordinates and Minkowski coordinates (T, X,Y,Z) is given by
the transformation:

T = z sinh(gHt), X = x, Y = y, Z = z cosh(gHt). (2)

Rindler coordinate z measures the proper distance from the horizon:

z =

∫ rs

2

dr
√

1 − 2/r
= log

( √
1 − 2/rs + 1

|
√

1 − 2/rs − 1|

)

+ rs

√

1 − 2/rs, (3)

where rs is the Schwarzschild radial coordinate scaled by the rest mass of the black hole
M (i.e., M = 1 is set in all equations). Rindler horizon at z = 0 corresponds to the
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Schwarzschild event horizon at rs = 2 and Rindler approximation of the Schwarzschild
spacetime thus remains appropriate for sufficiently small z (e.g., to keep rs ! 2.5 demands
z ! 2). The relation (3) between z and rs is plotted in Fig. 1.

Figure 2. Sketch of the investigated model (not to scale). Neutron star of the radius R is rotating with
the angular frequency ω and its dipole-type magnetic field is inclined by angle χ with respect to the
rotation axis. The neutron star is plunging into the nearby horizon of the supermassive black hole
with mass M and the proper distance from the horizon is given by the Rindler coordinate z. In the
adopted near-horizon approximation, the gravitational effects of the black hole are fully characterized
by the acceleration gH .

We consider a vacuum magnetosphere of a superconducting neutron star of radius R

and rotation frequency ω as a source of dipolar magnetic field with the inclination angle χ
with respect to the rotation axis. The neutron star is free-falling from its initial position at
(0, 0,Zs) towards the horizon. The plunge is parametrized by the Rindler coordinate time
t and the star’s position in Rindler coordinates evolves as (0, 0,Zs/ cosh gHt). Sketch of
the model is presented in Fig. 2. Spatial distance from the dipole is expressed in Rindler
coordinates as follows:

r =

√

x2 + y2 + (z cosh(gHt) − Zs)2, (4)

and retarded time τ is given as:

τ = T − r = z sinh(gHt) −
√

x2 + y2 + (z cosh(gHt) − Zs)2 . (5)

Resulting electromagnetic field for the freely falling rotating magnetic dipole was de-
rived in Kopáček et al. (2018) while the similar setup was previously considered by D’Orazio
and Levin (2013). In the near zone (dropping all radiative terms) we obtain following
components of the magnetic field vector expressed in Rindler coordinates for the observer
co-moving with the Rindler frame:
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Bx =
m

r5

{

cosh(gHt)

[

sin(χ)
{

3 x
[

x cos(ωτ) + y sin(ωτ)
]

− r2 cos(ωτ)
}

+ 3 (z cosh(gHt) − Zs) x cos(χ)

]

− ω sinh(gHt)

[

(z cosh(gHt) − Zs) sin(χ)

{

5 R2 y

r2
(x cos(ωτ) + y sin(ωτ)) + (r2 − R2) sin(ωτ)

}

+R2 y cos(χ)

(

5 (z cosh(gHt) − Zs)
2

r2
− 1

)]}

, (6)

By =
m

r5

{

cosh(gHt)

[

sin(χ)
{

3 y
[

x cos(ωτ) + y sin(ωτ)
]

− r2 sin(ωτ)
}

+ 3 (z cosh(gHt) − Zs) y cos(χ)

]

+ ω sinh(gHt)

[

(z cosh(gHt) − Zs) sin(χ)

{

5 x R2

r2
(x cos(ωτ) + y sin(ωτ)) + (r2 − R2) cos(ωτ)

}

+R2 x cos(χ)

(

5 (z cosh(gHt) − Zs)
2

r2
− 1

)]}

, (7)

Bz =
m

r5

[

3 (z cosh(gHt) − Zs) sin(χ)
[

x cos(ωτ) + y sin(ωτ)
]

+ cos(χ)
(

3 (z cosh(gHt) − Zs)
2 − r2

)

]

, (8)

where m is the magnitude of the dipole moment.

3 MAGNETIC NULL POINTS

Magnetic null points (NPs) are locations within the magnetosphere where the components
of the magnetic field (6)-(8) simultaneously vanish, i.e., (Bx, By, Bz) = (0, 0, 0). We have
numerically confirmed that NPs may develop in the employed model of the magnetosphere
and identified following necessary conditions for their existence in given setup: (i) non-
zero acceleration (gH > 0); (ii) inclination of the dipole χ ! 0, π/2; and (iii) rotation of
the dipole ω > 0 (Kopáček et al., 2018). Moreover, we discussed how the emergence and
the position of the NP depends on the Rindler time t and radius of the neutron star R for
several values of inclination χ. Regarding the former, we were able to numerically locate
the NP only for some period of coordinate time t which slightly differed for each χ. For
fixed t we investigated the effect of radius R. We found that presence of conducting sphere
is not crucial for the formation of NPs, which were located also for R = 0. With increasing
value of R, the location of NP changes and may approach the surface of the star, however,
it always remains outside (r > R).

In the previous analysis we discussed the formation of NPs and their locations with
respect to the parameters in geometrized dimensionless units scaled by the rest mass of the
central black hole M. In this contribution we intend to verify the consistency of observed
effects with realistic astrophysical system of neutron star plunging into supermassive black
hole.

Rotation of the neutron stars is detected directly in pulsars with observed periods in the
range PSI ≈ 10−3 − 10 s (Hessels et al., 2006; Tan et al., 2018) and angular frequency in SI
units ωSI = 2π/PSI is related to its dimensionless value ω as follows:

ω =
ωSI (1472 m)

c

(

M

M$

)

, (9)

where the factor 1472 m is the value of solar mass M$ in geometrized units.
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Figure 3. Rindler coordinates x0, y0, z0 and the distance from the dipole r0 of the magnetic null
point as a function of the rotation frequency ω for several values of the inclination angle χ. Dashed
line in the bottom left panel indicates the current location of the plunging neutron star at z = 0.648.
Remaining parameters of the model are fixed as: Zs = 1, gHt = 1 and R = 10−5.

Radius of the neutron star is RSI ≈ 10 km and its value R in dimensionless units is given
as :

R =
RSI

(1472 m)

(

M$

M

)

. (10)

For the central black hole we consider a mass range of M ≈ 106 − 109M$. The lower
mass limit yields the dimensionless frequency in the range ω ≈ 3− 3× 104 while the upper
limit leads to ω ≈ 3 × 103 − 3 × 107. In the previous analysis (Kopáček et al., 2018) we
fixed the frequency as ω = 1 which is, however, below the relevant astrophysical range, and
discussed the role of remaining parameters. Here we complete the discussion and study the
effect of increasing ω on the formation and location of the NP in the magnetosphere.

Iterative root-finding routine is applied to numerically locate NPs of the field (6)-(8) with
sufficient precision. In Fig. 3 we present Rindler coordinates x0, y0, z0 and the distance r0 of
the NP as a function of ω for several values of inclination χ. It shows that the NP gradually
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Figure 4. Locations of the magnetic null points with varying frequency ω for several values of the
inclination angle χ. Magnetic null points gradually approach the neutron star located at (x, y, z) =
(0, 0, 0.648) as ω increases. Same data sets as in Fig. 3 are presented here.

approaches the neutron star as ω increases and that for each ω the NP is always closer for
higher inclinations. Locations of the same set of NPs are presented in 3D plot in Fig. 4
which shows the gradual inspiral of the NP to the vicinity of the neutron star as the rotation
frequency rises.

The values of remaining parameters of the model were fixed as: Zs = 1, gHt = 1 and
R = 10−5. Given value of R corresponds to the mass M ≈ 106 M$ set in Eq. (10). In
agreement with previous results we observe that NPs approach the neutron star but always
remain above its surface. The value of the initial location of the star Zs = 1 corresponds to
the Schwarzschild radial coordinate rs ≈ 2.1 which is consistent with the Rindler approx-
imation. The choice of gHt = 1 does not put any astrophysical constraint as the Rindler
coordinate time t is a free parameter which parametrizes the plunge.

The behavior of the magnetic field close to the NP with ω = 100 and χ = π/32 is shown
in Fig. 5. Structure of the field lines in this region becomes very complicated and the field
intensity changes rapidly on the small spatial scale. With higher ω the variability of the
field in the close vicinity of the neutron star further increases and makes the structure of
the field lines too complex for the visual inspection.
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Figure 5. Magnetic field lines in the vicinity of the null point (red mark) located at x0 = 0.245,
y0 = −0.114 and z0 = 0.771. The following values of parameters are set: Zs = 1, gHt = 1, ω = 100,
χ = π/32 and R = 10−5.

For the same reason, the numerical method used to locate NPs encounters increasing
difficulties for ω " 1000. However, the behavior for ω ≤ 1000 observed in Figs. 3 and 4
suggests that NPs would further approach the surface of the neutron star. With high spin
frequencies, ω > 1000, we expect to find the NPs in the immediate neighborhood of the
neutron star1, which is located near the horizon of the central black hole and Rindler ap-
proximation may thus be applied to describe this region of the magnetosphere.

4 SUMMARY

Locations of magnetic null points which emerge in the electro-vacuum magnetosphere of
the neutron star near the supermassive black hole were discussed. We verified the astro-
physical relevance of the investigated scenario and completed our previous analysis. In
particular, we studied the role of spin frequency ω and found that realistic values of ω
generally allow the formation of the NP close to the neutron star, which guarantees the
consistency with employed Rindler approximation of the Schwarzschild spacetime.

1 The formation of the NP within the superconducting interior of the star is not possible as demonstrated in
previous paper (Kopáček et al., 2018).
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The results suggest that during the final stages of the inspiral, the strong gravity effects
of central black hole support the release of electromagnetic energy in the process of mag-
netic reconnection leading to the acceleration of charged particles and powerful emission
of electromagnetic radiation from the magnetosphere of the infalling neutron star.
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ABSTRACT

We demonstrate that the thermodynamics of a perfect fluid describing baryonic mat-
ter can, in certain limits, lead to an equation of state similar to that of dark energy.
We keep the cosmic fluid equation of state quite general by just demanding that
the speed of sound is positive and less than the speed of light. In this framework,
we discuss some propositions by looking at the asymptotic behaviour of the cosmic
fluid.

Keywords: Dark energy – perfect fluid thermodynamics

1 INTRODUCTION

In this work we attempt to tackle the issue of dark energy (see, e.g., Peebles and Ratra,
2003) by considering just usual baryonic matter in an ever-expanding Universe. We try to
keep the investigation’s assumptions as general as possible. Thus, we do not specify the
equation of state (EOS) and we avoid to limit the study to a specific spacetime. In this
framework the baryonic matter is described by an irrotational relativistic perfect fluid. For
our analysis we follow a perfect fluid formalism introduced by Lichnerowicz (1967) and
Carter (1979), which in recent works was employed mainly for neutron stars (see, e.g.,
Gourgoulhon, 2006; Markakis et al., 2017).

In particular, we consider a perfect fluid in an equilibrium configuration with proper
energy density ε. The state of the fluid depends on two parameters, which can be taken
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to be the rest-mass density ρ and specific entropy (entropy per unit rest-mass) s. Then the
EOS of the fluid is given by a function

ε = ε (ρ, s) . (1)

From Eq. (1) one can derive the first law of thermodynamics:

dε = µ
dρ

mb

+ Td(sρ) , (2)

where mb denotes the rest mass of a baryon and µ is the baryon chemical potential. The
pressure p and specific enthalpy h are functions of ρ and s entirely determined by Eq. (1):

p = −ε + ρT s +
µ

mb
ρ , (3)

h :=
ε + p

ρ
=
µ

mb
+ T s . (4)

Note that Eq. (3) can be obtained by the extensivity property of the energy density, while
the second equality of Eq. (4) comes from Eq. (3). Now Eqs. (2) and (4) yield the thermo-
dynamic relations

dε = h dρ + ρT ds , (5)

dp = ρ dh − ρT ds . (6)

Moreover, writing h = h(ρ, s) and differentiating yields

dh =
hc2

s

ρ
dρ +

∂h

∂s

∣

∣

∣

∣

∣

ρ
ds , (7)

where

c2
s =
∂p

∂ε

∣

∣

∣

∣

∣

s
=
ρ

h

∂h

∂ρ

∣

∣

∣

∣

∣

s

(8)

is the speed of sound. In order to ensure causal evolution, given the upper bound for signal
propagation set by the speed of light, physically admissible fluids should have

0 ! s2
m ≤ c2

s ≤ 1, (9)

where s2
m is an arbitrarily close to zero cut-off value for the speed of sound.

A simple perfect fluid is characterized by the energy-momentum tensor

Tα
β = h ρ uαu

β + p gα
β = (ε + p) uαu

β + p gα
β , (10)

where gαβ is the spacetime metric and uµ is the timelike vector tangent to the fluid’s flow,
satisfying the normalization condition uαuα = −1. Such energy-momentum tensor is the
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source in Einstein’s field equations (EFE) Gα
β = Tα

β , which are assumed to hold through-
out this work. By taking the covariant divergence of EFE, the doubly contracted Bianchi
identities ∇βGα

β ≡ 0 assure the covariant conservation of energy-momentum

∇βTα
β = 0 , (11)

which is the relativistic version of Euler equation. Using Eq. (6) with variation evaluated
along the flow lines (d → uα∇α) and thanks to the normalization of the timelike vector uα,
eq.(11) takes the form

∇αT
α
β = pβ∇α (ρuα) + ρ

[

uαΩαβ − T∇βs
]

= 0 , (12)

where pα = huα is the canonical momentum of a fluid element, and its exterior derivative
Ωαβ := ∇αpβ − ∇βpα is the canonical vorticity 2-form. If we assume the rest-mass (or
baryon) conservation

∇α (ρuα) = 0 , (13)

Eq. (12) yields the relativistic Euler equation in the canonical form:

uαΩαβ = T∇βs . (14)

Contraction of eq. (14) with the four-velocity uβ makes the left-hand side vanish identi-
cally.1 Hence the specific entropy is constant along the flow lines:

uα∇αs = 0 . (15)

This reflects the fact that the Euler equation describes adiabatic flows, i.e. there are no heat
fluxes in the fluid nor particle production. The adiabatic character of the fluid as expressed
by Eq. (15) is a consequence of assuming rest-mass conservation Eq. (13).

2 THERMODYNAMICAL RELATIONS FOR AN IRROTATIONAL FLUID

The condition for irrotational fluid flow is Ωαβ = 0, and implies through Eq. (14) that the
specific entropy is constant, i.e. ds = 0. The fundamental relations Eqs. (5)-(7) reduce to

dh =
h c2

s

ρ
dρ , (16)

dε = h dρ , (17)

dp = ρ dh . (18)

1 This is because the left-hand side, after contraction with uβ, ends up being a product of the symmetric term
uαuβ with the antisymmetric 2-form Ωαβ.
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Using the limits set by Eq. (9) and making the reasonable assumption that the rest-mass
density is a positive quantity, since we consider fluid composed only of baryonic matter,
we arrive through Eq. (16) to

∫ ρ

ρ1

s2
mdρ′

ρ′
≤

∫ ρ

ρ1

c2
sdρ′

ρ′
≤

∫ ρ

ρ1

dρ′

ρ′
⇒

(

ρ

ρ1

)s2
m

≤
h

h1
≤
ρ

ρ1
, (19)

where index “1” refers to the integration constants of the specific fluid with equation of state
described by the speed of sound c2

s , not by the lower bound and upper bounds of Eq. (9).

Note that we have assumed that dρ > 0. Eq. (19) implies

(

ρ

ρ1

)s2
m−1

≤ 1 , which gives that

ρ1 ≤ ρ, since s2
m < 1, i.e. the integration constant ρ1 corresponds to the minimum of the

allowed values for the rest-mass density of the fluid. Moreover, inequality (19) implies
that h/h1 > 0. At this point we do not make any assumption about the sign of the specific
enthalpy.

Because of Eq. (17), Eq. (19) results in

1

ρ
s2

m

1

∫ ρ

ρ1

ρ′s
2
m dρ′ ≤

1

h1

∫ ρ

ρ1

hdρ′ ≤
1

ρ1

∫ ρ

ρ1

ρ′dρ′

⇒
ρ1

1 + s2
m















(

ρ

ρ1

)s2
m+1

− 1















≤
ε − ε1

h1
≤
ρ1

2















(

ρ

ρ1

)2

− 1















, (20)

where

∫ ρ

ρ1

hdρ′ =

∫ ε

ε1

dε′ was employed.

From Eqs. (16) and (18) we get

dp = c2
shdρ . (21)

Taking into account Eq. (21), from Eq. (19) and Eq. (9) we have

s2
m

ρ
s2

m

1

∫ ρ

ρ1

ρ′s
2
m dρ′ ≤

1

h1

∫ ρ

ρ1

c2
shdρ′ ≤

1

ρ1

∫ ρ

ρ1

ρ′dρ′

⇒
s2

mρ1

1 + s2
m















(

ρ

ρ1

)s2
m+1

− 1















≤
p − p1

h1
≤
ρ1

2















(

ρ

ρ1

)2

− 1















, (22)

where

∫ ρ

ρ1

c2
shdρ′ =

∫ p

p1

dp′ was employed. Since ρ ≥ ρ1, inequality (22) gives that

(p− p1)/h1 ≥ 0, while inequality (20) gives that (ε−ε1)/h1 ≥ 0. For ρ = ρ1, Eqs. (19), (20),
(22) reduce to h = h1, ε = ε1, p = p1 respectively, which is trivial but self-consistent.
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2.0.1 Assuming constant speed of sound

Assuming c2
s is independent of specific enthalpy, i.e. constant, then by following similar

steps as for arriving to the inequalities (19), (20), (22), we get

ε − ε1 =
1

1 + c2
s

ρ1 h1















(

ρ

ρ1

)1+c2
s

− 1















, (23)

p − p1 =
c2

s

1 + c2
s

ρ1 h1















(

ρ

ρ1

)1+c2
s

− 1















, (24)

which leads to

p = c2
s (ε − ε1) + p1 . (25)

Note that if one changes the equation of the state of the fluid, i.e. c2
s , the integration con-

stants denoted with “1” change as well.

3 ASYMPTOTIC BEHAVIORS

3.1 Rest-mass density

The rest mass conservation (13) can be rewritten as:

ρ̇ + ρ θ = 0 , (26)

where θ = ∇αu
α is the expansion scalar of the congruence uα, ˙ = uα∇α denotes the

derivative with respect to a relevant time parameter t along the congruence uα. Integrat-
ing Eq. (26) along the time parameter t leads to

ρ = ρ0 e
−

∫ t

t0
θ(t′) dt′

, (27)

with initial condition ρ(t0) = ρ0.

Proposition 1. For a perfect fluid moving along an expanding congruence with conserved

positive rest-mass, the rest-mass density vanishes asymptotically, ρ → 0+, in the limit

t → ∞.

Proof. Since we have an expanding congruence, there exists a k > 0, such that θ ≥ k.
Eq. (27) then leads to

ρ = ρ0 e
−

∫ t

t0
θ(t′) dt′

≤ ρ0 e
−

∫ t

t0
k dt′
= ρ0 e−k(t−t0)

→ 0 for t → ∞ . (28)

Since ρ > 0, one has ρ → 0+ for t → ∞, i.e. the rest mass density asymptotically
vanishes. "
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Proposition 1 and the fact that ρ1 ≤ ρ suggests that ρ1 must be an infinitesimally
small positive quantity, i.e. ρ1 ≡ 0+. Moreover, Proposition 1 implies that for t → ∞

Eqs. (23), (24) derived for a fluid with constant non-zero speed of sound lead to

ε − ε1 * −
1

1 + c2
s

ρ1 h1 , (29)

p − p1 * −
c2

s

1 + c2
s

ρ1 h1 . (30)

To show an interesting implication of these relations, let us fix the constants of integration
by considering the vanishing pressure limit, p1 = 0. In this limit, one typically imposes
that the specific enthalpy is equal to unity. Then, the relation ε + p = ρh, for p = p1 = 0
and h = h1 = 1, implies

ε1 = ρ1 . (31)

With these constraints on the constants, we obtain the following expressions for
Eqs. (29), (30):

p * −
ε1 c2

s

1 + c2
s

, (32)

ε *
ε1 c2

s

1 + c2
s

. (33)

It is immediately evident that Eq. (33) represents a constant positive contribution to the
energy density for any c2

s > 0, if ε1 = ρ1 > 0. In a cosmological context such term behaves
like a cosmological constant, since p = −ε. This has been already noticed for the case of
the stiff fluid (cs = 1) by Christodoulou (1995).

Applying proposition 1 on the inequalities (20), (22) and using the (31) choice for fixing
the constants, we arrive at:

−
ε1s2

m

1 + s2
m

! p ! −
ε1

2
, (34)

ε1s2
m

1 + s2
m

! ε !
ε1

2
. (35)

Eq. (35) still implies a constant positive contribution to the energy density for t → ∞, but
Eq. (34) is only possible if ε1 = 0, since s2

m + 1. Thus, we are led to ε1 = 0, which means
that Eqs. (34), (35) respectively lead to p * ε * 0. Moreover, since the above inequalities
include the constant speed case as a subcase, then ε1 = 0 for Eqs. (32), (33), so they do
not imply the existence of a cosmological constant. On the other hand, this result might be
suggesting that the choice (31) we have made to fix the constants is not the proper one.
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In fact if we do not fix the constants, according to Proposition 1 the inequalities (19),
(20), (22) reduce to

h

h1
* 0, (36)

−
ρ1

1 + s2
m

!
ε − ε1

h1
! −
ρ1

2
, (37)

−
s2

mρ1

1 + s2
m

!
p − p1

h1
! −
ρ1

2
. (38)

Again because of s2
m + 1, Eq. (38) can hold only if ρ1 is exactly zero. Note that even if s2

m

was equal to zero ρ1 had to be zero as well. By not allowing the rest mass energy density
to acquire the zero value, we have arrived to a contradiction. If one would allow it, then
it would not be possible to derive the inequalities in Sec. 2. To resolve this contradiction,
one might claim that the relations derived in Sec. 2 hold only for finite time intervals, i.e.
they do not hold for t → ∞. To discuss the asymptotic behaviors, we need propositions
like Proposition 1.

3.2 Enthalpy

Evaluating the thermodynamic relation Eq. (7) along the flow lines, and implementing
Eq. (15), yields the relation

uα∇αh =
hc2

s

ρ
uα∇αρ , (39)

which can be used to rewrite the rest-mass conservation equation (13) as

0 =∇α (ρuα) (40)

=
ρ

hc2
s

(

uα∇αh + hc2
s∇αu

α
)

. (41)

The continuity equation for the rest-mass density as expressed by Eq. (41) is

ḣ = −c2
s θ h , (42)

For generic time-dependent speed of sound and expansion scalar, one then has

h = h0 e
−

∫ t

t0
c2

s (t′) θ(t′) dt′
, (43)

with initial condition h(t0) = h0.

3.2.1 Strong Energy Condition

Proposition 2. Consider a perfect fluid moving along an expanding and isotropic congru-

ence, with conserved rest-mass and satisfying the Strong Energy Condition (SEC); then if

the speed of sound is a function of time defined in the interval (0, 1], in the limit t → ∞ one

necessarily has ε → 0 and p→ 0.
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Proof. The equation of rest-mass conservation can be rewritten in the form Eq. (42),
whose general solution is given by eq.(43). We would like to evaluate the behavior of
h in the limit when t → ∞ by obtaining an upper and a lower bound.

Lower bound. First of all c2
s(t) ∈ (0, 1], so we can write

h = h0 e
−

∫ t

t0
c2

s (t′) θ(t′) dt′
≥ h0 e

−
∫ t

t0
θ(t′) dt′

. (44)

Secondly, the Raychaudhuri equation for an isotropic timelike congruence uα reads

θ̇ = −

(

1

3
θ2 + Rαβu

αuβ
)

. (45)

Because of the SEC, the last term is positive. Hence we get the inequality

θ̇ ≤ −
1

3
θ2 . (46)

Integration of such inequality gives

θ ≤
3 θ0

3 + θ0 t
, (47)

with θ0 = θ(t0). Applying such bound to the rightmost term of Eq. (44) gives

h ≥ h0 e
−

∫ t

t0
θ(t′) dt′

≥ h0 e
−

∫ t

t0

3 θ0
3+θ0 t′

dt′
(48)

= h0

(

3 + θ0t0

3 + θ0t

)3

→ 0 for t → ∞ .

Hence h ≥ 0 for t → ∞.
Upper bound. By assumption, the product c2

s(t)θ(t) is strictly positive: hence there exists
a constant k > 0 such that c2

s(t)θ(t) ≥ k > 0 for any finite time. The function h can then be
bounded from above in the following way:

h = h0 e
−

∫ t

t0
c2

s (t′) θ(t′) dt′
≤ h0 e

−
∫ t

t0
k dt′

= h0 e−k(t−t0)
→ 0 for t → ∞ . (49)

Hence h ≤ 0 for t → ∞.
Putting together the results of both bounds, we find that h = 0 in the limit t → ∞.

At the same time ρ → 0 in the same limit, because of Proposition 1. Thus, one has that
h ≡

ε+p
ρ
→ 0 implies that p + ε → 0.

Lastly, the SEC requires p + 1
3
ε ≥ 0: the only case in which the condition p + ε → 0 is

consistent with this bound is when both ε → 0 and p→ 0 (left panel of Fig. 1). "

Note that Proposition 1 by itself could not lead to p + ε → 0, since the asymptotic
bounded value of the specific enthalpy was not guaranteed.

Proposition 2 is a general statement about the impossibility for a “well defined” isotropic

perfect fluid satisfying the SEC to have a non-trivial pressure asymptotically. Hence, in the
following propositions we drop SEC and specialize to a spatially flat Friedmann-Robertson-
Walker (FRW) spacetime.
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Figure 1. Left panel: The plane of allowed EoS assuming SEC, Proposition 2. Right Panel: The
plane of allowed EoS assuming bounded rate of congruence expansion, Proposition 3. In both panels
we assume that the energy density is ε ≥ 0.

3.2.2 Bounded Rate of Expansion

Proposition 3. Consider a perfect fluid moving along an expanding congruence in a flat

FRW spacetime, with conserved rest-mass and a rate of expansion bounded by Ξ; then if

the speed of sound is a function of time defined in the interval (0, 1], in the limit t → ∞ one

has ε + p→ 0, without necessarily ε → 0 and p→ 0, and 0 ! Ξ.

Proof. The upper bound stays the same as in Proposition 2, so h ≤ 0 for t → ∞. Lower

bound. A positive, but bounded rate of congruence expansion means that θ̇ ≤ Ξ, thus
θ(t) ≤ Ξ(t − t0) + θ0. Then, Eq. (44) gives

h ≥ h0 e
−

∫ t

t0
θ(t′) dt′

≥ h0 e
−

∫ t

t0
Ξ(t−t0)+θ0dt′

= h0 e−(Ξ(t−t0)2/2+θ0(t−t0))
→ 0 for t → ∞ . (50)

Putting together the results of both bounds, we find that h = 0 in the limit t → ∞. Thus,
again one has that p + ε → 0.

However, from the isotropic Raychaudhuri Eq. (45) we have:

−

(

1

3
θ2 + Rαβu

αuβ
)

≤ Ξ⇒ −
3

2
(ε + p) ≤ Ξ , (51)

where we used Friedmann equation θ2 = 3ε. Thus, in this case the solution ε → 0, p → 0
is not the only allowed to have ε + p→ 0 (right panel of Fig. 1). Actually, p→ −ε implies
that 0 ! Ξ. "
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Note that proposition 3 allows an exponential growth for FRW

3
ȧ

a
= θ = Ξ(t − t0) + θ0 ⇒ a ≤ a0e(Ξ(t−t0)2/2+θ0(t−t0))/3

even if Ξ = 0. Thus, to have exponential growth the minimal requirement is that θ̇ ≤ 0.

4 SUMMARY

Starting from a general thermodynamical treatment of usual matter, in the form of an ir-
rotational perfect fluid, our investigation indicates that a constant speed of sound for usual
matter is not a viable way to provide a cosmological constant. We have given a formal
proof that if the strong energy condition holds, usual matter cannot provide negative pres-
sure. Moreover, we have provided a formal proof that for a flat FRW spacetime containing
only usual matter, for which the strong energy condition is violated, negative pressure is
possible .
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ABSTRACT
We examine the influence of the quadrupole moment of a slowly rotating neutron
star on the oscillations of non-slender accretion tori. We apply previously developed
methods to perform analytical calculations of frequencies of the radial epicyclic
mode of a torus in the specific case of the Hartle-Thorne geometry. We present
here our preliminary results and provide a brief comparison between the calculated
frequencies and the frequencies previously obtained assuming both standard and lin-
earized Kerr geometry. Finally, we shortly discuss the consequences for models of
high-frequency quasi-periodic oscillations observed in low-mass X-ray binaries.

Keywords: neutron star – thick accretion disc – Hartle-Thorne metric

1 INTRODUCTION

Numerous interesting features have been discovered during the long history of X-ray obser-
vations of low-mass X-ray binaries (LMXBs). One of them is the fact that variability of the
X-ray radiation coming from these sources occurs at frequencies in the order of up to hun-
dreds of Hertz with the highest values reaching above 1.2 kHz. Even though the discovery
of this rapid variability was made almost 30 years ago, to this day, there is no convincing
explanation of its origin. The phenomenon is called the high-frequency quasi-periodic os-
cillations (HF QPOs) and many models have been proposed in the attempt to explain its
nature (see, e.g., Török et al., 2016a; Kotrlová et al., 2020 and references therein).

It has been noticed that the HF QPOs frequencies are in the same order as those corre-
sponding to orbital motion in the very close vicinity of a compact object, such as neutron
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star (NS) or black hole (BH). This suggests that there is a relation between the QPO phe-
nomenon and the physics behind the motion of matter close to the accreting object. Since
positions of specific orbits in the accretion disk (such as its inner edge) and the associated
orbital frequencies depend on the properties of the central object, there is a believe that it
is possible to infer the compact object properties from the QPOs data.1

In the above context, several studies have focused on a possible relation between the
QPOs and an oscillatory motion of an accretion torus formed in the innermost accretion re-
gion (Kluzniak and Abramowicz, 2001; Kluźniak et al., 2004; Abramowicz et al., 2003a,b;
Rezzolla et al., 2003; Bursa, 2005; Török et al., 2005; Dönmez et al., 2011; Török et al.,
2016a; de Avellar et al., 2018).

Straub and Šrámková (2009) and Fragile et al. (2016) have performed calculations of
frequencies of the epicyclic oscillations of fluid tori assuming Kerr geometry, which de-
scribes rotating BHs. Here we follow their approach and consider slowly rotating NSs
and their spacetimes described by the Hartle-Thorne geometry (Hartle, 1967; Hartle and
Thorne, 1968). We present the first, preliminary results of our calculations of the radial
epicyclic oscillation frequencies and provide a brief comparison of these to the frequencies
obtained previously for the Kerr and linearized Kerr geometries. Finally, we discuss some
consequences for models of NS QPOs.

2 OSCILLATIONS OF TORI IN AXIALLY SYMMETRIC SPACETIMES

We consider an axially symmetric geometry. The spacetime element may be expressed in
the general form as

ds2 = gttdt2 + 2gtϕdtdϕ + grrdr2 + gθθdθ
2 + gϕϕdϕ

2. (1)

We use the units in which c = G = 1 with c being the speed of light and G the gravitational
constant.

2.1 Equilibrium configuration

We assume a perfect fluid torus in the state of pure rotation with constant specific angular
momentum l as described in Abramowicz et al. (2006); Blaes et al. (2006).

In this case, the fluid forming the torus has a four-velocity uµ with only two non-zero
components,

uµ = A(1, 0, 0,Ω), (2)

where A is the time component ut and Ω is the orbital velocity. One may write

A =ut = (−gtt − 2Ωgtϕ −Ω2gϕϕ)
−1/2, (3)

Ω =
uϕ

ut
=

gtϕ − lgϕϕ

gtt − lgtϕ
. (4)

1 We often use the shorter term ”QPOs” instead of ”HF QPOs” throughout the paper.
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The perfect fluid with density ρ, pressure p and the energy density e is characterised by the
stress-energy tensor

T µν = (p + e)uµuν + pgµν. (5)

For a polytropic fluid, we may write:

p = Kρ
n+1

n , (6)

e = np + ρ, (7)

where K and n denote the polytropic constant and the polytropic index, respectively. In this
work, we use n = 3, which describes a radiation-pressure-dominated torus.

The Euler formula is obtained from the energy–momentum conservation law, ∇µT
µ
ν =

0, using the assumption of l = const. (Abramowicz et al., 1978, 2006)

∇µ(lnE) = −
∇µp

p + e
, (8)

with E being the specific energy

E = −ut =
(

−gtt + 2lgtϕ − l2gϕϕ
)−1/2

. (9)

By integrating (8) we obtain the Bernoulli equation (Fragile et al., 2016; Horák et al.,
2017)

HE = const., (10)

where H =
p+e
ρ

denotes the enthalpy in the form presented by Fragile et al. (2016) and
Horák et al. (2017). From relation (10), we can derive the equations describing the structure
and shape of the torus:

p

ρ
=

p0

ρ0
f (r, θ), (11)

f (r, θ) =
1

nc2
s,0

[

(

1 + nc2
s,0

) E0

E
− 1

]

, (12)

(13)

where cs is the sound speed in the fluid defined as (Abramowicz et al., 2006)2

c2
s =
∂p

∂ρ
=

n + 1

n

p

ρ
, (14)

and the subscript 0 denotes the quantities evaluated at the torus centre. From equations (6)
and (11), one can obtain the following formulae for pressure and density of the fluid:

p = p0
[

f (r, θ)
]n+1 , (15)

ρ = ρ0
[

f (r, θ)
]n . (16)

2 The definition is fully valid for cs << 1, but this has no significant effect on our results.
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It is useful to introduce new coordinates x and y by relations

x =

√
grr,0

β

(

r − r0

r0

)

, (17)

y =

√
gθθ,0

β

( π
2
− θ
r0

)

. (18)

In these coordinates, we have x = 0 and y = 0 at the torus centre. We furthermore introduce
a β parameter determining the torus thickness, which is connected to the sound speed at the
torus centre in the following manner (Abramowicz et al., 2006; Blaes et al., 2006):

β2 =
2nc2

S,0

r2
0
Ω2

0
A2

0

. (19)

The surface of the torus, which coincides with the surface of zero pressure, is given by the
condition f (r, θ) = 0. An example of the torus cross-section is shown in Figure 1 illustrating
the character of the equipressure surfaces for different values of β. An equilibrium torus is
formed when the perfect fluid fills up a closed equipressure surface. The largest possible
torus arises by filling up the equipressure surface that has a crossing point – the so-called
cusp. We call this structure, for which we have β = βcusp, the ”cusp torus”. Notice that,
for β > βcusp, the equipressure surfaces are no longer closed and no torus therefore can be
formed.

� � � � �� �� �� ��

��

��

�

�

�

� �	
� ���

�
��

�
��

�

Figure 1. Meridional cross-section illustrating the shape of the equipressure surfaces in the
Schwarzschild geometry. The red line marks a cusp torus with β = βcusp, the blue line corresponds to
an equilibrium torus with β < βcusp, and the black dot denotes the centre of the torus (as well as the
infinitely slender torus with β→ 0).

2.2 The oscillating configuration

We assume the effective potential U (e.g. Abramowicz et al., 2006) in the form

U = gtt − 2l0gtϕ + l20gϕϕ. (20)
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An infinitesimally slender torus with β→ 0 at r0 with specific angular momentum l0 under-
going a small axially symmetric perturbation in the radial direction will oscillate with the
frequency equal to the radial epicyclic frequency of a free test particle given by (Abramow-
icz and Kluźniak, 2005; Aliev and Galtsov, 1981)

ν2r =
1

4π2

E2
0

2A2
0
grr,0

∂2U

∂r2

∣

∣

∣

∣

∣

∣

0

. (21)

Now let us investigate how the frequency changes when the torus becomes thicker and/or
when the perturbation is not axially symmetric. Assume small perturbations of all quanti-
ties around the equilibrium state in the form (Abramowicz et al., 2006; Blaes et al., 2006)

δX(t, r, θ,ϕ) = δX(r, θ)ei(mϕ−ωt), (22)

where m is the azimuthal number and ω is the angular frequency of the oscillations. In this
work, we focus on two modes of oscillations: the axially symmetric (m = 0) and the first
non-axisymmetric (m = −1) radial epicyclic modes.

From the continuity equation ∇µ (ρuµ) = 0, one can get the relativistic version of the
Papaloizou-Pringle equation (Abramowicz et al., 2006; Fragile et al., 2016), 3

1
√
−g
∂µ

√
−ggµν f n∂νW

nc2
s,0

f + 1
+ (l0ω − m)2 Ωgtφ − gφφ

1 −Ωl0

f n

nc2
s,0

f + 1
W =

= −
2nA2

(

ω − mΩ
)2

β2r2
0

f n−1W, (23)

where {µ, ν} ∈ {r, θ}, A ≡ A/A0, Ω ≡ Ω/Ω0, ω ≡ ω/Ω0, g is the determinant of the metric
tensor and W equals to (Abramowicz et al., 2006)

W = −
δp

Aρ (ω − mΩ)
. (24)

Equation (23) has no analytical solution except for the limit case of an infinitely slender
torus (β→ 0). In the case of non-slender tori (β > 0), the equation can be solved using a
perturbation method (see, e.g., Straub and Šrámková (2009)).

2.2.1 Solving the Papaloizou-Pringle equation

When the exact solution for a simplified case is known (as for β → 0), we can use pertur-
bation theory to find the solution for more complicated cases (β > 0). 4

3 For the sake of simplicity, from now on, we will use f = f (r, θ).
4 Note the perturbation method gives reasonable results only for small values of β and our results are therefore
valid only for slightly non-slender tori.
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By expanding the quantities ω, W, A, Ω, f in β (Straub and Šrámková, 2009)

Q = Q(0) + βQ(1) + β2Q(2) + · · · , Q ∈
{

ω,W,A,Ω, f
}

, (25)

substituting that into equation (23), and comparing the coefficients of appropriate order in β,
we obtain the corresponding corrections to W and ω. Note that the zero order corresponds
to the slender torus case (β→ 0), in which we have ω = 2πνr.

Using this procedure, Straub and Šrámková (2009) have derived the expression for the
radial epicyclic mode frequency with the second order accuracy, which may be written as

ωr,m = 2π νr + mΩ0 + Pm β
2 + O

(

β3
)

, (26)

where Pm denotes the second order correction term for which the explicit form can be found
in their paper.

3 THE HARTLE-THORNE GEOMETRY

The exterior solution of the Hartle-Thorne metric is characterized by three parameters:
the gravitational mass M, angular momentum J and the quadrupole moment Q of the
star. We use this metric assuming dimensionless forms of the angular momentum and
the quadrupole moment, j = J/M2 and q = Q/M3, which can be in the Schwarzschild
coordinates written as (Abramowicz et al., 2003)5:

gtt = −
(

1 −
2M

r

)

[

1 + j2F1(r) + qF2(r)
]

, (27)

grr =

(

1 −
2M

r

)−1
[

1 + j2G1(r) − qF2(r)
]

, (28)

gθθ = r2
[

1 + j2H1(r) + qH2(r)
]

, (29)

gϕϕ = r2 sin2 θ
[

1 + j2H1(r) + qH2(r)
]

, (30)

gtϕ = −
2M2

r
j sin2 θ, (31)

where (using the u = cos θ substitution)

F1(r) = −
[

8Mr4(r − 2M)
]−1

[

u2
(

48M6 − 8M5r − 24M4r2 − 30M3r3 − 60M2r4 + 135Mr5 − 45r6
)

+ (r − M)
(

16M5 + 8M4r − 10M2r3 − 30Mr4 + 15r5
)]

+ A1(r), (32)

5 Note misprints in the original paper.
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F2(r) = [8Mr(r − 2M)]−1
[

5
(

3u2 − 1
)

(r − M)
(

2M2 + 6Mr − 3r2
)]

− A1(r), (33)

G1(r) = [8Mr(r − 2M)]−1
[(

L(r) − 72M5r
)

− 3u2
(

L(r) − 56M5r
)]

− A1(r), (34)

L(r) =80M6 + 8M4r2 + 10M3r3 + 20M2r4 − 45Mr5 + 15r6, (35)

A1(r) =
15

(

r2 − 2M
) (

1 − 3u2
)

16M2
ln

(

r

r − 2M

)

, (36)

H1(r) =
(

8Mr4
)−1 (

1 − 3u2
) (

16M5 + 8M4r − 10M2r3 + 15Mr4 + 15r5
)

+ A2(r), (37)

H2(r) = (8Mr)−1 5
(

1 − 3u2
) (

2M2 − 3Mr − 3r2
)

− A2(r), (38)

A2(r) =
15

(

r2 − 2M
) (

3u2 − 1
)

16M2
ln

(

r

r − 2M

)

. (39)

While for j = 0 and q = 0 the Hartle-Thorne metric coincides with the Schwarzschild
metric, by setting j = a/M and q = j2 and performing a coordinate transformation into the
Boyer-Lindquist coordinates (Abramowicz et al., 2003),

rBL = r −
a2

2r3

[

(r + 2M)(r − 2M) + u2(r − 2M)(r + 3M)
]

, (40)

θBL = θ −
a2

2r3
(r + 2M) cos θ sin θ, (41)

we obtain Kerr geometry expanded upon the second order in the dimensionless angular
momentum.

4 OSCILLATIONS OF TORI IN THE VICINITY OF ROTATING NEUTRON

STARS

Let us now study the changes that arise in the torus structure and for the frequencies of
its oscillations when the Hartle-Thorne geometry is assumed to describe the spacetime
geometry.6 The main motivation behind this analysis is related to models of NS QPOs.
While the Kerr geometry is (likely) proper to be used in the context of BH QPOs (e.g.,
Kotrlová et al., 2020), its validity in the case of NS QPOs is limited to very compact NSs
only.

4.1 The Hartle-Thorne geometry parameters range relevant to rotating NSs

A thorough discussion of the relevance of the Hartle-Thorne geometry for the calculations
of the geodesic orbital motion and QPO models frequencies is presented in Urbancová et al.
(2019). Here we just briefly summarize the appropriate ranges of the individual parameters
that are implied by the present NS equations of state. The maximum value of the specific

6 Following Straub and Šrámková (2009) and Fragile et al. (2016), we use a Wolfram Mathematica code, which
has been extended to the Hartle-Thorne geometry.
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angular momentum of a NS is about jmax ∼ 0.7, the specific quadrupole moment takes
values from q/ j2 ∼ 1.5 for a very massive (compact) NS up to q/ j2 ∼ 10 for a low-mass
NS (Urbancová et al., 2019). The conservative expectations of the NS mass values are
about 1.4 − 2.5 M(.

4.2 The quadrupole moment influence on the non-oscillating torus shape and size

In Figures 2 and 3, we present meridional cross-sections of tori carried out in different ge-
ometries, namely the Schwarzschild, Kerr, linearized Kerr, and the Hatle-Thorne geometry.
The figures also show plots of the Keplerian angular momentum and the angular momen-
tum of the fluid (which is constant across the torus), and the radial extentions of the tori. For
both figures, the top panels correspond to j = 0 (a non-rotating NS, i.e., the Schwarzschild
geometry), and the bottom panels to j = 0.2 (Figure 2) and j = 0.4 (Figure 3). The radial
coordinate r0 is chosen such that the radial epicyclic frequency of a free test particle defined
at this coordinate reaches its maximum.

In Table 1, we provide a quantitative comparison of the radial extensions of tori from
Figures 2 and 3. It is given in terms of the proper radial distance, rprop, measured between
the minimal, rmin, and the maximal, rmax, radial coordinate of the torus surface,

∆rprop =

∫ rmax

rmin

√
grr dr. (42)

Table 1. The percentual differences in the proper radial extension ∆rprop of tori in the Hartle-Thorne
geometry and in the Schwarzschild, Kerr, and linearized Kerr geometries. The displayed values
correspond to the situations illustrated in Figures 2 and 3.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) − 5 % − 11 % + 2 % − 5 % − 1 % − 13 %

HT (q = 10 j2) − 7 % − 12 % − 1 % − 6 % − 4 % − 14 %

4.3 The quadrupole moment influence on the radial epicyclic oscillations of

non-slender tori

We use equation (26) to derive the radial epicyclic mode frequency as a function of the
radius of the torus centre r0. In Figure 4, we plot the frequencies of both the m = 0 (left
panel) and m = −1 (middle panel) radial epicyclic modes. These are compared for the
four different geometries assuming j = 0.2. The right panel of this figure illustrates the
behaviour of tori cross-sections corresponding to maxima of the m = 0 radial epicyclic
mode frequency. Figure 5 then provides the same illustration but for j = 0.4.
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Figure 2. Illustration of some characteristics of tori carried out in different geometries. The tori
are centered at the radial coordinate at which the radial epicyclic frequency of a free test particle
reaches its maximum. Left panels: Meridional cross-sections of the equipressure surfaces determin-
ing the shape of the tori. From top to bottom, the results correspond to calculations carried out in
the Schwarzschild, linearized Kerr ( j = 0.2), Kerr ( j = 0.2), and the Hartle-Thorne ( j = 0.2, q = j2

and j = 0.2, q = 10 j2) geometry. Right panels: Plots of the specific angular momentum of the fluid
(which is constant across the torus) along with the Keplerian angular momentum. The intersection
points of the two functions marked by the spots correspond to the centre of the tori. The coloured
segments indicate the corresponding radial extentions of the tori.
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Figure 3. The same as in Figure 2 but for j = 0.4.
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In Table 2, we provide a quantitative comparison of the maximal frequencies of the
m = 0 radial epicyclic mode for tori of maximal thicknesses (i.e., the frequencies denoted
by the red dots in the left panels of Figures 4 and 5) for the Hartle-Thorne and the other
three geometries. In Table 3, we then present the same but for the m = −1 radial epicyclic
mode (i.e., the frequencies denoted by the red dots in the middle panels of Figures 4 and
5). The proper radial extension of tori related to Tables 2 and 3 (i.e., those shown in the
right panels of Figures 4 and 5) are compared in Table 4.

Table 2. The percentual differences in the maximal values of frequencies of the m = 0 radial epicyclic
mode of the cusp tori in the Hartle-Thorne geometry and in the Schwarzschild, Kerr, and linearized
Kerr geometries. The displayed values correspond to the situations illustrated in Figures 4 and 5.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) + 15 % + 35 % 0 % 0 % − 1 % − 4 %

HT (q = 10 j2) + 8 % + 4 % − 6 % − 23 % − 7 % − 26 %

Table 3. The percentual differences in the frequency of the m = −1 radial epicyclic mode of the cusp
tori in the Hartle-Thorne geometry and in the Schwarzschild, Kerr, and linearized Kerr geometries.
The frequency is evaluated at the radius at which the m = 0 radial epicyclic mode frequency has its
maximum. The displayed values correspond to the situations illustrated in Figures 4 and 5.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) + 20 % + 49 % 0 % − 1 % − 1 % − 8 %

HT (q = 10 j2) + 5 % − 10 % − 23 % − 40 % − 14 % − 44 %
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Figure 4. Frequencies of the radial epicyclic mode.
Left panels: The m = 0 case. From top to bottom: the Schwarzschild, linearized Kerr, Kerr, and the
Hartle-Thorne (q = j2 and q = 10 j2) geometry. For rotating stars, we assume j = 0.2. The maximal
frequencies allowed for the slender torus and for the cusp torus are denoted by the black and red
spots, respectively.
Middle panels: The same but for the m = −1 case. The coloured spots denote the frequency value
corresponding to the radius at which the m = 0 radial mode frequency has its maximum.
Right panels: Tori that would oscillate with the maximal value of the m = 0 radial epicyclic mode
frequency for a given torus thickness.
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Figure 5. The same as in Figure 4 but for a = 0.4.
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Table 4. The percentual differences in the proper radial extension ∆rprop of the cusp tori relevant to
Tables 2 and 3 and shown in the right panels of Figures 4 and 5.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) − 7 % − 17 % 0 % − 4 % 0 % + 1 %

HT (q = 10 j2) − 6 % − 7 % − 4 % + 7 % + 2 % + 13 %

=1.97

Figure 6. Frequency correlations predicted by the CT model vs. data of the 4U 1636-53 atoll source.
The fit for j = 0.22 obtained under the consideration of the Kerr geometry (the curve marked as Kerr)
is compared here to two examples of predictions obtained under the consideration of the Hartle-
Thorne geometry (the curves marked as HT). Examples of the best fits predicted by the relativistic
precession model for a given j and q are shown as well (the curves marked as RP model).

5 DISCUSSION AND CONCLUSIONS

Our results indicate that, while the shape of the non-oscillating tori is not much sensitive
to the NS quadrupole moment, the frequencies of the radial epicyclic modes of tori oscil-
lations are affected significantly. Clearly, the difference of the frequencies of oscillations
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of tori around BHs and NSs can reach tens of percents. Although a more detailed analysis
is certainly needed ( including the completion of the radial epicyclic mode investigation as
well as the investigation of the vertical epicyclic mode behaviour), we may already con-
clude that the consideration of the quadrupole moment induced by the NS rotation likely
should have an impact on the modeling of the high-frequency quasi-periodic oscillations.

Our conclusion is demonstrated in Figure 6. There we consider a recently proposed QPO
model (CT model; Török et al., 2016a) and compare the frequencies predicted by the model
for several combinations of M, j, q with the frequencies observed in the 4U 1636-53 atoll
source (the data are taken from Barret et al., 2006; Török, 2009). We include in the figure
examples of correlations predicted by the relativistic precession model (Stella and Vietri,
1999). This model provides less promising fits of the data than the CT model while the
effects associated to the NS rotation do not imply a significant improvement (see Török
et al., 2012; Török et al., 2016b,a). It is clear from the figure that even when we restrict
ourselves to values of the Hartle-Thorne spacetime parameters that are consistent with up-
to-date models of neutron stars, no conceivable smooth curve can reproduce the data in a
significantly better way compared to the CT model.
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ABSTRACT

We perform resistive MHD simulations of accretion disk with alpha-viscosity, ac-
creting onto a rotating star endowed with a magnetic dipole. We find backflow in the
presence of strong magnetic field and large resistivity, and probe for the dependence
on Prandtl number. We find that in the magnetic case the distance from the star at
which backflow begins, the stagnation radius, is different than in the hydrodynamic
case, and the backflow shows non-stationary behavior. We compare the results with
hydrodynamics simulations.

Keywords: stars: magnetic fields – accretion, accretion disks – methods: numerical
magnetohydrodynamics (MHD)

1 INTRODUCTION

When matter falls onto a massive object, it often takes the form of a rotating gaseous
disk, known as an accretion disk. The process of accretion is understood by a mechanism
where the angular momentum from gas is transported outwards which allows the matter
to slowly fall into the central object. Accretion plays important role in formation of most
astronomical objects such as galaxies, stars and planets. Hence it is important to understand
the accretion process.

We are particularly interested in a special class of objects consisting of magnetized stellar
type objects, such as T-Tauri stars and white dwarfs or neutron stars in close binary systems.
They are mostly surrounded by accretion disk, and have a well defined magnetosphere. In
order to understand how accretion takes place in presence of magnetic field we perform
non-ideal magneto-hydrodynamic (MHD) numerical simulations.

While spanning the parameter space, we find that in some cases the accretion flow is
directed away from the central star. We explore conditions for such behaviour. After the
Introduction, In §2 we briefly present our numerical setup, and in §3 present results of our
simulations. In §4 we present a comparison with the purely hydrodynamical (HD) case.
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Figure 1. Density in a logarithmic colour grading in MHD simulation with ↵v = 1, ↵m = 0.4, with the
initially dipolar magnetic field of 1000 G, for a slowly rotating star. The stagnation radius rstag = 5.5
stellar radii. The blue arrows indicate the direction of flow.

2 NUMERICAL SETUP

We perform two-dimensional axisymmetric, viscous and resistive magnetohydrodynamic
star-disk simulations. Details of our setup are presented in Čemeljić (2019). We use the
publicly available PLUTO code (v.4.1) Mignone et al. (2007, 2012), with a logarithmi-
cally stretched grid in radial direction in spherical coordinates, and uniformly spaced co-
latitudinal grid. Resolution is R ⇥ ✓ = [217 ⇥ 100] grid cells, stretching the domain to 30
stellar radii, in a quadrant of the meridional plane. The solved equations are, in CGS units:

@⇢
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@t
+ r ⇥ (B ⇥ v + ⌘m J) = 0 (4)

The above equations are continuity equation, momentum equation, energy equation and
induction equation respectively. The symbols have their usual meaning: ⇢ and v are the
matter density and velocity, P is the pressure, B is the magnetic field and ⌘m ande⌧ represent
the resistivity and the viscous stress tensor, respectively.

We perform a parameter study by changing the magnetic field strength, resistivity and
alpha viscosity for star rotating at 10% of the equatorial mass-shedding limit ⌦ = 0.1 ⌦br.
In our setup the viscosity parameter ↵v, which describes the strength of the viscous torque,
allowing the disk to accrete, is varied from 0 to 1. The resistivity parameter ↵m, which
defines coupling of the stellar magnetic field with the disk material, is also varied from 0
to 1. The e↵ect of changes in those two parameters is described by the magnetic Prandtl
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αv αm Pm =
2
3
αv

αm
B"(G) Ω"/Ω̃ Backflow Rstag Type

0.1 0.1 0.60 1000 0.1 No – –

0.4 0.1 2.60 1000 0.1 No – –

1.0 0.1 6.60 1000 0.1 No – –

0.1 0.4 0.16 1000 0.1 No – –

0.4 0.4 0.60 1000 0.1 No – –

1.0 0.4 1.60 1000 0.1 No – –

0.1 1.0 0.06 1000 0.1 Yes 6 ± 1 steady

0.2 1.0 0.13 1000 0.1 Yes 7.5 ± 1.5 steady

0.3 1.0 0.20 1000 0.1 Yes 6 ± 1 steady

0.4 1.0 0.26 1000 0.1 Yes 6 ± 2 steady

0.5 1.0 0.30 1000 0.1 Yes 6 ± 1 steady

0.6 1 0 0.40 1000 0.1 Yes 6 ± 1 steady

0.7 1.0 0.46 1000 0.1 Yes 8 ± 0.5 intermittent

0.8 1.0 0.53 1000 0.1 Yes 8 ± 0.5 intermittent

1.0 1.0 0.60 1000 0.1 No – –

Table 1. List of parameters and results : presence of backflow, stagnation radius and type of backflow
for strongly magnetized, slowly rotating stars

number:

Pm =
2

3

αv

αm
(5)

Each simulation in our parameter study is run until a quasi-stationary state is reached.

3 BACKFLOW IN MHD DISK

A snapshot in a quasi-stationary state in our simulation is shown in Fig. 1. The accre-
tion disk is truncated at a few stellar radii due to magnetic pressure. The accretion flow is
channelled into a funnel flow where the flow follows the magnetic field lines. In the outer
region of the disk the accretion flow is towards the central star. In the inner region of the
disk, along the midplane of the disk, the flow is away from the star–this flow is termed as
backflow in the accretion disk. Such equatorial outflow was first reported in the analytical
work by Urpin (1984). Global solution for three dimensional viscous alpha accretion disk
was obtained in Kita (1995) and Kluzniak and Kita (2000). Equatorial backflow is not un-
common. It was obtained in numerical simulations in Kley and Lin (1992), Igumenshchev
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Figure 2. Position of the stagnation radius in simulations with di↵erent viscosity coe�cients ↵v for
magnetic resistive coe�cient ↵m = 1. The blue solid curve is from the Kluzniak and Kita (2000)
purely HD analytical solution.

et al. (1996), Rozyczka et al. (1994), and also recently in MRI simulations by Mishra et al.
(2019) and in GRMHD simulation of RIAF (Radioactively ine�cient accretion flow) in
White et al. (2020)

Backflow appears in the disk for particular combinations of ↵v and ↵m parameters. In
the Table 1 we present di↵erent parameters, and we check whether there is backflow in
the disk. Lower values of resistive parameter ↵m restrict backflow in the disk. For higher
values of resisitive parameter, a backflow is obtained. We obtain two kinds of backflows: a
steady, or an intermittent flow. Intermittent backflow is found as we approach higher values
of viscosity parameter. We also show the presence of backflow in dependence on magnetic
Prandtl number Pm. Above a critical value of magnetic Prandtl number, which is about
Pm ⇠ 0.6, there is no backflow in the disk.
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4 COMPARISON WITH BACKFLOW IN HD DISK

Initializing with the Kluzniak and Kita (2000) solutions, we performed numerical simu-
lations in purely hydrodynamical cases in Mishra et al. (2020). Backflow is obtained in
the mid-plane of the disk for alpha viscosity coefficient αv < 0.6. The starting point of
backflow, stagnation radius, is found to be a function of alpha viscosity. In our MHD simu-
lations we obtain backflow for even higher values of αv. The stagnation radius, in the case
of slowly rotating stars, shows to be independent of alpha viscosity – see Fig. 2.

5 CONCLUSIONS

We find backflow in the simulated MHD disk in a part of the parameter space. In the
presence of strong magnetic field and high resisitivity, we obtain backflow for higher values
of viscous parameter than critical αv in purely HD case. We find a dependence of backflow
on magnetic Prandtl number, Pm, where for values Pm < 0.6 there is a backflow. As we
approach the critical Pm, there is intermittent backflow in the disk. We do not find the same
relationship of stagnation radius and viscosity parameter as the one obtained in purely HD
cases.
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ABSTRACT
Testing different theories of gravity through test particle motion around black holes
can help deeply understand the nature of the gravity. In this paper we investigated
harmonic oscillations of charged particle around a black hole with conformal param-
eters assuming that a black hole is immersed in the uniform external magnetic field
and showed that the increase of the conformal parameters increases the radial fre-
quency νr and decreases the other two, νφ and νθ. Then, we considered test particle
to be neutral and studied the possibility of mimicking the rotation parameter of Kerr
black hole with parameters of black hole in conformal gravity using the results on
radius of innermost stable circular orbits (ISCO). We have shown that the conformal
parameter L can mimic the spin parameter of Kerr black hole up to a = 0.45M in the
case of the parameter N = 3 and this value goes down for the smaller values of the
parameter N.

Keywords: Conformal gravity – Harmonic oscillations –Kerr black hole – test
particle – ISCO.

1 INTRODUCTION

One of the fundamental problems of general theory of relativity is the presence of singu-
larity in almost all known exact analytical solutions of the field equations. For the black
hole solutions the central physical singularity with the infinite curvature is unavoidable.
There are several attempts to avoid the singularity: coupling with nonlinear electrodynam-
ics (Bardeen, 1968; Hayward, 2006; Ayón-Beato and Garcı́a, 1998), conformal transfor-
mations (Englert et al., 1976; Narlikar and Kembhavi, 1977; Mannheim, 2012; Bars et al.,
2014; Bambi et al., 2017, 2016) etc.
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One of the possible ways of excluding the physical singularity in the black hole solutions
is using the conformal gravity where metric tensor is transformed as

gµν → g∗µν = Ω
2gµν , (1)

with Ω = Ω(x) being a conformal factor of transformation.
Using the modification of Einstein’s gravity by the auxiliary scalar field φ (dilaton) one

may obtain the following Lagrangian for gravity

L1 = φ
2R + 6 gµν(∂µφ)(∂νφ) . (2)

Other efficient way of introducing conformal gravity without introducing dilaton can be
performed via following Lagrangian

L2 = a CµνρσCµνρσ + b ∗R
µνρσRµνρσ . (3)

where Cµνρσ is the Weyl tensor, Rµνρσ is the Riemann tensor, ∗R
µνρσ is the dual of the

Riemann tensor, a and b are constants.
In Einstein’s theory of gravity the singularity can be resolved by suitable conformal

transformation if a spacetime metric gµν is singular in a gauge. Singularity-free black hole
solutions in conformal gravity have been proposed in Refs. (Bambi et al., 2017, 2016). It
was shown that these spacetimes are geodetically complete because no massless or massive
particles can reach the center of the black hole in a finite amount of time or for a finite
value of the affine parameter (Bambi et al., 2017, 2016). Within this theory the curvature
invariants do not diverge at the center r = 0.

The space-time metric of the spherically symmetric static black hole in Schwarzschild
coordinates (t, r, θ, φ) in conformal gravity can be described as (Bambi et al., 2017, 2016)

ds2
= S (r)

[

− f (r)dt2
+

dr2

f (r)
+ r2

(

dθ2 + sin2 dφ2
)

]

, (4)

where f (r) = f = 1 − 2M/r is the lapse function and the scaling factor S (r) has the
following form

S (r) = S =

(

1 +
L2

r2

)2N

, (5)

with N being a quantity describing conformal gravity assumed to be an integer, L is a new
conformal parameter of the black hole coming from the theory.

The electromagnetic fields of slowly rotating neutron stars in conformal gravity have
been studied in Ref. Turimov et al. (2018). The authors of Ref. (Zhou et al., 2018) have
tested the conformal gravity with the SMBH observation. The energy conditions for con-
formal gravity are studied in (Toshmatov et al., 2017a) while scalar perturbations of nonsin-
gular nonrotating black holes in conformal gravity have been studied in (Toshmatov et al.,
2017b). Charged and magnetized particle motion around rotating non-singular black hole
immersed in the external uniform magnetic field in conformal gravity has been studied in
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(Narzilloev et al., 2020a; Haydarov et al., 2020) as well as in the spacetime of the quasi-
Kerr compact object (Narzilloev et al., 2019). Particle dynamics around the deformed NUT
spacetime has been investigated in (Narzilloev et al., 2020).

In most astrophysical observations and measurements of energetic and optical processes
around supermassive black hole (SMBH) such as QPOs, ISCO radius measurements (Stuchlı́k
et al. (2020); Kolos, Martin et al. (2020)) and the black hole shadow central gravitating ob-
jects are considered as rotating Kerr ones. However, parameters of some alternative and
extended theories of gravity may provide similar effects on the processes around the black
holes as the spin parameter of the Kerr model. It is one of the problems in relativistic astro-
physics where difficulty of distinguishing the central static black hole with the parameters
of alternative theories from rotating Kerr black hole takes a place. In our previous papers
we have investigated how black hole charge (Rayimbaev et al. (2020); Vrba et al. (2020);
Turimov et al. (2020); Narzilloev et al. (2020b)) and different parameters of alternative
theories of gravity (Haydarov et al. (2020); Haydarov et al. (2020); Abdujabbarov et al.
(2020); Rayimbaev et al. (2020)) can mimic the spin of rotating Kerr black holes proving
the same values of ISCO radius for magnetized particles.

No-hair theorem states that black hole can not have its own magnetic moment. However,
it is possible to consider a black hole in an external magnetic field generated by external
sources. The first approach to get solution of Maxwell equation for the components of
the external asypmtotically uniform magnetic field in curved spacetime is Wald’s method
(Wald (1974)) and during the past years the method has been developed by several authors
(Aliev et al. (1986); Aliev and Gal’tsov (1989); Aliev and Özdemir (2002); Stuchlı́k et al.
(2014); Stuchlı́k and Kološ (2016)).

This work is devoted to the study of test particle motion around non rotating compact
object in conformal gravity and organized as follows: The Sect. 2 is devoted to the study of
charged particle motion where we mostly focus on the QPOs of charged particles. In Sect. 3
neutral particles motion around black hole in conformal gravity have been investigated
where we discuss possible ways of mimicking the rotation parameter of Kerr black hole
with confomal parameters. We summarize our results in Sect. 5.

Throughout this work we use signature (−,+,+,+) for the spacetime and geometrized
unit system G = c = 1 (However, for an astrophysical application we have written the speed
of light and Newtonian constant explicitly in our expressions). Latin indices run from 1 to
3 and Greek ones from 0 to 3.

2 CHARGED PARTICLE MOTION

In this section we study charged particle motion around a black hole in conformal gravity
in the presence of the external uniform magnetic field. The Hamilton-Jacobi equation for
test particle with mass m and the charge e can be expressed as (Narzilloev et al., 2020b)

gµν
(

∂S
∂xµ
+ eAµ

) (

∂S
∂xν
+ eAν

)

= −m2 , (6)
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where Aα = (0, 0, 0, B/2) is a four vector potential of the external magnetic field B. The
solution of equation (6) can be sought in the following form

S = −Et +Lφ + Sr(r) + Sθ(θ) , (7)

where E and L are the energy and the angular momentum of the test particle respectively.
It is convenient to consider particle motion on a constant plane θ̇ = 0 (pθ = 0) and one

can write the radial part as

ṙ2
+ Veff(r; θ) = E2 , (8)

where the effective potential has a form

Veff(r; θ) = f (r)















S (r) +

(

L
r sin θ

+ ωBrS (r) sin θ

)2














, (9)

with magnetic coupling parameter ωB = eB/(2mc) or so-called cyclotron frequency which
characterizes the interaction between charged particle and the external magnetic field.
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Figure 1. The radial dependence of effective potential of charged particle for the different values of
the conformal, scale, and magnetic coupling parameters.

Fig. 1 shows the radial dependence of the effective potential of the charged particle.
One can see from the figure that when ωB > 0 effective potential is bigger than the case of
ωB < 0 and it increases with the increase of the values of parameters L and N. It is worth to
note that at large distances the effect of magnetic field plays an important role rather than
the effect of conformal gravity.

2.1 Harmonic oscillations

If a charged test particle is slightly displaced from the equilibrium position, at r0 and
θ0 = π/2, being stable circular orbit, which corresponds to the minimum of the effec-
tive potential Veff(r, θ) the particle will start oscillating around the minimum realizing
thus epicyclic motion governed by linear harmonic oscillations. For harmonic oscillations
around the minimum of the effective potential Veff(r), the evolution of the displacement of
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Figure 2. Radial profiles of fundamental frequencies of charged particles around Schwarzschild black
hole in conformal gravity, measured by an observer at infinity, for different values of magnetic cou-
pling ωB and conformal parameters L and N .

coordinates reads r = r0 + δr, θ = θ0 + δθ. Locally measured angular frequencies of the
harmonic oscillators can be expressed as

ω2
r =

1

grr

∂2Veff

∂r2
, (10)

ω2
θ =

1

gθθ

∂2Veff

∂θ2
, (11)

ωφ = L − gφφωB . (12)

Frequencies themselves can be written using the following expression in the unit of Hz

νi =
1

2π

c3

GM
Ωi , (13)

where i = r, θ, φ and

Ωi =
1
√
−gtt

ωi . (14)

The radial dependence of fundamental frequencies of particles is presented in Fig. 2.
One can see from the figures that values of radial oscillations increase with the increase of
L,N while others decrease with the increase of latter.
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3 TEST PARTICLE MOTION AROUND BLACK HOLE IN CONFORMAL

GRAVITY

In this part we restrict our calculations considering the test particle to be electrically neutral
and investigate its motion around static black hole in conformal gravity. The Hamilton-
Jacobi equation of motion of test particles (6) reduces to

gµν
∂S
∂xµ
∂S
∂xν
= −m2 . (15)

On the equatorial plane (θ = π/2) the equations of motion can be expressed using con-
servative quantities, specific energy E and angular momentum l as

ṫ =
E
f S
, (16)

ṙ2
= E2 − f S

(

1 +
l2

r2

)

, (17)

φ̇ =
l

Sr2
. (18)

One can define the effective potential of radial motion of magnetized particles on equatorial
plane as

ṙ2
= E2 − 1 − 2Veff , (19)

where the effective potential has the following form

Veff =
1

2

[

f S

(

1 +
l2

r2

)

− 1

]

, (20)

Now we will consider orbits of test particles to be circular, or more specifically the
innermost stable ones. Using the following standard conditions

Veff(r) = E2 , V ′eff(r) = 0 , V ′′eff(r) = 0 , (21)

one can easily find the values of ISCO radius. Angular momentum for circular orbits can
also be found from the equations above that reads

L =
r2

[

L2(4MN + M − 2Nr) + Mr2
]

L2[r(2N + 1) − M(4N + 3)] + r2(r − 3M)
. (22)

The energy of the charged particle at circular orbits will have the following form

E =

(

L2 + r2
)

(r − 2M)2
(

1 + L2

r2

)2N

r

{

L2[r(2N + 1) − M(4N + 3)] + r2(r − 3M)

}
. (23)

Fig. 3 illustrates the radial profiles of the angular momentum and energy of the test
particle at circular orbits on equatorial plane. One can see that the angular momentum and
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Figure 3. Redial dependence of specific angular momentum (L at the left panel) and energy (E at the
right panel) of the particles for circular stable orbits

the energy of the particle decrease in the presence of conformal parameters. It can be also
seen that the plots are shifted to the left which corresponds to the decrease of the ISCO.

Using the condition for the stability of circular orbits (∂2
r Veff ≥ 0 ) one can write

L4
[

M(8N(4N + 3) + 1)r − 2M2(4N + 1)(4N + 3) − 4N(2N + 1)r2
]

+ 2L2Mr2[r(2N + 1) − M(4N + 3)] + Mr4(r − 6M) ≥ 0 . (24)

One can see from Eq. (24) that in the absence of conformal part L = 0 we get risco =

6M being the value of ISCO in Schwarzschild case. The analytical form of the solution
of Eq. (24) is quite complicated and it would be difficult to see the effects of conformal
parameters L and N on ISCO radius of the test particle from such expression. Thus, it is
better to show detailed analysis in plot form which we will do here.
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Figure 4. Dependence of the minimal distance of circular orbits (left panel) and ISCO radius (right
panel) of test particles around black hole in conformal gravity on the conformal parameter L for the
fixed values of the parameter N.

From the condition above one can get the relation between the ISCO radius and con-
formal parameters. The Fig. 4 shows the profiles of ISCO radius depending on conformal
parameters. One can see that the increase of both conformal parameters causes to decrease
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the ISCO radius and the minimal radius of circular orbits. One can also mention that both
plots have similar shapes for the given ranges of conformal parameter L.

3.1 Can conformal gravity parameters mimic the rotation parameter of Kerr BH?

As an astrophysical application of the studies of the ISCO of neutral particles orbiting
around the non-rotating black hole in conformal gravity, we consider here the possibility
of mimicking the spin parameter a of Kerr black hole with the parameters L and N of black
hole in conformal gravity using the results for ISCO.

The ISCO radius of the test particles for co-rotating orbits around Kerr BH is given by
the relation (Bardeen et al., 1972)

rISCO = 3 + Z2 −
√

(3 − Z1)(3 + Z1 + 2Z2) , (25)

where

Z1 = 1 +
(

3
√

1 − a +
3
√

1 + a
) 3√

1 − a2 , Z2 =

√

3a2 + Z2
1 .

But, since in the given form the value of ISCO radius depends on the choice of coordinate
system we need to deal with invariant quantity that defines the ISCO radius to compare the
results in two different spacetime metrics. As for such invariant quantity we use the line
element which takes the following form on equatorial plane where we set all the coordinates
to constants except the coordinate φ

dsφ =
√

gφφdφ , (26)

and after integrating the length of such circular orbit becomes

lIS CO = 2π
√

gφφ|r=rIS CO
. (27)

The invariant ISCO radius then can be defined as

RIS CO =
lIS CO

2π
, (28)

and one can get the degeneracy between the spin of the Kerr metric and conformal param-
eters for the matching value of such radius obtained for these two spacetime metrics.

Now we may investigate how well the conformal parameters can mimic the rotation
parameter of Kerr one through the matching invariant ISCO radius, RIS CO. In Fig. 5 we
show the degeneracy between rotation parameter of Kerr black hole and static black hole
with conformal parameters. One may see that the conformal parameter L can mimic the
spin parameter of Kerr black hole providing the same value for ISCO radius of test particles
up to the value of a/M ' 0.45 when N = 3 and such mimicking value becomes smaller
with the decrease of the parameter N and it takes the value a/M ' 0.3 for N = 1.
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Figure 5. Relation that shows how the spin parameter a of Kerr black hole and corresponding con-
formal parameter L provide the same ISCO radius for test particles for the different values of the
parameter N.

4 CONCLUSION

In this work, we have studied charged particle motion around a static black hole with con-
formal paramters immersed in the external uniform magnetic field. Investigation of the
QPO for the charged particle showed that the frequency of the radial oscillation becomes
higher for bigger conformal parameters while the other fundamental frequencies have op-
posite behaviour. We have also studied circular motion of neutral test particles around
Schwarzschild black hole in conformal gravity. Analysis of the studies of specific energy
and angular momentum for circular stable orbits show that the increase of both conformal
parameters cause to decrease of the energy and angular momentum. It is obtained that the
value of ISCO radius decreases with the increase of both conformal parameters. Compar-
isons of the ISCO of the test particle around a black hole in conformal gravity with the Kerr
black hole show that the conformal parameter L can mimic the spin of Kerr black hole up
to a = 0.45 in the case of the parameter N = 3 and this value decreases with the decrease
of the parameter N.
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Silesian University in Opava, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

apan0010@slu.cz
bmartin.kolos@physics.slu.cz
czdenek.stuchlik@physics.slu.cz

ABSTRACT

Deterministic chaos is phenomenon from nonlinear dynamics and it belongs to
greatest advances of twentieth-century science. Chaotic behavior appears apart of
mathematical equations also in wide range in observable nature, so as in there orig-
inating time series. Chaos in time series resembles stochastic behavior, but apart of
randomness it is totally deterministic and therefore chaotic data can provide us use-
ful information. Therefore it is essential to have methods, which are able to detect
chaos in time series, moreover to distinguish chaotic data from stochastic one. Here
we present and discuss the performance of standard and machine learning methods
for chaos detection and its implementation on two well known simple chaotic dis-
crete dynamical systems - Logistic map and Tent map, which fit to the most of the
definitions of chaos.

Keywords:

chaos – fractal dimension – recurrence quantification analysis – machine learn-
ing – logistic map – time series – tent map

1 INTRODUCTION

As already mentioned chaotic behavior is natural phenomena and the first touch with chaos
one assigns the study of the three-body problem by Henri Poincaré (1880). Mathematically,
deterministic chaos is the phenomenon which can arise in dynamical systems. In discrete
dynamical systems, chaos can appear even for one dimensional systems, while in contin-
uous dynamical systems, deterministic chaos can only arise in three or more dimensions.
Finite-dimensional linear systems cannot produce chaos, for a dynamical system to produce
chaotic behavior, it must be either infinite-dimensional or nonlinear. The main properties
of chaotic systems are e.g. the most known sensitivity to initial conditions or more ”main-
stream” term - butterfly effect, which means that, even the arbitrarily close initial points
can evolve into significantly different trajectories. Other property one should mention are
strange attractors. While most of the types of nice regular systems provide very simple
attractors, such as points or circular curves called limiting cycles, chaotic motion leads to
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something what is known as the strange attractor, which is attractor with magnificent details
and great complexity.

With chaos it is not easy, so we have some dynamical systems, which are chaotic ev-
erywhere, but there are also cases, where chaotic behavior appears only in a subset of the
phase space, then a large set of initial conditions leads to orbits that converge to this chaotic
region. Chaotic behavior is for some systems as for example for logistic and tent map easy
controllable and it depends on one parameter. Generally, bifurcation occurs when small
smooth change of ”chaotic parameter” (the bifurcation parameter) makes abrupt or topo-
logical change in behavior of the system. This dependency (or period-doubling transition
from some N-point to an 2N-point attractor) on the chaotic parameter is nicely shown on
the bifurcation diagram. For the purpose of presenting of the nonlinear methods of chaos
detection we use superposition of graphics, where we display on the bifurcation diagram
the estimates of chaotic behavior by later mentioned methods. We applied these meth-
ods on time series belonging to given ”chaotic parameter” and we plot this estimation of
chaoticity on the bifurcation diagram.

Strange attractors are special and they even have a fractal structure, and therefore one
can calculate fractal dimension of them, which can provide useful information about the
system even when the equations of the dynamical system are unknown and we can observe
only one of its coordinates. For estimation of fractal dimension we present two methods,
namely, Box-counting and Correlation dimension, classical approach of studying dynami-
cal systems is the calculation of Lyapunov exponent, for this, one needs to know the rules
of evolution for given dynamical system (equations), we however try to work only with
one dimensional input, so we also use a numerical approach and compare both results. An-
other approach we use is recurrence quantification analysis (RQA), roughly speaking, it is
numerical description of recurrence graph - graphical tool for investigating properties of
dynamical systems. The last approach is lately again very popular Machine learning (ML),
which has many advantages when dealing with nonlinear data and has proved its abilities in
many useful applications. We use for our purpose all seven possible ML implementations
build in Mathematica software, which is also used for all the calculations.

These methods are also used in (Pánis et al., 2019), where the information about the
matter dynamics and electromagnetic field structure around compact object (black hole
or neutron star) are provided, while the chaotic charged test particles dynamics around a
Schwarzschild black hole immersed in an external uniform magnetic field is examined.

2 METHODS OF DETECTION OF CHAOTIC BEHAVIOR IN TIME SERIES

2.1 Box-counting method

Box-counting (D0) or box dimension is one of the most widely used estimations of fractal
dimension. The calculation and empirical estimation of this method is quiet simple com-
pared to another ones. We present the general idea behind the algorithm, for more detailed
description one can look at (Schroeder, 1991). For a set S in a Euclidean space Rn we
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define Box-counting as

D0 = lim
ε→0

ln N(ε)

ln 1
ε

, (1)

where N(ε) is the number of boxes of side length ε required to cover the set. Dimension of
S is estimated by seeing how the logarithmic rate of N(ε) increase as ε → 0, or in words as
we make the grid finer.

2.2 Correlation dimension

Very popular tool for detecting chaos in experimental data is calculation of the Correlation
dimension (D2). The general idea behind computing correlation dimension is to find out
for some small ε the number of points C(ε) (correlation sum), which Euclidean distance is
smaller than ε.

D2 = lim
ε→0

ln C(ε)

ln ε
, (2)

one computes this for various number of ε and D2 can be then approximated again by fitting
of the logarithmic values.

It is worth mentioning that D2 and D0 is part of Dq family of fractal dimensions (Schroeder,
1991) defined as

Dq = lim
ε→0

1

q − 1

ln
∑

k p
q

k

ln ε
−∞ ≤ q ≤ ∞, (3)

where, pk denotes relative frequency with which fractal’s points are falling inside the k-th
cell.

For q = 0 we obtain already mentioned Box-counting dimension, for q → 1 we obtain
information dimension, which numerator is denoted as the Shannon’s entropy and for q = 2
we obtain correlation dimension.

There is several algorithm approaches of calculation correlation dimension, lets just
mention the approximation of C(ε) published in (Grassberger and Procaccia, 1983):

Ĉ(ε) = lim
N→∞

2

N(N − 1)

∑

i< j

H(ε − |xi − x j|), (4)

where H is Heaviside step function.
When using the nonlinear methods one should not omit importance of embedding di-

mension and then also closely connection to Takens’s theorem about reconstruction of state
space from sequence of observations (Takens, 1981). Embedding dimension creates from
series of length N+m−1 for some given m series of N vectors, where i-th component looks
like:

xi = (xi−m+1, xi−m+2, ..., xi) ∈ R
m. (5)

One of the purposes of embedding dimension, in context of Correlation dimension is to
distinguish between chaotic and random time series. Where by chaotic series for increasing
m ∈ N fractal dimension estimation stabilizes at some value D < m, while for random
series, dimension goes along with m to infinity.
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2.3 Lyapunov exponent

Lyapunov exponents apart of previous methods are originally used for investigation of dy-
namical systems, or rather said not any fractals. In short, it is a number that describe the
amount of separation of trajectories which are infinitesimally close. Near trajectories in
chaotic systems diverge exponentially, what leads to positive Lyapunov exponents. The
amount of separation can differ for various directions of initial separation vector. Because
of this fact, there is a spectrum of Lyapunov exponents, which corresponds to the phase
space dimension.

For example if we consider logistic map f (x) = rx(1− x), r ∈ [0, 4] as an typical example
of simple chaotic system, which is more precisely one-dimensional nonlinear difference
equation. The Lyapunov exponent can be calculated directly from the expression of the f

function from the formula

λ(r) = lim
N→∞

1

N

N−1
∑

n=0

ln
[ ∣

∣

∣ f ′ ( f n(x0))
∣

∣

∣

]

. (6)

However we try to work only with time series inputs which is not allowing us to use such
a formula. We assumed in future to apply our methods on observational data from the
telescope. This approach leads us to use method, which is determining Lyapunov exponents
from time series. The maximal Lyapunov exponent characterizes the spectra and therefore
denotes amount of predictability for some dynamical system. It can be calculated without
knowledge of a model which produces the time series. We use the method based on the
statistical properties of the divergence of neighboring trajectories approach introduced by
Kantz, (Kantz, 1994). Our algorithm applied to logistic map is very similar to formula 6
which could be found for example also in (Enns, 2001).

2.4 Recurrence quantification analysis

The recurrence quantification analysis is quiet widely used tool for investigating the state
space trajectories. Simply said it determines the number and duration of recurrences of
a dynamical system. RQA is developed since 1992 (Zbilut and Webber, 1992; Marwan,
2008), where the novel approach based on averaging along with the way of setting the cor-
rect input parameters, which provide more accurate RQA measures is presented in (Bhatta
et al., 2020). Recurrence plot provides a graphical tool for observing periodicity of phase
space trajectories and was introduced in (Eckmann et al., 1987). This observing is possible
through visualization of a symmetrical square matrix, in which the elements correspond to
times at which a state of a dynamical system recurs.

One can define RP which measures recurrences of a trajectory xi ∈ Rd in phase space

Ri, j = H
(

ε − ‖xi − x j‖
)

i, j = 1, ...,N, (7)

where N is the number of measured points xi, ε is a threshold distance and ‖ · ‖ is a norm.
From this equation we obtain the already mentioned symmetrical square matrix of zeroes
and ones. When we will represent this two repeating elements with different colors in a plot
we obtain the discussed RP. Threshold value parameter determinate density of RP plot.
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RQA tools with well established short forms, which we use for investigating of chaotic
trajectories are:

(1) RR - The recurrence rate is simplest tool, which measures density of recurrence
points in the recurrence plot, or in another words, it counts the number of ones in RP and
divides them by number of all elements in the matrix. RR reflects the chance that some
state of the system will recur

RR =
1

N2

N
∑

i, j=1

Ri, j. (8)

(2) DET - Determinism is rate of recurrence points which build diagonal lines. DET
determines how predictable the system is

DET =

∑N
l=lmin

lP (l)
∑N

i, j=1 Ri, j

, (9)

where P(l) denotes the frequency distribution of lengths l of the diagonal lines.
(3) LL - Is average diagonal line length, which is in relation with the time of predictabil-

ity of the system. It reflects the average time for which any two parts of trajectory are close,
this time can be denoted as mean prediction time

LL =

∑N
l=lmin

lP (l)
∑N

l=lmin
P (l)
. (10)

(4) ENTR - Entropy or the Shannon entropy of the probability distribution of the diago-
nal line lengths p(l), which are reflecting complexity of the system’s deterministic structure

ENTR = −

N
∑

l=lmin

p (l) ln p (l)), (11)

where p(l) is probability that a diagonal line is exactly of the length l can be estimated from
the frequency distribution P (l) with p(l) = P(l)

∑N
l=lmin

P(l)
.

2.5 Machine learning

Machine learning is very powerful tool, which founds application in many fields, lets just
mention language translating algorithms, computer vision, beating best Go player in the
world (Silver et al., 2017b), or chess programs of different architecture (Silver et al.,
2017a) in an incredible fashion. In this work only basic principles of machine learning
are presented. Roughly speaking machine learning is field of computer science, strongly
connected to another fields as optimization, statistics, linear algebra, etc.

Its beginning goes to 1950’s and as many inventions in computer science or better said in
science in general. Machine learning was not invented by single person, let’s only mention
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Table 1. Comparison of time in seconds required for different nonlinear methods applied on time
series generated by logistic map. For parameter r varying from 2 to 4 with the step of 0.01 leads to
200 time series, with initial value x0 = 0.1 we did set up the iterations to length 100, 1000 and 10000
and compared the time needed for the calculation for given methods.

Method / Length 100 1000 10000

Box-count 0.354 0.416 3.519

Correlation dim. 4.155 26.54 2353

Lyapunov exp. 3.294 119.5 12574

RQA- RR 0.164 6.332 507.8

RQA-DET 0.209 6.069 916.9

RQA-ENTR 0.197 7.247 1128

RQA-LAM 0.197 7.248 1128

ML-Rand. For. 0.677 1.212 7.479

A. Samuel, who used first the term ”Machine learning”. Machine learning is using algo-
rithms on data samples to discover known or unknown patterns in data, this dividing of pat-
terns leads to basic divisions of machine learning and namely supervised, semi-supervised
and unsupervised learning. The wide range of applications announces the good ability
of handling nonlinear data. Our intention of using machine learning is to decide whether
a trajectory of a particle is chaotic or not. For this purpose we use supervised machine
learning, where we train various ML algorithms with samples calculated by classical meth-
ods already described, namely, (Box-counting, Correlation dimension, Lyapunov exponent,
RQA - RR, DET, LL, ENTR ) with effort to use all the different properties of them and the
training set consists overall of 100 examples.

3 CONCLUSION

Deterministic chaos is hardly predictable and apparently random behavior which can ap-
pear in dynamical systems. Classical example of such nonlinear dynamical system is lo-
gistic map, denoted by quadratic recurrence equation

xn+1 = rxn (1 − xn) . (12)

Given the initial value x0 ∈ (0, 1), the logistic map (12) will generate sequence of real
numbers xn ∈ (0, 1). The behavior of such sequence xn strongly depends on logistic map
parameter r ∈ [2, 4]. Roughly speaking is the behavior on the interval r ∈ (2, r0) regular
(rather predictable) and on the interval r ∈ [r0, 4] is chaotic (hardly predictable or rather
unpredictable) with some occasional ”islands of regularity”. The transition between regular
and chaotic behaviors happens for parameter r = r0 ≈ 3.56995. Bifurcation diagram for
logistic map, with asymptotically approached values of the sequence, is shown in Fig. 1
depicted by gray background points.

For chaos detection and chaotic behavior description in sequences of numbers following
methods have been tested: Box-counting method (section 2.1), Correlation dimension (2.2),
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Figure 1. Comparison of different nonlinear methods for time series generated by logistic map
xn+1 = rxn(1 − xn). For different parameter r ∈ [2, 4] we generate 10000 points series with initial
value x0 = 0.1. All the methods detect more chaoticity when we enter the chaotic region for value
r > r0 ≈ 3.56995. RQA tools however, are working in reverse fashion as one can see, they denote
more chaotic regions with lower numbers and vice versa, the data (chaoticity estimations) for RQA-
LL and RQA-ENTR have been transformed into interval [0, 1].
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Figure 2. Comparison of different nonlinear methods for time series generated by tent map defined

as xn+1 = fr(xn) =



























rxn for xn <
1
2

r(1 − xn) for xn ≥
1
2

. For different parameter r ∈ [1, 2] we generate 10000

points series with initial value x0 = 0.1.
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Lyapunov exponent (2.3), RQA (2.4) and diferent machine learning algorithms (2.5). All
of the algorithms we use in this article are capable to use one dimensional sequence of real
numbers (time series) as input. From the point of observation is important to distinguish
between chaotic sequences ruled by some (unknown) laws and random sequences obeying
for example some stochastic distribution, which can contribute to the noise part in the
detected signal. The theoretical boundary of distinguishing between chaos and random
sequences is sequence length (Ott, 1993). If the nonlinear dynamical system has many
degrees of freedom, then for short sequences is impossible to tell.

To clear up how the nonlinear methods works is shown on four representative sequences
x

(1)
n , x

(2)
n , x

(3)
n , x

(4)
n of length 104, where x

(1)
n is regular sequence, x

(2)
n is weakly chaotic se-

quence generated by logistic map with r = 3.6, x
(3)
n is strongly chaotic sequence generated

by logistic map with r = 4, and x(4)
n is sequence of pseudo-random numbers. The results

are presented in Tab. 2.
In detail we have tested the nonlinear methods on sequences of numbers generated by

logistic and tent map for various values of parameter r, see Fig. 1 and 2, the applica-
tion/testing of the methods on a specific task can be found in (Pánis et al., 2019). The
important common sign of all these methods is that, they are able to detect more chaoticity
when divergence of trajectories in bifurcation diagram occurs, in other words, when there
is more than one fixed point. This fact we can observe for example when r = 3 for logistic
map in Fig. 1 and for r little above value 1 for tent map in Fig. 2. However, this is not
undeniable true for all the cases, what leads to different estimations of chaoticity for dif-
ferent methods. Box-counting and Lyapunov exponent method show approximately linear
behavior when moving to point, where the divergence of the trajectories begins, while when
moving to such a point chaoticity is increasing and decreasing by leaving it. Correlation
dimension shows little bit different behavior, when nonchaotic region is denoted by values
close to zero and the level of chaos starts rapidly grow only from small distance from the
region of divergence of trajectories in bifurcation diagram, this behavior is also observable
by RQA tools, however in reversed fashion. Satisfying is the detection of chaoticity for
logistic map for the r ≥ 3.56995, when all these methods are showing the highest values
of chaoticity, in this region are also ”islands of regularity” though, what means not all the
estimations of chaos in this region should be high. By tent map is the behavior of the meth-
ods also satisfying, we should not omit the fact the divergence of trajectories starts from
very small values above r = 1 and grows with r moving to value r = 2, where from our
definition of tent map and initial condition value x0 = 0.1 the behavior gets suddenly quiet
regular again.

As expected different machine learning algorithms produce different results. Random
Forest algorithm seems to produce quiet reliable result - our estimation of chaoticity is
getting higher most of the time as the r parameter grows, the exceptions could be explained
by the fact there are also ”islands of regularity” in the chaotic region.

The time spent for calculation of the individual graphics in Fig. 1 is presented in Tab. 1,
where we in addition present also the times consumed in the cases for shorter time series
in order to catch the nonlinear growth of time consumption with larger input. From here
we can see that the Box-counting method is the fastest, but when looking on the results
the other methods seem to be more precise. The time spent also strongly depends on the
sequence length - such dependence is nonlinear in the case of almost all the methods. For
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Table 2. Comparison of values of different nonlinear methods applied on regular, chaotic and
pseudo-random generated series of the length 10 000.

Met./ Type Regular Weak ch. Strong ch. P.-rand.

Box-count 0.0969 0.8343 1 1

Corr. dim. 5 ∗ 10−15 0.8943 0.8735 0.9978

Lyap. exp. −7 ∗ 10−16 0.1889 0.3289 0.0842

RQA-RR 0.4999 0.0183 0.0116 0.0057

RQA-DET 1 0.6959 0.6114 0.0113

RQA-ENTR 8.5152 0.8951 0.8202 0.0296

RQA-LAM 5001 5.6299 2.8507 2.0006

ML-Rand. For. 0.5915 0.6917 0.7869 0.3788

most of the methods we have programmed and tested several variants for each of them
according to algorithm architecture and settings of adjustable parameters. The goal was
to obtain good and also computing time acceptable results, the code in Mathematica is
available on the GitHub repositary at (Pánis, 2019).

In previous texts and presented Figures 1, 2, and tables 2 and 1 we provide brief overview
about the common and novel methods used in nonlinear time series analysis, which can
provide useful hints for potential users in the sense of finding suitable method when study-
ing the nonlinear phenomena. Proclaim any here discussed method as the best would be
misleading, and this ambiguity expresses aptly the saying, that every complicated question
has a simple answer which is wrong. When choosing a method for particular purpose, one
should have a good idea about the data structure as well as have in mind the definitions of
the methods when discussing the results in the context of the underlying physics. Consid-
ering the main properties of data, when choosing a method, one should definitely have in
mind the available hardware capabilities along with the dimensions of the data.

For very large data sets definitely the Box-counting and ML methods should be suitable,
however when considering ML, the available data for training set constriction have to be
mentioned. Lyapunov exponents are popular in physics from the point of interpretation
and connection to the direct physical properties of the systems. RQA in the trade-off with
longer computational time needed provide more numerical descriptions of the data, the
connection to the physical properties in terms of Blazars can be found in (Bhatta et al.,
2020) and the enhancing of the computational time needed could be the point of future
research in a context of GPU usage.
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ABSTRACT

We present the definition of metric bundles (MBs) in axially symmetric geometries
and give explicit examples for solutions of Einstein equations. These structures
have been introduced in Pugliese and Quevedo (2019) to explain some properties of
black holes (BHs) and naked singularities (NSs), investigated through the analysis
of the limiting frequencies of stationary observers, which are at the base of a Killing
horizon definition for these black hole spacetimes. In Pugliese and Quevedo (2019),
we introduced the concept of NS Killing throats and bottlenecks associated to, and
explained by, the MBs. In particular, we proved that the horizon frequency can
point out a connection between BHs and NSs. We detail this definition in general
and review some essential MBs properties as seen in different frames and exact
solutions.

Keywords: black holes – naked singularities – Killing horizons – metric bundles

1 INTRODUCTION

The aim of this work is to discuss the main properties of the metric bundles (MBs) for
axially symmetric spacetimes, concentrating on some exact solutions. In this particular
case, MB is a family of spacetimes defined by one characteristic photon (circular) orbital
frequency ω and characterized by a particular relation between the metric parameters. This
concept is used to establish a relation between black holes (BHs) and naked singularities
(NSs) spacetimes. In Pugliese and Quevedo (2019), we performed an analysis of the MBs

corresponding to the equatorial plane of the Kerr, Reissner-Nordström and Kerr-Newman
geometries. The off-equatorial case of the Kerr spacetime is considered in detail in Pugliese
and Quevedo (2019a).

A MB is represented by a curve on the so-called extended plane (Pugliese and Quevedo,
2019), which is the entire collection of a parameterized family of solutions. For concrete-
ness, we now consider the family of Kerr spacetimes. All the MBs are tangent to the
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horizon curve as represented on the extended plane. Then, the horizon curve emerges as
the envelope surface of the set of MBs. It turns out that WNSs (weak naked singulari-
ties), for which the spin-mass ratio is close to the value of the extreme BH, are related to
a portion of the inner horizon, whereas strong naked singularities (SNSs) with a > 2M

are related to the outer horizon. In addition, WNSs are characterized by the presence of
Killing bottlenecks, which are defined as “restrictions” of the Killing throats that appear
in WNSs. Killing throats or tunnels, in turn, emerge through the analysis of the radii
r±s (ω, a) of light surfaces, which depend on the frequency of the stationary observers ω and
the spin parameter a (Pugliese and Quevedo, 2018, 2019). In the case of NS geometries,
a Killing throat is a connected region in the r − ω plane, which is bounded by the radii
r±s (ω, a) and contains all the stationary observers allowed within the limiting frequencies
[ω−,ω+]. In the case of BHs, a Killing throat is either a disconnected region in the Kerr
spacetime or a region bounded by non-regular surfaces in the extreme Kerr BH spacetime.
The limiting case of a Killing bottleneck occurs in the extreme Kerr spacetime, as seen
in the Boyer-Lindquist frame, where the narrowing actually closes on the BH horizons.
Killing throats and bottlenecks were grouped in Tanatarov and Zaslavskii (2017) in struc-
tures named “whale diagrams” of the Kerr and Kerr-Newman spacetimes–see also Mukher-
jee and Nayak (2018); Zaslavskii (2018). Moreover, Killing bottlenecks, interpreted in
Pugliese and Quevedo (2019) as “horizons remnants” and related to MBs in Pugliese and
Quevedo (2019); Pugliese and Quevedo (2019a), appear also connected with the concept
of pre-horizon regime introduced in de Felice (1991); de Felice and Usseglio-Tomasset
(1991). The pre-horizon was analyzed in de Felice and Usseglio-Tomasset (1991). It was
concluded that a gyroscope would conserve a memory of the static or stationary initial
state, leading to the gravitational collapse of a mass distribution (de Felice and Usseglio-
Tomasset, 1992; de Felice and Yunqiang, 1993; de Felice and Sigalotti, 1992; Chakraborty
et al., 2017).

More in general, MBs have interesting properties that allow us to explore in an alter-
native way some aspects of the geometries that define the bundle, providing an alternative
interpretation of Killing horizons (in terms of a set of solutions–the extended plane) and
establishing a connection between NSs and BHs, based on the fact that each bundle is tan-
gent to the horizon curve. Moreover, as we shall see below, metric bundles highlight some
properties of the horizons that could influence the exterior properties of BH geometries by
means of characteristic frequencies. The MBs concept can have significant repercussions
in the study of BH physics, in the interpretation of NSs solutions and in the horizons and
BH thermodynamics.

In this work, we present the MBs definition and discuss their properties in the context of
BH thermodynamics. We analyze the Kerr, Kerr-Newman and Reissner-Nordström metric
bundles. The explicit expressions for metric bundles in the Kerr-de Sitter spacetime are
also given. Finally, we present some concluding remarks.

!" !! !" ## ? $ % &



On the metric bundles of axially symmetric spacetimes 235

2 METRIC BUNDLES

We start by considering the case of the Kerr spacetime. The Kerr metric, in Boyer-Lindquist
(BL) coordinates, can be expressed as

ds2
= −
∆ − a2 sin2 θ

ρ2
dt2
+
ρ2

∆
dr2
+ ρ2dθ2 +

sin2 θ
(

(

a2 + r2
)2
− a2∆ sin2 θ

)

ρ2
dφ2

− 2
aM sin2(θ)

(

a2 − ∆ + r2
)

ρ2
dφdt , (1)

∆ ≡ r2 − 2Mr + a2, and ρ2 ≡ r2
+ a2 cos2 θ . (2)

It describes an axisymmetric, stationary, asymptotically flat spacetime. The parameter
M ≥ 0 is interpreted as the mass of the gravitational source, while the rotation parameter
a ≡ J/M (spin) is the specific angular momentum, and J is the total angular momentum of
the source. This is a stationary and axisymmetric geometry with Killing fields ξt = ∂t and
ξφ = ∂φ, respectively.

In this work, we will consider also the Kerr-Newman (KN) geometry which corresponds
to an electrovacuum axisymmetric solution with a net electric charge Q, described by met-
ric (1) with ∆KN ≡ r2 + a2 + Q2 − 2Mr. The solution a = 0 and Q ! 0 constitutes the
static case of the spherically symmetric and charged Reissner-Nordström spacetime. The
horizons and the outer and inner static limits for the KN geometry are, respectively,

r∓ = M ∓
√

M2 − (a2 + Q2), r∓ε = M ∓
√

M2 − a2 cos2 θ − Q2 , (3)

which for a = 0, Q = 0, and a = Q = 0 leads to (r±, r
±
ε ) in the Reissner-Nordström,

Kerr and Schwarzschild geometries, respectively. Note that the KN horizons r± can be re-
parameterized for the total charge QT and its variation with respect to the parameter QT is
exactly the same as for the corresponding radii r± in the RN or Kerr solution. This aspect
will be significant in the study of the MBs dependence from the two charges (a,Q).

On the BHs horizons

For the analysis of some properties of the horizons, we focus for simplicity on the case
Q = 0. Then, for the Kerr BH geometry the horizons and ergospheres radii are given by
r± = M ±

√
M2 − a2 and r±ε = M ±

√
M2 − a2 cos2 θ, respectively.

Metric bundles are defined as the set of metrics that satisfy the conditionLN ≡ L·L = 0,
where L is the Killing vector L ≡ ∂t + ω∂φ. Solutions could be either BHs or NSs. The
quantity ω will be called the frequency or the MBs angular velocity. In BH spacetimes,
this Killing vector defines also the thermodynamic variables and the Killing horizons.

On the Killing vector L and the condition LN = 0
The event horizons of a spinning BH are Killing horizons with respect to the Killing field

LH ≡ ∂t+ωH∂φ, whereωH is the angular velocity of the horizons, representing the BH rigid
rotation (the event horizon of a stationary asymptotically flat solution with matter satisfying
suitable hyperbolic equations is a Killing horizon). The Kerr horizons are, therefore, null
surfaces, S0, whose null generators coincide with the orbits of an one-parameter group of
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isometries, i.e., in general, there exists a Killing field L, which is normal to S0. In general,
a Killing horizon is a lightlike hypersurface (generated by the flow of a Killing vector),
where the norm of a Killing vector is null. In the limiting case of the static Schwarzschild
spacetime (a = 0, Q = 0) or the Reissner Nordström spacetime (a = 0, Q ! 0), the event
horizons are Killing horizons with respect to the Killing vector ∂t. More precisely, for static
(and spherically symmetric) BH spacetimes, the event, apparent, and Killing horizons with
respect to the Killing field ξt coincide.

The BH event horizon of stationary solutions have constant surface gravity (which is the
content of the zeroth BH law-area theorem– the surface gravity is constant on the hori-
zon of stationary black holes (Chrusciel et al., 2012; Wald, 1999)). The BH surface area
is non-decreasing (second BH law establishing the impossibility to achieve by a physical
process a BH state with zero surface gravity.) Moreover, the BH surface gravity, which
is a conformal invariant of the metric, may be defined as the rate at which the norm LN
of the Killing vector L vanishes from outside (r > r+). (For a Kerr spacetime, this is
SGKerr = (r+ − r−)/2(r2

+ + a2) and, however, the surface gravity re-scales with the confor-
mal Killing vector, i.e. it is not the same on all generators but, because of the symmetries,
it is constant along one specific generator). In the extreme case, where r± = M, the sur-
face gravity is zero and, consequently, the temperature is TH = 0, but its entropy (and
therefore the BH area) is not null (Chrusciel et al., 2012; Wald, 1999, 2001). This fact has
consequences also with respect to the stability against Hawking radiation (a non-extremal
BH cannot reach an extremal case in a finite number of steps–third BH law). The varia-
tion of the BH mass, horizon area and angular momentum, including the surface gravity
and angular velocity on the horizon, are related by the first law of BH thermodynamics:
δM = (1/8π)κδA + ωHδJ. In here, the term dependent on the BH angular velocity repre-
sents the “work term” of the first law, while the fact that the surface gravity is constant on
the BH horizon, together with other considerations, allows us to associate it with the con-
cept of temperature. More precisely, we can formalize this relation by writing explicitly
the Hawking temperature as TH = !cκ/2πkB, where kB, is the Boltzmann constant and κ is
the surface gravity. Temperature T = κ/(2π); entropy S = A/(4!G), where A is the area
of the horizon A = 8πmr+; pressure p = −ωh; volume V = GJ/c2 (J = amc3/G); internal
energy U= GM (M = c2m/G= mass), where m is the mass.

Here we study MBs which are defined by the condition LN = 0; therefore, it is con-
venient to re-express some of the concepts of BH thermodynamics mentioned before in
terms of LN . Firstly, the norm LN ≡ LαLα is constant on the BH horizon. Secondly, the
constant κ : ∇αLN = −2κLα, evaluated on the outer horizon r+, defines the BH surface
gravity, i.e., κ =constant on the orbits of L (equivalently, it is valid that Lβ∇αLβ = −κLα
and LLκ = 0, where LL is the Lie derivative–a non affine geodesic equation).

Stationary observers and causal structure

The condition LN = 0 is also related to the definition of stationary observers. Stationary
observers are characterized by a four-velocity of the form uα = γLα (Lα ≡ ξαt +ωξαφ ); thus,
γ−2 ≡ −κ̄LN , where γ is a normalization factor. The spacetime causal structure of the Kerr
geometry can be then studied by considering also stationary observers (Malament, 1977):
timelike stationary particles have limiting orbital frequencies, which are the photon orbital
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frequencies ω±, i.e., solutions to the condition LN = 0:

ω± ≡ ωZ ±
√

ω2
Z − ω

2
∗, ω

2
∗ ≡

gtt

gφφ
=

gtt

gφφ
, ωZ ≡ −

gφt

gφφ
. (4)

Therefore, timelike stationary observers have orbital frequencies (from now on simply
called frequencies) in the interval ω ∈ [ω−,ω+]. Thus, frequencies ω± evaluated on r±
provide the frequencies ω±H of the Killing horizons.

For completeness, we also derive the frequenciesωH of the horizons in the Kerr-Newman
case,

ω−H =
aM

(

2M
√

M2 − (a2 + Q2) − Q2 + 2M2
)

4M2a2 + Q4
, (5)

ω+H =
aM

2M
√

M2 − (a2 + Q2) − Q2 + 2M2
. (6)

The limiting Reissner-Nordström and Kerr cases can be obtained by imposing the condi-
tions a = 0 and Q = 0, respectively.

Metric bundles: definition, structure and characteristic frequencies

Metric bundles are a set of metric tensors that can include only BHs or BHs and NSs,
such that each geometry of the set has, at a certain radius r, equal limiting photon fre-
quency ωb ∈ {ω+,ω−}, which is called characteristic bundle frequency. Therefore, MBs

are solution of the zero-norm condition LN (ωb) = 0.
It can be proved that all the MBs are tangent to the horizon curve in the extended plane1–

see Fig. (1). Then, the horizon curve emerges as the envelope surface of the set of MBs. As
a consequence, in Pugliese and Quevedo (2019) we introduced the concept of weak naked
singularities (WNSs) as those metrics related to a portion of the inner horizon, whereas
strong naked singularities (SNSs) are related to the outer horizon in the extended plane.

It can be proved that all the frequencies ω±, in any point of a BH or NS geometry, are
horizon frequencies in the extended plane or, in other words, since the MBs are tangent to
the horizon curve, each characteristic frequency of the bundle ωb is a horizon frequency
ωb = ω

x
H , where ωx

H ∈ {ω
−
H ,ω

+

H}.
For seek of clarity, first we formalize this definition for the Kerr case as a one-parameter

family of solutions parameterized with the spin a (or a/M). The generalization to the case
of several parameters is straightforward as, for example, in KN and RN geometries. These
cases will be also addressed explicitly below. Particularly, the frequency ωb of the bundle
is the inner or outer horizon frequencies of the spacetime, which is tangent to the horizon
at a radius rg and a spin ag (bundle tangent spin). In addition, the bundle is characterized
by the frequency ω0 of the bundle origin, i.e., the point r = 0 and a = a0 in the extended
plane. Thus, the MBs are all characterized by a frequency ωb = ω

x
H(ag), where ag is the

1 An extended plane π+ is the set of points (a/M,Q), where Q is any quantity that characterizes the spacetime
and depends on a. In general, the extended plane is an (n + 1)-dimensional surface, where n is the number of
independent parameters that enter Q (Pugliese and Quevedo, 2019).
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bundle tangent spin, and the frequency ω0 at r = 0, where a = a0. The relation between
a0, ag, rg, and ωb, significant for the bundle characterization, is particularly simple in the
case of a spherically symmetric geometry or on the equatorial plane of an axisymmetric
geometry. However, in general, the relation, involving also the MB origin a0, depends on
the plane σ ≡ sin2 θ (Pugliese and Quevedo, 2019a).

MBs can be closed on the horizon. In Pugliese and Quevedo (2019), this property has
been shown to be due to the rotation of the singularity: the curves, which define the BH

horizons for the static RN case, can be are open; the analysis of the KN case represented
in Pugliese and Quevedo (2019) shows the influence of the spin in the bending and sepa-
ration into two families of curves on the equatorial plane. On the other hand, in Pugliese
and Quevedo (2019a) we proved that, on planes with σ < 1, there can be open Kerr bun-
dles. Then, MBs of axisymmetric spacetimes have a non-trivial extension corresponding
to negative bundle frequencies ωb < 0. These MBs extensions, associated to characteris-
tic frequencies ωb = −ω±H equal in magnitude to the horizon frequencies, clearly are not
tangent to the horizon curve in the negative frequencies extension of the extended plane.
However, these MBs branches are tangent to the horizon curve in the plane with positive
frequencies −ωb > 0.

Horizon relations for Kerr geometries on the equatorial plane σ = 1

Horizons relations I:
origin frequencies: ω−1

0 ≡ a±0 /M =
2r±(ag)

ag
≡ ω−1

H (ag);
horizons frequencies: ω+H(rg, ag) = ω0 = Ma−1

0 , ω−H(r′g, ag) = ω′0 = M/a′0, where r′g ∈ r−
(r+ = rg, r− = r′g).

Horizons relations II:

There is ω′0 =
1

4ω0
, ω+Hω

−
H =

1
4

and (a+0 (ag)a−0 (ag) = 4M2), a±0 /M =
2r±(ag)

ag
–see Pugliese

and Quevedo (2019).

In the Kerr MBs, the Killing vector LN is a function of r, a and σ ≡ sin2 θ. The
equatorial plane is a notable case, showing in many aspects similarities with the case of
static limiting geometries, where LN is a function of r and a, only.

Explicit form of the metric bundles

Here, we present explicit expressions for the KN MBs and their limits:
Kerr geometries-equatorial plane σ = 1:

a±ω(r,ω; M) ≡
2M2ω ±

√

r2ω2
[

M2 − r(r + 2M)ω2
]

(r + 2M)ω2
, (7)

KN geometries-equatorial plane σ = 1:

a∓ω =
∓

√

r4ω2
{

ω2
[

Q2 − r(r + 2M)
]

+ M2
}

+ ωM(Q2 − 2rM)

ω2
[

Q2 − r(r + 2M)
] , (8)

or
(

Q±ω
)2 ≡

r
{

ω2
[

a2(r + 2M) + r3
]

− 4aM2ω − rM2 + 2M3
}

(aω − M)2
, (9)
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RN geometries:

(

Q±ω
)2
= r

(

r3

M2
ω2 − r + 2M

)

. (10)

In the RN geometries, the limiting frequencies are ω± = ±
M
√

Q2+(r−2M)r

r2 . The KN fre-
quencies ω± do not depend explicitly on QT ; this means that the electric and rotational
parameters of the geometry play a different role in the solutions ω±=constant.

Explicitly, if we consider a surface ag(a0; Q) of the tangent MBs spins in the case a0 ! 0,
where Q is a parameter, we obtain

KN bundle origin spin-equatorial plane:

a0 =
2M2 − Q2 ∓ 2M

√

M2 − (a2 + Q2)

a
(r∓), (11)

KN bundle tangent spin:

a∓g (a0) =
a0

(

2M2 − Q2
)

∓ 2M
√

a2
0

(

M2 − Q2
)

− Q4

a2
0
+ 4M2

(12)

where a0 > aL(Q) ≡

√

−
Q4

Q2 − M2
with Q2 ∈ [0,M2].

These functions are very important to derive a relation between BHs (with tangent spins ag)
and NSs (with origin spins a0), as discussed in Pugliese and Quevedo (2019), and also the
transformation laws for BHs in the extended plane, as explicitly shown in Pugliese and
Quevedo (2019a).

The relation between BHs and NSs can be formalized by analyzing the function of the
tangent spin ag(a0) in terms of the MB origin a0 as follows

Kerr geometry σ = 1:

∀ a0 > 0, ag ≡
4a0M2

a2
0
+ 4M2

where ag ∈ [0,M] and lim
a0→0

ag = lim
a0→∞

ag = 0,

ag(a0 = 2M) = M. Alternatively, we can explicitly write the relation between the tangent
spin and the radius as follows:

atangent(r) ≡
r(M − rg) + Mrg
√

−(rg − 2M)rg

(13)

where rg ∈ [0, 2M], ag = a± :
rg

M
≡

2a2
0

a2
0
+ 4M2

.

Some general results from the study of metric bundles in the extended plane
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We now summarize some general results obtained in Pugliese and Quevedo (2019);
Pugliese and Quevedo (2019a). For simplicity, we focus on the equatorial plane of the
Kerr geometry so that a MB can be represented as a curve on the plane (a, r).

Vertical lines r =constant in the extended plane

Vertical lines r =constant in the extended plane intersect specific MBs. First, on a point
r, there is always a maximum of two intersections (limiting cases are on the horizon curve
or on the origin r = 0 and a0 = 0 or r = 2M and a0 = 0), which provide the two limit
frequencies ω± ≡ {ωb,ω

′

b}, corresponding to the two characteristic frequencies of the two
MBs. These are also horizon frequencies ω± ≡ {ωb,ω

′

b} ≡ {ω
x
H(ag),ω

y
H(a

′

g)}, respectively,
where (x, y) = ± and ag and a

′

g. They are the tangent spins of the two MBs with frequency
ωb and ω

′

b, respectively. We clarify in Pugliese and Quevedo (2019a) the precise corre-
spondence between {x, y,±}. In fact, these quantities are related to the notion of BH inner
horizon confinement, discussed firstly in Pugliese and Quevedo (2019), and to the horizon
replicas introduced in Pugliese and Quevedo (2019a). The BH inner horizon confinement
is related to the notion of bottleneck as well. It is based on the fact that it is not possible
to find a bundle outside the outer event horizon (r > r+) in the plane (and for any ge-
ometry a) with a characteristic frequency equal to that of the inner horizon. This implies
that outside the horizon of a given spacetime, it is not possible to find a photon limiting
frequency equal to the inner horizon frequency. Nevertheless, it is possible to find such
orbits for the frequencies of the outer horizon. However, it is possible to find frequencies
of the inner horizon in the Kerr case for σ sufficiently small (sufficiently close to the rota-
tion axis); therefore, it is possible to ”extract” this inner horizon frequency on an ”orbit”
r > r+ : L · L = 0.

This notion led to the definition in Pugliese and Quevedo (2019a) of the horizon replicas.
These structures occur when there is a point r of the bundle such that the characteristic
bundle frequencies ωb(a) ∈ {ω+H(ap),ω−H(ap)} are located exactly at r±(ap) > r+(a), that is,
on the horizon with frequency ωb(a). Such orbits are, therefore, called horizons replicas
(these are clearly related to the vertical lines of the extended plane crossing the horizon
curve on the tangent point to the bundle).

Horizontal lines a =constant on the extended plane

Horizontal lines a =constant on the extended plane determine a particular geometry and
are related to the orbits with frequencies equal to that of the Killing horizons in the extended
plane and, therefore, to the concept of horizon replicas.

The Kerr-de-Sitter metric bundle

To complete this overview of the MBs of axisymmetric spacetimes, we present here the
explicit expressions for the Kerr-de Sitter geometry, which has an interesting and complex
horizon structure. Further details on these specific solutions can be found in Pugliese and
Stuchlı́k (2019b).
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Figure 1. Kerr-de-Sitter geometry: Equatorial plane (σ = 1). Left panel: Metric bundles of the Kerr-
de-Sitter geometries in the plane (a/M, r/M) for fixed cosmological constant Λ > 0. The black thick
curve is the horizon curve in the extended plane. Metric bundles are tangent to the horizon curve.
The origin spins a0 are also shown. The tangent spin ag is on the horizon curve. Each bundle (curve)
has a specific frequency (the lower bundle corresponds to greater frequencies due to the fact that
the inner horizon frequency is always greater then the outer horizon frequency, a part in the extreme
BH case), which is the horizon frequency of the point (a, r) of the bundle, particularly, at the origin
(a = a0, r = 0) and tangent point (a = ag, r = rg). Center and right panel: Bundles in the (Λ, r/M)
plane for different spins and frequencies. Black curves represent the horizon. Each curve is for a
different fixed frequency ω (the lower the curve, the greater the frequency).

Kerr-de-Sitter metric bundle, general form in Λ:

Λω ≡
−6 sin2(θ)

[

ω2
(

a2 + r2
)2
+ a2 − 4aMrω

]

[

a2 cos(2θ) + a2 + 2r2
]

[

a sin2(θ)
[

aω2
(

a2 + r2
)

− 2ω
(

a2 + r2
)

+ a
]

+ r2
]

+
6
[

a2ω2 sin4(θ)
[

a2 + r(r − 2M)
]

+ a2 + r(r − 2M)
]

[

a2 cos(2θ) + a2 + 2r2
]

[

a sin2(θ)
[

aω2
(

a2 + r2
)

− 2ω
(

a2 + r2
)

+ a
]

+ r2
] . (14)

This expression gives the form of the MBs in the Kerr-de-Sitter spacetime in terms of the
cosmological constant Λ > 0 for any plane σ ≡ σ2θ. Similar solutions can easily be found
in terms of aω. The extended plane is represented, however, a 3D space. In Figs. (1), we
show different representations of this case.

3 CONCLUDING REMARKS

We discussed the concept of metric bundles of axially symmetric spacetimes. In Eqs. (7),
(8) and (9) explicit expression of these bundles are given on the equatorial plane of the
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Kerr geometries, Kerr-Newman spacetimes and for the spherically symmetric Reissner-
Nordström spacetime. In Eq. (14), we present the expression for the Kerr-de-Sitter geom-
etry. Figs (1) illustrate these MBs and their main features such as the origins a0 and the
tangent points ag on the horizon curve in the extended plane, where the MBs are repre-
sented as curves. At the end of Sec. (2), we discussed some results concerning the general
properties of the geometries defined by the bundles, as extracted from the analysis of these
structures, such as the BH horizon confinement and horizon replicas. The issues discussed
in this article refer to the study of Pugliese and Quevedo (2019), where the concept of
metric bundle was first introduced and the definition of Killing throat and bottleneck for
the Kerr, Kerr-Newman and Reissner-Nordström spacetimes were considered. In Pugliese
and Quevedo (2019a), we present the general definition on an arbitrary plane of the Kerr
geometry and give definition of horizon replicas. In a future work, we intend to general-
ize this study to other spacetimes (Pugliese and Stuchlı́k, 2019b) and investigate in detail
the consequences for the BH thermodynamical properties as described in Sec. (2). Kerr-
de Sitter MBs eventually face the problem of finding a convenient MBs parametrization
and definition in spherically symmetric spacetimes. The MBs tangency with the horizons
curves, characteristic of the axially symmetric spacetimes, reduces to an approximation for
the static geometries, while an adaptation of the (conformal invariant) MBs definitions to
the static case is possible. MBs utility lies in enlightening spacetime properties emerging
in the extended plane, related to the local causal structure and BH thermodynamics such
as the surface gravity, temperature and luminosity. The extended plane and metric bundles
connect different points of one geometry and different geometries, providing a new frame
of interpretation of these metrics families. Some spacetime properties can be detected by
stationary observers and the light-like orbits in the region outside the BH horizon. In this
sense, we mention the horizons confinement and the replicas. There is a replica when
certain properties of a BH horizon are replicated in other points of the same or different
spacetimes. There is also the vice versa effect called confinement, as we proved for a por-
tion of the Kerr inner horizon curve. Significant for the transformations from one solution
to another, MBs represent a global frame for the BHs analysis. Of direct astrophysical
interest, MBs, read in terms of the light surfaces, relate many aspects of BHs physics, such
as ”BH” images, and several processes, which constrain energy extraction, such as the
BHs jet emission and jet collimation, or regulate the Blandford-Znajek process. They also
constraint accretion disks or the Grad-Shafranov equation for the force free magnetosphere
around BHs.
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ABSTRACT
We consider ringed accretion disks (RADs), representing models of aggregates of
corotating and counterrotating toroids orbiting a central Kerr super-massive black
hole (SMBH). We comment on the system of two-tori governed by the polytropic
equation of state and including a toroidal magnetic field. We found the RADs lead-
ing function describing the RAD inner structure and governing the distribution of
orbiting toroidal structures and the emergence of the (hydro-mechanical) instabili-
ties in the disk. We perform this analysis first in pure hydrodynamical models by
considering one-specie perfect fluid toroids and then by considering the contribution
of the toroidal magnetic field.

Keywords: Accretion – Accretion disks – Black holes – Active Galactic Nucleai
(AGN)

1 INTRODUCTION

Active Galactic Nucleai (AGNs) provide a rich scenario to observe SMBHs interacting
with their environments. Chaotical, discontinuous accretion episodes may leave traces in
the form of matter remnants orbiting the central attractor producing sequences of orbiting
toroidal structures with strongly different features as different rotation orientations with
respect to the Kerr BH where corotating and counterrotating accretion stages can be mixed.

Motivated by these facts, ringed accretion disks (RADs) model structured toroidal disks
which may be formed during several accretion regimes occurred in the lifetime of non-
isolated Kerr BHs. RAD features a system made up by several axi-symmetric matter con-
figurations orbiting in the equatorial plane of a single central Kerr SMBH. Both corotating
and counterrotating tori are possible constituents of the RADs. This model was first intro-
duced in Pugliese and Montani (2015) and then detailed in Pugliese and Stuchlı́k (2015,
2016, 2017, 2018c,b,a, 2019); Pugliese and Montani (2018).
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The model strongly binds the fluid and BH characteristics providing indications on the
situations where to search for RADs observational evidences. The number of the instability
points is generally limited to n=2 and depends on the dimensionless spin of the rotating
central attractor. The phenomenology associated with these toroidal complex structures
may be indeed very wide, providing a different interpretative framework. Obscuring and
screening tori, possibly evident as traces (screening) in x-ray spectrum emission, are also
strongly constrained. More generally, observational evidence is expected by the spectral
features of AGNs X-ray emission shape, due to X-ray obscuration and absorption by one
of the tori, providing a RAD fingerprint as a radially stratified emission profile.

In Sec. (2) we introduce the model and the main definitions used throughout this article.
In Sec. (2.1) we focus on RAD with polytropic tori. In Sec. (3) we analyze the effects of
a toroidal magnetic field in the formation of several magnetized accretion tori. Conclud-
ing remarks are in Sec. (4). Appendix (A) summarizes the main constraints on the RAD
structure.

2 RINGED ACCRETION DISKS

Ringed accretion disk (RAD) is a fully general relativistic model of axially symmetric but
”knobby” accretion disk orbiting on the equatorial plane of a Kerr SMBH. It constitutes an
aggregate of corotating and counter-rotating perfect fluid, one particle species, tori orbiting
on the equatorial plane on one central BH attractor. Because of the symmetries of the
system (stationarity and axial-symmetry), it is regulated by the Euler equation only with
a barotropic equation of state (EoS) p = p(!):

Tµν = (p + !)UµUν − pgµν,
∇µp

p + !
= −∇µ ln(Ut) +

Ω∇µ#
1 −Ω#

(1)

Ω =
Uφ

Ut
= −

gtt

gφφ
#0 =

f (r)

r2 sin2 θ
#0, # = −

Uφ

Ut

.

Ve f f (#) ≡ ut W ≡ ln Ve f f (#),

((t, r, φ, θ) are Boyer-Lindquist coordinates), Ve f f (#) is the effective torus potential, Ω is
the fluid relativistic angular frequency, # specific angular momenta, assumed constant and
conserved for each RAD component but variable in the RAD distribution Ua is the fluid
four velocity, and Tµν is the fluid energy momentum tensor.

We introduce the following definitions: we use the notation () to indicate a configuration
as a function which can be closed, C, or open O. Specifically, toroidal surfaces correspond
to the equipotential surfaces, critical points of Ve f f (#) as function of r.

Consequently tori are determined as solutions of W : ln(Ve f f ) = c = constant (or
equivalently Ve f f = K =constant). We indicate the possible solutions as C, for the cross–
sections of the closed surfaces (equilibrium quiescent torus); C×, for the cross–sections
of the closed cusped surfaces (accreting torus) and O×, for the cross sections of the open
cusped surfaces, which are generally associated to proto-jet configurationsPugliese and
Stuchlı́k (2018a, 2016).

!" !! !" ## ? $ % &



RADs models: Polytropic EoS and toroidal magnetic fields 247

Sign Q± for a general quantity refers to counterrotating (Q+) and corotating (Q−) tori
respectively. We introduce the concept of #corotating disks, defined by the condition #(i)#(o) >
0, and #counterrotating disks defined by the relations #(i)#(o) < 0. The two #corotating tori can be
both corotating, #a > 0, or counterrotating, #a < 0, with respect to the central attractor spin
a > 0. We use short notation ()i < ()o and ()o > ()i for the inner and outer configurations of
a RAD couple.

An essential part of the RAD analysis is the characterization of the boundary conditions
on each torus in the agglomerate and the RAD disk inner structure. The model is con-
structed investigating the function representing the angular momentum distribution inside
the disk which is not constant. This sets the toroids location (and equilibrium) in the ag-
glomerate and it coincides, in the hydrodynamical RAD model of perfect fluids, with the
distribution of specific angular momentum of the fluid in each agglomerate toroid. This
function can be written as

Leading (HD) RAD function:

#∓ =
a3 + ar(3r − 4M) ∓

√
r3∆2/M

a2M − (r − 2M)2r

∣∣∣∣∣∣∣
r∗

, (2)

∆ ≡r2 − 2Mr + a2,

(M is the central BH mass). Each point r > rmso (marginally stable orbit) on curve #∓

fixes the center (points of maximum density inside the torus) of the toroidal RAD com-
ponent and r < rmso sets possible instabilities points of the toroids, more details can be
found in Pugliese and Stuchlı́k (2015, 2017). Because of the importance of this function in
defining the inner structure of the RAD, this is called Leading RAD function.

We shall see in Sec. (3) that changing the energy-momentum tensor by including a toroidal
magnetic field will make it convenient to change the leading function #± adopted in the Hy-
drodynamical (HD) case to a different one. This new function obtained from the study of
the magnetic field in the RAD can represent and regulate the tori distribution. In Sec. (A),
we include a summary of the main constraints on the RAD inner structure–Pugliese and
Stuchlı́k (2015, 2017)

2.1 Polytropic tori

We conclude this section considering RAD tori with polytropic fluids: p = κ!1+1/n. We
develop some general considerations on the EoS and the polytropic RAD tori governed by
the EoS: p = κ!γ, where κ > 0 is a constant and γ = (1 + 1/n) is the polytropic index,
in Pugliese et al. (2013). Details of this analysis can be found in Pugliese and Stuchlı́k
(2019). We also refer to this analysis for commenting on the tori energetics of various
RAD configurations, and significance in the case of polytropic tori. It has been shown in
Pugliese et al. (2013); Pugliese and Stuchlı́k (2019) that for the Schwarzschild geometry
(a = 0) there is a specific classification of eligible geometric polytropics, and a specific
class of polytropics is characterized by a discrete range of values for the index γ. Therefore,
we can propose a general classification for the tori (C,C×), as for proto-jets O×, assuming
a particular representation of the density function. We can write the density ! as a function
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of γ. However, we concentrate our attention on the RAD components C and C× for which
K < 1 and there is :

!γ ≡κ1/(γ−1)!̄γ and !̄γ ≡
[
1

κ

(
V
− γ−1
γ

e f f
− 1

)] 1
(γ−1)

for (3)

γ !1 with !γ ≡ C
1/(−1+γ), C ≡ (V−2

e f f )
γ−1
2γ − 1.

(note C is actually a function of K ∈]Kmin,Kmax], while Kmax < 1, regulates whether the
torus is quiescent or in accretion). The pressure p, associated to the solution in Eq. (3),
depends on k

1
1−γ . It decreases with κ more slowly then !.

We consider the case K < 1 with the condition ! > 0, verified, according to Eq. (3), for
γ > 1. Integration of the ! density function in the polytropic case where γ = 4/3 is shown
in Figs (1). The situation for different indices, and particularly γ = 5/3, is also shown,
integration of density profiles have been specified particularly for the couple C−× < C+×.
Note that we can then directly impose several constraints for the density function. Some
simple example, including special (composite) density profiles in the case !−[+] = !

i
γ − !o

γ =

!Φ =constant, have

[Ki =




[
!Φ − ε

(
Ko
− γ−1
γ − 1

) 1
γ−1

]γ−1

+ 1




− γ
γ−1

. (4)

In Figs (1) we show the profiles !Φ for ε = −1. Important to note that these rela-
tions are generally seen as constraints on independent solutions for each RAD compo-
nents. Toroidal configurations emerging from these constraints (!−[+]) as in Fig (1) are
by no means directly matched with solutions for two different RAD components coupled
through the background. The RADs effective potential (a potential describing the entire
macrostructure as introduced in Pugliese and Stuchlı́k (2015)) can be derived from com-
posite energy-momentum tensors made by collections of the fluid tensors, decomposed in
each fluid adapted frame. This holds for not colliding tori. They will be naturally cou-
pled through the unique background metric tensor gµν and proper boundary conditions
imposed on the fluid density and pressure. The boundary conditions by the step-functions
cuts H(θ) defining the RAD in the two forms of potential functions included in the en-
ergy momentum tensor. Nevertheless, the projection after 3 + 1 decomposition, defining
the 3D hyperplane h

(i)
i j , has to be done according to the orthogonality condition for fluids

field velocity vectors u(i), respectively, for the (i)−torus. These solutions can create special
tori surfaces from the condition on the constant pressure. Moreover, these constraints can
found application in the collision analysis within the limits considered before to infer the
final states (es. final merger tori). (Other notable cases can be founded using the constraints
![×] = !

i
γ!

o
γ =constant, !{×} = !γ(K

iKo) =constant or !±{+} = !γ(K
i ± Ko) =constant.). It is

possible to show that not all these profiles are related to quiescent of accreting toroids.
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Figure 1. Left panel: Profiles of constant rationalized density function !k in Eq. (3) in the plane γ−K,
γ > 1 is the polytropic index, K ∈ [K±mso, 1] is the K-parameter attached to any tori at constant #. The
values K±mso for the two SMBHs with spin a = 0 and a = 0.99991M are also plotted. Corotating
([-]) and counterrotating fluids ([+]) are considered. Indices γ = 4/3 considered also in the analysis
of Pugliese and Stuchlı́k (2019) and γ = 5/3 are shown. Arrows follow the increasing values of !γ.
The region in the range γ ∈ [4/3, 5/3] has been partially thicken with highlighted (green-colored) K-
constant curves. Density profiles !±γ for corotating (bottom left panel) and counterrotating tori (upper

right panel) are shown orbiting around a SMBH with spin a = 0.382M, and the specific angular
momentum of the fluids is # = −3.99 and # = 3.31 and the polytropic index γ = 4/3. (x, y) are
Cartesian coordinates. Bottom right panel shows the profiles of constant composite density function
!−γ[+] defined in Sec. (2.1).

3 INFLUENCE OF TOROIDAL MAGNETIC FIELD IN MULTI-ACCRETING
TORI

In this section, we consider RAD with toroidal sub-structures regulated by the presence
in the force balance equation of a toroidal magnetic field component. We refer to the
analysis of Pugliese and Montani (2018), the toroidal magnetic field form used here is the
well known Komissarov-solution Komissarov (2006), used in the approach Pugliese and
Montani (2013, 2018), see also Adámek and Stuchlı́k (2013); Hamersky and Karas (2013);
Karas et al. (2014); Zanotti and Pugliese (2015); Stuchlik et al. (2020). In this section, we
use mainly dimensionless units.

3.1 Ideal GR-MHD

Before considering the model of magnetized RAD, it is convenient to review some ba-
sic notions of ideal GR-MHD. The fluids energy-momentum tensor can be written as the
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composition of the two components

T f
ab =(! + p)UaUb − ε pgab (5)

T em
ab = − ε

(
FacF c

b −
1

4
FcdFcdgab

)
=

gab

2
(E2 + B2) − (EaEb + BaBb)

− 2εĞ(aUb) − εUaUb(E2 + B2),

∇[aFbc] =0, ∇aFab = εJb, Ja = !cUa + ja,

(quantities are measured by an observers moving with the fluid). Ǧa denotes the Pointing
vector, UaUa = ε, (ε in this section is clearly a signature sign) and hab ≡ gab−εUaUb, is the
projection tensor, where ∇αgβγ = 0. Considering the charge density and conduction current
with the Ohm’s law, there is ja = σabEb, Ja = !cUa + σEa. We consider isotropic fluids
for which σab = σgab, σ is the electrical conductivity coefficient. For ideal conductive
plasma there is σ→ ∞ (Ea = FabUb = 0): the electromagnetic field does not have a direct
effect on the conservation equation along the flow lines, or

Ua∇a! + (p + !)∇aUa − UbF c
b (∇aFac) = 0, (6)

In the ideal MHD

(p + !)Ua∇aUc − εhbc∇b p − ε(∇aFad)Fcd = 0, (7)

and

Ua∇as =
1

nT
UbF c

b ∇
aFac. (8)

(T is the temperature and n is the particle number density). In infinitely conducting plasma
there is Ua∇as = 0 and the entropy per particle is conserved along the flow lines of each
toroids. a particular case of interest is when s is a constant of both space and time implying
p = p(!). Pugliese and Valiente Kroon (2016); Pugliese and Kroon (2012).

3.2 Magnetized tori

We consider an infinitely conductive plasma in the magnetized case where FabUa = 0, Fab,
UaBa = 0, ∂φB

a = 0 and Br = Bθ = 0. The toroidal magnetic field contribution in each
RAD component can be written by considering,

Bφ =

√
2pB

gφφ + 2#gtφ + #2gtt

(9)

or alternatively

Bφ =
√

2Mωq
(
gtφgtφ − gttgφφ

)
(q−2)/2Ve f f (#)

with pB = M
(
gtφgtφ − gttgφφ

)
q−1ωq the magnetic pressure, ω is the fluid enthalpy, q and

M (magnitude) are constant; Ve f f is a function of the metric and the angular momentum
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Figure 2. Left panel: Profiles of S =constant in the panel ω-q, where ω is the fluid enthalpy and q

is a magnetic field family parameter. Arrow directions indicate the increasing values of S q = 1 is
a singular value for S. At q < 1 (S < 0) excretion tori (density profiles in the right panel) appear.
From Pugliese and Montani (2018).

#–Komissarov (2006); Zanotti and Pugliese (2015); Pugliese and Montani (2013); Adámek
and Stuchlı́k (2013); Hamersky and Karas (2013); Karas et al. (2014). The Euler equation
for the HD case is modified by the term:

∂µW̃ = ∂µ
[
ln Ve f f + G

]
, (10)

where

(a ! 0) : G(r, θ) = S
(
AV2

e f f

)q−1
; (11)

and

A ≡ #2gtt + 2#gtφ + gφφ, S ≡
qMωq−1

q − 1
,

We here concentrate on q > 1 as, the magnetic parameter S is negative for q < 1,
where excretion tori are possible Stuchlı́k (2005); Stuchlı́k et al. (2009); Slaný and Stuchlı́k
(2005); Stuchlı́k and Schee (2010). q = 1, gives singular value for S, see Figs (2). In this
new frame, the analysis of RAD structure is performed by considering the new equation
W̃ ≡ G(r, θ) + ln(Ve f f ) = K. The deformed potential function Ṽ2

e f f ,

Ṽ2
e f f ≡ V2

e f f e
2S

(
AV2

e f f

)
q−1

= (12)

=

(
gtφgtφ − gttgφφ

)
exp

(
2S

(
gtφgtφ − gttgφφ

)q−1
)

#2gtt + 2#gtφ + gφφ
= K2.

For S = 0 (orM = 0), this reduces to the effective potential V2
e f f for the HD case: V2

e f f :

Ṽ2
e f f = V2

e f f +
2S

(
AV2

e f f

)
q

A + O
(
S2

)
.

Sn =
M lnn(ω)(n + ln(ω) + 1)

Γ(n + 2)
for n ≥ 0 and q ! 1, (13)

where Γ(x) is the Euler gamma function. As for the HD case in Eq. (2), we could find the
RAD angular momentum distribution:
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Figure 3. Magnetized RAD: angular momentum profiles #̃ in comparison with the HD case #, for
different values of the magnetic parameters S, q and the BH dimensionless spin a/M, varying from
the Schwarzschild case a = 0 to the extreme Kerr BH a = M for corotating (-) and counterrotating
(+) fluids. From Pugliese and Montani (2018).

#̃∓ ≡
∆

(
a3 + ar

[
4Q(r − M)S∆Q + 3r − 4

]
∓

√
r3

[
∆2 + 4Q2(r − 1)2rS2∆2Q+1 + 2Q(r − 1)2rS∆Q+1

])

a4 − a2(r − 3)(r − 2)r − (r − 2)r
[
2Q(r − 1)S∆Q+1 + (r − 2)2r

]

(14)

(dimensionless units), where there is

lim
S→0
#̃∓ = lim

q→1
#̃∓ = #±, Q ≡ q − 1

see Figs (3). However the introduction of a toroidal magnetic field B, makes the study of
the momentum distribution within the disk rather complicated. In Pugliese and Montani
(2018), it was adopted as a function derived from the S parameter:

Leading RAD function:

Scrit ≡ −
∆−Q

Q
a2(a − #)2 + 2r2(a − #)(a − 2#) − 4r(a − #)2 − #2r3 + r4

2r(r − 1)
[
r(a2 − #2) + 2(a − #)2 + r3

] . (15)

This function represents the new leading function for the distribution of tori in the RAD
instead of Eq. (14) with a toroidal magnetic field component. (Each torus is on a line S
=constant). This is able to determine (1) the limits on the value of the magnetic parameter
for the tori formation, (2) the emergence of HD instability associated with the cusped con-
figurations C× and ()×, (3) the emergence of collision between two tori of a RAD couple.
It highlights the difference between magnetized corotating and counter-rotating tori with
respect to the central black hole. (This difference is also evident from the dependence in
Eq. (15) from the quantities (a ± #).) As demonstrated in Pugliese and Montani (2018),
such magnetized tori can be formed in the RAD macro configurations for sufficiently small
(qS) and the constraints described in Sec. (A) are essentially confirmed for the magnetized
case.

4 CONCLUDING REMARKS

The RAD dynamics is strongly affected by the the dimensionless spin of the central BH
and the fluids relative rotation, especially in the magnetized case considered in Sec. (3).
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In general, there is evidence of a strict correlation between SMBH spin, fluid rotation
and magnetic fields in RADs formation and evolution. The analysis presented here poses
constraints on tori formation and emergence of RADs instabilities in the phases of accretion
onto the central attractor and tori collision emergence Pugliese and Stuchlı́k (2017, 2019).
Eventually the RAD frame investigation constraints specific classes of tori that could be
observed around some specific SMBHs identified by their dimensionless spin. As a sideline
result, we provided a full characterization of the counter rotating tori in the multi-accreting
systems. This model is designed for an extension to a dynamic GRMHD setup. From
observational viewpoint, AGN Xray variability suggests connection between X-rays and
the innermost regions of accretion disk. In Sochora et al. (2011); Karas and Sochora (2010);
Schee and Stuchlı́k (2009, 2013) such relatively indistinct excesses of the relativistically
broadened emission-line components are predicted to be arising in a well-confined radial
distance in the accretion structure originating from a series of episodic accretion events.

Another significant aspect is the possibility to relate the RAD oscillations and their com-
ponents with QPOs. The radially oscillating tori of the couple could be related to the
high-frequency quasi-periodic oscillations (QPOs). Finally, for a discussion on the relation
among Papaloizou-Pringle (PP) global incompressible modes in the tori, the Papaloizou-
Pringle Instability (PPI), a global-hydrodynamic-non-axisymmetric instability, and the
Magneto-Rotational Instability (MRI) modes, see Pugliese and Montani (2018); Bugli et al.
(2018).

As an extension of this model to a more general situation, multi-orbiting configurations,
considering tilted warped disks are also studied in Pugliese and Stuchlı́k (2020a,b). This
possibility, rather probable as a scenario in the initial phases of tori formation, could be
investigated as perturbation or deformation of the axis-symmetric equatorial model consid-
ered here.
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APPENDIX A: BASIC HD-RAD CONSTRAINTS

In this section we show some main constraints of the RAD models by schematically sum-
marizing the analysis of Pugliese and Stuchlı́k (2017, 2019).

In general, two quiescent tori (not cusped tori) can exist in all Kerr spacetimes if their
specific angular momenta are properly related. Whereas there are only following four
double tori with a critical (cusped) topology: i) C±× < C± ii), C+× < C±,iii) C−× < C± and iv)
C−× < C+×–

Moreover: • for #corotating tori or in the background of a static (Schwarzschild) attractor
only the inner torus can be accreting (with a cusp). • In the #counterrotating couple, an cusped
corotating torus has to be the inner one of the couple whereas the outer counterrotating
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torus can be in quiescent or with a cusp. If there is C−× (or for a static attractor), then C−× is
part of C−× < C− or C−× < ()+, doubled system.

Therefore, summarizing the situation for corotating and counterrotating RAD compo-
nents, in particular there is: • a corotating torus can be the outer of a couple with an inner
counterrotating cusped surface. The outer torus of this couple may be corotating (quies-
cent), or counterrotating cusped or in quiescence. Both the inner corotating and the outer
counterrotating torus of the couple can have a cusp. • A counterrotating torus can reach
the (HD) instability as the inner configuration of an #corotating or #counterrotating couple or,
viceversa, the outer torus of an #counterrotating couple. If the cusped torus is C+×, it follows
that there is no inner counterrotating torus, but there can be C+× < C± or ()− < C+×.
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ABSTRACT

The origin of Ultra-High-Energy Cosmic Rays is still unknown, and Active Galactic
Nuclei have been proposed as candidates to accelerate these particles. Using the
well-resolved radio emission from radiogalaxies 3C 105 and 3C 445 we investigate
the standard assumption that the distribution of non-thermal electrons has a maxi-
mum energy cutoff due to the synchrotron cooling. We show that as a consequence
this would lead to an unphysically large number density in the hotspot. This result
has important implications for the origin of Ultra-High-Energy Cosmic Rays.

Keywords: Ultra-high-energy cosmic rays – diffusive shock acceleration –synchrotron
cooling

1 INTRODUCTION

Ultra-high-energy cosmic rays (UHECR) are charged particles detected on Earth with en-
ergy higher than 1018 eV. The origin of these particles is still unknown. The very upper
limit to the maximum achievable energy was estimated by Hillas (1984) by assuming that
the maximum displacement of a charged particle by an electric field is the size of the sys-
tem L. The Hillas energy, or the maximum energy achievable by a particle with charge Zq,
is

EHillas ∼ 1018
(

v

c

)

(

L

kpc

) (

B

100µG

)

eV, (1)

where B is the magnetic field and v the velocity of the plasma. We see that for compact
objects a strong magnetic field is required, while for a weak field the source should be
extended enough. White dwarfs, active galactic nuclei, galaxy clusters, and radio galaxies
are candidates to accelerate UHECRs. In this work, we study the hotspots in the termination
region of radiogalaxy jets.
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Araudo et al. (2016) [A16] showed that the maximum energy of particles accelerated
in the hotspots of FR II radiogalaxies is ∼ 10 TeV, and therefore much smaller than the
energy of UHECRs. Based on theoretical and observational constraints, and for a sample of
sources (3C 105, 3C 195, 3C 227, 3C 403, and 3C 445), [A16] demonstrated that at least the
plasma density is unreasonably large, hotspots cannot accelerate UHECRs. In the present
contribution, we analyze the southern hotspots in 3C 105 and 3C 445 but considering the
substructures in the hotspots.

2 THE CASES STUDY 3C 105 S AND 3C 445 S

We select the southern hotspots in radiogalaxies 3C 105 and 3C 445 from where high-
resolution radio data taken by the Very Large Array (VLA) are available in the literature.
Parameters used for the analysis are listed in Table 1.

3C 105 South

Radiogalaxy 3C 105 is located at redshift z = 0.089. At radio frequencies (8.4 GHz), three
knots denoted in Fig. 1 as S1, S2, and S3 are resolved in the southern hotspot (Migliori
et al., 2020).

3C 445 South

Radiogalaxy 3C 445 is located at redshift z = 0.05623. The southern hotspot 3C 445 South
has two components at 22 GHz denoted as SE and SW for Eastern and Western knots,
respectively (Orienti et al., 2020). SE is well-resolved and sufficiently larger and brighter
than the SW knot. The latter has a compact radio-loud part and is surrounded by the large
cloud of the radio fainter emitting matter, which is neglected in our analysis.

Figure 1. Left: Southern hotspot of radiogalaxy 3C 105 at 8.4 GHz. The three knots are denoted as
S1, S2 and S3. Credit: Mack et al. (2009). Right: The hotspot complex 3C 445 South at 22 GHz.
Eastern and Western components are denoted as E, W, respectively. Credit: Orienti et al. (2020)
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Table 1. From left to right, we list the name of the source, the redshift (z), the scale (in kpc arcsec−1),
the distance (in Gpc), the radio spectral index α, the steepness of the relativistic electrons energy
distribution s = 2α + 1, and the proton to electron energy density ratio a.

Source z scale d α s a

3C 105 0.089 1.642 0.4017 0.8 2.6 4.51
3C 445 0.0562 1.077 0.2479 0.75 2.5 6.58

3 EQUIPARTITION MAGNETIC FIELD

We estimate the intensity of the magnetic field separately for every knot of the hotspot. By
assuming equipartition between the non-thermal electron and magnetic energy densities,
which means Ue,NT = Umag, we obtain

B2
e,eq

8π
= Ue,NT =

∫ Ee,max

Ee,min

ENe(Ee)dEe ∝ B
− s+1

2
e,eq , (2)

where Ne = Ke(s)E−s
e is the power-law energy distribution of the non-thermal electrons and

Ee,min and Ee,max are the minimum and maximum energies of the electron distribution. Note
that s > 2 in all the sources in our sample, and therefore most of the energy is contained in
the low-energy part of Ne. We assume Ee,min = 50mec2.

To include protons in our calculations we consider that the energy density in non-thermal
protons is Up,NT = aUe,NT , where a = (mp/me)(3−s)/2, me and mp are the electron and
proton mass, respectively. Then the total equipartition magnetic field can be determined
from Beq =

√
1 + aBeq,e, given

Beq = ξ(s)

(

εsyn,ν

10−34 erg s−1 cm−3 Hz−1

)
2

s+5 (

ν

GHz

)
s−1
s+5

µG (3)

where εsyn,ν = 4πd2S νV
−1 is synchrotron emissivity per unit frequency, ν is the observed

frequency. Constant ξ(s) in the case of 3C 105 corresponds to value 96, and 106 otherwise.
To calculate the volume V of the emitting regions at the given observed frequency, from
Fig. 1 we estimate the minor axes lmin and areas of each knot of the hotspots. In Table 2 we
list the values of lmin, V , and Beq for all the sources in our sample.

4 SYNCHROTRON COOLING AND THE PLASMA NUMBER DENSITY

Hotspots in the termination shocks in radiogalaxy jets show a cutoff of the synchrotron
spectrum, in the optical-IR band, i.e. at νc ∼ 1013 − 1015 Hz. From the cutoff of the
synchrotron spectrum, we estimate the maximum energy of accelerated electrons (Lang
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Table 2. Observed and derived parameters of the hotspots. From left to right, we list the name of the
source and the non-thermal component in the hotspot, the observed frequency ν and measured flux
density S ν, the projected size S and the minor axis lmin, the volume V , the equipartition magnetic
field Beq and nmin (see Eq. 7).

Source Comp. ν S ν S lmin V Beq nmin

[GHz] [mJy] [ ′′×′′] [kpc] [kpc3] [µG] [cm−3]

3C 105 S1 8.4 18.4 1.30×0.59 0.97 1.052 198 0.61
S2 8.4 372 1.68×0.94 1.54 3.422 267 450
S3 8.4 260 2.20×1.20 1.98 7.387 198 184

3C 445 SE 22 14.24 2.63×0.91 0.51 0.201 229 0.44
SW 22 2.92 1.02×0.15 0.08 0.002 512 0.83

(2013))

Ee,max = mec2

√

4πmec

3q

√

νc

B
∼ 0.3

(

νc

1014 Hz

)0.5
(

B

100 µG

)−0.5

TeV. (4)

It is commonly assumed in the literature that Ee,max is determined by synchrotron cooling
(Prieto et al., 2002), with a timescale tsynchr ∼ 450/(Ee,maxB2). By equating tacc = tsynchr,
where tacc = 20D/v2

sh is the acceleration time via diffusive shock acceleration, we obtain
that the diffusion coefficient is

Ds,c = 30.7
v2

sh

Ee,maxB2
= 6.8 × 1030

(

vsh

c

)2 (

νc

1014 Hz

)−0.5
(

B

100 µG

)−1.5

cm2 s−1. (5)

We assume the shock velocity vsh = c/3 in our calculations.
The diffusion coefficient is defined as D = λc/3, where λ = r2

g/s is the mean-free path
in the small scale diffusion regime, rg is the mean-free path, and s is the scale-length of the
magnetic turbulence. The minimum value of s is the ion skin depth c/ωpi. Therefore, by
considering s = c/ωpi we obtain that the maximum value of the diffusion coefficient is

Dmax =
1

3
r2

gωpi = 3 × 1028
(

νc

1014 Hz

) (

n

cm−3

)0.5
(

B

100 µG

)−3

cm2 s−1. (6)

If Ee,max is determined by synchrotron cooling, then the condition Ds,c < Dmax needs to
be satisfied. By following the procedure described in [A16], we determine the minimum
plasma density in the hotspot to satisfy the condition Ds,c = Dmax giving

nmin = 5.3 × 104
(

vsh

c

)4 (

νc

1014 Hz

)−3
(

B

100 µG

)3

cm−3. (7)

In Fig. 2 we plot nmin as a function of the cutoff frequency νc. We chose the vicinity of
the typical cutoff frequencies νc ∼ 1014 − 1015 Hz (Orienti et al., 2012)). The values we
obtained are far above the typical range of values for the hotspots number density.
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Figure 2. The log-log plot of a lower limit of the number density nmin for the cutoff frequencies νc in
the vicinity of typical values. We use B = Beq. Curves from sources 3C 105 S1 and 3C 105 S3 are
overlapping.

5 CONCLUSIONS

Our calculations indicate that electron’s maximum energy might not be determined by syn-
chrotron cooling because this assumption leads to unreasonably large values of the lower
limit for the plasma number density nmin (see Tab. 2). For comparison the upper limit for
plasma number density in Cyg A and 3C 475 is n ∼ 10−4cm−3 (Dreher et al., 1987).

Araudo et al. (2016) and Araudo et al. (2018) proposed that electrons maximum energy
cutoff in the hotspots of radiogalaxies is due to escape downstream of a quasi-perpendicular
shock. In this case, the maximum energy of protons is Ep,max = Ee,max. In this context, the
maximum achievable energy of protons in the hotspot of the radiogalaxies 3C 105 S and
3C 445 S is Ep,max ∼ TeV and therefore these hotspots can not accelerate UHECR. In a more
general context, Bell et al. (2018) showed that relativistic shocks are unable to accelerate
UHECRs.
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ABSTRACT

This paper is devoted to studying the dynamics of magnetized particles around
electrically charged Reissner-Nordström (RN) black hole immersed in an external
asymptotically uniform magnetic field. Here, we have focused on the effects of the
external magnetic field and the electric charge of the RN black hole on the range of
stable circular orbits for magnetized particles. We have shown that the dimensionless
magnetic interaction parameter between magnetic dipole moment of a magnetized
particle orbiting the black hole and the external magnetic field must be less than 1 in
absolute value in order to allow stable circular orbits and with increasing of the elec-
tric charge of the black hole the range where circular orbits are allowed decreases
while the increase of external magnetic field causes to increase it.

Keywords: Magnetized particles –charged black hole –external magnetic field

1 INTRODUCTION

Particle motion around a compact gravitational object is the special subject of highly moti-
vated interest, since it may be used to develop new tests and probe the theories describing
the gravitational interaction in the strong field regime. Particularly, black hole as gravita-
tional compact object is useful astrophysical object to study the particle dynamics around
the latter. Being simple object astrophysical black holes can be described with a few pa-
rameters, namely black hole total mass M, rotation parameter a, and electric charge Q.
Static spherically-symmetric electrically charged black hole is described by the Reissner-
Nordström (RN) solution Reissner (1916); Nordström (1918).

The electromagnetic field surrounding black hole or neutron star plays an important role
in astronomical observation of compact objects through electromagnetic radiation or its
influence to astrophysical processes around it. Even in the case of test electromagnetic
field, when electromagnetic potential does not change the spacetime structure, the influ-
ence of the electromagnetic field to the energetic and dynamical processes around gravita-
tional compact objects is essential. Despite no hair theorem, according to which the black
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hole cannot have its own intrinsic magnetic field Misner et al. (1973) one may explore
the external magnetic field surrounding the black hole. Particularly the electromagnetic
field structure around rotating black hole embedded in an external asymptotically uniform
magnetic field has been studied in the pioneering paper Wald (1974). In past years, dif-
ferent properties of the electromagnetic fields in the vicinity of black holes immersed in
external asymptotically uniform magnetic fields and proper magnetic field of rotating mag-
netized neutron stars with dipolar structure were widely studied by several authors in dif-
ferent models of gravity Aliev et al. (1986); Aliev and Gal’tsov (1989); Aliev and Özdemir
(2002); Benavides-Gallego et al. (2019); Stuchlı́k et al. (2014); Stuchlı́k and Kološ (2016);
Rayimbaev and Tadjimuratov (2020); Rayimbaev et al. (2015, 2019b,a, 2020). This elec-
tromagnetic field will change the dynamics of charged particle in close black hole envi-
ronment Chen et al. (2016); Hashimoto and Tanahashi (2017); Dalui et al. (2019); Han
(2008); de Moura and Letelier (2000); Morozova et al. (2014); Narzilloev et al. (2020). To-
gether with charged particles one may study the influence of electromagnetic field near the
black hole to magnetized particle motion. The dynamics of particles with intrinsic nonzero
dipolar magnetic field around non-rotating and rotating black holes immersed in external
magnetic field have been studied in de Felice and Sorge (2003); de Felice et al. (2004).
Our recent works have been devoted to study the magnetized particle motion around black
hole in magnetic field in different gravity models and theories Rayimbaev (2016); Rayim-
baev et al. (2020); Toshmatov et al. (2015); Abdujabbarov et al. (2014); Rahimov et al.
(2011); Rahimov (2011); Haydarov et al. (2020); Haydarov et al. (2020); Abdujabbarov
et al. (2020); Vrba et al. (2020).

The paper is organized as follows: In Sect. 2 we study dynamics of magnetized par-
ticles around electrically RN black hole immersed in an external asymptotically uniform
magnetic field in comoving observer frame. Finally, we summarize our results in Sect. 3.

We use the space-time signature (−,+,+,+) and geometrized units system GN = c = 1.
The Latin indices are expected to run from 1 to 3 and the Greek ones from 0 to 3.

2 MAGNETIZED PARTICLE MOTION AROUND ELECTRICALLY

CHARGED RN BLACK HOLE IN MAGNETIC FIELD

The spacetime exterior to electrically charged RN black hole with total mass M and electric
charge Q can be described by the metric:

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dθ2 + r2 sin2 θdφ2 , (1)

where the radial metric function is

f (r) = 1 −
2M

r
+

Q2

r2
. (2)

Since there is no interaction between magnetized particles and electric charged RN black
hole we assume that the black hole immersed in an external asymptotically uniform mag-
netic field and finally, the electromagnetic four-potentials can be expressed using the Wald
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method Wald (1974) in the following form

Aφ =
1

2
B0r2 sin2 θ , (3)

At = −
Q

r
, (4)

where B0 is asymptotic value of the external uniform magnetic field. One may immediately
find the non-zero components of the electromagnetic tensor using the definition Fµν =

Aν,µ − Aµ,ν in the following form

Frφ =B0r sin2 θ , (5)

Fθφ =B0r2 sin θ cos θ , (6)

Frt =
Q

r2
(7)

The orthonormal components of the magnetic field around electrically charged RN black
hole measured by proper observer

Bα =
1

2
ηαβσµFβσwµ , (8)

where wµ is four-velocity of the proper observer, ηαβσγ is the pseudo-tensorial form of the
Levi-Civita symbol εαβσγ with the relations

ηαβσγ =
√
−gεαβσγ ηαβσγ = −

1
√
−g
εαβσγ , (9)

and g = det|gµν| = −r4 sin2 θ for spacetime metric (1) are

Br̂ = B0 cos θ, Bθ̂ =
√

f (r)B0 sin θ . (10)

According to de Felice and Sorge (2003) the equation of motion of magnetized particles
in the spacetime of a black hole immersed in the external magnetic field can be described
by the following Hamilton-Jacobi equation

gµν
∂S
∂xµ
∂S
∂xν
= −

(

m −
1

2
DµνFµν

)2

, (11)

where m is mass of the particle, S is the action for magnetized particles in the spacetime of
the black hole, the scalar term came from the product of polarization and electromagnetic
field tensors DµνFµν being responsible for the interaction between the external magnetic
field and dipole moment of magnetized particles. The polarization tensor Dµν correspond-
ing to the magnetic dipole moment of magnetized particles is describes by the relation de
Felice and Sorge (2003):

Dαβ = ηαβσνuσµν, Dαβuβ = 0 , (12)
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where µν and uν are the four-vector of magnetic dipole moment and four-velocity of mag-
netized particles by the fiducial comoving observer. The electromagnetic field tensor can
be decomposed through Fαβ by electric Eα and magnetic Bα field components as

Fαβ = u[αEβ] − ηαβσγuσBγ. (13)

One can find the product of polarization and electromagnetic tensors taking account the
condition given in Eq. (12) in the following form

DµνFµν = 2µα̂Bα̂ = 2µB0L[λα̂] , (14)

where µ =
√

∣

∣

∣µîµ
î
∣

∣

∣ is the norm of the dipole magnetic moment of magnetized particles and
L[λα̂] is the tetrad λα̂ attached to the comoving fiducial observer being the function of the
radial coordinate and the black hole parameters.

Here we investigate dynamics of magnetized particles in circular orbits around electri-
cally charged RN black hole in the weak magnetic interaction approximation due to weak-
ness of the external magnetic field or/and the particle is less magnetized
(

DµνFµν
)2
→ 0.

This approximation is astrophysical relevant since the external magnetic fieldin black
hole environment is comparatively weak (Piotrovich et al. (2011)). The action for magne-
tized particles at the equatorial plane (where θ = π/2 and θ̇ = 0) can be described by the
following form

S = −Et + Lφ + Sr , (15)

which allows to separate the variables in Hamilton-Jacobi equation. The equation of radial
motion of magnetized particles can be found as

ṙ2 = E2 − Veff(r,Q, l, b) , (16)

where the effective potential of radial motion of magnetized particles has the following
form:

Veff(r,Q, l, b) = f

(

1 +
l2

r2
− bL[λα̂]

)

, (17)

where b = 2µB0/m is magnetic interaction parameter responsible to the interaction between
dipole moment of magnetized particles and external magnetic field and l = L/m is specific
angular momentum of magnetized particles.

In real astrophysical scenarios one may treat a neutron star with the magnetic dipole
moment µ = (1/2)BNSR3

NS, like a magnetized particle, orbiting a supermassive black hole
(SMBH) immersed in an external magnetic field with different configurations. In such a
case the magnetic coupling parameter b can easily be estimated through the observational
parameters of the neutron star and the approximate value of the external magnetic field
around the SMBH in the following form:

b =
BNSR3

NSBext

mNS
$
π

103

(

BNS

1012G

) (

Bext

10G

) (

RNS

106cm

)3
(

mNS

1.4M%

)−1

. (18)
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One may apply the calculation to estimate the value of the magnetic coupling parameter
for a realistic case of the magnetar SGR (PSR) J1745–2900 orbiting around Sagittarius
A* (Sgr A*). In the estimation of the coupling parameter we have considered magnetic
field around SgrA* is in the order of 10 G, the magnetic dipole moment of the magnetar
µ ≈ 1.6 × 1032G · cm3 and its mass m ≈ 1.4M% (Mori et al. (2013)) as

bPSRJ1745−2900 $ 0.716
(

Bext

10G

)

. (19)

Generally, the circular motion of test particles around axially symmetric black holes
describes by the following standard condition

ṙ = 0,
∂Veff(r; Q, l, b)

∂r
= 0 . (20)

The explicit expressions for the orthonormal tetrad carried the fiducial observer L[λα̂] can
be formulated for circular motion at the equatorial plane around spherical symmetric black
hole in the following form

λt̂ =eΨ
(

∂t +Ω∂φ
)

, (21)

λr̂ =eΨ














−
Ωr

√

f (r)
∂t −

√

f (r)

r
∂φ















sin(ΩFWt)

+
√

f (r) cos(ΩFWt)∂r , (22)

λθ̂ =
1

r
∂θ , (23)

λφ̂ =eΨ














Ωr
√

f (r)
∂t +

√

f (r)

r
∂φ















cos(ΩFWt)

+
√

f (r) sin(ΩFWt)∂r , (24)

where ΩFW is Fermi-Walker angular velocity de Felice and Sorge (2003) and

e−Ψ =

√

f (r) −Ω2r2 , (25)

with Ω is the angular velocity of the particles measured by a distant observer defined as

Ω =
dφ

dt
=

dφ/dτ

dt/dτ
=

f (r)

r2

l

E
. (26)

We will study the motion of a magnetized particle orbiting at the equatorial plane assum-
ing the magnetic dipole moment of the magnetized particle is always perpendicular to the
equatorial plane and parallel to the external magnetic field. The orthonormal components
of the external magnetic field measured by the observer comoving with the magnetized
particle take the following form

Br̂ = Bφ̂ = 0 , Bθ̂ = B0 f (r) eΨ . (27)
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The induced electric field measured by the comoving observer can be written as

Er̂ =B0Ωr cos(ΩFWt)
√

f (r)eΨ , (28)

Eθ̂ =0 , (29)

Eφ̂ =B0Ωr sin(ΩFWt)
√

f (r)eΨ . (30)

In case when the Fermi-Walker and the particles angular velocities measured by proper
observer are zero (ΩFW = Ω = 0), the above tetrad turns to tetrad of the proper observe
(see Rezzolla and Zanotti (2001) in the case a = 0) and the magnetic field components in
Eq.(27) equals to the components in Eq.(10) and the induced electric field vanishes.

One may find the possible values of the magnetic coupling parameter β for circular orbits
from the first condition in Eq, (20)

b(r; l,E,Q) =
1

L[λσ̂]

(

1 +
l2

r2
−
E2

f (r)

)

. (31)

Inserting Eq.(27) into (14) we can find the interaction part of the Eq. (11)

D · F = 2µB0 f (r) eΨ , (32)

One can find the analytic form of the termL[λσ̂] by the comparison of Eq.(32) with Eq.(14)
in the following form

L[λσ̂] = eΨ f (r) . (33)

Finally, the magnetic interaction parameter b(r; l,E,Q) for stable circular orbits has the
following form

b(r; l,E,Q) =

(

1

f (r)
−

l2

E2r2

)1/2 (

1 +
l2

r2
−
E2

f (r)

)

. (34)

Eq. (34) implies that a magnetized particle with magnetic coupling parameter b corresponds
to circular stable orbit r with the energy E and angular momentum l.

Fig. 1 shows the radial dependence of the magnetic coupling parameter b for the different
values of electric charge of RN black hole for the fixed values of the specific energy and
angular momentum. One can see from the top panel of Fig. 1 that the maximal (minimal)
values of the magnetic interaction parameter for the fixed values of the specific energy
E = 0.9 and angular momentum l/M = 4 ( l/M = 2

√
5) increases (decreases) with the

increase of electric charge of RN black hole.
Now we analyze the values of the magnetic interaction parameter corresponding to stable

orbits for magnetized particles. It can be found using following set of equations de Felice
and Sorge (2003); Rayimbaev (2016):

b = b(r; l,E,Q),
∂b(r; l,E,Q)

∂r
= 0 . (35)

One can see from Eq. (35) contains two system of equations including five free parameters:
four of them related to the magnetized particle (b, r, l,E) and one to the spacetime (Q),
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Figure 1. The radial dependence of magnetic coupling parameter for the different values of electric
charge of RN black hole. In plots we used the values for the specific energy E = 0.9 and for angular
momentum l = 4M (top panel) and l = 2

√
5M (bottom panel). The black hole charge and specific

angular momentum read as Q→ Q/M and l→ l/M, respectively.

so its solution can be found in terms of any two of the five parameters as independent
variables. To solve the system of equations, we prefer to use the magnetic interaction
parameter b and radius of the circular orbits r as free parameters. The specific energy E
and the angular momentum l of the magnetized particle are considered as a functions of the
radial coordinate and electric charge of RN black hole Q:

Emin(r; l,Q) =
l
[

r(r − 2M) + Q2
]

r2
√

Mr − Q2
. (36)

The expression (36) corresponds to the possible values of the specific energy of the mag-
netized particle at stable circular orbits.

Fig. 2 demonstrates radial dependence of the specific energy of magnetized particles
corresponding to circular motion for the different values of electric charge of RN black
hole at the fixed value of the specific angular momentum l = 4M. One can see from the
figure that the energy increases with the increase of the black hole charge due to increase
of gravitational potential of the spacetime around RN black hole and inner circular orbit’s
position shifts towards to the central black hole.

Substituting (36) into (34) one to calculate the minimum value of the magnetic interac-
tion parameter of the magnetic particle for the fixed value of the specific energy as

bmin(r; l,Q) =

√

r(r − 3M) + 2Q2

r
(

Mr − Q2
) [

r(r − 2M) + Q2
] (37)

×
{

l2
(

3Mr − 2Q2 − r2
)

+ Mr3 − Q2r2

}

.

Figure 3 illustrates the radial dependence of the minimal values of magnetic interaction
parameter of magnetized particles corresponding to circular orbits at the value of the spe-
cific angular momentum l = 2

√
5M for different values of electric charge of RN black hole.
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ℓ=4

Figure 2. Radial profile of minimal energy of the magnetized particle for the different values of
electric charge of RN black hole. Read the specific angular momentum and electric charge of RN
black hole as l→ l/M and Q→ Q/M, respectively.

2.0 2.5 3.0 3.5
0.0

0.1
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0.3
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r/M

bmin Q=0
Q=0.8

Q=1

ℓ=2 5

Figure 3. Radial profile of minimal value of magnetic interaction parameter b of magnetized particles
with the specific angular momentum l/M = 2

√
5 for the different values of electric charge of RN

black black hole. Units of the black hole charge and specific angular momentum are given in the unit
of mass M

One can see that the maximal values of minimum interaction parameter decreases with the
increase of electric charge of the black hole and the circular orbits corresponding to the
fixed specific angular momentum shifts towards the black hole at the center of the orbits.
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Let us consider the maximum value for the angular momentum that the particle can be
in stable circular orbits which can be found using condition ∂bmin/∂r = 0 as:

lmin(r; Q) =
r
(

Q2 − Mr
)

√

[

r(r − 3M) + 2Q2
] [

r(2r − 3M) + Q2
]

. (38)

2 3 4 5
1

2

5

10

20

r/M

ℓmin

Q=0

Q=0.8
Q=1

Figure 4. Radial profiles of minimum specific angular momentum of magnetized particles corre-
sponding to stable circular orbits around charged RN black hole for the different values of electric
charge of the black hole. Here the unit of the specific angular momentum and the black hole charge
are given the unit of mass M.

Figure 4 shows radial dependence of minimum specific angular momentum for stable
circular orbits of magnetized particles around RN black hole for the different values of the
electric charge of the black hole. One can see that the value of minimum specific angular
momentum is increased with increasing electric charge of RN black hole and the position
where the angular momentum is maximum also shifts towards central black hole.

The extreme value of the magnetic interaction parameter b can be found by inserting
equation (38) into the equation (37) in the following form

bextr(r; Q) =
2r

√

r(r − 3M) + 2Q2

r(2r − 3M) + Q2
. (39)

Figure 5 demonstrates radial dependence of minimum magnetic interaction parameter
for freely falling magnetized particles and extreme values of the interaction parameter cor-
responding to stable circular orbits of magnetized particles around RN black hole for the
different values of electric charge of RN black hole. The colored area shows possible value
of magnetic interaction parameter corresponding to the area where stable circular orbits
are allowed. Dashed lines correspond to the minimum values of the b parameter at l = 0
and solid ones correspond to the extreme value of the parameter b. Gray, light-blue and
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Figure 5. The radial profiles of minimal value of magnetic interaction parameter of free falling mag-
netized particles and extreme values of the interaction parameter are shown for the different values of
electric charge of RN black hole. Unit of the electric charge is given in mass M.

light-red colored areas correspond to the values of electric charge of the black hole Q = 0,
Q/M = 0.8 and Q/M = 1, respectively. One can see from the Fig. 5 that the inner position
of circular orbits shifts to the center of black hole.

Thus, the extreme value of the parameter b corresponds to maximum value of the critical
stable circular orbits rmax and it can be found through the solution of the following equation
with respect to r

bext(r; Q) = b . (40)

The minimum value for the circular stable orbits can be found solving the following equa-
tion with respect to r,

bmin(r; Q) l=0 = b . (41)

The distance between maximum and minimum radius of circular stable orbits ∆r =

rmax−rmin give us the allowed area of the stable orbits for a magnetized particle. That means
the circular stable orbits of a magnetized particle with the given interaction parameter b are
confined in the range rmax(b; Q) > r > rmin(b; Q). However, one can see from the equations
(37) and (39) it is quite complicated to obtain the analytic solutions of equations (40) and
(41). We solve the equation numerically and present the results in a table form.

The area of stable circular orbits of magnetized particles for the different values of elec-
tric charge of RN black hole is presented in Table 1 corresponding to the angular moment
from 0 to lmin. One can see from the table that the area is more dependent from interaction
parameter than from electric charge of RN black hole.

One may express the dependence of minimum values of the specific angular momentum
on magnetic coupling parameter β solving by the equation b = bmin with respect to the
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Q/M b = 0.1 b = 0.5 b = 0.8 b = 0.95 b = 1

0.1 0.004195 0.1346 0.6517 8.18971 −

0.3 0.004119 0.1322 0.640777 8.0494 −

0.5 0.003961 0.1273 0.61802 7.7598 −

0.8 0.003536 0.1139 0.5575 6.9981 −

1 0.003155 0.1023 0.50436 6.2388 −

Table 1. ∆r = rmax − rmin as function of the magnetic interaction parameter b and electric charge of
RN black hole. The values of the range ∆r are given in the units of 1.5(M/M%) km.

specific angular momentum l

l2min(r; b,Q) =
r
(

Q2 − Mr
)

[

r(r − 3M) + 2Q2
]3/2

(42)

×
{

b
(

r(r − 2M) + Q2
)

− r
√

r(r − 3M) + 2Q2
}

.

Now one can easily get the dependence of the minimum value of specific energy inserting
Eq. (42) into Eq. (36):

E2
min(r; b,Q) =

√

Mr − Q2
[

r(r − 2M) + Q2
]

r
[

r(r − 3M) + 2Q2
]3/2

(43)

×
{

r
√

r(r − 3M) + 2Q2 − b
[

r(r − 2M) + Q2
] }

.

3 CONCLUSION

In this paper, we have explored the dynamics of magnetized particles in the vicinity of
an electrically charged RN black hole immersed in an external asymptotically uniform
magnetic field using the Hamilton-Jacobi equation.

In the case of an electrically charged RN black hole due to the absence of interaction
between the electric charge of the black hole and dipole moment of magnetized particles,
we have assumed that the black hole is immersed in an external asymptotically uniform
magnetic field. We have shown that the value of the magnetic coupling parameter for
circular orbits and the energy which the magnetic coupling parameter minimum increase
as the increase of the charge of RN black hole, while the minimum value of the parameter
b decreases.
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The range, where stable orbits are allowed, for the magnetized particle with the value
bextr < 1, narrows for the bigger values of the black hole charge and it becomes wider
for the particle with the larger magnetic coupling parameter. When the magnetic coupling
parameter of the particle is bigger than 1, the stable orbits do not exist around a black hole
in the external magnetic field. The result of the study may be helpful for the estimations of
the upper limits of the external magnetic field value around the black hole in the considera-
tions of pulsars (neutron stars) as (dipolar) magnetized particles orbiting around the central
supermassive black hole.
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ABSTRACT

We study the general form of spacetime metric representing gravitating axially sym-
metric compact objects. The properties, such as energy momentum tensor and inte-
rior and exterior geometry, of such objects are discussed. Due to the complex nature
of gravitational field equations, especially interior of axial symmetric objects, we
consider exact solutions of the special case of spherical symmetry object.

Keywords: Einstein field equations – exact solutions

1 INTRODUCTION

Recently discovered dark matter and dark energy in the universe has lead to construction
of various modified theories of gravity as being alternate to the Einstein general theory of
Relativity. These extended theories of gravity are likely to provide new exact solutions
for (GR) the gravitational objects and from this point of view it is becoming extremely
important to parametrize solutions of gravitational field equations. Most popular among
them is Johannsen and Psaltis parametrization (Johannsen and Psaltis, 2011) and in recent
years there were several attempts in this direction (see for example (Rezzolla and Zhidenko,
2014; Konoplya et al., 2016)). Following the parameterization of Rezzolla and Zhidenko
(Rezzolla and Zhidenko, 2014), recently, the general parametrization for spherically sym-
metric and asymptotically flat black-hole spacetimes has been developed in an arbitrary
metric theory of gravity (Konoplya et al., 2020). The exact axisymmetric and static solu-
tion of the Einstein equations coupled to the axisymmetric and static gravitating scalar field

978-80-7510-433-5 © 2020 – SU in Opava. All rights reserved. !" !! !" ## ? $ % &

http://www.opava-city.cz/
sanjar@astrin.uz
ahmedov@astrin.uz
abokhari@kfupm.edu.sa
vyblyi@gmail.com


278 S. Shaymatov, B. Ahmedov, A. Bokhari, Y. Vyblyi

has also been investigated recently (Turimov et al., 2018). Later on, an anisotropic version
of the well-known Tolman VII solution has been presented as stated by the gravitational
decoupling by the minimal geometric deformation approach and this leads to determine an
exact and physically acceptable interior two-fluid solution representing behavior of com-
pact objects (Hensh and Stuchlı́k, 2019). There is also investigation that presents an exact
solution describing the Schwarzschild-like black hole surrounded by the dust cosmological
background for spherically symmetric dust distribution (Jaluvkova et al., 2017).

In this context, our interest in this paper is to write and discuss general expression for the
axial spactime metric which could be valid for different theories of gravity. We study the
general of the spactime metric of axially symmetric gravitational compact objects and test
whether it is possible to have interior solution leading to the formation of naked singularity.

The first major work on study of singularities in GR dates back to 1965 when Penrose
presented his seminal work on singularity theorems (Penrose, 1965). This theorem, which
was later called the Penrose-Hawking singularity theorem, implies that the occurrence of
singularities in GR is inevitable as long as matter obeys certain energy conditions. The
super-dense regions of matter arising from gravitational collapse could be hidden from the
outside observer giving rise to a black hole or it could be visible leading to a naked sin-
gularity (Hawking and Ellis, 1973). Penrose-Hawking theorem investigated the conditions
that give rise to the emergence of singularities in GR (Hawking and Penrose, 1970). The
presence of these singularities represent a breakdown of Einstein’s theory as they give rise
to the notion of geodesic incompleteness. Although the Penrose-Hawking theorem proved
the existence of singularities, it did not shed light on the nature of the singularities arising
in General Relativity as the theory allows both types of singularity to form in a scenario of
gravitational collapse depending on the initial data from which the collapse develops. In
fact, the occurrence of naked singularities in nature has been so far considered the limit of
Einstein’s theory and poses serious theoretical challenges as it indicates the breakdown of
predictability in physics. This in turn led to the formulation of the cosmic censorship hy-
pothesis proposed by Penrose (Penrose, 1969) in 1969 for validity of the Einstein gravity,
preventing the singularity from being seen for observers outside. Irrespective of the fact
that the cosmic censorship conjecture has not been proven yet, there have been, however,
a large amount of work done in this context (see, e.g. Jacobson and Sotiriou, 2010; Saa
and Santarelli, 2011; Li and Bambi, 2013; Düztaş et al., 2020; Barausse et al., 2010; Rocha
and Cardoso, 2011; Shaymatov et al., 2015; Sorce and Wald, 2017; Shaymatov et al., 2019,
2020b; Gwak, 2018; Shaymatov et al., 2020a; Jiang and Zhang, 2020; Yang et al., 2020).

2 AXIALLY SYMMETRIC GRAVITATIONAL COMPACT OBJECTS

The axial symmetry, e.g., rotation of the central gravitational object, makes the gravitational
field equations very complicated to obtain their exact solutions. In fact, the well-known
Kerr (Kerr, 1963), Carter (Carter, 1968) and the Kerr-de Sitter (Carter, 1973) spacetime
metrics have been known as external vacuum solutions, and they refer to partial solutions
and correspond to a special kind of gravitational source. These solutions are associated with
the gravitational field of a rotating uncharged or charged black hole, respectively (Carter,
1971). However, the exact interior solutions of gravitational field equations that can serve
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as the basis for any significant physical model of a rotating body have not yet been obtained.
Hence, possible non-trivial results related to the interior solution being established even
before solving the Einstein equations on the basis of only the equations of motion represent
a definite value.

The established nature of pure rotation of the source having only single axis means that
the quadratic form has axial symmetry and does not depend on time. Therefore, there is a
frame of reference in which coordinates x0, r, θ, and ϕ can be entered, thereby reflecting
the time and axial symmetry of the metric in an explicit form. Having assumed precisely
this nature of the coordinates and the frame of reference, in the general case, both in the
inner and outer regions, the quadratic form for line element can be given as follows (Arifov,
1983):

ds2 = −(dx0)2 + D(dx0 + E sin2 θdφ)2 + Fdr2 +Gdθ2 + H sin2 θdφ2, (1)

where D, E, F, G, and H are unknown functions depending only from r and θ coordinates.
The rotating black hole metric in Boyer-Lindquist coordinates, in particular, can be re-

duced to the following form

ds2 = − (dx0)2 +
χr

r2 + a2 cos2 θ

(

dx0 + a sin2 θdφ
)2
+

r2 + a2 cos2 θ

r2 − χr + a2
dr2+

(

r2 + a2 cos2 θ
)

dθ2 +
(

r2 + a2
)

sin2 θdφ2 , (2)

with χ being a constant having same meaning as in the Schwarzschild solution, with con-
stant a is related to the total angular momentum of the rotating massive body.

At this stage we write the non-zero components of the metric tensor corresponding to
the form (1) as

g00 = − (1 − D) , g03 = DE sin2 θ , g11 = F , g22 = G ,

g33 =
(

DE2 sin2 θ + H
)

sin2 θ , (3)

and non-zero inverse components are

g00 = −
1

N

(

DE2 sin2 θ + H
)

, g03 =
1

N
DE , g11 =

1

F
, g22 =

1

G
,

g33 =
1

N sin2 θ
(1 − D) sinθ , g = −NGF sin2 θ , (4)

with N = DE2 sin2 θ + H (1 − D).
It is worth noting that the axial symmetry of the spacetime metric (1) allows its simplifi-

cation. Using two arbitrary coordinate transformation functions

r → r′ = r′(r, θ) , and θ → θ′ = θ′(r, θ) , (5)

one of the functions D, E, F, G and H, or any combination of them can be reduced to a
predetermined function, while maintaining the orthogonality of the transformed r′ and θ′
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axes, namely the equality of the component g′12. Further simplification is no longer pos-
sible. In the general case, the symmetry of the problem requires finding four independent
functions included in the metric (1) and depending on two arguments.

If we introduce the notation for the derivatives

X′ =
∂X

dr
and Ẋ =

∂X

dθ
, (6)

the non-zero components of the Christoffel symbols take the form:

Γ0
01 =

1

2N

(

D2EE′ sin2 θ − HD′
)

,Γ1
00 = −

D′

2F
,

Γ0
02 =

1

2N

[(

Ė sin θ + 2E cos θ
)

D2E sin θ − HḊ
]

,Γ2
00 = −

Ḋ

2G
,

Γ0
13 =

sin2 θ

2N

[

D2E2D′ sinθ +DEH′ − H (DE)′
]

,

Γ0
23 =

sin2 θ

2N

[(

Ė sinθ +2E cos θ
)

D2E2 sin θ + DEḢ − H
(

ḊE
)]

,

Γ1
03 = −

sin2 θ

2F
(DE)′ ,Γ2

03 = −
sin θ

2G

[(

ḊE
)

sin θ + 2DE cos θ
]

,

Γ3
01 = −

1

2N

[

(DE)′ − D2E′
]

, Γ1
11 =

F′

2F
, Γ1

12 =
Ḟ

2F
,

Γ3
02 =

1

2N

[(

ḊE
)

− D2Ė + 2 (1 − D) DE cot θ
]

, Γ1
22 = −

G′

2F
,

Γ1
33 = −

sin2 θ

2F

[(

DE2
)′

sin2 θ + H′
]

, Γ2
11 = −

Ḟ

2G
, Γ2

22 =
Ġ

2G
, Γ2

12 =
G′

2G
.

(7)

A frame of reference, in which the quadratic form for a rotating body can be reduced
to the one in (1), is characterized by a complex motion of its components. Their absolute
acceleration, wµ = uµ;νu

ν (where uµ is the 4-velocity), is given by

w0 = w3 = 0 , w1 = −
D′

2 (1 − D)
and w2 = −

Ḋ

2 (1 − D)
, (8)

which are everywhere orthogonal to the family of hypersurfaces D = const. The non-zero
components of the rotation tensor, A = 1

2

(

uµ,ν − uν,µ + uµwν − uνwmu

)

, take the forms:

Aoi = A12 = 0 , A13 =
1

2

(DE)′ − D2E′

(1 − D)3/2
sin2 θ ,

A23 =
1

2

(

ḊE
)

− D2Ė

(1 − D)3/2
sin2 θ +

DE
√

1 − D
sin θ cos θ . (9)

The family of hypersurfaces being everywhere orthogonal to the direction of rotation com-
ponents of the reference frame satisfies the following equation:

dr

dθ
=

A13G

A23F
. (10)
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For Kerr metric, in particular, the solutions of this equation belongs to the family

r2 + a cos θ (a cos θ − const) = 0 , θ !
π

2
, (11)

with equatorial hypersurface θ = π/2.
Let the internal state of the source be described by the energy-momentum tensor T µν =

(ρ + p) uµuν + pgµν of an ideal fluid, the pressure and energy density. In the coordinates
given in (1), we have the 4-velocity components u1 and u2 of the source being equal to zero,
and if we introduce the following notation

dφ

dx0
= ω(r, θ) , (12)

then non-zero component becomes

u3 =
dφ

dσ
= ωu0 , (13)

where σ refers to the source’s proper time.
From the above 4-velocity components uµ{u0, 0, 0,ωu0} and uµ{u0, 0, 0, u3} respectively
read

u0 =

√

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ , (14)

and

u0 = −
1 − D

(

1 + ωE sin2 θ
)

√

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

,

u3 = −
DE sin2 θ

(

1 + ωE sin2 θ
)

+ ωH sin2 θ
√

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

. (15)

The internal state of the source is determined by three functions ρ, p and ω as a function
of r and θ, and two of them are independent, i.e. ρ (or p) and ω. From all type of axial
rotation bodies, solid-body rotation must be distinguished in the case in which a = const.
In this case and in its own reference frame, both conditions imposed on the quadratic form,
namely, stationarity and axial symmetry, can be expressed explicitly. Indeed, the transition
φ → φ + ωx0 to its own reference frame, in which u3 = 0, does not change the quadratic
forms (1). This is due to the fact that the relative distances between elements of a source
rotating as a solid body remain unchanged. If the rotation of the gravitating object main-
taining axial symmetry does not obey the solid angle law, then in its own frame of reference
the metric can preserve axial symmetry in an explicit form, but can lose the explicit expres-
sion of the stationarity property. The metric already depends on time in its own frame of
reference. The change in the relative distances between the elements of the source at con-
stant coordinates assumes the metric tensor in its own reference frame. Equations (14) and
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(15) retain their form for solid body rotation and in own reference frame if one formally
sets ω = 0.

At this stage we find out what restrictions are imposed by the equations of motion,
T µν;ν = 0, on the internal functions ρ, p and ω of the rotating body. Two of the four
equations of motion corresponding to the coordinates x0 and ϕ are satisfied identically.
The other two equations are given by:

p′ =
1

2
(ρ + p)

D′ + 2ω (DE)′ sin2 θ + ω2
(

DE2 sin2 θ + H
)′

sin2 θ

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

, (16)

ṗ =
1

2
(ρ + p)

Ḋ + 2ω
˙(

DE sin2 θ
)

+ ω2 ˙[(

DE2 sin2 θ + H
)

sin2 θ
]

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

. (17)

The above equations can be rewritten as follows:

dp

ρ + p
=dLog

[

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sinθ

]−1/2

−
DE sin2 θ

(

1 + ωE sin2 θ
)

+ ωH sin2 θ

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

dω . (18)

From above the left side is, according to the thermodynamic equation of state, the total
differential function

∫

dp

ρ + p
, (19)

which is solved further for an incompressible ideal fluid and since the first term on the right
is also a total differential, the second term on the right can then only be a total differential
of some function r and θ in the case of ω(r, θ) ! const. This would be possible if and only
if the factor in front of dω depends on ω and does not explicitly depend on r and θ, i.e.,

DE sin2 θ
(

1 + ωE sin2 θ
)

+ ωH sin2 θ

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

= b(ω) , (20)

where b(ω) is an arbitrary function. The above equation (20) establishes an algebraic re-
lationship between four functions of coordinates r and θ, i.e, ω, (1 − D), DE sin2 θ and
(

DE sin2 θ + H
)

sin2 θ. However, in the case of rotation of the gravitating body, there ap-
pears no such dependence. The equations of motion are thus given by,

exp

[
∫

dp

ρ + p
+

∫

b(ω)dω

]

=
const

√

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

, (21)
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if ω(r, θ) ! const while

exp

[
∫

dp

ρ + p

]

=
const

√

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

, (22)

if ω = const.
For an incompressible ideal fluid ρ = const, for example, the equations of motion are

completely integrated by

ρ + p =
const

√

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

. (23)

The hypersurface, on which the pressure is constant, is called equipotential. The section
of the equipotential hypersurface of the coordinate hyperpsurface x0 = const obviously
refers to the closed surface. Equipotential hypersurfaces form, according to (21-22), a one-
parameter family.

Theorem 1

The boundary of an axially rotating body is an equipotential hypersurface, on which the
pressure is zero. The shape of the border is determined by

[

1 − D
(

1 + ωE sin2 θ
)2
− ω2H sin2 θ

]

exp

{

−2

∫

b(ω)dω

}

= const , (24)

if ω(r, θ) ! const while

D
(

1 + ωE sin2 θ
)2
+ ω2H sin2 θ = const , (25)

in the case of solid body rotation.
A certain correspondence can be established between the distribution functions of pres-

sure and mass density of rotating and non-rotating bodies.

Theorem 2

For each given equation of state of matter of an axially rotating body and given distribution
of the angular velocity ω in the quadratic frame of reference (1) there exists such a coordi-
nate grid that the distribution functions of pressure, density of the number of particles, and
density of mass-energy coincide with the corresponding functions of a non-rotating body
in a quadratic reference frame, and the boundaries of the body are coordinate hypersurfaces
r = const.

3 CONCLUSIONS

In this work, we have discussed general form of axial symmetric spacetime which could be
applied to the possible solutions of field equations in various extended theories of gravity.
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We have seen in the above that the general solution of Einstein’s equations for a stationary
axially symmetric source, the equation of state and the distribution of the angular velocity
of rotation of the substance given, and the boundaries being free correspond to two types of
the structure of the source. The first type of sources represents only one external solution
having free boundary for which pressure and density of mass and number of particles take
a maximum value in the center and fall monotonically towards the boundary. Another
type of sources has two, internal and external, boundaries at which the pressure is equal
to zero; a cavity free from matter and thermal radiation from the source, with a singular
time-like world line in the center and the pressure and density of the mass and number of
particles take maximum values at the critical hypersurface and fall monotonically towards
both boundaries. As a consequence of the analysis we showed that it is possible to have
only an external solution associated with rotation parameter and realized that it is however
impossible to obtain interior solution in the case of rotation.
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ABSTRACT
The standard scenario of a geometrically thin, planar accretion disk can be violated
by a number of e↵ects that must operate in astrophysically more realistic schemes.
Even within a highly simplified framework of an axially symmetric (2D), steady,
Keplerian accretion, the radial structure can be di↵erent from the predictions of the
classical Shakura-Sunyaev theory. In this contribution, we consider stars and stellar-
mass black holes that can be embedded within the accretion disk, where they can
induce the formation of gaps in the radial density profile. We focus on the theoret-
ical profiles of a spectral line produced by reflection of the surface of both gappy
accretion disk and a ring-like structure near a black hole. We describe the relativis-
tic e↵ects in an approximative manner. While a smooth accretion disk leads to a
typical, double-horn shape with unequal wings due to Doppler boosting and an ad-
ditional peak due to the lensing amplification at high inclination angle, the gaps and
rings give rise to a more complex dependence which reflects the location and the
radial extent of the inhomogeneities in the accretion flow.

Keywords: black holes – accretion disks – radiation

1 INTRODUCTION

Vigorous accretion of matter onto a supermassive black hole is the most essential charac-
teristic of Active Galactic Nuclei (AGN; Peterson, 2009). While astrophysical black holes
are described by only two parameters, mass M and angular momentum J (Misner et al.,
1973), parameters of the gaseous flow are countless. They can span a very wide range
of values depending on the AGN type, which is determined mainly by the surrounding
cosmic environment. Especially the accretion rate, Ṁ, and its e�ciency, ⌘, are crucial.
However, also the geometry of the accretion flow plays an important role. We start our
discussion by assuming hydrodynamical accretion structure, where the flow maintains a
standard-type, planar, geometrically thin accretion disk (cf. Shakura and Sunyaev, 1973;

978-80-7510-433-5 © 2020 – SU in Opava. All rights reserved. ‰y ‰‰ ‰y ÂÂ ? o n 6

http://www.opava-city.cz/
stolcml@gmail.com
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Page and Thorne, 1974), or a more luminous slim accretion disk (Abramowicz et al., 1988;
Narayan and Yi, 1994)) with higher luminosity and non-negligible thickness in the vertical
direction. Properties of the system are further defined by the central black hole: the Kerr
metric with the outer radius of the event horizon and the spin parameter a ⌘ J/Mc2. Also
the presence of an outflow or a magnetized jet emanating along the rotation axis will needs
to be taken into account in radio loud AGN (see Boettcher et al., 2012 for a review).

We start our discussion by assuming the standard, stationary and axially symmetric ac-
cretion flow orbiting at Keplerian velocity in the equatorial plane. The continued accretion
maintains a certain level of activity of the system. We neglect the e↵ects of self-gravity of
the accretion flow, which might lead to the development of density enhancements (“plan-
ets”) in some locations, however, we consider the presence of a body which orbits at a
certain radius in the plane and represents an embedded star, which had formed within the
disk or whose trajectory became inclined into the accretion disk by the preceding orbital
evolution (Collin and Zahn, 1999; Karas and Šubr, 2001). Depending on the system pa-
rameters, the star may or may not induce a radial gap in the accretion disk.

We assume that the star orbital evolution starts at a larger distance (at the grinding radius,
Syer et al., 1991) which is the distance where the orbit is dragged into the disk plane. Then
it proceeds gradually down to smaller radii. The time-scale of the process depends on the
accretion disk parameters (esp. the accretion rate, Ṁ), parameters of the star (radius R?,
mass M?), and those of the central black hole. Depending on these parameters the orbital
evolution is dominated by losses of orbital energy and orbital angular momentum of the
star via density waves, gap formation, or gravitational waves (relevant just very close to
BH; see e.g. Ward, 1986; Artymowicz, 1994; Karas and Šubr, 2001; Narayan, 2000) .

Indeed, gaps in gaseous disks are often explained by the presence of embedded bodies
- stars and planets. They form due to the action of Lindblad and viscous torques (e.g. Lin
and Papaloizou, 1986, and subsequent citations) and they can deepen by consuming the
gas (Lubow and D’Angelo, 2006; Rosenthal et al., 2020). Vice versa, as an embedded star
proceeds closer to the critical radius, it can act as a source of material for the accretion disk
in the moment of its tidal disruption or partial tidal disruption (Hills, 1975; Rees, 1988).

Recent observations hint that the gap formation might be revealed via the sudden trans-
formation of the X-ray properties of AGN (Ricci et al., 2020). These events o↵er a way to
peer into change of the nature of radiative processes such as tidal disruption. Furthermore,
Gültekin and Miller (2012) show that the theoretical study of the spectral energy distribu-
tion (SED) o↵ers a way of accretion disk structure diagnosis, such as gaps in the inner disk
in case of the black hole merger.

A gappy structure of accretion disks may actually be universal during the system evolu-
tion. This is, on one hand, related to the structure formation in the Universe, when frequent
merger events during the peak of the quasar activity, led to the formation of supermassive
black hole binary and triple systems. Before the black hole merger, a formation of a gap
or at least a crescent in the disk is natural (Gültekin and Miller, 2012). A second scenario
does not even depend on the presence of other bodies around the primary black hole. It is
generally believed that accretion flows undergo transitions in basic magneto-hydrodynamic
properties – the thin cold disk is located towards the outer parts of the accretion flow, while
in the inner parts, hot diluted advection dominated accretion flows (ADAFs) are present
(Yuan and Narayan, 2014). The ADAF part can be expanding or contracting, which leads
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to the shift of the source position in the X-ray hardness–luminosity diagram (“q-shaped”
or “turtle-head” diagram, Fender et al., 2004; Svoboda et al., 2017). The truncation radius
where the thin disk transforms into the hot diluted flow shrinks with the increasing accre-
tion rate Ṁ (Esin et al., 1997; Narayan and McClintock, 2008; Yuan and Narayan, 2014).
Given that ADAFs have significantly lower densities than thin cold disks, they could be
perceived as evolving “gaps” in the disk.

2 MODEL

Stars can get on bound orbits close to the central supermassive black hole by two dynamical
channels (Mapelli and Gualandris, 2016):

(1) in-situ formation, where stars form locally in a non-standard way from a denser gas,
(2) migration scenario, in which stars form at larger distances and migrate inwards via

a fast dynamical process.

Both processes likely contributed to the build-up of the nuclear star cluster at the cen-
ter of the Milky Way, which is one of the densest stellar clusters in the Galaxy and an
ideal testbed for studying stellar dynamical processes close to the supermassive black hole
(Schödel et al., 2014; Alexander, 2017). In the first in situ scenario, stars can either form
in the outer parts of an accretion disk or in the infalling molecular cloud that undergoes a
disruption. In the second migration scenario, stars are brought to the black hole in the in-
falling stellar cluster. In addition, the disruption of a binary on an eccentric orbit, so-called
Hills mechanism, is a special case of the migration mechanism. In the following, we use
the second migration scenario to illustrate how a group of stars can get aligned with the
accretion disk plane and subsequently perturb its structure.

The stochastic perturbations of the trajectory of a stellar cluster can cause it to wan-
der into the Galactic centre where it becomes gravitationally bound to the supermassive
black hole at its centre. The star cluster then orbits the supermassive black hole with its
constituents (stars) crossing the accretion disk during each passage (e.g. Šubr and Karas,
1999; MacLeod and Lin, 2020). The repetitive intersections of stars and the accretion disk
together with the drag of the accretion disk induce that the stars with non-zero inclination
converge onto the orbital plane of the accretion disk. In addition, once in the orbital plane,
the high-eccentric trajectories get circularized. That leads to the power-law change of the
star cluster distribution (Karas and Šubr, 2001).

In the following, let us define the e↵ective radius of a star, Rinf?. This is a length-scale
where the stellar gravitational or the magneto-hydrodynamic influence prevails over that of
the black hole gravitational influence or the accretion disk total pressure (ram+thermal+
magnetic pressure), respectively. The ratio of the sphere of the influence of the star and
the accretion disk scale-height Rinf?

H predisposes the ability of the star to form a gap or not
with the basic condition Rinf?

H & 1 and Rinf?
H < 1, respectively. In the latter case, the stars get

engulfed by the accretion disk gas while co-rotating with it and will eventually give rise to
density waves propagating through the disk. The stellar influence radius also depends on
the sense of the orbital motion. For wind-blowing stars, it is larger for stars co-rotating with
the disk and smaller for stars counter-rotating. For the counter-rotating wind-blowing stars,
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the stagnation radius gets smaller because of the larger relative velocity. The ratio of the
stagnation radii between the co-rotating and the counter-rotating orbits can be expressed as
Rc

stag/R
cc
stag ⇠

p
4⇣2 + 1 > 1, where ⇣ = vK/cs is the ratio of the local Keplerian velocity to

the local sound speed. On the other hand, for the objects without any type of the outflow
(e.g. stellar black holes), the counter-rotating orbits with respect to the accretion disk are
expected to have a larger tidal Hill radius by a factor of as much as Rcc

H /R
c
H ⇠ 32/3 ⇠ 2.08

(for circular orbits) in comparison with perturber orbits co-rotating with the disk material
(Innanen, 1979; Zajaček et al., 2014). These estimates of tidal radii are based on the simple
particle approximation and will be investigated in detail in our future studies.

Figure 1. Two examples illustrate how we describe gaps in the model of a gappy accretion disk
spectral line: model A (narrow gaps within the disk; see the top panel) in comparison with a ring-like
structure in B (wide intervals separate rather narrow accretion rings; see the bottom panel). The black
point marks the position of a supermassive black hole; the black vertical line is the ISCO radius.

We build upon the earlier results of Štolc et al. (2020) (in prep.), where we simulated the
spectral line profiles with an accretion disk having only one gap. In our current toy model,
we we allow the concurrent existence of multiple gaps. Thus, we divide our study into two
scenarios – a gappy accretion disk (model A) and ring-like accretion disk (model B) based
on the size of the gaps (see Figure 1). In other words, the extreme case of A would be
the smooth disk, where the gaps disappear, whereas the extreme B case just corresponds to
several narrow rings separated from each other (Sochora et al., 2011).

3 METHODOLOGY AND RESULTS

In our model, we assume the supermassive black hole to be of Schwarzschild type, which
corresponds to the case of a vacuum metric solution outside of an object with the electric
charge and the angular momentum equal to zero. We further consider the whole system to
be immersed in high-energetic medium – corona. The intrinsic profile of radiation reflected
on an accretion disk depends on the ratio of size of the accretion disk and the corona R

Rc
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(Fabian et al., 1989). Fabian et al. (1989) show that the dependence of the intrinsic profile
of the reflected radiation is / 1

R2 for the ratio R
Rc
⇡ 1 and / 1

R3 for the ratio R
Rc
> 1.

Calculation of the monochromatic flux of radiation reflected on an accretion disk follows
from the general definition (e.g. Hubený and Mihalas, 2014),

Fi
⌫ =

Z
I⌫(nx, ny, nz)nid⌦, i = 1, 2, 3 (1)

integrating over all solid angles. The matter distribution in our model corresponds to the
standard Shakura-Sunyaev thin disk scheme (cf. Shakura and Sunyaev, 1973; Page and
Thorne, 1974). Adopting the axial symmetry of the system (@' = 0) the eq. (1) reads as

F⌫ ⇡
Z

I⌫ dS , dS = R dR dd'. (2)

To get observed values of the monochromatic flux of radiation we have to use the Liou-
ville’s theorem that is referencing the special relativistic relation between observed and
emitted intensity and frequency as

Iobserved

Iemitted
=
⌫3observed

⌫3emitted

. (3)

The ratio of observed and emitted frequency defines the gravitational redshift

g =
⌫observed

⌫emitted
. (4)

Combining the eq. (2), (3) and (4) we get the expression for the observed monochromatic
flux of radiation as

Fobserved ⇡
Z
⌫3observed

⌫3emitted

IemitteddS =
Z

g3Iemitted dS , dS = R dR d'. (5)

Assuming the supermassive black hole in our simulations to be a Schwarzschild black hole
we use the redshift factor accounting not only for the special relativistic e↵ect but for the
gravitational light-bending as well. The redshift factor then reads as (Pecháček et al., 2005)

g(R,', I) =
p

R(R � 3)

R + sin(') sin(I)
p

R � 2 + 4(1 + cos(') sin(I))�1
(6)

with R, ' and I as radial co-ordinate, azimuthal co-ordinate and inclination respectively.
In order to observe both special and general relativistic e↵ects of the simulated spectral
line profiles more clearly we limit our calculations in sense of radial extent of the accretion
disk, i.e. the range of radial co-ordinate is (6Rg, 100 Rg).

The following plots examine the background-subtracted spectral features, so the under-
lying continuum is neglected. Figures 2–7 show the comparison of the spectral line profile
for both models A and B (with gaps) with the intrinsic profile of reflected radiation as / 1

R2

and / 1
R3 from the entire disk (without gaps, i.e., unperturbed). Red dashed vertical line

marks the intrinsic frequency.
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The spectral line profiles are quite narrow which is caused due to the lower value of
inclination as 35 deg (see Figures 2–3). We observe the decrease of the radiation flux of the
spectral line in the model B compared to the model A. We can also notice that the number
of peaks in the spectral line of the perturbed accretion disk is three times more that of the
case involving the unperturbed accretion disc.

Figure 2. Comparison of spectral line profiles for model A (left panel) and model B (right panel)
with intrinsic intensity I⌫ / 1

R2 . The view angle is 35 deg.

Figure 3. The same as in the previous figure but for I⌫ / 1
R3 .

Changing the value of the inclination to 60 deg and 85 deg (see Figures 4–5 and Figures
6–7, respectively) the spectral line profiles get more stretched. Hence we observe the de-
crease of the of the radiation flux in the spectral line of model B compared to model A more

‰y ‰‰ ‰y ÂÂ ? o n 6



From gappy to ringed: spectral line profile analysis 293

clearly as it spans across bigger region of observed frequencies. The number and positions
of the spectral line peaks are more distinguishable as well.

Figure 4. Comparison of spectral line profiles for model A (left panel) and model B (right panel)
with intrinsic intensity I⌫ / 1

R2 . The view angle is 60 deg.

Figure 5. The same as in the previous figure but for I⌫ / 1
R3 .
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Figure 6. Comparison of spectral line profiles for model A (left panel) and model B (right panel)
with intrinsic intensity I⌫ / 1

R2 . The view angle is 85 deg.

Figure 7. The same as in the previous figure but for I⌫ / 1
R3 .

The spectral line profiles for the model B show overall less radiation flux than the spectral
line profiles for the model A, independent on the intrinsic radiation intensity of the reflected
radiation. That is to be expected as the area of reflection medium in model B is smaller than
the area of reflection medium in model A. The number of peaks in both model A and model
B equals to 6. That is a direct result of superposition of 3 spectral line profiles coming from
the 3 individual “sub-disks” of the former unperturbed accretion disk structure.
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4 DISCUSSION AND CONCLUSIONS

Our plots of the model reflection line show how the growing number of gaps in the accretion
disk, their radial position and width lead to a growing complexity of the spectral profile,
namely, the number of peaks compared to an unperturbed case. The latter exhibits just two
peaks of the classical double-horn shape depending on the observer’s view angle (Karas
et al., 1992). To be more specific in our examples, we expect that number N of gaps, will
result in spectral line profile with (2N + 2) peaks (in the above given example, e.g., N = 2
translates to 6 peaks). Changing from the model A to B we clearly observe this developing
spectral feature together with the decrease in the radiation flux.

The model A could correspond to a binary star being trapped by the supermassive black
hole potential. After the component separation of the binary system they both subsequently
induce gaps, given the condition Rinf?

H & 1 holds for each one. The accretion disks on the
verge of collapse due thermal or viscous perturbations tend to form rings and dissolve (e.g.
Frank et al., 2002). This rather short stage transition would be in agreement with the model
B that we propose.

We defer the study of astrophysically realistic interpretation of gap sizes together with
respective timescales (e.g. Takeuchi et al., 1996) which will require taking into account the
gravitational sphere of influence of a smaller body in face of perturbations from a more
massive one, as governed by the Hill or Bondi-Hoyle-Lyttleton radii, respectively. Further
analysis will have to consider the interaction of both the stellar wind and the magnetosphere
with the accretion disk’s gas (e.g., Zajaček et al., 2015, 2016), so the radius of sphere of
influence of a star should then lead to the formation of relatively wide gaps.
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Karas, V. and Šubr, L. (2001), Orbital decay of satellites crossing an accretion disc, A&A, 376, pp.

686–696, arXiv: astro-ph/0107232.
Lin, D. N. C. and Papaloizou, J. (1986), On the Tidal Interaction between Protoplanets and the Pro-

toplanetary Disk. III. Orbital Migration of Protoplanets, ApJ, 309, p. 846.
Lubow, S. H. and D’Angelo, G. (2006), Gas Flow across Gaps in Protoplanetary Disks, ApJ, 641(1),

pp. 526–533, arXiv: astro-ph/0512292.
MacLeod, M. and Lin, D. N. C. (2020), The E↵ect of Star-Disk Interactions on Highly Eccentric

Stellar Orbits in Active Galactic Nuclei: A Disk Loss Cone and Implications for Stellar Tidal
Disruption Events, ApJ, 889(2), 94, arXiv: 1909.09645.

Mapelli, M. and Gualandris, A. (2016), Star Formation and Dynamics in the Galactic Centre, volume
905, p. 205.

Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973), Gravitation (San Francisco: W.H. Freeman
and Co).

Narayan, R. (2000), Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole,
ApJ, 536(2), pp. 663–667, arXiv: astro-ph/9907328.

Narayan, R. and McClintock, J. E. (2008), Advection-dominated accretion and the black hole event
horizon, NewAR, 51(10-12), pp. 733–751, arXiv: 0803.0322.

Narayan, R. and Yi, I. (1994), Advection-dominated Accretion: A Self-similar Solution, ApJL, 428,
p. L13, arXiv: astro-ph/9403052.

Page, D. N. and Thorne, K. S. (1974), Disk-Accretion onto a Black Hole. Time-Averaged Structure
of Accretion Disk, ApJ, 191, pp. 499–506.
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ABSTRACT
The close neighbourhood of a supermassive black hole contains not only accreting
gas and dust, but also stellar-sized objects like stars, stellar-mass black holes, neutron
stars, and dust-enshrouded objects that altogether form a dense nuclear star-cluster.
These objects interact with the accreting medium and they perturb the otherwise
quasi-stationary configuration of the accretion flow. We investigate how the passages
of a star can influence the black hole gaseous environment with GRMHD 2D and
3D simulations. We focus on the changes in the accretion rate and the associated
emergence of outflowing blobs of plasma.

Keywords: black holes – accretion, accretion disks – active galactic nuclei

1 INTRODUCTION

In the supermassive black hole environment we can expect and in the case of our Galactic
center even observationally resolve the presence of stars that form a dense nuclear star-
cluster (Peißker et al., 2020 and references theirein). We can only deduce the number
of neutron stars, stellar-mass black holes and other stellar-sized objects originating as an
inevitable outcome of the stellar evolution and the feedback processes (Neumayer et al.,
2020). If they are indeed embedded in the accretion flow, the mutual interaction between
those objects and gas can lead to observable effects, in particular the changes in accretion
rate, ejection of plasma blobs and the redistribution of accreting gas. This should then lead
to temporal changes of the outgoing radiation.

In the present work we assume that the averaged accretion flow is centered on the plane
perpendicular to the rotation axis of the central black hole (the equatorial plane). The
field of the black hole is described by the Kerr metric (Misner et al., 1973). While the
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gravitational field of the black hole obeys the conditions of axial symmetry and stationarity,
the accretion flow can be highly turbulent and non-stationary (Kato et al., 2008).

The motion of stars and the resulting impact on the accretion flow can reveal signatures
of the orbital period at the corresponding radius (Karas and Vokrouhlický, 1994; Pihajoki,
2016). Therefore, we explore in our contribution the impact of the passages of stars through
the accreting medium. We want to understand the effects that this may have on the accretion
rate, and we explore whether a fraction of the material can be set on escaping trajectories.

2 SET-UP OF THE NUMERICAL PROCEDURE

We perform global general-relativistic magneto-hydrodynamical (GRMHD) simulation within
the assumed fixed spacetime metric. We compare the results obtained in 2D and 3D
simulations of the flow using the publicly available code HARMPI (Ressler et al., 2015;
Tchekhovskoy et al., 2007). The adopted numerical tool is based on the original HARM
code (Gammie et al., 2003; Noble et al., 2006), which we have modified in order to explore
the effects of mutual interactions between the gaseous medium and the transiting body of
a star. The code uses a conservative, shock-capturing scheme with a staggered magnetic
field representation and adaptive time step ∆t.

We follow the evolution of gas under the assumption of vanishing resistivity and the
polytropic equation of state p = Kργ with the adiabatic index γ = 13/9. The background
spacetime is described by the Kerr metric with the spin parameter a = 0.5 (for definiteness
of the example), using the modified Kerr-Schild coordinates penetrating below the horizon
(Misner et al., 1973). We defined the grid with logarithmic spacing in the r-direction in
such a way that there are always at least 5 cells below the horizon. In the θ direction,
the grid is concentrated along the equatorial plane (Tchekhovskoy et al., 2011). Thanks
to the non-uniform spacing of the grid, we have higher resolution in the region of interest
and we do not need to employ the mesh refinement. The outer boundary of the grid is set
at Rout = 2 · 104 M. For more details of the numerical setup, see the forthcoming paper
(Suková et al., 2021, work in progress).

3 RESULTS

We present preliminary results from several computational runs that complement a more
detailed discussion in (Suková et al., 2021, work in progress). In the latter paper we ex-
plore the role of the shape and orientation of the stellar orbits, while here we focus more
on the effects of the resolution of the computational grid and the exact realisation of the
body moving through the gaseous medium. Hence, we will be able to better constrain the
possible uncertainties in our results.

3.1 Effects of the grid resolution

The resolution of the grid influences our simulations in two ways. First, the resolution is
crucial to capture the MRI in the flow, thus the accretion rate and the complexity of the
flow are affected. Second, the exact description of the star, its shape and minimal possible
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Figure 1. The radial (top) and angular (bottom) profiles of averaged density 〈ρ〉(θ,φ) (r) and 〈ρ〉(r,φ) (θ).
The dashed lines show the profile at tin = 25000 M for LR (purple), FR (green) and HR (blue) runs;
the solid lines are computed at tf = 50000 M.

diameter are constrained by the resolution. Because we let the torus evolve before turning
on the perturbation, the state of the flow at the moment when the star starts to orbit the
black hole is not the same as the initial conditions. Therefore we first explore the effect of
the resolution on the non-perturbed evolution, and we turn to the study of how the action
of the star depends on the resolution afterwards.

3.1.1 Non-perturbed evolution of the accretion flow

Additionally to the 2D runs presented in (Suková et al., 2021, work in progress), which
were computed with the fiducial resolution (FR) of nr = 252, nθ = 192, we present here
also the results of runs in the low resolution (LR) of nr = 192, nθ = 144, and the high
resolution (HR) set-up of nr = 384, nθ = 288. We initialized the computation with the same
parameters for each resolution, which is the torus from the family of solutions introduced by
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Figure 2. Time dependence of accretion rate Ṁ is plotted for the non-perturbed runs with LR (pur-
ple), FR (green) and HR (blue). Frequent, intermittent fluctuations are characteristic.

Witzany and Jefremov (2018) with κ = 7.61, l0 = 8.46098 M stretching from rmin = 20 M to
rmax = 90 M. The torus is threaded by a poloidal magnetic field with field lines that follow
the isocontours of density; the gas to magnetic pressure ratio equals to β = pg/pm = 100.
The star is described as a gradual perturbation (GP) contained within the full star volume
(see Section 3.2.2 for further details).

We check the ability to describe the MRI in our computations in the following way.
At the radius of the density maximum in the initial state we find how many cells Nθ in
θ direction are used to cover the density scale height H, which is defined as the height
at which the density decreases to ρmax/e. This number turns out to be Nθ = 20 for LR,
Nθ = 28 for FR and Nθ = 42 for HR. Then, according to Hawley et al. (2011) the quality
Qz of the resolution of the unstable MRI modes is estimated as

Qz ! 0.6 Nθ

(

100

β

)1/2














〈v2
Az〉

〈v2
A
〉















1/2

, (1)

where vA ∝ B/
√
ρ is the Alfvén speed and vAz its z-component. It is generally required

that Qz ! 10 for a satisfactory resolution of the vertical MRI modes. In our geometry we
have Br ∼ Bθ and Bφ = 0 and thus vAz ∼ vA. Therefore, with our choice β = 100, the value
of Qz ranges between ∼10 and ∼20 for our three resolutions, so all of them should yield
satisfactory MRI evolution.

After the code initialization we let the torus evolve at given resolution. The state of the
torus at tin = 25 000 M is then taken as the initial state for the run with the moving star.
Hence, the shape of the torus and the accretion rate profile just before perturbation also
depend on the resolution. We compare the distribution of matter in the accretion disk by
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means of the averaged densities defined as

〈ρ〉(θ,φ) (r) =

∫ 2π

0

∫ π

0
ρ
√
−g dθdφ

∫ 2π

0

∫ π

0

√
−g dθdφ

, (2)

〈ρ〉(r,φ) (θ) =

∫ 2π

0

∫ Rout

0
ρ
√
−g drdφ

∫ 2π

0

∫ Rout

0

√
−g drdφ

. (3)

The profiles of these quantities at time tin = 25000 M are plotted in Fig. 1 by dashed
lines. While the angular shape of the torus is not affected by the resolution very much
(except of the slightly different normalization), the radial shape of the flow exhibits various
differences. The inner and outer edges of the tori approximately coincide but between them
we observe differently located peaks and dips, which is also linked to slightly different
accretion rates (see Fig. 2). The onset of accretion and the initial rise of accretion rate
is similar for each resolution, the same holds true for the character of the relaxation to a
quasi-stationary level; however, higher resolution shows more variability.

Most interestingly, the run NP-HR exhibits, for a certain time interval, a quasi-periodic
flaring activity. This is due to the fact that during the evolution a dip in density in the torus
forms when the inner part of the torus empties faster than new matter from the outer part
of the torus comes inside. At a certain point, the density in the innermost region decreases
until the flow is completely squeezed out of the equatorial plane and the magnetic field is
reorganized. The reorganization happens at a radius of about ∼ 10 M, where the magnetic
field lines transition into an ordered vertical field that stretches along the symmetry axis
from the bottom to the top of the simulation domain while not intersecting the black hole
(see the first and second row in Fig. 3). At that point a small blob of matter is separated
from the main body of the torus by the reconnected magnetic field lines and then it becomes
quickly accreted into the black hole. The gas pressure at the inner edge of the torus is too
low for the gas to be able to go through the strong magnetic field, hence the torus is detached
from the black hole until new matter piles up and pushes the magnetic field lines back into
the black hole. This repeats several times until the inner part of the torus fills again with
enough gas to sustain stable accretion. Similar behaviour was seen also in some of the
perturbed runs, where the inhibition of the matter inflow is caused by the motion of the
star.

Run ut uφ tend[M] r[M] R[M] resolution

A -0.9557 0.479 5 · 104 10 1 LR, FR, HR
B -0.9761 3.295 5 · 104 15 – 25 1 LR, FR, HR
G -0.9557 0.479 5 · 104 10 0.1 FR, HR

Table 1. Summary of the star’s orbital parameters in perturbed runs used to study the grid resolutions
effects. ut and uφ are the geodesic constants of motion in Kerr spacetime, tend is the final time of the
simulation, r shows the radial range of the orbit, R is the radius of the star and in the last column we
show with which resolution the case was computed.
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Figure 3. Slices from run NP-HR at three time instances t = 69600 M, t = 69600 M and t = 70000 M.
In the first column we show the gas pressure pg, in the middle column the gas to magnetic pressure
ratio β, and in the right column magnetic pressure pm.
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Figure 4. Slices from the simulation G-HR at time t = 30000 M (top) and t = 50000 M (bottom). The
radius of the star R = 0.1 M is on the lower limit constrained by the used resolution. In the top panel
the opening angle (20°) of the funnel on the larger scale is denoted by orange straight line. The bow
shock caused by the moving star can be seen expanding into the black hole and also outwards into the
torus. The star expels gaseous blobs into the funnel. In the bottom panel the reduction of density of
accreting gas below the star orbit is visible. The blobs are still outflowing in a quasi-periodic manner.
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Figure 5. Time dependence of the accretion rate Ṁ for runs G-FR and G-HR. The corresponding
PSD computed from the settled state t ∈ (3.5, 5) · 104 M (bottom).

3.1.2 Interaction of the star with the flow

We chose three different cases of the perturbing star and ran the simulations with LR,
FR and HR. These runs are denoted as A,B and G (in accordance with (Suková et al.,
2021, work in progress)) and the orbital parameters of the star motion for each run are
summarised in Table 1. Orbit A corresponds to a nearly circular orbit going close to the
black hole rotational axis, orbit B is then embedded in the accretion torus. The radius of
the perturbing star is R = 1 M. Orbit G is the same as orbit A, but the radius of the star
is smaller, R = 0.1 M. All the choices of star orbits induced pronounced effects on the
structure of the accreting torus as well as on the time dependence of the accretion rate.

We present slices from the simulation runs which contain three plots. On the first plot on
the left the density ρ in (arbitrary) code units in logarithmic scale is shown, in the middle
plot we show the Lorentz factor Γ of the gas and in the third plot the “outflowing accretion
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rate” is given, as computed according to

Ṁout = ρ
ur

ut

√
−g dθ dφ for Γ > 1.155, (4)

Ṁout = 0 for Γ ≤ 1.155 . (5)

Such definition ensures that we follow only the rapidly outflowing gas in the funnel region
and not the slowly moving gas in the torus. The second and third plots display a larger
portion of the computational grid, however this is still zoom into the inner part of the grid,
which spans up to rout = 2 · 104 M. The example is given in Fig. 4, where the HR version
of run G at time t = 30000 M and at the end of the run t f = 50000 M is shown.

The HR simulation of run G exhibits qualitatively similar results as the FR run, including
the choking of the torus in the innermost part, the consequent decrease of accretion rate by
approximately one order of magnitude, and the existence of blobs of matter outflowing
mainly along the boundary between the funnel and the torus in a quasi-period manner. The
accretion rate and the power spectrum density (PSD) obtained by the Fourier transform of
the accretion rate are plotted in the top and the bottom panels of Fig. 5, respectively. Even
though the FR resolution is barely capturing the star in the grid, the mean value of the
accretion rate decreases in a similar manner in the FR and HR runs. The HR run, however,
exhibits a few larger peaks and one significant drop of accretion rate, while in the FR run
such substantial variability is not seen. In both cases, the PSD shows a pronounced peak
at f = 10−2 M−1, which corresponds to half of the orbital period of the star. We could not
repeat this run with LR, since it has a grid too sparse to capture such a small star.

For runs with star A the accretion rate profile for all the three resolutions is given in
Fig 6. The initial decrease of the accretion rate is similar for each case, however, the LR
run exhibits fewer periodic peaks with a higher amplitude and it settles at a larger accretion
rate than the FR and HR runs. The two runs with higher resolution coincide very well
except of a transient flaring period and a slightly lower mean accretion rate value in the HR
case. The radial and angular distributions of the gas at the end of the run is shown in Fig. 1
with solid lines. While the LR run shows higher peaks and a dip in the center, the shapes of
FR and HR profiles coincide quite well. The quasi-periodic features in the accretion rates
are observable for runs with all resolutions and the power spectra of runs A-FR and A-HR
coincide very well, while in A-LR case the corresponding peaks are weaker.

The FR resolution of run B was found in a substantially flaring state with variations in
the accretion rate spanning more than three orders of magnitude. The computation with LR
shows a similar decrease of the accretion rate as FR, however, only three episodes of big
dips and peaks occurred in this case. The amplitude of the oscillation is almost the same,
while the time duration of the dips is a little shorter than in FR. Interestingly, in the HR
case it also takes a longer time to develop the flaring state and the dips are longer, whereas
the peaks have a similar duration.

3.2 Effect of the used approximation to the star motion

The effect of a solid star equipped with a magnetic field and a stellar wind moving in the
accretion flow is very complicated. We have to simplify the picture to be able to describe
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Figure 6. Time dependence of the accretion rate Ṁ for the runs perturbed by star A with LR (purple),
FR (green) and HR (blue) in the top panel. Bottom panel shows the same for runs with star B (solid
lines) and non-perturbed runs (dotted lines).

such a process in our simulations. We focus on the dynamical effect of the star on the
accreting gas, and we thus neglect the possible feedback of the gas on the star motion
or structure. Therefore, the star can be treated as a test body moving along a geodesic
trajectory. We also neglect the possible accretion of the gas on the star (even if the star
was to be understood as a stellar-mass black hole) or strong wind outflow from the star
that could enrich the accretion flow. Therefore, we consider the star to be only a solid
body, which is pushing the gas along its trajectory. However, still several different simple
approximations of this scenario can be used. Here we compare results from the so-called
impulse approximation and a gradual perturbation of the gas by the moving star. We use
the fiducial resolution nr = 252, nθ = 192.
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3.2.1 Impulse approximation

The most simplistic approach is the so-called impulse approximation (IA), where the transit
of the star is simulated such that the gas in the tube corresponding to the volume through
which the star moves gets the impulse by the star at the moment when the star passes
through the equatorial plane (Syer et al., 1991; Vokrouhlický and Karas, 1993). This is
a particularly well substantiated description for supersonic transits. We consider a star
moving on a circular orbit, compute its orbital frequency and with this frequency we peri-
odically set the velocity of the gas as equal to the orbital velocity of the star. The perturbed
region is thus described by the following relations,

|(r − rstar)| < R, (6)

|(θ − θstar)| < ∆θ, (7)

tperturb = nTorb. (8)

The free parameter of this approximation is the angular width of the perturbed region,
which we set to two different values: ∆θ = π/4 in run IA-pi/4 and ∆θ = π/64 in run IA-
pi/64. In this way we either perturb almost all gas of the torus along the path of the star in
the former case or only a relatively small region close to the equatorial plane in the latter
case.

3.2.2 Gradual perturbation

The second approach considers a sequential action of the moving star on the gas - we called
it gradual perturbation (GP). We solve the geodesic equation for the star motion along with
the GRMHD evolution of the plasma. Then in each time step we change the velocity of the
gas as equal to the velocity of the star within a region ascribed to the star. In this way we
simulate the fact that the solid body of the star moves in the grid at a given velocity.

Run IA-pi/64 IA-pi/4 A-front face A A-one way

M̄ 3.2 · 10−2 7.8 · 10−2 2.9 · 10−4 2.8 · 10−4 1.3 · 10−4

A 22.5 6.57 2.78 3.17 5.37
f1[ M−1] 0.0049 0.0049 0.010 0.010 0.005
f2[ M−1] 0.0148 0.0099 0.005 0.005 0.010
f3[ M−1] 0.0099 0.0149 0.020 0.020 0.015

Table 2. The mean accretion rate M̄ and the amplitude of oscillations A during the settled state
t ∈ (35000, 50000) M of the runs with different star realisations, for which tend = 5 · 104 M, r = 1M,
R = 1 M with resolution FR. We have 2 runs with the impulse approximation, IA-pi/64 perturbs
cells in an annulus sector with the angular width ∆θ = π/64 and radial width R, while in IA-pi/4 the
annular sector of the perturbed region is much larger (∆θ = π/4). In Run A-front face we perturb cells
in the disc shaped region with ∆θ = π/4 moving along the geodesics, in run A the star is described as
a sphere with radius R. Run A-one way differs from run A in the way that the perturbation is turned

on only when the star moves ”downwards”, that is vθ = dxθ

dt
> 0. The frequencies of the first three

highest peaks in the power spectrum f1, f2, f3 is in the last three rows.
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To study also the effect of the exact shape of the moving body, we set the region corre-
sponding to the star in two different ways:

(1) We consider a disc-shaped region with the radius equal to the star radius, which is
only several zones wide in the θ-direction. Hence, the perturbation is done in the domain
consisting of cells satisfying

|(r − rstar)| < R, (9)

|(θ − θstar)| < ∆θ ∆θ = 4π/nθ = π/48, (10)

where r, θ are BL coordinates of the grid cell center. This corresponds to a ”front face” of
the star moving in the flow and is used in run A-front face.

(2) All grid cells with cell centers located at (r, θ) in BL coordinates occupying the full
volume of the star described in 2D simulations by

(∆x)t
= 0, (11)

(∆x)r
= r − rstar, (12)

(∆x)θ = θ − θstar, (13)

(∆x)φ = 0, (14)

d =
√

gBL
αβ∆xα∆xβ, (15)

d < R (16)

are perturbed. This approach, which we consider as the best available description of the
star, will be used in Suková et al. (2021, work in progress) for all simulations.

The comparison of the aforementioned approaches is done on the example of (nearly)
circular orbit passing perpendicularly through the equatorial plane with rstar = 10 M, which
was with the last realization of the star already shown as run A-FR in Sec. 3.1. All the runs
are initiated with the evolved torus at tin = 25000 M similarly as our other computations
and the fiducial resolution is used. The accretion rates for all types of star realizations are
compared in the top panel of Fig. 7, while the PSD is shown on the bottom panel.

We compare the accretion rate profile, its mean value M̄ and the amplitude of the peaks
computed according to

A = abs

(

max(M) −min(M)

M̄

)

, (17)

where the average, maximal and minimal values are taken from the settled time period
t ∈ (35000, 50000) M. The results are summarised in table 2.

The most prominent difference between the two approaches is seen in the case of IA
used in runs IA-pi/4 and IA-pi/64: the accretion rate decreases only by about one order
of magnitude, while in the case of GP, the accretion rate drops by more than three orders
of magnitude. The temporal profile of the accretion rate shows quasi-periodical structures.
While in all runs, we can clearly see the presence of the orbital frequency of the star, which

!" !! !" ## ? $ % &



Perturbing the accretion flow by a passing star 311

10−5

10−4

10−3

10−2

10−1

100

101

2.5 3.0 3.5 4.0 4.5 5.0

Ṁ
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Figure 7. Time dependence of the accretion rate Ṁ for runs with different star realizations (top). The
corresponding power spectrum is computed from the settled state t ∈ (35000, 50000) M (bottom).

is forb = 4.955 · 10−3 M−1, and its multiples, the peaks of the accretion rate are larger in
case of impulse approximation.

In contrast to the used approximation, the exact realization of the perturbed region does
not affect the results significantly. The accretion rate mean values as well as the frequency
and amplitudes of the oscillations coincide very well for the pairs of runs IA-pi/64 and
IA-pi/4 and A-front face and A. Therefore, the evolution of the gas depends only weakly
on the exact shape of the star, as long as the radius of star remains the same.

3.2.3 One-way transit of the star

Two-dimensional simulations are simplified and incomplete due to the imposed “squeez-
ing” φ (azimuthal) direction into a single 2D slice. This averaging can lead to some artificial
effects in the gas evolution because in reality the star transits through the disc in one di-
rection at one half of the disc and in the other direction in the opposite half of the disc,
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while in our simulations the star passes through the disc in both directions at similar place.
Therefore, we have repeated run A with the complete (3D) geodesic motion, so that the per-
turbation is turned on only when vθ = dxθ

dt
> 0 (that is when the star moves “downwards” in

our slice), which reflects more accurately the local evolution of the gas (run A – one way).
The corresponding accretion rate and its power spectrum are shown in Fig. 7. We can

see that the transient time at the beginning of the simulation lasts longer with quite high
peaks and higher values of the accretion rate, however after ∼ 8000M the accretion rate
drops to even slightly smaller values than in run A. The power spectrum shows that in case
of run A – one way, the most prominent peak with f = 5 · 10−3 M−1 corresponds to the star
orbital frequency, while in case of run A and A – front face the peak at its double value
f = 10−2 M−1 gets more power, which is in accordance with our expectations.

The evolution of the gas shows one interesting feature distinct from the run A, which is
the formation of blobs wrapped in magnetic field-line loops that develop and depart toward
the opposite direction than the motion of the star (i.e. “upwards” – see top panel of Fig. 8).
Later, when the accretion rate decreases, the outflowing blobs of matter proceed asymmet-
rically with respect to the equatorial plane. There are larger blobs going downwards along
the funnel boundary, but there are also fainter blobs moving upwards – see the bottom panel
of Fig. 8. Because in reality the star moves in the opposite direction through the other half
of the disc, there will be an asymmetric outflow of matter also with respect to the rotational
axis and the position of stronger and fainter outflow will rotate around the axis with the
precession frequency of the star orbit. The possible helical trajectory of the expelled gas
has to be studied in 3D simulations.

4 DISCUSSIONS AND CONCLUSIONS

In the present paper we examined the effect of repetitive transits of a model star across the
accretion slab. We focused on the role of the numerical set-up of the adopted scheme, the
effects of grid resolution and the approximation used for the passages of the star. Even the
current simplified approach indicates an interesting possibility of influencing the accretion
rate by the repetitive transits and ejecting plasmoids from the inner disk with quasi-periodic
signatures of the stellar orbit.

The comparison of LR, FR and HR runs has shown that the FR and HR yield very similar
results, both qualitatively and quantitatively, while the LR runs, which probably render the
MRI poorly, differ more significantly. However, the flaring state of the torus is still quite
sensitive to the resolution of the grid. We can attribute this to the fact that, in the flaring
state, the inner part of the torus is squeezed to a very thin layer, hence the description
of the exact process of the blob separation and the following accretion needs a very high
resolution along the equatorial plane, both in the r and θ directions. It is then left for a
future study with a better resolution of the inner region to capture the shape, amplitude and
frequency of the peaks in the flaring state more accurately.

The runs with different orbits showed that the presence of the star has a substantial
effect on the accretion flow for various configurations. We observed that the accretion
can be effectively inhibited, in particular when the star moves close to the black hole (on
the radii ∼ 10 M), where a drop of the accretion rate by three orders of magnitude was
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Figure 8. Slices from the run A-one way. The top panel shows the time t = 30320 M before the
accretion rate drops down. The blobs encircled by magnetic field lines outgoing upwards along
the boundary between the funnel and the torus can be seen. On the bottom panel the situation at
t = 49920 M illustrates the detaching of the torus from the black hole, the existence of long vertical
magnetic field lines, which do not end in the black hole, and large blobs of gas outflowing downwards,
while small blobs are outflowing upwards.
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found. We also observed blobs of matter expelled from the torus into the empty magnetised
funnel region. The blobs are then magnetically accelerated outwards with mildly relativistic
speeds along the boundary between the funnel and the torus, which has an opening angle
of about 20◦ with respect to the rotation axis. These results will be studied in a separate
study (Suková et al., 2021, work in progress).

We expect that the main features found in our simulations, such as the decrease of accre-
tion rate, presence of quasi-periodic features stimulated by the orbital frequency of the star
and outflowing blobs, are described sufficiently well by our FR and HR resolution, so these
results should persist in more detailed computations. The simulation with one-way transit
of the star has shown that in the full 3D case we can expect a non-axisymmetrical ejection
of plasmoids in the funnel region. They can represent a spot rotating around the axis with
the precession frequency of the star orbit.

Let us note that our computations were performed while assuming negligible radiative
cooling of the flow. Hence our results are applicable mainly in the low-luminous galactic
nuclei, such as Sgr A* in the center of our galaxy (Yuan and Narayan, 2014). Even though
the simulations with radiative cooling have shown that even in case of Sgr A* for some
observationally allowed values of accretion rate the inclusion of cooling has an effect on
the accretion torus (Yoon et al., 2020), the overall structure of the accretion flow remains
similar as in the non-cooled state. If the accretion rate becomes higher, reaching about three
to one order bellow the Eddington accretion rate, the cooling becomes substantial and the
flow transforms into a cold Keplerian accretion disc. The issue of stellar transits in active
galactic nuclei with high accretion rates will, therefore, require the inclusion of cooling
into the scheme.

ACKNOWLEDGEMENTS

The authors acknowledge the Czech Science Foundation - Deutsche Forschungsgemein-
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ABSTRACT
We study the influence of scalar fields on a specific model of nonlinear electrody-
namics (the square root Lagrangian) spacetime. We show that the singular horizon
created by scalar field in spherically symmetric static scalar-vacuum spacetimes is
still present when nonlinear electrodynamics is added. For the obtained solution, we
investigate the timelike geodesic motions of a test particle by studying the effective
potential.

Keywords: Exact solution – black hole – scalar field – nonlinear electrodynamics –
geodesic equation

1 INTRODUCTION

Studying scalar field when coupled to gravity whether minimally or nonminimally is an old
subject in general relativity. The first exact spacetime solution with scalar field minimally
coupled to gravity in this context was found by Fisher in 1948 (Fisher, 1948) and later
was rediscovered several times (Wyman, 1981; Buchdahl, 1959; Bergmann and Leipnik,
1957; Janis et al., 1968). This scalar-vacuum static spherically symmetric solution was
generalized to Einstein Maxwell scalar field solution (Penney, 1969; Janis et al., 1969;
Uhlíř and Dittrich, 1973; Teixeira et al., 1974, 1976; Eriş and Gürses, 1977; Banerjee and
Choudhury, 1977). The most famous and frequently used form of Fisher solution is the one
described in (Janis et al., 1968), where they showed that such spacetime contains a singular
pointlike event horizon. This solution is referred to as Janis–Newuman–Winicour (JNW)
spacetime.

Presence of naked singularities or irregular horizons was shown to be typical for scalar
field spacetimes by J. E. Chase in 1970 in what is now known as the “Chase theorem”
(Chase, 1970). According to it, roughly any static spherically symmetric vacuum solution
minimally coupled to massless scalar field can not have a regular horizon, any potential
horizon is necessarily the locus of a curvature singularity (see (Tafel, 2014) for generaliza-
tion including potential for the scalar field). These results are connected to scalar no-hair
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theorem nicely reviewed in (Herdeiro and Radu, 2015) where they study four dimensional
asymptotically flat black holes with scalar hair in various types of scalar field models cou-
pled to gravity.

Our motivation is to confirm whether the Chase theorem still holds when, additionally to
massless scalar field, other sources are present, such as Nonlinear Electrodynamics (NE).
Nonlinear electrodynamics is a nonlinear theory of electromagnetic field and various mod-
els exist with different Lagrangians. The most famous and successful model is Born–Infeld
(Born and Infeld, 1934) which in the weak field limit goes to the linear Maxwell theory and
in the strong field limit its Lagrangian tends to ∼

√

FµνFµν (square root model), with Fµν
being electromagnetic tensor.

Since we were not able to find an exact solution for Born–Infeld model when scalar field
minimally coupled to gravity is present, we chose the “square root” model as its approxi-
mation in the strong field regime. We believe one can extend any results related to an event
horizon in the square root model to Born–Infeld model since horizons appear in strong
field regime. Apart from this reason, square root Lagrangians were studied because of their
interesting properties long time ago (Nielsen and Olesen, 1973; Gaete and Guendelman,
2006; Vasihoun and Guendelman, 2014) even before the rise in popularity of NE where it
gained attention recently.

Previously, we studied square root model NE in Kundt class of geometries which contain
exact gravitational waves (Tahamtan and Svitek, 2017).

In (Svítek et al., 2020; Tahamtan and Svitek, 2014), it is shown that the spacetime singu-
larity sourced by static spherically symmetric scalar field is resolved at the quantum level.
In (Svitek and Tahamtan, 2016), we show that scalar-field sources in static, highly symmet-
ric geometries (JNW) tend to vanish in the ultraboost limit instead of being converted into
waves.

Scalar field solutions can be generalized beyond spherical symmetry to truly dynamical
situation (Tahamtan and Svitek, 2015, 2016) using Robinson–Trautman class of geome-
tries. The results confirm no-hair theorem in the asymptotic stationary limit. This class of
geometries can be coupled to NE as well (Tahamtan and Svitek, 2016).

2 SCALAR FIELD AND SQUARE ROOT LAGRANGIAN

We consider the following action, describing a scalar field and an electromagnetic field in
the form of nonlinear electrodynamics minimally coupled to gravity,

S =
1

2

∫

d4x
√
−g

[

R + ∇µϕ∇µϕ +L(F)
]

, (1)

where R is the Ricci scalar for the metric gµν (we use units convention c = ! = 8πG = 1).
The massless scalar field ϕ is considered real and the NE Lagrangian L(F) is assumed to
be an arbitrary function of the electromagnetic field invariant F = FµνF

µν constructed from
a closed Maxwell 2-form Fµν.

We consider the static spherically symmetric metric

ds2
= − f (r) dt2

+
dr2

f (r)
+ R(r)2dΩ2 , (2)
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where dΩ2 = dθ2 + sin θ2dφ2. We assume t, r, θ, φ coordinate ordering.
By applying the variation with respect to the metric using the action (1), we obtain

Einstein equations

Gµν = T µν =
SFT µν +

EMT µν. (3)

where the superscript SF indicates scalar field and EM electromagnetic contribution to en-
ergy momentum tensor. For finding an exact solution for our metric functions correspond-
ing to the scalar field and nonlinear electrodynamics sources, we first express the energy
momentum tensors for these sources explicitly.

The energy momentum tensor generated by the scalar field is given by

SFTµν = ∇µϕ∇νϕ −
1

2
gµν gαβ∇αϕ∇βϕ (4)

which for a radial scalar field and our metric anzats (2) reduces to

SFT µν =
f ϕ2
,r

2
diag {−1, 1,−1,−1} . (5)

The wave equation of a massless scalar field ( !ϕ = 0, where ! is a standard d’Alembert
operator) with respect to our metric (2) leads to

f ϕ,r R2
= const. (6)

And the electromagnetic energy momentum tensor contribution is defined as following

EMT µν =
1

2

{

δµνL − (FνλF
µλ)LF

}

, (7)

in which LF =
dL(F)

dF
. Obviously for the Maxwell case L = −F and LF = −1.

For our particular choice of nonlinear electrodynamics model, square root Lagrangian
L = −

√
F , the energy momentum tensor simplifies considerably

NET µν = diag















−
√

F

2
,−
√

F

2
, 0, 0















. (8)

Since our spacetime is static and spherically symmetric, we assume this to hold for
electromagnetic field as well and consider the following electromagnetic field two-form
for purely magnetic field

F = Fθφ dθ ∧ dφ , (9)

where Fθφ = qm sin θ and qm can be considered as a magnetic charge. All the modified
Maxwell equations (the source–free nonlinear Maxwell equations are dF = 0, d(LF

∗F) =
0, where ∗F is a dual of electromagnetic two-form F) are satisfied trivially. The electro-
magnetic invariant F = FµνF

µν becomes

F =
2 q2

m

R4
. (10)
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We start to solve the coupled system by considering tt and rr components of Einstein
equations (3), namely Gt

t −Gr
r = T t

t − T r
r and we immediately obtain

ϕ2
,r = −

2 R,rr

R
. (11)

From the above equation and (6) we are able to find f in terms of R

f =

√

−
C2

0

2 R3 R,rr

. (12)

The rest of Einstein equations will constrain the form of R. From Gt
t − T t

t = 0, we get

f

(

R,r

R

)2

+
R,r

R
f,r −

1

R2
+ f

R,rr

R
+

qm√
2

1

R2
= 0 , (13)

which together with (12) gives the following expressions for R, f and from (11) for the
scalar field ϕ

R(r) =

√

β2
(

r + C̃1

) (

r − C̃2

)

−C2
0
× exp (−Ω(r)) ,

(14)

f (r) = −
e2Ω(r)

β
√

2
, (15)

ϕ(r) =
2
√

2C0

β
(

C̃1 + C̃2

) Ω(r) , (16)

where C̃1 and C̃2 are integration constants and we introduced parameters β, ρ and a function
Ω(r) in the following way

β =
(

qm −
√

2
)

, (17)

ρ =

√

β2
(

C̃1 + C̃2

)2
+ 4C2

0
, (18)

Ω(r) =
β
(

C̃1 + C̃2

)

2 ρ
ln

(

r − r0

r − r̃0

)

(19)

where r0 =
1
2

(

C̃2 − C̃1 − ρ/β
)

, r̃0 = r0 + ρ/β and β should be negative for preserving the
metric signature. After some simplifications, the equations (14) and (15) become

R(r) =

√

β2 (r − r0) (r − r̃0)

[

r − r̃0

r − r0

]
ν
2

, (20)

f (r) = −
1

β
√

2

[

r − r0

r − r̃0

]ν

, (21)
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where ν =
|β(C̃1+C̃2)|

ρ
≥ 0.

It is clear that f is vanishing at r = r0 indicating horizon. Behavior of R is driven by
the power of (r − r0), which is ν−1

2
. Depending on whether ν " 1, R would be zero, finite

or diverge. Considering the definition for ρ from (18), it is clear that ν < 1 if we have
C0 ! 0 (nontrivial scalar field). Thus at r = r0 the function R is vanishing and this location
corresponds to a point instead of a sphere.

Note that since β is negative, r0 > r̃0. So at r0 there is an outermost horizon and it is
a candidate for the outer event horizon of a black hole but we need to see the behavior of
Ricci scalar at r = r0 to determine its regularity.

Ricci scalar with respect to our metric anzats (2) is

Ricci = − f,rr −
4

R

(

f R,r
)

,r − 2 f

(

R,r

R

)2

+
2

R2
(22)

and using (22), we obtain the following expression

Ricci ∼ (r − r0)ν−2 .

Since ν < 1 the Ricci scalar at r = r0 is clearly diverging.
It is clear from (20) and (21) that it is difficult to obtain the metric function f in terms of

R, for this reason we use a parametric plot for f in terms of R to see the behavior in terms of
the areal radius which has better physical interpretation (see Fig. 1). The behavior is clearly
monotonous and the curves for different β approach the location of curvature singularity at
R = 0 smoothly.

Figure 1. The metric function f (r) in terms of R(r) with different values of β.

So in our solution, the event horizon is also a true singularity which confirms the role of
scalar field in spoiling horizon regularity even in this NE model. Since this is the stationary
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state of geometry it shows that the no-hair theorem is valid in this case as well since we
have not found black hole spacetime with both nongravitational fields being nontrivial.

The scalar field (16) becomes

ϕ(r) =

√
2C0

ρ
ln

[

r − r0

r − r̃0

]

(23)

and it is clear that at r = r0, it diverges as well and the same applies to electromagnetic
invariant (10) and therefore to NE energy momentum tensor (8).

The obtained solution, (20) and (21), is a NE generalization of Janis, Newmann and
Winicour solution (Janis et al., 1968) and the original solution is recovered for qm = 0
while as well setting C̃1 = C̃2.

If we consider a special case when the scalar field vanishes, C0 = 0, then necessarily
ν = 1 and the solution in (20) and (21) will be equivalent to (Tahamtan, 2020) upon trivial
changes in coordinates and constants.

If we assume that both C̃1 and C̃2 vanish then the form of the metric functions simplifies

R(r) =
√

β2 r2 −C2
0
, (24)

f (r) = −
1

β
√

2
, (25)

leading to spacetime containing timelike naked singularity. When qm in β vanishes then the
solution becomes equivalent to (Tahamtan and Svitek, 2016) with some trivial redefinition
of coordinate r.

All the above mentioned solutions with nontrivial scalar field do not possess regular
horizon. Although Maxwell theory and square root NE are significantly different since
both their weak field limit and strong field behavior disagree, when coupled to scalar field
they both produce singular horizon or naked singularity. This indicates dominant negative
role of the scalar field in horizon formation. Note that there is crucial difference already for
solutions without scalar field because square root model geometry (Tahamtan, 2020) only
possesses single horizon compared to Reissner–Nordström solution which can have two
and global asymptotics disagree as well. Nevertheless, the scalar field produces solutions
with similar characteristic — singular horizons — in both cases.

3 GEODESIC MOTION

We study particle motion in order to understand the physical properties of the spacetime un-
der consideration. We will use the variational principle and the Euler—Lagrange equations
for timelike geodesics. The Lagrangian reduces to kinetic part only and has the following
form

2 L = − f ṫ2
+

ṙ2

f
+ R2

(

θ̇2 + sin θ2 φ̇2
)

(26)
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in which dot denotes the derivative with respect to the proper time τ. Because of spherical
symmetry we study the particle motion in equatorial plane, so θ = π

2
. By using Euler-

–Lagrange equations we find two conserved quantities, E (energy) and l (orbital angular
momentum), as expected for static and spherically symmetric spacetime which admits two
Killing vectors (∂t, ∂φ). The energy and angular momentum are given by

E = f ṫ (27)

l = R2 φ̇ (28)

Substituting the above expressions into (26), we obtain equation for radial component of
fourvelocity corresponding to timelike geodesic motion

ṙ2
+ Veff = E2 (29)

where Veff is the effective potential given by

Veff = f

(

l2

R2
+ 1

)

. (30)

For plotting the effective potential, we consider the following values of constants: C0 =

1, C̃1 = −3, C̃2 = 1. The only remaining constant parameter is β and we plot our graphs for
its different values. Since the domain for β is (−∞, 0) the domain of ν =

|β|√
β2+1

is (0, 1).

Because ν = 1 is attained asymptotically for β → ∞ more interesting changes in behavior
happen for smaller β.

First, we plot the effective potential for zero angular momentum, l = 0, in this case
the potential and the metric function f would be the same (30), see Fig. 2. When the
absolute value of β is increasing the effective potential (metric function f ) is decreasing.
The zeros are the spacetime singularity points which appear at different r for different β
but all correspond to R(r) = 0. This plot shows that the radially falling particle approaches
singularity with velocity depending on the value of β.

Next, we plot the effective potential for l = 1 and different values of β (same as those
used for l = 0 case), see Fig. 3. Here, similar to case when l = 0 the potential values are
decreasing with increasing absolute value of β. As it is shown in the plot, for some values
of β the effective potential character changes and one global minimum appears indicating
stable circular orbits.

4 CONCLUSION AND FINAL REMARKS

We showed that static scalar field spacetime coupled to ∼ −
√

F Lagrangian which captures
the strong field regime of many NE models (e.g., Born–Infeld) admits generalized solution
of Janis–Newman–Winicour. Similar to all minimally coupled scalar field solutions, the
spacetime has an irregular horizon which is in agreement with the Chase theorem. Our
result and the previous ones show that the effect of scalar field on the spacetime geometry
is dominant. Note that in the absence of scalar field, square root model Lagrangian solution
represents a black hole solution with regular horizon.
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Figure 2. Effective potential Veff for l = 0 and different values of β.

Figure 3. Effective potential Veff for l = 1 and different values of β.

Furthermore, we studied timelike geodesic motion of a test particle. The obtained effec-
tive potential shows that for nonzero angular momentum and certain values of parameter β
it is possible to have stable circular orbits. These stable circular orbits around singularity
could give rise to disc configurations around the singularity and further study can give clear
observational signatures such objects might exhibit.

In future, we will generalize this solution to massive scalar field with potentials.
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REFERENCES

Banerjee, A. and Choudhury, S. B. D. (1977), Stationary axially symmetric coupled einstein-
maxwell-scalar fields, Phys. Rev. D, 15, pp. 3062–3064, URL https://link.aps.org/doi/
10.1103/PhysRevD.15.3062.

Bergmann, O. and Leipnik, R. (1957), Space-time structure of a static spherically symmetric scalar
field, Phys. Rev., 107, pp. 1157–1161, URL https://link.aps.org/doi/10.1103/PhysRev.
107.1157.

Born, M. and Infeld, L. (1934), Foundations of the new field theory, Proceedings of the Royal Society

of London. Series A, Containing Papers of a Mathematical and Physical Character, 144, pp. 425–
451.

Buchdahl, H. A. (1959), Reciprocal static metrics and scalar fields in the general theory of relativity,
Phys. Rev., 115, pp. 1325–1328, URL https://link.aps.org/doi/10.1103/PhysRev.115.
1325.

Chase, J. E. (1970), Event horizons in static scalar-vacuum space-times, Communications in Math-

ematical Physics, 19(4), pp. 276–288, ISSN 1432-0916, URL https://doi.org/10.1007/
BF01646635.
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ABSTRACT
We present a formalism of construction of the Taub-NUT black hole (BH) solutions
in general relativity (GR) coupled to the nonlinear electrodynamics (NED). We have
shown that the constructed spacetimes can be electrically, magnetically or dyonically
charged.

Keywords: Nonlinear electrodynamics – black holes – Taub-NUT spacetime

1 INTRODUCTION

It has been shown that the most general axially symmetric vacuum solution with separable
equation of motion is the Kerr-NUT solution (Dadhich and Turakulov, 2002). Further it
also turns out that the metric is invariant under the transformation M ↔ il, r ↔ iaλ, where λ
is an angle coordinate. Under this duality transformation, it can interestingly be shown that
Kerr solution is dual to massless Kerr-NUT solution (Nouri-Zonoz et al., 1999; Turakulov
and Dadhich, 2001). The charged version of the general Kerr-NUT solution is the general
Kerr-Newman-NUT solution, and this charge can only be electric and not magnetic. There
is quite an extensive literature on NUT geometry in an attempt to understand its physical
nature and properties. We would like to refer to an excellent review (Lynden-Bell and
Nouri-Zonoz, 1998) critiquing all the earlier works as well as it makes a strong case for
NUT parameter to be looked upon as gravomagnetic charge – a dual to gravoelectric charge
mass. Of course it has a number of undesirable features such as it is not asymptotically flat
and admits closed timelike curves. NUT parameter could by and large be considered as
gravomagnetic charge (Mukherjee et al., 2019; Dadhich and Patel, 2002).
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In the present paper we aim to develop formalism for construction of black hole solu-
tions in the GR coupled to the NED in the Taub-NUT framework. The first of all, we seek
for the possibility if the dyonically charged, i.e., electrically and magnetically charged at
the same time, solutions can be constructed in this framework. If there is no such possi-
bility, we solve the field equations for the electrically and magnetically charged spacetimes
separately. This paper is organised as follows: in section 2 we present the main equations
of motion of the system GR coupled to the NED. In section 3 the construction of the black
hole solutions in GR coupled to the linear electrodynamics is presented in the Taub-NUT
framework, while section 4 is devoted to the construction of the static, axially symmetric
electrically and magnetically charged black hole solution in GR coupled to the NED is
presented. Finally, in section 5 we summarize the results obtained in the paper. Through-
out the paper, we adopt the following signature convention (−,+,+,+) for the space-time
metric and make use of natural units, thus setting c = ! = G = 1.

2 BH SOLUTIONS COUPLED IN NED WITH NUT SYMMETRY

The action of Einstein’s gravity coupled to the NED is given as

S =
1

16π

∫

d4x
√
−g (R − L) , (1)

where g is the determinant of the metric tensor gµν, R is the scalar curvature, and L rep-
resents the Lagrangian density of the NED field that is function of the EM field strength,
L = L(F), with F = FµνF

µν, where Fµν is the EM field tensor that can be written in terms
of a gauge potential Aµ as Fµν = ∂µAν − ∂νAµ. Definition of the EM field tensor shows that
Fµν is anti-symmetric and it has only six independent components.

By neglecting the EM sources, one can write the covariant equations of motion in the
form

Gµν = Tµν , (2)

∇ν (LF Fµν) = 0 , (3)

where the Einstein tensor Gµν = Rµν − Rgµν/2 and Tµν is the energy-momentum tensor of
the EM field determined by the relation

Tµν = 2

(

LF Fα
µFνα −

1

4
gµνL

)

, (4)

where LF = ∂F L.
The line element of the static, axially symmetric Taub-NUT BH reads

ds2
= −
∆

Σ
(dt − χdφ)2

+ Σ

(

dr2

∆
+ dθ2

)

+ Σ sin2 θdφ2 ,

(5)
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where

∆ = r2 − 2m(r)r − l2, Σ = r2
+ l2, χ = −2l cos θ,

The Carter tetrad of 1-forms for the spacetime matric (5) is written as (Znajek, 1977)

ωt
=

√

∆

Σ
(dt − χdφ) , ωr

=

√

Σ

∆
dr ,

ωθ =
√
Σdθ , ωφ =

√
Σ sin θdφ . (6)

The non-zero components of the Einstein tensor are given by

Gtt =
2r2∆m′

Σ3
, Gtφ = −

2χr2∆m′

Σ3
,

Grr = −
2r2m′

Σ∆
, Gθθ = −

2l2m′

Σ
− rm′′, (7)

Gφφ =
2r2∆m′

Σ3
χ2 −

(

2l2m′

Σ
+ rm′′

)

sin2 θ.

Here we have the following relation among components of the Einstein tensor:

Gφφ = Gθθ sin2 θ +Gttχ
2 . (8)

One can easily notice that if the mass is constant, m(r) = M, then, the all the components
vanish and we end up with the Schwarzschild Taub-NUT solution. Now we are going to
obtain some solutions by coupling general relativity in Taub-NUT framework with NED
which can be electrically or magnetically charged.

3 IN LINEAR ELECTRODYNAMICS

The linear electrodynamics is defined by the Maxwell theory which is characterized by the
lagrangian density

L = F , (9)

namely, LF = 1. If the spacetime has electric charge Qe and magnetic charge Qm, in the
linear electrodynamics the 4- potential of the EM field can be expressed by the 1-form of
Carter tetrad (6) (Znajek, 1977) as

A = −
Qer
√
Σ∆

ωt −
Qm cot θ
√
Σ

ωφ, (10)

i.e.,

A = −
Qer

Σ
(dt − χdφ) − Qm cos θdφ. (11)
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3.1 Electrically charged spacetime

If we consider the spacetime is electrically charged, then the vector potential (11) takes the
form:

Aµ = −
Qer

Σ
δt
µ −

2Qerl cos θ

Σ
δ
φ
µ, (12)

Then, we have the following non-zero covariant components of the EM field tensor:

Ftr =
Qe

(

l2 − r2
)

Σ2
, Frφ =

2lQe cos θ
(

r2 − l2
)

Σ2
,

Fθφ =
2lQer sin θ

Σ
. (13)

The non-zero contravariant components of the EM field tensor are found by the relation
Fµν = gαµgβνFαβ and are given by:

Ftr
=

Qe

(

r2 − l2
)

Σ2
, Ftθ

=
4l2Qer cot θ

Σ3
,

Fθφ
=

2lQer csc θ

Σ3
. (14)

By combining covariant (13) and contravariant (14) Maxwell tensor, we obtain F as

F = −
2Q2

e

(

r4 − 6l2r2 + l4
)

Σ4
. (15)

The nonvanoshing components of energy-momentum tensor are found from (4) as

Ttt =
Q2

e∆

Σ3
, Ttφ = −

Q2
eχ∆

Σ3
,

Trr = −
Q2

e

Σ∆
, Tθθ =

Q2
e

Σ
,

Tφφ =
Q2

e

Σ
sin2 θ +

Q2
e∆

Σ3
χ2 , (16)

Here we have an interesting relation

Tφφ = Tθθ sin2 θ + Tttχ
2 . (17)

that is symmetric counterpart of the relations in components of the Einstein tensor (8).
Because of these symmetry, number of independent equations of the Einstein equations
is decreased by one. Now by solving the Einstein equations (2) by using the non-zero
componnets of Einstein tensor (7) and energy-momentum tensor of the electrically charged
spacetime in linear electrodynamics (16), we obtain two differential equations m′−Q2

e/2r =

0 and m′′ + Q2
e/r

3 = 0 which give the following general mass function:

m = M −
Q2

e

2r
, (18)

If we insert mass function (18) to the spacetime metric (5), it reduces to the electrically
charged Reissner-Nordström-Taub-NUT solution.
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3.2 Magnetically charged spacetime

If we consider the Taub-NUT spacetime (5) is magnetically charged in linear electrodynam-
ics then, the 4-potential of the EM field is given as Aφ = −Qm cos θ. Then, only non-zero
independent component of the EM tensor is Fθφ = Qm sin θ. And contravariant non-zero
components of it are given as

Ftθ
= −

Qχ csc θ

Σ2
, Fθφ

=
Q csc θ

Σ2
. (19)

The EM field strength or lagrangian density of Maxwell electrodynamics is

F =
2Q2

m

Σ2
, (20)

The nonvanishing components of energy-momentum tensor are found from (4) and they
are the same with the ones of the electrically charged case (16). Therefore, we will not
repeat the calculations, instead we will give the final result which the mass function of the
magnetically charged Taub-NUT solution in linear electrodynamics is given as

m = M −
Q2

m

2r
, (21)

and it represents the magnetically charged Reissner-Nordström-Taub-NUT solution in lin-
ear electrodynamics.

4 IN NONLINEAR ELECTRODYNAMICS

In this section we consider more general case which is construction of electrically and mag-
netically charged solution of general relativity coupled to the NED in Taub-NUT frame-
work. The nonlinear electrodynamics is defined by the lagrangian density which is nonlin-
ear function of EM field strength F, i.e.,

LF ≡
∂L

∂F
! Constant. (22)

Construction of the electrically and magnetically charged, spherically symmetric, asymp-
totically flat solutions of general relativity coupled to the NED have been presented by sev-
eral authors (Ayón-Beato and Garcı́a, 1998; Bronnikov, 2000; Burinskii and Hildebrandt,
2002; Fan and Wang, 2016; Bronnikov, 2017; Toshmatov et al., 2018a,b,c). Here, for the
first time we present the construction electrically and magnetically charged, axially sym-
metric, asymptotically non-flat (Taub-NUT) solution in general relativity coupled to the
NED.

4.1 Electrically charged solution

In this subsection we present the construction of electrically charged, axially symmetric
non-flat Taub-NUT solution in the NED. Let us generalize the vector potential (11) as

A = ψ(r)
r2

Σ
(dt − χdφ) . (23)
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Covariant components of the EM tensor

Ftr = −
r2ψ′

Σ
−

2l2rψ

Σ2
, Frθ = −

r2ψ′χ

Σ
−

2l2rψχ

Σ2
,

Fθφ = −
2lr2ψ sin θ

Σ
, (24)

Contravariant components of the EM tensor

Ftr
=

r2ψ′

Σ
+

2l2rψ

Σ2
, Ftθ

=
2lr2ψχ csc θ

Σ3
,

Fθφ
= −

2lr2ψ csc θ

Σ3
, (25)

The EM field strength of the electrically charged spacetime of the NED in the Taub-NUT
geometry is given by

F = −
2r2

Σ2

[

r2ψ′2 +
4l2rψψ′

Σ
+

4l2(l2 − r2)ψ2

Σ2

]

. (26)

From (4) one finds the non-zero components the energy-momentum tensor of the NED as

Ttt = ∆





















2r2LF

(

2l2ψ + rΣψ′
)2

Σ5
+

L

2Σ





















,

Ttφ = −∆χ





















2r2LF

(

2l2ψ + rΣψ′
)2

Σ5
+

L

2Σ





















,

Trr = −
Σ2

∆





















2r2LF

(

2l2ψ + rΣψ′
)2

Σ5
+

L

2Σ





















, (27)

Tθθ =
8l2r4LFψ

2

Σ3
−

1

2
ΣL,

Tφφ =

[

8l2r4LFψ
2

Σ3
−

1

2
ΣL

]

sin2 θ

+ ∆





















2r2LF

(

2l2ψ + rΣψ′
)2

Σ5
+

L

2Σ





















χ2,

Here again the relation (17) is satisfied. By substituting the Einstein (7) and energy-
momentum (27) tensors into the Einstein equations (2), we obtain the following two in-
dependent equations:

2r2LF

(

2l2ψ + rΣψ′
)2

Σ3
−

2r2m′

Σ
+

1

2
ΣL = 0 ,

8l2r4LFψ
2

Σ3
+

2l2m′

Σ
−

1

2
ΣL + rm′′ = 0 , (28)
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By solving equations (28) with respect to L and LF , simultaneously, we arrive at the ex-
pressions

L =
2rm′′

(

2l2ψ + rΣψ′
)2

Σ

[

4l2r2ψ2 +
(

2l2ψ + rΣψ′
)2
]

+

4l2m′
[

(

2l2ψ + rΣψ′
)2
+ 4r4ψ2

]

Σ2
[

4l2r2ψ2 +
(

2l2ψ + rΣψ′
)2
] , (29)

LF =
Σ2

[

2
(

r2 − l2
)

m′ − rΣm′′
]

2r2
[

4l2r2ψ2 +
(

2l2ψ + rΣψ′
)2
] , (30)

Moreover, from the conservation of charge that is defined by µ = t in equation (3), one
obtains the following relation:

[

rLF

(

2l2ψ

Σ
+ rψ′

)]′

+
4l2r2LFψ

Σ2
= 0 , (31)

If l = 0 is considered, then we arrive at the conservation of charge in the spherically
symmetric spacetimes in GR coupled to the NED (Toshmatov et al., 2018c)

(

r2LFψ
′
)′
= 0 . (32)

4.2 Magnetically charged solution

In this subsection we consider construction of magnetically charged Taub-NUT solution in
the NED. Nonzero components of the EM field tensor of the magnetically charged NED
are Fθφ = Qm sin θ = −Fφθ. The EM field strength is

F =
2Q2

m

(r2 + l2)2
, (33)

From (4) one finds the non-zero components the energy-momentum tensor of the NED as

Ttt =
L∆

2Σ
, Ttφ = −

L∆χ

2Σ
,

Trr = −
LΣ

2∆
, Tθθ =

2Q2LF

Σ
−

1

2
LΣ, (34)

Tφφ =

(

2Q2LF

Σ
−

1

2
LΣ

)

sin2 θ +
L∆χ2

2Σ
.

Here again we have the interesting relation (17). By substituting the Einstein (7) and
energy-momentum (34) tensors into the Einstein equations (2), we obtain two independent
equations
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1

2
ΣL −

2r2m′

Σ
= 0,

2Q2
mLF

Σ
−

1

2
ΣL +

2l2m′

Σ
+ rm′′ = 0, (35)

By solving equations (35), we obtain

L =
4r2m′

Σ2
, (36)

LF =
2(r2 − l2)m′ − rΣm′′

2Q2
m

, (37)

If we assume that the EM field is linear, i.e., the Maxwell field, L = F and LF = 1, and
NUT charge parameter is equal to zero, l = 0, then, by solving the above equations we
arrive at the mass function m = M − Q2

m/2r that represents again the Reissner-Nordström
solution which is the solution of the Einstein-Maxwell equations. If l ! 0, it represents the
Reissner-Nordström-Taub-NUT spacetimes.

4.3 Dyonically charged solution

As in the previous subsections we have shown that the electrically and magnetically charged
solutions can be obtained in GR coupled to the NED in the static spacetime with NUT
symmetry, in the current subsection we consider if it is possible to construct the spacetime
admitting both charges at the same time. To do so, we must solve the field equations (2)
and (3) for the line element of the spacetime (5) with the 4-electromagnetic potential (11).
Due to the cumbersome forms of equations, we do not report them here, but instead, we
only present the results. Thus, solving the Einstein field equations, we obtain that to have
the dyonically charged spacetime in GR coupled to the NED with NUT symmetry, the La-
grangian density of the NED must be related to the mass function of the spacetime via the
following expressions:

L =
2r2 (Am′ + Bm′′)

Σ3
[

Σ
(

Q2
m + r4ψ′2

)

+ 4l2r2ψ2 + 4lr2ψ (lrψ′ − Qm)
] , (38)

LF =
2
(

r4 − l4
)

m′ − rΣ2m′′

2
[

Σ
(

Q2
m + r4ψ′2

)

+ 4l2r2ψ2 + 4lr2ψ (lrψ′ − Qm)
] (39)

where

A = 2
[

Σ
2
(

l2r2ψ′2 + Q2
m

)

+ 4l2
(

l4 + r4
)

ψ2
+ 4lrΣψ

(

l3ψ′ − Qmr
)]

,

B = rΣ
(

rΣψ′ + 2l2ψ
)2
,
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Moreover, from the conservation of charge that is defined by µ = t in equation (3), one
obtains the following relation:

[

rLF

(

2l2ψ

Σ
+ rψ′

)]′

−
2l

(

QmΣ − 2lr2ψ
)

Σ3
= 0 , (40)

If l = 0 is considered, then we again arrive at the conservation of charge in the spherically
symmetric spacetimes in GR coupled to the NED (32) and it confirms the pioneering results
in (Demianski et al., 1986; Mazharimousavi and Halilsoy, 2012). In the linear electrody-
namics (LF = const), that would give us the well-known Coulomb’s potential ψ = Qe/r.

5 CONCLUSION

In the present paper we demonstrated the formalism for construction of axially symmetric,
static, asymptotically non-flat black hole solutions in GR coupled to the NED in the Taub-
NUT framework. The presented formalism is easy to handle as by switching off the NUT
parameter of the spacetime, one can smoothly turn to the spherically symmetric, asymptot-
ically flat counterparts of the spacetimes, or by turning off the charge parameter, one can
recover the well-known solutions of the GR coupled to the NED or linear electrodynamics.
The formalism has shown that in the Taub-NUT framework the electrically, magnetically
and dyonically charged spacetime can be constructed.
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ABSTRACT

We study circular orbits of magnetized particle around Schwarzschild black hole
immersed in the uniform magnetic field. Despite the topic overlaps with the one of
[Classical and Quantum Gravity 20, 469 (2003)], our calculations complement it by
correcting effective potential of the magnetized particle presented in it. As a rule, the
effective potential is independent of the energy of test particle. We briefly demon-
strate the formalism and present qualitative picture on the effect of the magnetic
coupling parameter on innermost stable circular orbits.

Keywords: Schwarzschild spacetime – magnetized particle – innermost stable cir-
cular orbit

In the paper (de Felice and Sorge, 2003), the circular orbits of a particle with mass m

possessing magnetic dipole momentum µ around Schwarzschild black hole with mass M

immersed in the asymptotically uniform magnetic field B that is perpendicular to the orbital
plane was studied. In this paper we refine the results presented in that paper by addressing
the problem associated with that effective potential of the magnetized particle. For the
reader’s sake, prior to attracting one’s attention to the problem, we aim to address, we here
briefly highlight the main equations presented in the paper (de Felice and Sorge, 2003), till
we reach the problem. As a starting point, let us choose the Hamilton-Jacobi equation for
the uncharged and spinless particle, but still possessing the magnetic dipole moment in the
following form (de Felice and Sorge, 2003):

gµνpµpν − mDµνFµν + m2 = 0 , (1)

where pµ is the four-momentum and m is mass of the test particle. The explicit form of the
product of polarization tensor Dµν and the electromagnetic field tensor Fµν has shown as

DµνFµν = 2µαBα = 2µα̂Bα̂ = −U " m . (2)
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After introducing the new definitions for the radial coordinate r, energy E, angular momen-
tum L, and magnetic parameter:

ρ =
r

2M
, λ =

L

2mM
, γ =

E

m
, β =

2µB0

m
, (3)

the authors derived the equation for the radial motion in the form (de Felice and Sorge,
2003)

4M2

(

dρ

dτ

)2

= γ2 − V(ρ; λ, γ, β) , (4)

where τ is the proper time along particle trajectory and the effective potential V(ρ; λ, γ, β)
is defined as (de Felice and Sorge, 2003)

V(ρ; λ, γ, β) =

(

1 −
1

ρ

)

























1 +
λ2

ρ2
−

β
(

1 − 1
ρ

)

√

1 − 1
ρ
− 4M2Ω2ρ2

























. (5)

where Ω is the angular velocity, measured by a distant observer often called Keplerian
frequency, defined as

Ω =
dφ

dt
=

uφ

ut
=
λ

2Mγ

ρ − 1

ρ3
. (6)

Finally, we arrived at the point where we think the problem is. Indeed, eq. (5) reproduces
the effective potential for the neutral particle in the field of the Schwarzschild black hole,
if the magnetic coupling is neglected (β = 0). In the Ref. (de Felice and Sorge, 2003),
the authors aimed to discover the effect of the magnetic interaction parameter, β, on the
circular motion of the particle. To do so, finding the correct form of the effective potential
is crucial, as it is a problem of motion in the central field. As a rule, the effective potential
in equation (4) should not depend on the specific energy of the particle. However, if one
applies expression of the angular velocity of the particle (6) into the effective potential (5),
the effective potential will depend on the specific energy of the particle, as in the case of the
paper (de Felice and Sorge, 2003), that contradicts the rule. As proof of that, analogously
it is enough to show that the Keplerian frequency (6) is independent of the specific energy
(actually, in general, it is independent of both the specific energy and specific angular
momentum of the test particle). Therefore, in order to escape from this contradiction,
we propose the following procedure:

- In the circular orbit, the particle’s four-velocity is given as uµ = (ut, 0, 0, uφ) and from
the normalization condition of the four-velocity uµu

µ = −1 we obtain

ut =
1

√

−gtt −Ω2gφφ
=

1
√

1 − 1
ρ
− 4M2Ω2ρ2

. (7)
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- On the other hand, since motion of the particle with magnetic momentum in the external
magnetic field does not follow the geodesics, by using the (radial) non-geodesic equation
for magnetized particle proposed in (Preti, 2004)

D

Dτ

[

(m +U)uα
]

= −U,α , (8)

we find the following relation:

gtt,r +Ω
2gφφ,r

gtt +Ω2gφφ
= −

2U,r
m +U

, (9)

where sub-index ,α indicates the derivative with respect to coordinate xα. Note that in
the derivation of equation (9), ut is eliminated by using equation (7). Hereafter, applying
simple algebraic operations, one can obtain the explicit expression of the angular velocity
of the magnetized particle in the circular orbit in the following form:

Ω =

√

−
gtt,r + 2gtt ln(m +U),r

gφφ,r + 2gφφ ln(m +U),r
. (10)

One can see from expression (10) that the Keplerian frequency depends only on the space-
time metric and interaction potential, U. In the absence of the interaction term, U = 0 or
µ = 0, the angular velocity of the magnetized particle in the circular orbit, (10), reduces
to the well-known Keplerian frequency of the neutral test particle in the Schwarzschild
spacetime, Ω0 =

√

−gtt,r/gφφ,r =
√

M/r3.
On the other hand, one has to keep in mind that the interaction potentialU is a function

of Ω (See, for example: (de Felice and Sorge, 2003)):

U = β
mgtt

√

−gtt −Ω2gφφ
= βU(ρ, β) , (11)

and Ω is itself function of magnetic parameter from equation (10).
Before go on further let us introduce the normalized interaction potential U → U/m.

Now we first find Ω from equation (11) then substitute it into equation (9), and taking into
accountU " m, one can have the following differential equation:

2U,r = −
gφφ,r

gφφ
−
U2

β2gtt

(

gφφ,r

gφφ
−

gtt,r

gtt

)

, (12)

or using equations (11) and (3), one can have

βU,ρ = −
1

ρ
+

(2ρ − 3)

2(ρ − 1)2
U2 . (13)

Unfortunately, it is difficult to get an analytical solution for equation (13), however, one
can use perturbation in order to obtain a semi-analytical solution for U at least in linear
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order approximation. Then new interaction potential U can be expanded in the power of β
parameter as

U(ρ, β) = U0(ρ) + βU1(ρ) + ... (14)

Substituting it into equation (13), hereafter performing simple algebra one can obtain Ui(ρ)
in the form:

U0(ρ) =

(

1 −
1

ρ

) (

1 −
3

2ρ

)−1/2

, (15)

U1(ρ) =
(ρ − 1)2

(2ρ − 3)

U′0(ρ)

U0(ρ)
=

(ρ − 3)(ρ − 1)

2(3 − 2ρ)2ρ
. (16)

Finally, in linear approximation of β parameter, the effective potential for magnetized
particle can be written as

V(ρ) =

(

1 −
1

ρ

)















1 +
λ2

ρ2
+ β

(

1 −
1

ρ

) (

1 −
3

2ρ

)−1/2














. (17)

As it is seen, the effective potential for the magnetized particle moving in the field of the
Schwarzschild black hole immersed in the uniform magnetic field significantly different
from the one presented in (de Felice and Sorge, 2003). Even from this point, one can
say that the characteristic circular orbits, such as marginally (i.e., innermost or outermost)
stable circular orbits evaluated from the effective potential (17) are different from the ones
presented in (de Felice and Sorge, 2003). To estimate these differences quantitatively, let
us study one of the most important characteristic circular orbits, such as innermost stable
circular orbits. The stability of the circular orbits is guaranteed by the non-negativity of
the second derivative of the effective potential with respect to the radial coordinate. If the
equality holds then, the solutions of this equation give the innermost stable circular orbits.
As this equation has cumbersome form in our case and the solutions cannot be written
analytically, we decided to present it in the following form:

β = −
4
√

2(ρ − 3)
√
ρ(2ρ − 3)3/2

ρ[5ρ(4ρ − 21) + 174] − 81
, (18)

One can easily notice from eq. (18) that in the absence of the magnetic coupling of param-
eter (β = 0), one recovers the radius of ISCO of the neutral particle around Schwarzschild
black hole (ρ = 3). Moreover, in Fig. 1 we demonstrate the dependence of the ISCO radius
from the magnetic coupling parameter. One can see from Fig. 1 that for negative values
of the magnetic coupling parameter, the stable circular orbits of the magnetized particle
are located very far from the black hole, i.e., negative values of the magnetic coupling pa-
rameter increases the radius of ISCO. As figure shows, the radius of the ISCO diverges
for β tends to -0.8 from right side, β → −0.8+. Thus, from this property we determine
that for the existence of the ISCO, the minimum value of the magnetic coupling parameter
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Figure 1. Dependence of the ISCO radius from the magnetic coupling parameter. Where shaded and
white regions represent the ones that the stable and unstable circular orbits occupy, respectively.

is βmin = −0.8. On the other hand, for the existence of the ISCO, positive values of β is
also restricted. This maximum value is βmax = 1.7329 at which the ISCO is located at
ρISCO = 2.2587. If the value β > βmax, the stable circular orbits can exist anywhere of the
spacetime outside photonspehere (ρ > 1.5).

In this paper, we have presented guidelines on how to derive the effective potential for
the magnetized particle orbiting around the Schwarzschild black hole in the presence of
the external uniform magnetic field. One has to emphasize that in Ref. (de Felice et al.,
2004) the same problem but in the Kerr, spacetime was solved by using the same approach.
Later, in Refs. (Preti and de Felice, 2005, 2006) the same approach was applied for the
magnetized particle motion around the Schwarzschild and Kerr black holes in the presence
of the dipole magnetic field. Now we think that it makes sense if scenarios considered in
the papers (de Felice et al., 2004; Preti and de Felice, 2005, 2006) can be recalculated by
the method we presented and make comparison with the results shown in them. We keep
that calculations for our near future projects.
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ABSTRACT

We investigate physical conditions under which nuclear matter may cross to quark
matter using several equations of state for both phases. We calculate the combined
equation of state using the nuclear matter equation of state for low-density region
and the quark matter equation of state for the high-density region using Maxwell
construction. Then we use it to calculate properties of non-rotating compact stars
with quark cores and hadronic surface. We focus primarily on the maximum mass
of a non-rotating star and on the moment of inertia of quark core for different com-
binations of selected equations of state. This work is the starting point for future
investigation of rotating neutron stars with quark cores.

Keywords: Neutron stars – phase transitions – hybrid stars

1 INTRODUCTION

Neutron stars are the densest objects with internal structure currently known to exist in
the Universe. Their structure is governed by general relativity and nuclear physics of very
dense matter (densities in the cores of neutron stars can reach values several times higher
than standard nuclear matter density). The matter in the cores of neutron stars is in the
standard picture composed of neutrons, protons, and electrons in β-equilibrium, however, at
sufficiently high densities the matter can undergo the phase transition to deconfined quarks.

Phase transitions in neutron stars are of huge interest since they can affect the global
properties of neutron stars like the neutron star mass M, radius R moment of inertia I or the
Love numbers Λ. For the current status of phase transition in compact stars see the recent
overview by Blaschke and Chamel (2018).

Since phase transition to quark matter corresponds to the transition to a form of matter
that is energetically preferable at high densities, it leads to the softening of the equation of
state in that region. Equation of state with phase transition describing hybrid stars should
therefore allow for the maximum mass that is smaller than the maximum mass allowed
by the hadronic equation of state without phase transition. Therefore observations of mas-
sive neutron stars constrain the hadronic equation of state even if it does not describe the
whole interior of the observed star. Currently, the most massive neutron stars known are
M = 2.01 ± 0.04M! by Antoniadis et al. (2013) and M = 1.97 ± 0.04 by Demorest et al.
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(2010) that are both in a binary system with a white dwarf, and massive enough to put
serious constraints on the equation of state of neutron star matter. Other observational con-
straints on equations of state with phase transition have been discussed also by Kurkela
et al. (2014) who shown that constraints from neutron star observations on the equation of
state of neutron star matter are insensitive to the size of quark matter core. The maximum
mass of neutron stars with quark cores was also discussed by other authors - see e.g. Zdunik
and Haensel (2013).

In this short presentation, we focus on simple calculations using several equations of state
of hadronic matter and for each, we calculate the physical conditions of Maxwell phase
transition to simple MIT Bag model with various values of bag constant. We calculate
non-rotating models of compact stars with quark core and focus on mass-radius relation,
on maximum mass, and on the moment of inertia of quark core.

2 MODEL

2.1 Equations of state

Hadronic EoS: In our presentation we use selection of representative hadronic equations
of state namely APR (Akmal et al., 1998), FPS (Lorenz et al., 1993), Gandolfi (Gandolfi
et al., 2010), KDE (Agrawal et al., 2005), NRAPR (Steiner et al., 2005), SLy4 Rikovska
Stone et al. (2003), and UBS (Urbanec et al., 2010). Each of these equations of state is
composed of an equation of state describing nuclear matter composed of neutrons, protons,
electrons, and muons in β-equilibrium based on various theoretical models of nucleon-
nucleon interaction and are matched to a standard set of equations of state describing the
low-density region, where the matter is composed of stable atomic nuclei or free neutrons
in equilibrium with nuclei (Baym et al., 1971).

Quark EoS: We assume the quark core to consist of mass-less u and d quarks. To describe
quark matter we use MIT Bag model (Chodos et al., 1974; Farhi and Jaffe, 1984; Haensel
et al., 1986) where pressure P is related to energy density ρ by

P =
1

3
(ρ − 4B) , (1)

where B is Bag constant that gives energy density corresponding to zero pressure ρ0 = 4B.
The factor 1/3 can be related to sound speed of quark matter vs = c

√

dP/dρ = c/
√

3 . The
baryon number density is given as

nB =

[

4(1 − 2αc/π)
1/3

9π2/3!
(ρ − B)

]3/4

, (2)

where αc is strong interaction coupling constant. Chemical potential per baryon is given
by

µB =
ρ + P

nB
. (3)

In our calculations we take αc = 0 and for bag constant we choose six different values
B = {2; 2.5; 3; 3.5; 4; 4.5} × 1014g.cm−3.
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Phase transition For all possible combinations of hadronic EoS and quark EoS, we calcu-
late pressure and baryonic chemical potential of the phase transition using Maxwell con-
struction, i.e. the resulting EoS has continuous chemical potential as a function of pressure
µB = µB(P). Phase transition takes place at pressure Ppt and baryonic chemical potential µpt

that is calculated for each combination of the hadronic equation of state and quark equation
of state from our selection. The same approach to model the phase transition was used e.g.
by Benić et al. (2015) or by Alvarez-Castillo et al. (2019) where they used more advanced
quark EoS based on QCD and used relativistic mean-field model EoS of hadronic matter.

Compact star models Global properties of non-rotating compact stars are given by differ-
ential equations of hydrostatic equilibrium - TOV equation (Tolman, 1939; Oppenheimer
and Volkoff, 1939)

dP

dr
= −

(ρ + P)
[

m(r) + 4πr3P
]

r [r − 2m (r)]
, (4)

where m(r) is mass inside a sphere of radius r and is given by

dm(r)

dr
= 4πρr2. (5)

The set of differential equation is solved for given value of central pressure. Equations are
integrated while the pressure remains positive and the radius r where pressure vanishes is
giving the surface of compact star, i.e. P(R) = 0 with R being the radius of the compact
star. Mass is given by M = m(R). We also calculate moment of inertia of the star Itot given
by (Hartle, 1967)

Itot = −
2

3

R
∫

0

r3

(

d j

dr

)

(

ω̃

Ω

)

dr, (6)

where Ω is angular velocity of the star and j is given by j = 1/
√
−grrgtt. The function ω̃ is

found by solving equation

1

r4

d

dr

(

r4 j
dω̃

dr

)

+
4

r

d j

dr
ω̃ = 0. (7)

One can find a moment of inertia of the quark core Icore by performing the integral in eq.
(6) to rpt = r(P = Ppt) instead performing the integral to the surface where r = R.

3 RESULTS AND DISCUSSION.

We solved the structure equations described in the previous section to obtain mass, radius,
a moment of inertia of the whole star, and the moment of inertia of the quark core as a
function of central pressure. At first, we solved the problem for purely hadronic equations
of state and we present the mass-radius relation on the left panel of Fig. 1. The results when
we assumed only quark matter described by the MIT Bag model is presented on the right
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Figure 1. Mass vs radius of neutron stars with hadronic equations of state (left) and quark stars with
MIT Bag model (right).

panel of Fig. 1. The maximum mass of quark stars is given purely by bag constant in a
simple model we assumed here and was discussed by Haensel et al. (1986). They found
a maximum mass and corresponding radius, a moment of inertia, and central density as a
function of Bag constant (see eq. (28) in Haensel et al. (1986) and related discussion for
details)1.

Mass-radius relations of hybrid stars (neutron stars with quark cores) are discussed on
Fig. 2 where each panel correspond to a particular value of bag constant and bag constant
is increasing from the top left to bottom right. The lines at each panel starting on the right
where mass is smallest and radius largest are corresponding to lower central pressures. As
central pressure increases the radius is becoming smaller and mass is increasing. On the
left panel of the top row, where B = 2.0 × 1014g.cm−3(left) the mass reaches maximum
values (different for each hadronic equation of state but well bellow 1M!). After that, the
mass is decreasing and starts to increase again. The stellar models when mass is decreasing
with central pressure increasing are unstable against radial perturbations. After reaching
minima the mass starts to increase, stellar models are stable again and the mass reaches
new maxima. This second maximum is primarily given by the value of bag constant and is
almost the same for all considered hadronic equations of state. We can see that for a small
interval of masses the stable configuration may have two different radii. These objects are
usually called twin stars - see Benić et al. (2015) for a more interesting case of high mass
twin stars. In the case of our selection of equations of state, none of the hybrid star models
meets the highest observed mass of 2.01 ± 0.04M!. The only equation of state that meets
the requirement is the UBS with B = 4.5 × 1014g.cm−3 but the mass is reached before the
quark core starts to be present (see bottom right panel of Fig. 3 demonstrating there is no
quark core before maximum mass is reached).

We calculated the moment of inertia of quark core Icore and we present its size relative
to the total moment of inertia Itot versus gravitational mass on Fig. 3. One can see that

1 Haensel et al. (1986) were motivated by the investigation of strange stars, objects that are composed by a
mixture of u,d and s quarks and the quark phase is energetically preferable up to zero pressure. In our case quark
matter becomes energetically favorable if P > Ppt.
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Figure 2. Mass vs radius of neutron stars with quark matter cores. Each panel represents stars having
the same quark EoS but different hadronic equations of state. The values of Bag constants are (top left
to bottom right) B = {2; 2.5; 3; 3.5; 4; 4.5} × 1014g.cm−3 and all phase transitions are calculated using
Maxwell construction. We can see that for a very small value of bag constant B = 2 × 1014g.cm−3the
maximum mass is dominated by the equation of state of quark matter, while in the case of higher
values bag constant the hadronic equation of state plays an important role. Quark matter core is
present in most of maximum mass configurations apart from the one with UBS EoS (see Fig 3).

the maximum size of quark core in stable compact stars corresponds to the lowest value
of bag constant and that Icore/Itot is decreasing with increasing bag constant. Even for the
highest values of B the quark core is present before reaching maximum mass except for
UBS equation of state.

In this short proceeding, we presented a simple analysis of phase transition using several
hadronic equations of state and combined each of them with the simplest form of MIT bag
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Figure 3. Moment of inertia of the quark core relative to the moment of inertia of the whole star.
Each panel represents stars having the same quark EoS but different hadronic equations of state. The
values of Bag constants are (top left to bottom right) B = {2; 2.5; 3; 3.5; 4; 4.5} × 1014g.cm−3 and all
phase transitions are calculated using Maxwell construction. One can see that quark matter core starts
to be present before maximum mass is reached in most of the cases, however, in the case of UBS the
stable configurations can have quark core only in the two of investigated cases (top row).

model calculated for various values of bag constant. We showed that for low values of bag
constant the maximum mass is determined by the value of bag constant while the hadronic
equation of state plays an important role for higher values of bag constant. That is the
starting point for our future investigation where we plan to use a more advanced equation
of state of quark matter and investigate also rotating objects.

!" !! !" ## ? $ % &



Neutron stars with quark cores 349

ACKNOWLEDGEMENTS

The present work was supported by the Czech Grant LTT17003.

REFERENCES

Agrawal, B. K., Shlomo, S. and Au, V. K. (2005), Determination of the parameters of a Skyrme type
effective interaction using the simulated annealing approach, Phys Rev C, 72(1), 014310, arXiv:
nucl-th/0505071.

Akmal, A., Pandharipande, V. R. and Ravenhall, D. G. (1998), Equation of state of nucleon matter
and neutron star structure, Phys. Rev C, 58(3), pp. 1804–1828, arXiv: nucl-th/9804027.

Alvarez-Castillo, D. E., Blaschke, D. B., Grunfeld, A. G. and Pagura, V. P. (2019), Third family of
compact stars within a nonlocal chiral quark model equation of state, Phys Rev D, 99(6), 063010,
arXiv: 1805.04105.

Antoniadis, J., Freire, P. C. C., Wex, N., Tauris, T. M., Lynch, R. S., van Kerkwijk, M. H., Kramer,
M., Bassa, C., Dhillon, V. S., Driebe, T., Hessels, J. W. T., Kaspi, V. M., Kondratiev, V. I., Langer,
N., Marsh, T. R., McLaughlin, M. A., Pennucci, T. T., Ransom, S. M., Stairs, I. H., van Leeuwen,
J., Verbiest, J. P. W. and Whelan, D. G. (2013), A Massive Pulsar in a Compact Relativistic Binary,
Science, 340(6131), p. 448, arXiv: 1304.6875.

Baym, G., Pethick, C. and Sutherland, P. (1971), The Ground State of Matter at High Densities:
Equation of State and Stellar Models, ApJ, 170, p. 299.
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ABSTRACT
For a wide class of spherically symmetric naked singularities there is a sphere within
which gravity is effectively repulsive. In such spacetimes accreting matter cannot
reach the singularity and will instead form a levitating atmosphere, which is kept
suspended by gravity alone. The density of the atmosphere has a maximum at a def-
inite radius. In its qualitative properties the atmosphere is analogous to the recently
discussed atmospheres that are supported by radiation pressure above luminous neu-
tron stars, however for the levitating atmospheres around a naked singularity no
radiation needs to be present.

Keywords: Naked singularities – levitating atmospheres – hydrostatic equilibrium

1 INTRODUCTION

Stellar atmospheres are widely studied in the Newtonian gravity context, a general qualita-
tive property being that their density and pressure profiles always decrease with radius. Re-
cently, it was discovered that near-Eddington luminous neutron stars may have atmospheres
detached from their surfaces if general relativistic effects are taken into account, either in
the optically thin or in the optically thick case (Wielgus et al., 2015, 2016). These equi-
librium configurations were called “levitating atmospheres” (Wielgus et al., 2015), since
they lie at a finite distance from the stellar surface and have definite inner and outer radii.
The oscillation modes of these atmospheres were studied in Abarca and Kluźniak (2016);
Bollimpalli and Kluźniak (2017); Bollimpalli et al. (2019).

Here we investigate whether similar structures can appear in the absence of radiation.
We find that indeed they can, if we consider spherically symmetric spacetimes gener-
ated by a central naked singularity. These naked-singularity spacetimes appear not only
in general relativity, but also in solutions to modified theories of gravity. They generally
present a zero-gravity radius, a stable equilibrium point for radial particle motion. Below
we present equilibrium atmospheric solutions which “levitate” around these singularities,
being supported solely by gravity – the central repulsive-gravity region.
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2 REPULSIVE GRAVITY IN NAKED-SINGULARITY SPACETIMES

Let us consider a spherically symmetric spacetime metric of the form1

ds2 = −e2Φ dt2 + e2Λ dr2 + r2 (dθ2 + sin2 θ dϕ2) . (1)

The four-acceleration of a static observer is given by aµ = ∂µΦ (Semerák et al., 1999).
For metric (1) we have only a radial component, ar = Φ

′(r). Therefore, if there is a ra-
dius ro such that Φ′(ro) = 0, particles at rest in the sphere labelled by ro will remain at
rest. We will have then an equilibrium radius for test-particle motion. If Φ′′(ro) > 0
this equilibrium is stable; moreover, for r < ro we will have a region where gravity be-
haves as a “repulsive force”. We call the equilibrium sphere of radius ro the “zero-gravity
sphere”. Many spherically symmetric naked-singularity spacetimes behave this way, hav-
ing an equilibrium radius for particle motion at a finite distance from the singularity (e.g.,
Pugliese et al. (2011); Stuchlı́k and Schee (2014); Vieira et al. (2014); Goluchová et al.
(2015); Boshkayev et al. (2016)). We will see that, whenever this is the case, a spherical
shell of matter will inevitably form around this radius, whose thickness becomes larger as
its peak density grows.

3 LEVITATING ATMOSPHERES

If Φ′′(ro) > 0 at the zero-gravity sphere, then we expect that accreting matter onto the
singularity starts accumulating around that radius, giving rise to a dense structure with
a peak at ro. We call it a levitating atmosphere, in analogy with the recently found levitating
atmospheres around luminous neutron stars in general relativity (Wielgus et al., 2015).

Consider a test-fluid atmosphere around the singularity. It is described by a perfect-fluid
energy-momentum tensor

T µν = (ε + p) uµuν + p gµν, (2)

where ε is the fluid’s energy density and p its pressure. Let us assume that the naked-
singularity spacetime is a solution of a theory of gravity where the usual conservation laws
are valid for matter. The equation of hydrostatic equilibrium is then obtained from T

µν
;ν = 0

and, neglecting relativistic contributions to internal energy (ε = ρ, the mass density) and
assuming p # ρ, reads (Schutz, 2009)

1

ρ

dp

dr
= −

dΦ

dr
. (3)

This equation has the same form of the Newtonian equation of hydrostatic equilibrium,
where Φ is the gravitational potential.

1 We work in geometrized units c = G = 1.
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3.1 Geometrically thin approximation

By the preceding discussion, the atmospheres should have a peak of density and pressure at
the zero-gravity radius ro. If the atmospheres are geometrically thin, we can Taylor expand
the function Φ to second order in (r − ro) as

Φ(r) − Φ(ro) ≈
1

2
Φ′′(ro) (r − ro)2 (4)

and then solve the hydrostatic equilibrium equation (3) given the atmosphere’s equation of
state.

3.1.1 Isothermal solution

For an isothermal atmosphere with an ideal gas equation of state

p = [kBT/(µmp)] ρ , (5)

where kB is Boltzmann’s constant, mp is the proton mass, and µ = 1 is the mean molecular
weight for Hydrogen (since the gas is not ionized), we obtain a Gaussian profile for its
pressure, peaked at r = ro,

p(r) = po exp

[

−

µmp

2kBT
Φ′′(ro) (r − ro)2

]

, (6)

with the corresponding density profile being given by the ideal gas law.

3.1.2 Polytropic solutions

For a polytropic equation of state of the form

p = Kργ (7)

we have

p(r) = po

{

1 −
1 − 1/γ

2K1/γ (po)1−1/γ
Φ′′(ro) (r − ro)2

}γ/(γ−1)

, (8)

with po = p(ro), and a corresponding density profile

ρ(r) = ρo















1 −
1 − 1/γ

2K ρ
(γ−1)
o

Φ′′(ro) (r − ro)2















1/(γ−1)

. (9)

The temperature profile is given by

T = To

{

1 −

(

1 − 1/γ

kBTo/(µmp)

)

·
1

2
Φ′′(ro) (r − ro)2

}γ

, (10)

assuming an ideal gas law. We remark that the isothermal solution falls exponentially
with coordinate distance from ro in this approximation. However, we do not expect the

!" !! !" ## ? $ % &



354 R. S. S. Vieira and W. Kluźniak

atmosphere to be isothermal near the singularity, so there should be a cutoff radius at a finite
value of r. On the other hand, all the polytropic solutions have (positive) inner and outer
edges given by the condition p(r) = 0.

Therefore, in the geometrically thin approximation all the profiles depend on the space-
time metric only via two numbers: the zero-gravity radius ro and the (positive) value of
Φ′′(ro). In particular, the atmospheres will have the same shape regardless of the pecu-
liarities of each spacetime; for a given equation of state, the difference will appear in the
position of its peak and in the width of the profiles.

4 CONCLUSIONS

If accreting matter gradually falls onto the singularity, for instance via an accretion disc,
then it will lose energy while falling into the potential well of Φ. It is a property of thin
accretion discs in the presence of central repulsive gravity that their inner edge is precisely
at the zero-gravity radius (e.g., Stuchlı́k and Schee (2014); Vieira et al. (2014)). When
matter flows through this inner edge of the disk, it will spread in the polar directions over
a spherical shell of the same radius. If it starts falling onto the singularity, it will have to
climb the potential well generated by the central repulsive gravity region. Since the energy
of the flowing matter will not be sufficient to do so, it will be driven back to larger radii and
oscillate around ro. Eventually, due to viscous forces in the fluid, it will settle down at ro

and form the levitating atmosphere.
In this way, matter will never reach the singularity. If enough matter is deposited in the

atmosphere, so that the geometrically thin approximation is not valid anymore, exact so-
lutions may give us the optical depth of denser atmospheres and therefore define whether
these may be optically thick. In that case, for external observers, the singularity may ap-
pear not so different from a gas planet. Therefore a natural astrophysical process, namely
accretion, may “cloak” the singularity with a dense spherical layer of optically thick gas.
The question of whether this “levitating cloak” also occurs in nonspherical configurations,
such as rotating singularities, deserves further investigation.
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Zülpicher Strasse 77, D-50937 Köln, Germany
5Max-Planck-Institut für Radioastronomie (MPIfR),
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ABSTRACT
In the Galactic center nuclear star cluster, bright late-type stars exhibit a flat or even
a decreasing surface density profile, while fainter late-type stars maintain a cusp-like
profile. Historically, the lack of red giants in the Galactic center was discovered via
the drop in the strength of the CO absorption bandhead by Kris Sellgren et al. (1990),
later followed by the stellar number counts based on the high angular resolution near-
infrared observations. Several mechanisms were put forward that could have led to
the preferential depletion of bright red giants: star-star collisions, tidal stripping,
star-accretion disc collisions, or an infall of a massive cluster or a secondary black
hole. Here we propose a novel scenario for the bright red-giant depletion based on
the collisions between red giants and the nuclear jet, which was likely active in the
Galactic center a few million years ago and could have led to the formation of the
large-scale γ-ray Fermi bubbles. The process of the jet-induced ablation of red giants
appears to be most efficient within ∼ 0.04 pc (S-cluster), while at larger distances it
was complemented by star–accretion disc collisions and at smaller scales, tidal strip-
ping operated. These three mechanisms likely operated simultaneously and created
an apparent core of late-type stars within ∼ 0.5 pc.

Keywords: Galaxy: center — stars: supergiants — galaxies: jets — stars: kine-
matics and dynamics
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1 INTRODUCTION

The analysis of the intergrated diffuse starlight at 2.3 µm of the Galactic center region
within ∼ 1.2 pc revealed a drop in the CO absorption bandhead strength inside ∼ 0.6 pc
(Sellgren et al., 1990). Since CO molecules are present in the extended atmospheres of
late-type stars, this discovery indicated the missing red-giant problem. Later on, with the
development of the adaptive optics technology, individual sources were detected, initially
up to magnitude 16 in the Ks-band, now even up to magnitude 19. This allowed to con-
struct surface-density distributions of late-type and early-type stars. Buchholz et al. (2009)
found that late-type stars have a flat surface-density distribution, while young OB stars
have a cusp-like distribution in the same region. Recently, Gallego-Cano et al. (2018)
studied the surface density distribution of late-type stars up to the observed magnitudes of
Ks = 18 mag. They recovered the previous findings of the core-like distribution for giant
late-type stars in the range 12.5 − 16 mag, while the faint stars with Ks ≈ 18 mag exhibit
a single power-law 3D distribution with the slope of γ $ 1.4 (the surface density slope is
Γ ≈ γ − 1 = 0.4). Gallego-Cano et al. (2018) estimate that ∼ 100 bright giants could be
missing within the projected distance of ∼ 0.3 pc. An independent analysis by Habibi et al.
(2019) confirms these findings. They can also recover a single power-law surface-density
distribution (“cusp”) of faint giants (Ks < 17 mag) with the projected power-law index of
Γ $ 0.34, while they estimate that about 4-5 bright giants appear to be missing within the
S-cluster region (∼ 0.04 pc). In addition, they constrain the least and the most extended
atmospheres of late-type stars in the range between 4 and 30 R% located within ∼ 0.02 pc.

By constructing the K-band luminosity function (KLF) of late-type stars and by fitting
theoretical luminosity functions to it, Schödel et al. (2020) inferred that ∼ 80% of the
stellar mass of the Nuclear Star Cluster (NSC) formed 10 Gyr or earlier. This episode was
followed by a quiescent phase, and another ∼ 15% formed 5 Gyr ago. The remaining few
percent could have formed within the last 100 Myr. This implies that the star-formation in
the NSC is rather episodic (Pfuhl et al., 2011) and most of the stellar mass is old.

In the Galactic center, the two-body relaxation time is of the order of 1 Gyr,

τrelax =
0.34σ3

$

G2m$ρ$ logΛ
∼

∼ 1.8 × 109
(

σ$

102 km s−1

)3
(

m$

1 M%

)−1 (

ρ$

106 M% pc−3

)−1

yr , (1)

where we considered the Coulomb logarithm of the order of 10 and the stellar mass density
estimate of ∼ 106 M% pc−3 is based on the enclosed mass as determined by Schödel et al.
(2009). The relaxation time could further be shortened by a factor of at least 10 due to the
presence of massive perturbers (Perets et al., 2007). Given that τrelax is comparable or even
shorter than the formation time of most of late-type stars, the late-type NSC is expected
to be relaxed and its 3D number density should follow a single power-law profile similar
to the theoretical Bahcall-Wolf cusp (nBW ∝ r−3/2 for unequal stellar masses according to
Bahcall and Wolf, 1977 and n• ∝ r−2 for stellar black holes; see also Alexander, 2005,
2017 for reviews). Schödel et al. (2020) confirm in their analysis that late-type stars in all
magnitude bins follow a single power-law surface-density profile, except for the brightest
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stars with the observed K-band magnitude in the range of 15− 13 mag, which exhibit a flat
to a decreasing surface-density profile that can be described by a broken power law.

To explain this apparent paradox of missing bright red giants, several mechanisms have
been proposed based on their preferential effect on bigger stars with more extended, loosely-
bound envelopes. Below we list the main proposed mechanisms:

• tidal disruption of red giants and tidal stripping of their envelopes by the supermassive
black hole (SMBH; Hills, 1975; Rees, 1988; Bogdanović et al., 2014; King, 2020),
• red giant–accretion disc (clump) collisions (Armitage et al., 1996; Amaro-Seoane and
Chen, 2014; Amaro-Seoane et al., 2020; Kieffer and Bogdanović, 2016),
• collisions of red giants with field stars and compact remnants (Phinney, 1989; Sellgren
et al., 1990; Morris, 1993; Genzel et al., 1996; Dale et al., 2009)
• mass segregation effects: the infall of a secondary massive black hole (Baumgardt et al.,
2006; Merritt and Szell, 2006) or the infall of a massive cluster (Kim and Morris, 2003;
Ernst et al., 2009; Antonini et al., 2012) or the dynamical segregation of stellar black holes
(Morris, 1993),
• central luminosity source as a source of ionizing radiation (Sellgren et al., 1990).

In the following, we present a novel scenario reminiscent of the last scenario that in-
cludes a central luminosity source that photoionizes molecular content in the large en-
velopes of red giants, including the CO molecule (Sellgren et al., 1990). However, instead
of photoionization, we focus on the possibility of the mechanical ablation of large red-giant
atmospheres by a nuclear jet, which could have been significantly more active in the Galac-
tic center a few million years ago. The observed γ-ray Fermi (Su et al., 2010) and radio
bubbles (Heywood et al., 2019) as well as the X-ray chimneys (Ponti et al., 2019) and op-
tical ionization cones (Bland-Hawthorn et al., 2019) could be its fingerprints. We describe
the model and analyze its consequences in detail in Zajaček et al. (2020). In this contribu-
tion, we summarize the main concepts and subsequently, we compare different scenarios of
the red giant depletion and how they can complement each other on different spatial scales
from Sgr A*.

2 MODEL DESCRIPTION

The basic assumption in our model is the active jet phase of Sgr A*. Recently, multiwave-
length evidence has been accumulated for the presence of bipolar cones – these include
γ-ray Fermi bubbles (Su et al., 2010), radio bubbles (Heywood et al., 2019), X-ray chim-
neys (Ponti et al., 2019), and optical large-scale ionization cones (Bland-Hawthorn et al.,
2019). Their overall energy content appears to be consistent with the active jet and/or the
nuclear disc outflows with the kinetic luminosity of Lj = 2.3+5.1

−0.9 × 1042 erg s−1 (Miller and
Bregman, 2016). On the other hand, a nuclear starburst appears to be inconsistent with
the bubble energetics by about a factor of 100 (Bland-Hawthorn and Cohen, 2003; Bland-
Hawthorn et al., 2019). Guo and Mathews (2012) simulated the formation of the Fermi
bubbles by an active jet and the basic energetics and properties could be explained by the
jet duration of tjet ∼ 0.1−0.5 Myr. Taking into account the total energy content of ionization
cones of Econe ∼ 1056 − 1057 erg (Bland-Hawthorn et al., 2019), the jet kinetic luminosity
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jet

Sgr A*
black hole

red giant

L0,R0,T0

modified giant

L1,R1,T1

accretion disc

Bow shock

detached
shocked
envelope

Rstag

loose, expanding atmosphere

dense core

  after several encounters

Figure 1. Illustration of the red giant as it crosses the jet during the active phase of Sgr A* a few mil-
lion years ago. a red giant consists of a dense core surrounded by a loose and expanding atmosphere.
While crossing the jet, its outer layers get ablated, which results in a modified appearance – higher
effective temperature and a drop in near-infrared luminosity after repetitive encounters. For further
details, see Zajaček et al. (2020).

can be estimated as Lj ∼ Econe/tjet ∼ 6.3 × 1042 − 3.2 × 1044 erg s−1. This is in agreement
with the upper limit given by the Eddington luminosity of Sgr A*,

LEdd = 5 × 1044

(

M•

4 × 106 M%

)

erg s−1 . (2)

The active jet during the Galactic center Seyfert phase was dominated by the kinetic pres-
sure (Guo and Mathews, 2012). The kinetic luminosity can be estimated using the con-
version efficiency ηj as Lj = ηjLacc ! ηjLEdd, where Lacc is the bolometric accretion lu-
minosity. Since ηj < 0.7 for most radio galaxies (Ito et al., 2008), this yields the upper
limit of Lj < 3.5 × 1044 erg s−1. In the following, we explore the jet-star interaction for
Lj = 1041 − 1044 erg s−1, where the lower limit was estimated for the current quiescent
phase of Sgr A* (Yusef-Zadeh et al., 2012).

During the Seyfert phase of Sgr A* that occurred 3.5±1 Myr ago (Bland-Hawthorn et al.,
2019), most of the NSC late-type stars were certainly present since 80% of the stellar mass
formed at least 10 Gyr ago (Schödel et al., 2020). Given this setup, it is straightforward
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Figure 2. Stagnation radius Rstag/R% as a function of the jet luminosity (in erg s−1) and of the distance
from Sgr A* (in parsecs). Two horizontal black lines mark the extent of the S cluster – from the S2
pericenter up to 0.04 pc (or 1”). Two dashed black lines depict Rstag equal to 30 (top) and 4 Solar radii
(bottom), respectively. To instruct the reader, we also plot the vertical dot-dashed lines that mark the
jet kinetic luminosities, which would result in the atmosphere ablation at 30 R% (left) and 4 R% (right)
at the distance of z = 0.02 pc. The horizontal dotted black line depicts the approximate length-scale
of the red-giant core at 0.5 pc (see e.g. Sellgren et al., 1990).

to invoke a scenario where red giants, supergiants, and asymptotic giant-branch stars cross
the jet. This scenario was studied extensively in relation to the non-thermal emission of
jetted active galactic nuclei (AGN; see e.g. Barkov et al., 2010, 2012; Araudo et al., 2013;
Perucho et al., 2017). Here we focus instead on the expected impact of the repetitive jet-star
interactions on the visual appearance of red giants, mainly in the near-infrared domain, see
Fig. 1 for illustration. Even in the current quiescent state of Sgr A*, there is evidence for the
interaction of wind-blowing stellar objects with the ambient wind or even a low surface-
brightness jet (Yusef-Zadeh et al., 2020). Clear examples are comet-shaped sources X3,
X7 (Mužić et al., 2010), and the bow-shock source X8 (Peißker et al., 2019) located in the
so-called mini-cavity.

The basic length-scale that determines where the red-giant envelope is truncated is given
by the stagnation radius Rstag, where the stellar-wind pressure Psw is comparable to the jet
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kinetic pressure Pj, which leads to

Rstag = z tan θ

√

ṁwvwc

4Lj
=

= 27

(

z

0.04 pc

) (

ṁw

10−8 M%yr−1

)
1
2 (

vw

10 km s−1

)
1
2

(

Lj

1042 erg s−1

)− 1
2

R%, (3)

where z is the distance of the star from Sgr A*, ṁw is the stellar mass-loss rate, vw is
the terminal stellar-wind velocity. The half-opening angle θ is set to 12.5◦ (see Li et al.,
2013 for the opening angle estimate for Sgr A*). The stellar parameters – ṁw and vw – are
scaled to the typical values for red giants (Reimers, 1987). According to Eq. (3), the typical
stagnation radius in the S cluster region (∼ 0.04 pc) is comparable to the largest atmosphere
radius of 30 R% inferred by Habibi et al. (2019). In Fig. 2, we plot the stagnation radius
in Solar radii with respect to the expected jet luminosity and the distance from Sgr A* (in
parsecs). Within the S cluster, the stagnation radius can reach 30 R% up to a few Solar radii
only, depending on the exact location and the jet luminosity. These values of Rstag generally
reach below the atmosphere of larger red giants.

The number of encounters between the jet and the red giant is expected to be at least of
the order of 1000 since the orbital timescale Porb is much smaller than tjet. Once a red giant
enters the jet, it will continue to cross it during subsequent orbits during the jet lifetime.
In principle, the vector resonant relaxation and/or the jet precession could cause that the
interaction halts. For the following estimates, we assume that these processes take place on
longer timescales than the jet lifetime (see also Zajaček et al., 2020 for a detailed discussion
of these effects). The number of red giant–jet encounters is then approximately,

ncross = 2
tjet

Porb
∼ 2 × 104

(

tjet

0.5 Myr

) (

M•

4 × 106 M%

)
1
2
(

z

0.01 pc

)− 3
2

. (4)

Within the S cluster, the number of encounters reaches ncross $ 1.4×106 at the S2 pericentre
(rp ∼ 0.58 mpc) and goes down to ncross $ 2500 at 0.04 pc. These estimates represent upper
limits since during the jet existence the vector resonant relaxation operates that changes
the orbital inclination and the star may leave the collisional orbit before the jet ceases its
activity. In addition, the same can occur due to the potential jet precession (caused by
a secondary black hole or the Lense-Thirring effect) that can change the jet direction on the
timescales of tens of years for some sources, such as OJ287 (Britzen et al., 2018).

During one encounter, the mass removal from the red giant of radius R$ can be estimated
from the balance of jet kinetic force and the gravitational force acting on the shell to be
removed, PjπR

2
$ $ Gm$∆M1/R

2
$, from which follows,

∆M1

M%
≈ 4 × 10−10

(

Lj

1042 erg s−1

) (

R$

100 R%

)4 (

z

0.04 pc

)−2 (

θ

0.22

)−2
(

m$

M%

)−1

. (5)
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The mass removed during ncross encounters can be estimated simply as ∆Mcross $
ncross∆M1, which yields,

∆Mcross ∼ ncross∆M1 ≈

≈ 10−4

(

Lj

1042 erg s−1

) (

R$

100 R%

)4 (

z

0.01 pc

)− 7
2

×

(

θ

0.22

)−2
(

m$

M%

)−1 (

tjet

0.5 Myr

) (

M•

4 × 106 M%

)
1
2

M% . (6)

Since 80% of the stellar mass formed 10 Gyrs or more ago, red giants in the NSC are
expected to have gone through several AGN-like phases. Typical AGN phases are short, of
the order of 105 years, while the total growth time of the SMBHs is between 107 and 109

years (Schawinski et al., 2015). This implies at least nAGN ∼ 102 AGN-like events during
the Galaxy lifetime. The total removed mass during all active phases then is, ∆MAGN ∼
nAGNncross∆M1, which makes the numerical estimate in Eq. (6) larger by at least two orders
of magnitude.

The mass removal from red giants estimated by Eqs. (5)-(6) and the associated impulse
can also effect the orbit of late-type stars. The effect of one encounter is typically negligi-
ble, but the cumulative effect of several thousand crossings through the jet can noticeably
change the dynamics of the largest red giants. This is, however, beyond the scope of the
current contribution and the effect will be studied in detail in our future studies.

We plot the distance profiles of the removed mass from red giants for different jet lu-
minosities (Lj = 1042 erg s−1 and Lj = 1044 erg s−1) and atmosphere radii (R$ = 50 R% and
R$ = 100 R%) in Fig. 3. In addition, we also include the profile for the longer duration
of the jet activity (1 Myr; solid green line) as well as the cumulative mass removal for red
giants going through 100 AGN phases (dash-dotted blue line). For comparison, we also
show the cumulative mass removal during star–disc interactions according to Kieffer and
Bogdanović (2016) (dashed and dotted horizontal orange lines) assuming that the star-disc
mass removal is constant throughout the studied distance range. However, star-disc inter-
actions are expected to remove the mass more efficiently at larger distance scales where
the gaseous disc was denser and the Toomre’s stability criterion plunged below one be-
cause of a larger surface density of the disc. On the other hand, the jet-star interactions are
clearly the most efficient in removing the atmosphere mass within the S cluster, where the
cumulative mass removal is comparable to the one resulting from standard red-giant stellar
winds (shaded gray rectangle) as well as the mass removed during star-disc interactions.
This is also enhanced by another effect, which is related to the thermal Kelvin-Helmholtz
timescale. In Zajaček et al. (2020) we showed that approximately within the S cluster, col-
liding red giants were not able to cool off before the subsequent collision, which resulted in
larger atmosphere cross-sections and hence larger removed mass (warm colliders). Outside
the S cluster (> 0.04 pc), stars were able to cool off because of longer orbital timescales
(cool colliders) and their collisional cross-sections were smaller and therefore also the jet-
ablation was further reduced by this effect.

Concerning the probability of an encounter between red giants and the jet with a half-
opening angle θ, it is clear that for a spherical stellar cluster, not all the stars will interact
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Figure 3. Total mass removed from the red giant atmosphere (in Solar masses) due to the jet ablation
as a function of distance from Sgr A* in parsecs. We plot the cases for Lj = 1042 erg s−1 and Lj =

1044 erg s−1 and two different atmosphere radii of 50 and 100 R%, see the legend (solid and dashed
black and blue lines). These cases are nominally calculated for the jet duration of tjet = 0.5 Myr.
In addition, we also include the case for the longer duration of the jet activity, tjet = 1 Myr (solid
green line). The cumulative mass removal including 100 AGN phases is depicted by a dash-dotted
blue line (for the case with Lj = 1044 erg s−1 and R$ = 100 R%). For comparison, we also include the
cumulative mass removal for star-disc collisions according to Kieffer and Bogdanović (2016) (dashed
and dotted orange lines). Furthermore, the cumulative red-giant (RG) stellar-wind loss during 0.5 Myr
is shown as a gray rectangle using the observationally inferred mass-loss rates (Reimers, 1987). The
red vertical dotted line depicts the outer radius of the S cluster (0.04 pc) and at the same time the
approximate dividing radius between the so-called warm and cool colliders (Zajaček et al., 2020).
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with the jet at a given moment. In Zajaček et al. (2020), we derive an analytical formula for
the mean number of encounters per orbital period in the region with an outer radius zout,

NRG =
4π

4 − γ
n0z
γ

0
tan θz

3−γ
out , (7)

where n0, z0, and γ are the parameters describing 3D number density of late-type stars
in the power-law form, nRG ≈ n0(z/z0)−γ. For the values inferred by Gallego-Cano et al.
(2018), n0 $ 52 pc−3, z0 $ 4.9 pc, and γ $ 1.43, we obtain NRG ∼ 3.5 within zout =

0.04 pc and NRG ∼ 82.6 within zout = 0.3 pc, which is within uncertainties consistent with
the number of missing bright giants at these scales (Gallego-Cano et al., 2018; Habibi
et al., 2019). Moreover, the number of encounters given by Eq. (7) is a lower limit as the
various dynamical processes (resonant relaxation, jet precession) can effectively increase
the interaction volume during the jet lifetime.

3 RESULTS: SIMULATED SURFACE-DENSITY PROFILES

The Galactic center stellar population can only be studied in detail in the near-infrared
domain, mainly in the Ks-band at 2.2 µm (see e.g. Schödel et al., 2014). As the red giant
crosses the jet several times, see Fig. 1, its radius will shrink from R0 to R1, but its bolomet-
ric luminosity L$ = 4πR2

$σT 4
$ will stay constant as it depends on the core mass (Paczyński,

1970; Refsdal and Weigert, 1971), which is not affected. This gives us the basic scaling for
the effective temperature after the jet-red giant interactions,

T1 = T0

(

R0

R1

)1/2

. (8)

The infrared luminosity LIR = πBIR4πR2
$ will decrease with the decrease in the radius.

This can be shown by taking the Rayleigh-Jeans approximation, though very crude in the
infrared domain, from which LIR ≈ 8π2(ν/c)2kT$R2

$. The ratio between the post- and the
pre-collision infrared luminosity can then be expressed as,

LIR
1

LIR
0

≈

(

R1

R0

)3/2

. (9)

For illustration of the effect, let us consider the red giant with an initial atmosphere radius
of R0 = 120 R% that is ablated down to R1 = 30 R% after several thousand crossings through
the jet. From Eq. (8), the effective temperature will increase to T1 = 2T0, while the infrared
luminosity will decrease to LIR

1 = 0.125LIR
0 according to Eq. (9) or the magnitude will

increase by 2.26 mag. For an even more profound transition from R0 = 120 R% to R1 =

4 R%, the post-collision values are expected to be T1 = 5.5T0, LIR
1 = 0.006LIR

0 , and the
magnitude increase is ∆K = 5.54 mag. These changes can already significantly influence
stellar counts in individual magnitude bins.

To better evaluate how the red giant–jet interactions could have affected the surface-
density profiles of late-type stars in individual near-infrared magnitude bins, we perform
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Figure 4. The initial surface-density distribution of the Monte Carlo-generated NSC consisting of
4000 late-type stars, smoothed by the Gaussian kernel on a regular grid of 40 × 40 points. The
blue shaded region represents the jet with a half-opening angle of 12.5◦. The three gray streamers
represent the three minispiral arms.

a Monte Carlo simulation by generating a mock NSC. The NSC is assumed to be spherical
and described by the volume number density of nRG ≈ n0(z/z0)−γ with n0 = 52 pc−3,
z0 = 4.9 pc, and γ ∼ 1.43 according to Gallego-Cano et al. (2018). This number density
profile implies the presence of ∼ 4000 late-type stars inside one parsec, whose properties
were generated using the Monte Carlo approach. The surface density distribution of such
a cluster is depicted in Fig. 4 including the jet with a half-opening angle of θ = 12.5◦ and
the three minispiral streamers as currently observed are also plotted for a better orientation.

Each star was assigned a mass in the range between 0.08 M% and 100 M% according to
the Kroupa initial mass function (IMF; Kroupa, 2001). The Chabrier/Kroupa IMF seems
to be consistent with the IMF of the Galactic center late-type stellar population (Pfuhl
et al., 2011). Subsequently, we also assigned the core mass to each star. For the purposes
of our analysis, we fixed the core-mass fraction to µc/m$ = 0.4, which lies between the
value derived from the Schönberg-Chandrasekhar limit and the values expected from the
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last phase of the stellar evolution, when the white-dwarf core constitutes most of the mass
of solar-type stars.

To calculate the magnitude distribution in the near-infrared Ks-band, we followed this
procedure,

(1) We calculate the bolometric stellar luminosity and the stellar radius as a function of
the core mass, L$(µc) and R$(µc), according to Eq. (19) in Zajaček et al. (2020).

(2) When the jet is active, we compare R$ of the entering star with Rstag calculated
using Eq. (3). When R$ ≥ Rstag, we set R$ = Rstag. For this analysis, we assumed that
almost all late-type stars within 0.5 pc could have interacted with the jet for at least several
hundred times. This would be possible when the vector resonant-relaxation timescale is
shorter than the jet lifetime or the jet would be precessing.

(3) The effective temperature is calculated as T$ = T%(L$/L%)1/4(R$/R%)−1/2.
(4) From the Planck function Bν(T$), we calculate the flux density at Ks-band, Fν =

πBν(T$)(R$/d)2, where d is the distance to the Galactic center. The intrinsic (dereddened)
apparent magnitude is then calculated as mK = −2.5 log (Fν/653 Jy).

In the next step, to estimate the surface-density distributions, we count the number of
stars N$ in the concentric annuli with the mean radius R and the width ∆R, from which we
estimate the surface density as σ$ = N$/(2πR∆R) with the uncertainty of

√
N$/(2πR∆R).

Then we bin the stars into two-magnitude bins, starting at 18 mag and going down to
the brightest stars with 10 mag. Initially, without any jet influence, the surface density
distribution across all magnitude bins could be described as a single power-law described
as N(R) = N0(R/R0)−Γ, hence as a proper cusp, see Table 1. When the jet is switched on
with the kinetic luminosity of Lj = 1044 erg s−1, the surface-density profile of the brightest
giants (10-12 mag, dereddened) becomes flat up to ∼ 0.3 pc, see Fig. 5. The flattening
inside 0.04 pc is also apparent for late-type stars in the 12-14 mag bin (dereddened), while
fainter stars with larger magnitudes maintain a cusp-like distribution as the most recent
observational studies indicate (Gallego-Cano et al., 2018; Habibi et al., 2019; Schödel et al.,
2020). The surface-density distribution of bright late-type stars can be fitted by a broken
power-law function in the form N(R) = N0(R/Rbr)

−Γ[1 + (R/Rbr)
∆](Γ−Γ0)/∆, where Rbr is the

break radius, Γ is the slope of the inner cluster part inside Rbr, Γ0 is the slope of the outer
cluster part, and ∆ describes the sharpness of transition. For both the case without any jet
and the case with the jet kinetic luminosity of 1044 erg s−1, we summarize the slopes and
the break radii of the fitted power-law functions in Table 1 for individual magnitude bins.

4 DISCUSSION AND CONCLUSIONS

We presented a novel scenario based on the red giant–nuclear jet interactions to explain
the peculiarities of the Milky Way Nuclear Star Cluster – on one hand, the cusp-like dis-
tribution of faint late-type stars, which is expected from the two-body relaxation, and on
the other hand, the core-like distribution of bright red giants, which requires a mechanism
that preferentially acts on stars with more extended atmospheres. The interaction of red
giants with the nuclear jet during active phases of Sgr A* can naturally explain the ob-
served surface-density features since the jet removes the envelopes of more extended red
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Figure 5. Post-collisional surface-density distributions of late-type stars constructed from an initially
cuspy NSC. The jet kinetic luminosity was set to 1044 erg s−1 and all the stars were assumed to interact
with the jet, which for the brightest giants led to the ablation of their envelopes. The brighter late-type
stars in the magnitude bins 10-12 mag and 12-14 mag exhibit a broken power-law distribution, while
the fainter giants (14-16 mag and 16-18 mag) maintain the cusp-like distribution. The magnitude
values are treated as intrinsic or dereddened. For the comparison with the observational results, it is
necessary to add ∼ 2.5 mag (Schödel et al., 2010) for the line-of-sight mean extinction in Ks-band.

giants more efficiently from basic principles. The repetitive mechanical removal of the at-
mosphere material also ensures that the resulting effect on the late-type star is permanent –
its effective temperature will increase, its mass will decrease, and the infrared luminosity
will drop. This is an advantage of this model in comparison with the central luminosity
source proposed by Sellgren et al. (1990), since after the source luminosity drops, the CO
molecule could form again in the extended atmosphere because of the lowered ionizing
potential.

In addition, we showed that the jet–red giant interactions are the most efficient in re-
moving the mass inside 0.04 pc or the S cluster region, where the removed mass by the jet
ablation is comparable to the cumulative mass loss from stellar winds. Hence, the overall
mass loss can effectively be doubled in comparison with the standard stellar evolution dur-
ing the jet existence. The mass removal in the S cluster could also be enhanced by the fact
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Table 1. Best-fit slopes and break radii of the power-law distributions that are used to describe the
surface-density distributions of the mock NSC at its initial “cuspy” stage (no jet), see Fig. 4, and in the
stage after the active phase with the jet, see distributions in Figure 5. Values are listed for different
magnitude bins and two cases of the jet activity: no jet and the jet with the kinetic luminosity of
Lj = 1044 erg s−1.

Magnitude bin No jet activity Jet Lj = 1044 erg s−1

18-16 mag single: Γ = 0.9 single: Γ = 1.0
16-14 mag single: Γ = 0.6 single: Γ = 0.7
14-12 mag single: Γ = 0.6 broken: Γ = 0.2, Γ0 = 0.9, Rbr = 1′′

12-10 mag single: Γ = 0.7 broken: Γ = 0.04, Γ0 = 2.2, Rbr = 6.6′′

tidal
domain

jet-ablation domain
0.04 pc 0.5 pc

star-disc interaction domain
(gravitationally unstable disc with Q<1)

0.1 mpc

red giant-black hole
collisions

red giant-main sequence star
collisions

Figure 6. Illustration of the mechanisms that contributed to the depletion of bright red giants in
the inner 0.5 pc of the Galactic center. Closest to Sgr A* (0.1 mpc), the tidal stripping of the red
giant envelopes operated. Inside the inner 0.04 pc (S cluster), jet-red giant interactions dominated,
while outside 0.04 pc, the interaction of red giants with the fragmenting gaseous disc was likely the
dominant mechanism. Occasional red giant-black hole and red giant-main sequence star collisions
further contributed to the depletion throughout the NSC. Distances are not drawn to the scale.
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that red giants are expected to be warm colliders in this region, i.e. stars that are not able
to cool off before the subsequent collision with the jet. Therefore their envelopes are more
puffed up, which increases the collisional cross-sections and the overall mass loss. For
bright giants with atmosphere radii of the order of 100 R%, the increase in the near-infrared
magnitude is expected to be 2−6 mag, which leads to the flattening of their surface-density
profile, while they can turn into fainter gaints in the near-infrared after the ablation and
make their profiles even more cuspy.

Outside the S cluster, the efficiency of jet–red giant interactions in terms of the mass
removal drops in comparison with star-disc collisions. Therefore, the star-disc collisions
likely complemented jet–red giant interactions at larger scales, where the massive gaseous
disk fragmented into star-forming clumps with significantly increased density (Levin and
Beloborodov, 2003; Milosavljević and Loeb, 2004). On the other hand, at much smaller
scales of a fraction of a milliparsec, tidal stripping of envelopes operated. Throughout the
NSC, occasional collisions of large red giants with stellar black holes and main-sequence
stars could partially have contributed to the depletion, but they cannot alone explain the
missing brightest giants (Dale et al., 2009). We illustrate all of these mechanisms and the
regions of their largest efficiency in Fig. 6. They likely all contributed to the observed
dearth of bright red giants in the inner 0.5 pc.

A limitation of our model is that only a fraction of late-type stars that at a given time cross
the jet will suffer the mass removal because of the narrow opening angle of the jet. A wide-
angle outflow, e.g. resulting from the accretion disc winds, with a half-opening angle wθ,
with w > 1, could hit more stars. However, this is at the cost of enlarging the stagnation
radius by ∼ w and diminishing the mass removal by w2. Hence, a highly-collimated jet
is required for the mechanism to work efficiently enough to create an apparent core in
the surface-density distribution. Moreover, discussed dynamical processes, such as the
coherent resonant relaxation and the jet precession, can considerably enlarge the interaction
volume during the active jet phase. Since there are at least ∼ 100 such phases during the
Galaxy lifetime, the total number of affected giants is consistent with the number of missing
large giants.
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Amaro-Seoane, P., Chen, X., Schödel, R. and Casanellas, J. (2020), Making bright giants invisible at
the Galactic Centre, MNRAS, 492(1), pp. 250–255, arXiv: 1910.04774.

Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A. and Merritt, D. (2012), Dissipationless
Formation and Evolution of the Milky Way Nuclear Star Cluster, ApJ, 750(2), 111, arXiv: 1110.
5937.

Araudo, A. T., Bosch-Ramon, V. and Romero, G. E. (2013), Gamma-ray emission from massive stars
interacting with active galactic nuclei jets, MNRAS, 436(4), pp. 3626–3639, arXiv: 1309.7114.

Armitage, P. J., Zurek, W. H. and Davies, M. B. (1996), Red Giant–Disk Encounters: Food for
Quasars?, ApJ, 470, p. 237, arXiv: astro-ph/9605137.

Bahcall, J. N. and Wolf, R. A. (1977), The star distribution around a massive black hole in a globular
cluster. II. Unequal star masses., ApJ, 216, pp. 883–907.

Barkov, M. V., Aharonian, F. A., Bogovalov, S. V., Kelner, S. R. and Khangulyan, D. (2012), Rapid
TeV Variability in Blazars as a Result of Jet-Star Interaction, ApJ, 749(2), 119, arXiv: 1012.
1787.

Barkov, M. V., Aharonian, F. A. and Bosch-Ramon, V. (2010), Gamma-ray Flares from Red Giant/Jet
Interactions in Active Galactic Nuclei, ApJ, 724(2), pp. 1517–1523, arXiv: 1005.5252.

Baumgardt, H., Gualandris, A. and Portegies Zwart, S. (2006), Ejection of hypervelocity stars from
the Galactic Centre by intermediate-mass black holes, MNRAS, 372(1), pp. 174–182, arXiv:
astro-ph/0607455.

Bland-Hawthorn, J. and Cohen, M. (2003), The Large-Scale Bipolar Wind in the Galactic Center,
ApJ, 582(1), pp. 246–256, arXiv: astro-ph/0208553.

Bland-Hawthorn, J., Maloney, P. R., Sutherland, R., Groves, B., Guglielmo, M., Hao Li, W., Curzons,
A., Cecil, G. and Fox, A. J. (2019), The Large-scale Ionization Cones in the Galaxy, ApJ, 886(1),
45.

Bogdanović, T., Cheng, R. M. and Amaro-Seoane, P. (2014), Disruption of a Red Giant Star by a
Supermassive Black Hole and the Case of PS1-10jh, ApJ, 788(2), 99, arXiv: 1307.6176.

Britzen, S., Fendt, C., Witzel, G., Qian, S. J., Pashchenko, I. N., Kurtanidze, O., Zajacek, M., Mar-
tinez, G., Karas, V., Aller, M., Aller, H., Eckart, A., Nilsson, K., Arévalo, P., Cuadra, J., Subroweit,
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ABSTRACT
In this work the dynamics of a spinning particle moving in the Schwarzschild back-
ground is studied. In particular, the methods of Poincaré section and recurrence
analysis are employed to discern chaos from order. It is shown that the chaotic or
regular nature of the orbital motion is reflected on the gravitational waves.

Keywords: Black holes – spinning particles – chaos

1 INTRODUCTION

The equations of motion of a small extended test body in curved spacetimes were first de-
rived by Mathisson (1937) and Papapetrou (1951), and later reformulated by Dixon, W.G.
(1970a,b, 1974). The study of such bodies is usually reduced to the pole-dipole approxi-
mation, in which all the higher-order multipoles are neglected. In this approximation the
test body is characterized solely by its mass and spin and it is called a spinning particle.
When this particle is subject only to the gravitational interaction, the equations of motion
of the particle read

DPµ

d⌧
= �1

2
Rµ⌫�v⌫S �, (1)

DS ↵�

d⌧
= P↵v� � v↵P�, (2)

where Pµ denotes the four-momentum, S µ⌫ denotes the spin tensor, vµ = dxµ/d⌧ denotes
the four-velocity (we choose the a�ne parameter ⌧ to be the proper time), and Rµ⌫� denotes
the Riemann tensor. This set of equations is often called the Mathisson-Papapetrou-Dixon
(MPD) equations. To be able to evolve the MPD equations, one has to fix the center of the

978-80-7510-433-5 © 2020 – SU in Opava. All rights reserved. ‰y ‰‰ ‰y ÂÂ ? o n 6

http://www.opava-city.cz/
ondrzel@gmail.com
gglukes@gmail.com
witzany@asu.cas.cz


376 O. Zelenka, G. Lukes-Gerakopoulos, V. Witzany

mass of the body xµ by imposing a so called Spin Supplementary Condition (SSC). The
SSC, we have implemented in this work, is the Tulczyjew–Dixon (TD) (Tulczyjew, 1959;
Dixon, W.G., 1970a) one

S µ⌫P⌫ = 0. (3)

For this SSC the 4-velocity is related to the other variables through:

vµ =
m
µ2

 
Pµ +

2S µ⌫R⌫◆�P◆S �

4µ2 + R↵���S ↵�S ��

!
, (4)

where µ2 = �P⌫P⌫ is the mass defined with respect to the momentum and m = �P⌫v⌫ is the
mass defined with respect to the velocity.

In the case of TD SSC, µ is a constant of motion independently from the spacetime
background. This holds also for the measure of the spin S = 1

2 S µ⌫S µ⌫. There are, however,
some background-dependent constants constructed from Killing vectors. In particular, for
a Killing vector ⇠µ the quantity

C = ⇠µPµ �
1
2
⇠µ;⌫S µ⌫ (5)

remains conserved along the worldline xµ(⌧) (Dixon, W.G., 1970a). In the case of the
Schwarzschild spacetime the integrals are four. Namely the energy E and the three com-
ponents of the total angular momentum Jb = (Jx, Jy, Jz). In the case of geodesic motion,
which corresponds to the case S = 0, the respective system is integrable, since for the
respective Hamiltonian H = gµ⌫PµP⌫/(2µ) there are as many degrees of freedom as inte-
grals. In particular, there is the energy, two components of total angular momentum1 and
the preservation of the Hamiltonian function itself H = �µ/2. The introduction of the spin
increases the degrees of freedom cancelling the integrability and induces chaotic motion
to the system (Suzuki and Maeda, 1997). Witzany et al. (2018) showed that, independent
of the space-time background, the spinning particle under the TD SSC has only one ad-
ditional active degree of freedom as compared to the geodesic problem (the structureless
test particle), at least if the conservation of the spin measure as well as the TD constraint
itself are taken into account. This implies that by using the remaining constants of motion
(E and two components of Jb) in the case of the Schwarzschild background, the degrees
of freedom can be reduced to two, i.e., the dynamics of the system can be described in a 4
dimensional phase space.

This work revisits the study of chaos in the case of a spinning particle moving in the
Schwarzschild spacetime, which was for the first time performed by Suzuki and Maeda
(1997). Since the dynamics of the studied system can be confined to 2 degrees of free-
dom by fixing the values of the integrals of motion, a 2D Poincaré section is an accurate
method to study the dynamics of the system. However, when the number of degrees of
freedom is higher than 2, such as for a spinning particle moving in a Kerr background,

1 The components of the total angular momentum are not mutually in involution, thus from the three components
only the two could be taken into account.
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then a 2D Poincaré section is not a reliable method to study the dynamics (see, e.g., Lukes-
Gerakopoulos et al., 2016). For studying systems independently from the number of de-
grees of freedom recurrence analysis is considered to be a more appropriate method (see,
e.g., the review of Marwan et al., 2007 and reference therein). Further advantage of recur-
rence analysis is that it is a method analyzing time series, which is advantageous when we
consider signals from gravitational wave strains later on. Thus, in this work we test the
performance of the recurrence analysis by comparing it with the standard method of a 2D
Poincaré section.

Units and notation: Geometric units are used throughout the article, G = c = 1. Greek
letters denote the indices corresponding to spacetime, while Latin letters denote indices
corresponding only to space. We use the Riemann tensor defined as R↵��� = �↵���

�
�� �

@��↵����↵������+@��↵��, where the Christo↵el symbols � are computed from the metric with
signature (�,+,+,+). The Levi-Civita tensor is ✏µ⌫⇢� =

p�g✏̃µ⌫⇢�, with the Levi-Civita
symbol ✏̃0123 = 1.

2 COMPARING POINCARÉ SECTION METHOD WITH RECURRENCE
ANALYSIS

According to the recurrence analysis, if y(t) is a vector time series in an arbitrary phase
space, then a recurrence occurs when the distance between the ith point and the jth point of
the time series drops below a threshold ". These recurrences are recorded in the recurrence
matrix

R(i, j; ") = ⇥ (" � ky(i) � y( j)k) , (6)

where ||.|| denotes a norm in the phase space and ⇥ denotes the Heaviside step-function. A
depiction of a recurrence matrix produces a recurrence plot (see, e.g., Marwan et al., 2007).
By inspecting a recurrence plot, as by inspecting a Poincaré section, one can tell whether
a time series is chaotic or not. On a Poincaré section a chaotic orbit appears as a swarm
of scattered points, an example of which can be seen in the top panel of Fig. 1. On the
other hand, on a recurrence plot a chaotic orbit can be identified by observing square–like
structures, as can be seen in the left bottom panel of Fig. 1. A regular orbit is depicted on a
Poincaré section as a smooth zero-width closed curve, as the one lying at 7 . r . 8 in the
top panel of Fig. 1, while on a recurrence plot the regularity of the orbit manifests itself by
long diagonal lines covering the whole plot.

For the initial conditions of Fig. 1 we have followed the setup suggested by Suzuki and
Maeda (1997). Namely, we have chosen Jz to be the only non-zero total angular momen-
tum component, i.e. Jb = (0, 0, Jz); we have fixed the energy E and the spin measure S ,
which is most conveniently expressed in units of µM, where M is the mass of the cen-
tral Schwarzschild black hole. Apart from the constants, we always choose initial condi-
tions such that ✓ = ⇡/2, Pr = 0 and r varying from orbit to orbit (t, �, r, ✓ are the usual
Schwarzschild coordinates). From the four components of the SSC (Eq. (3)) only three are
linearly independent, and along with the choice of the constants of motion this setup de-
termines the six components of the spin tensor and the remaining three components of the
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Figure 1. Top panel: A Poincaré section on the equatorial plane ✓ = ⇡/2 with P✓ > 0, E =
0.92292941µ, Jz = 4.0µM, S = 1.4µM. Bottom left panel: The recurrence plot for a chaotic tra-
jectory with initial conditions r = 4.5M, Pr = 0; recurrence threshold " = 0.87083. Bottom right
panel: The recurrence plot for a regular trajectory with initial conditions r = 7.6M, Pr = 0; recur-
rence threshold " = 0.49013.

momentum. For more details on how to set up the initial conditions the interested reader is
referred to Suzuki and Maeda (1997).

To evolve the MPD equations with TD SSC one has to use Eq. (4) at each integration
step and take into account the fact that vµvµ = �1. This procedure actually fixes the mass
m at each integration step. The time series for the recurrence plots in Fig. 1 were obtained
by the method explained in Appendix A.
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Figure 2. Top panel: The gravitational waveforms of the strain mode h+2 corresponding to the orbits
presented in Fig. 1. Bottom left panel: The recurrence plot of the waveform corresponding to the
chaotic orbit, using time delay 8.664M and embedding dimension 21, " = 8.566. Bottom right panel:
The recurrence plot for the waveform corresponding to the regular orbit, using time delay 8.664M
and embedding dimension 21, " = 6.819.

3 GRAVITATIONAL WAVE STRAINS

In this section we will discuss whether chaos and order can be discerned in gravitational
waves. We shall use gravitational waves emitted from a spinning particle moving in the
Schwarzschild background. In a similar study, Kiuchi and Maeda (2004) have used the
analytic formula of multipole expansion of gravitational field to calculate the gravitational
waves. In our study, we use a time-domain Teukolsky equation solver called Teukode.
Teukode was developed by Harms et al. (2014) and in Harms et al. (2016) the spin of the
particle was incorporated.
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From Teukode we obtain the strain h+ decomposed in a spin-weighted spherical har-
monic basis

h+ =
1X

m=1

h+m =

1X

l=2

m=lX

m=1

h+lm. (7)

For the purposes of our study we use just h+2. The waveforms of the strain for the two
cases in the bottom panels of Fig. 1 are shown in the top panel of Fig. 2. From looking at
the shapes of the waveforms alone one cannot tell whether they belong to a chaotic or a
regular trajectory, which is in agreement with the findings of Kiuchi and Maeda (2004). To
get an answer to the above issue one has to apply an appropriate chaos detection technique.
In our work this technique is the recurrence analysis. In the bottom panels of Fig. 2, we see
recurrence plots of h+2, the left corresponds to gravitational waves from the chaotic orbit
and the right corresponds to gravitational waves from the regular orbit of Fig. 1.

The recurrence plots of Fig. 2 look quite similar to the respective ones in Fig. 1, thus they
characterize the orbits in the same way as in Fig. 1. Namely, the left bottom panel is domi-
nated by square-like structures indicating chaos and the right bottom panel is dominated by
diagonal lines indicating order. In conclusion, the information about the chaoticity or the
regularity of an orbit is encoded in the respective gravitational waves.

In the regular case of the right panel of Fig. 2 a more careful inspection shows that the
diagonal lines are slightly di↵used. This di↵usion is introduced by the numerical accuracy
of Teukode. This is similar to what happened when Lukes-Gerakopoulos and Kopáček
(2018) polluted the time series with white noise. Moreover, it should be mentioned that
this is the first time that Teukode has been tested for o↵-equatorial orbits. The fact that the
orbital and the waveform recurrence plots do not only indicate the same dynamical nature,
but actually look alike, confirms that Teukode is performing well also for o↵-equatorial
orbits.

4 SUMMARY

We have employed recurrence analysis to discern chaos from order in the case of a spinning
particle moving in the Schwarzschild background. In particular, we have first provided a
Poincaré section, on which we identified one regular and one chaotic orbit. For these two
orbits we have produced the respective recurrence plots and we have confirmed their nature
with respect to chaoticity. Then, we fed these two trajectories to the Teukode to produce
the respective gravitational waveforms. Since from just inspecting a waveform one cannot
tell whether it comes from a regular or chaotic trajectory (Kiuchi and Maeda, 2004), we
have applied recurrence analysis on the gravitational waveforms. The waveform recurrence
plots and the respective orbital ones look very similar, which indicates that the information
about the chaoticity or not of an orbit can be revealed in the emitted gravitational waves.
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APPENDIX A: RECURRENCE PLOTS

The recurrence plots for the trajectories in Fig. 1 have been produced using the following
method: points of the numerically integrated trajectory were sampled at a rate of �t =
8.664M and the data for r, Pr, ✓, P✓, S t, S r, S ✓, S � (S µ ⌘ � 1

2 ✏
µ⌫⇢� P⌫ S ⇢�/µ) were extracted.

Each of these 8 time series was rescaled to have zero mean and unit variance. This way, we
obtained data in an 8-dimensional space and computed the recurrence matrix using Eq. (6)
with the Euclidean metric.

Computation of the recurrence plots of gravitational waveforms in Fig. 2 was slightly
more complicated, because in this case there is only limited information available (we used
the strain h+ 2) as opposed to full phase space vectors when working with trajectories. It
is therefore necessary to use some technique of phase space reconstruction, in this case the
time delay method. We provide a short description of the method; for more details, the
reader is referred to Marwan et al. (2007).

The time delay method has been proven to provide a di↵eomorphism between the orig-
inal and the reconstructed phase space under certain assumptions. Consider a time series
x(t). The reconstructed time series vector is then

y(t) = (x(t), x(t + �t), . . . , x(t + (N � 1)�t)) , (A1)

where �t is called the time delay and N is the embedding dimension. Both of these are
essentially free parameters, but there are methods to fix these for optimal results. The
canonical choice of the time delay is the first minimum of the mutual information. To obtain
a reasonable embedding dimension one can study the fraction of false nearest neighbors,
that is, the fraction of points whose nearest neighbor in the reconstructed phase for the
given embedding dimension becomes more distant by a certain factor when the dimension
is increased.
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ABSTRACT

One of the most promising methods to measure the spin of an accreting black hole
is fitting the broad iron Kα line in the X-ray spectrum. The line profile also depends
on the geometry of the hard X-ray emitting corona. To put constraints on the black
hole spin and corona geometry, it is essential to understand how do they affect the
iron Kα line emissivity profile, i.e., the local emissivity of the iron Kα emission
as a function of the radius on the accretion disc. In this work, we present calcu-
lations of the illumination and the iron Kα emissivity profiles performed with the
GR radiative transfer code Monk that employs the Monte Carlo method. In most
previous studies the distinction between the illumination and emissivity profiles was
not clearly made. For AGN discs, the emissivity profile has a similar shape with the
illumination profile, but in the innermost region the former is steeper than the lat-
ter; whereas for accretion discs in black hole X-ray binaries, the distinction between
the two profiles is more dramatic. We find out that the different behavior between
AGN and black hole X-ray binary discs is due to the different energy spectra of the
illuminating radiation. This suggests that the emissivity profile of the iron Kα line
cannot be determined by black hole spin and corona geometry alone and the energy
spectrum of the illuminating radiation has to be taken into account. We also study
the dependence of the emissivity profile on the geometry of the corona.

1 INTRODUCTION

X-ray spectra of Active Galactic Nuclei (AGNs) and X-ray binaries (XRBs) exhibit signa-
tures of X-ray reflection, including iron K fluorescent lines and the Compton hump (see the
review of Miller, 2007). It is generally believed that they are due to the hard X-ray radi-
ation of the corona illuminating the underlying accretion disc (see Fabian and Ross, 2010
and references therein). The iron line is intrinsically narrow, but the observer at infinity
sees broad and asymmetric line profile, due to the gravitational redshift by the strong grav-
itational field of the black hole and Doppler broadening of the accretion disc (Fabian et al.,
1989; Laor, 1991). The shape of the broad iron line depends on the black hole spin, and
thus fitting the iron line profile is one of the most promising methods of measuring the spin
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of accreting black holes (e.g., Miller et al., 2009). For Sgr A*, constraints on the black hole
spin can also be put by analyzing the polarization and/or variability of its emission (e.g.,
Eckart et al., 2006; Trippe et al., 2007; Shcherbakov et al., 2012; Karssen et al., 2017).

To put a constraint on the black hole spin it is important to know the radial emissivity
profile of the iron fluorescent lines and the effect of altering black hole spin on the emissiv-
ity profile. Martocchia et al. (2000) and Miniutti et al. (2003) studied the emissivity profile
of an accretion disc illuminated by a point-like source above the disc and found the profile
to be a three-segment broken power-law. Dovciak et al. (2014) investigated in detail the
dependence of the emissivity profile on the black hole spin and corona height assuming
the lamp-post geometry. Analysis of the emissivity profile of accretion discs irradiated by
extended coronae was performed by Wilkins and Fabian (2012) and Gonzalez et al. (2017).

In most of the previous studies, the authors made no clear distinction between the il-
lumination profile (the total energy of illuminating radiation per unit time per unit area)
and the emissivity profile of a particular radiative process (the number of photons emitted
per unit time per unit area). Also, simple assumptions were made for the spectrum of the
illuminating radiation. For example, when calculating the iron Kα emissivity profile the
spectrum was usually assumed to have power-law shape in the energy band most relevant
for iron K fluorescent lines. Unlike the illumination profile, the emissivity profile also de-
pends on the specific radiative process and is thus sensitive to the local energy spectrum of
the illuminating radiation. In this work, we present the illumination and iron Kα emissiv-
ity profiles obtained with the general relativistic (GR) Monte Carlo radiative transfer code
Monk (Zhang et al., 2019). Thanks to its Monte Carlo nature we are able to calculate not
only the flux but also the spectrum of the illuminating radiation as measured in the rest
frame of the disc fluid for accretion discs illuminated by extended coronae. As a result, we
are able to calculate both the illumination and the emissivity profiles.

2 PROCEDURE

2.1 Calculating the illumination and emissivity profiles

We calculate the illumination and emissivity profiles of a thin Keplerian disc illuminated
by an optically-thin extended corona. The thin disc extends down to the innermost circu-
lar stable orbit (ISCO). We assume that the thin disc follows Novikov-Thorne temperature
profile and there is zero torque at the inner boundary. Following the “superphoton scheme”
(Dolence et al., 2009), we sample seed superphotons from the thin disc and propagate
the superphotons along null geodesics in the Kerr spacetime (for details see Zhang et al.
2019, submitted). Each superphoton is characterised by its energy at infinity E∞, weight
w, initial position x

µ

0
, and initial wave vector k

µ

0
. Its weight w has the physical meaning of

superphoton generation rate per unit time in a distant observer’s frame. If the superpho-
ton is traveling inside the extended corona, we set the step of raytracing to be much less
than the scattering mean free path and for each step, we evaluate the Compton scattering
optical depth. If the superphoton is scattered, we sample the energy and momentum of the
scattered superphoton assuming Klein-Nishina differential cross-section. Finally, we col-
lect superphotons that arrive at the thin disc. For each superphoton, we have the following
information: E∞, w, and its position xµ and wave-vector kµ while hitting the disc.
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We divide the accretion disc into several radial bins, from ISCO to 100 GM/c2. The
proper area of the i-th bin is

Si =

∫ ri+1

ri

2πργ
√
∆

√

r2 + a2 +
2a2r

ρ2
dr, (1)

where ρ2 ≡ r2 + a2cos2θ, and ∆ ≡ r2 − 2r + a2, γ is the Lorentzian factor of the disc fluid
as measured by a stationary observer, and ri, ri+1 are the lower and upper boundaries of the
i-th radial bin. To translate the time from a distant observer’s frame to the local frame, we
calculate ut ≡ dt/dτ:

ut =
1

√

1 − 2/r + 4Ωa/r −Ω2(r2 + a2 + 2a2/r)
, (2)

where Ω is the angular velocity of the disc fluid. In the i-th radial bin, the flux of the
illuminating radiation in the unit of energy per unit time per unit area as measured by the
disc fluid is

εi =

∑

wEdiscut
i

Si

, (3)

where the sum is over all Comptonised photons that strike the thin disc between ri and ri+1,
and Edisc is the photon energy measured by the disc fluid. Denoting the four-velocity of the
disc fluid Uµ, we have Edisc = −kµUµE∞.

The probability for a hard X-ray photon to produce an iron Kα photon while striking the
neutral disc (e.g., George and Fabian, 1991):

P(E) ∝
nFeσFe(E)

∑

n jσj,abs(E) + neσsca(E)
, (4)

if the energy of the hard X-ray photon is above neutral iron K edge EK ∼ 7.12 keV, where
nFe is the number density of neutral iron, n j is the number density of the j-th ion species, ne

is the number density of electron, σFe is the photon-ionisation cross section of neutral iron,
σ j,abs is the photon-ionisation cross section of the j-th ion species, and σsca is the Compton
scattering cross section. As σFe,σsca ∝ E−3 while σsca is varying slowly with energy, P(E)
decreases with energy rapidly and the photons with energy just above the iron K edge are
most essential for the production of iron Kα photons (George and Fabian, 1991).

In the i-th radial bin, the emissivity of iron Kα photon, i.e., the number of iron Kα
photons produced per unit area per unit time in the local frame is

εi =

∑

wP(Edisc)ut
i

Si

. (5)

where the sum is over all superphotons with ri ≤ r ≤ ri+1 and Edisc ≥ EK .
In this paper we assume that the elements in the disc atmosphere are neutral and have

solar abundance (Grevesse and Sauval, 1998). The photon ionisation cross sections are
calculated with analytical formula by Verner and Yakovlev (1995). For Compton scattering
we assume Klein-Nishina scattering cross section.
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2.2 Relation between the illumination and emissivity profiles

Let us assume that the spectra of the illuminating radiation at different radii on the disc is
different only by different normalisations and redshift (which is the case for an isotropic,
lamp-post corona). In this case, we can write the count spectrum of the illuminating radia-
tion as observed by the disc fluid located at radius r as

N(E, r) = F(r) f

(

E

g(r)

)

1

g(r)
, (6)

where g(r) is the dependence of redshift factor g ≡ Edisc/E∞ on radius. Then

ε(r) =

∫ ∞

0

EN(E, r)dE = F(r)g(r), (7)

whatever shape the spectrum has. The iron Kα emissivity profile

ε(r) =

∫ ∞

EK

N(E, r)P(E)dE =
F(r)

g(r)

∫ ∞

EK

P(E) f

(

E

g(r)

)

dE. (8)

For Comptonised spectrum the high energy spectrum can usually be described by a cut-
off power-law function. In this case f (E) = E−Γe−E/Ecut for E ≥ E0, where Γ is the photon
index, Ecut is the high-energy cut-off energy, and E0 is the energy of the low-energy cut-off.
If E0 ≤ EK/max(g(r)), then

ε(r) = F(r)gΓ−1(r)

∫ ∞

EK

P(E)E−Γe−E/g(r)Ecut dE. (9)

For the iron Kα emissivity profile, as P(E) decrease rapidly with energy, the integral is not
sensitive to g(r), therefore

ε(r) ∝ F(r)gΓ−1(r), (10)

and

ε(r)

ε(r)
∝ gΓ−2(r). (11)

We can see that whether the emissivity profile is steeper than the illumination profile de-
pends on the value of Γ and the slope of g(r).

3 RESULTS

3.1 Stationary spherical corona in AGNs

In this section, we present the illumination and emissivity profiles of accretion discs illu-
minated by a spherical corona above the disc. We assume a maximally rotating black hole
(a = 0.998), to investigate the profiles around a rotating black hole. The effect of the black
hole spin will be carried out in a future work. The black hole has a mass of 107 M) and is
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accreting with a mass accretion rate of 4.32× 1023 g s−1. Assuming the radiative efficiency
to be 0.354 for a a = 0.998 black hole, the bolometric luminosity is expected to be ∼ 10%
the Eddington luminosity, more or less the median Eddington rate of X-ray selected AGNs
(Lusso et al., 2012). The spherical corona is stationary, i.e., the fluid has the same angular
velocity with a zero angular momentum observer. Although the assumption of a stationary
corona is somewhat unphysical, it has been taken in many previous studies where the ob-
servations were successfully described. Since in this work we are mainly investigating the
effect of the corona geometry on the illumination and emissivity profiles, we still take this
assumption, but calculations with more realistic assumptions of the coronae will be carried
out in a future work. The temperature of the corona is 100 keV, and the Thomson optical
depth of the corona τT ≡ σT neRc = 0.2, where σT is the Thomson scattering cross section,
and Rc is the radius of the corona.

3.1.1 Dependence on corona size

In Fig. 1 we present the illumination and emissivity profiles for spherical coronae of dif-
ferent sizes. The center of the corona is located on the black hole rotation axis, 10 GM/c2

above the equatorial plane. For all corona sizes the emissivity profile seems to be quite
steep at the innermost region of the accretion disc (below ∼ 2 − 3 GM/c2), and becomes
shallower as the radius increases. Then beyond ∼ 10 GM/c2, it becomes steeper again. We
fit the emissivity profile in different regions on the accretion disc with a power-law model
(i.e., ε(r) ∝ r−q) using the least squared method, and summarize the results in Table 1. In
the innermost region of the accretion disc (r ≤ 2 GM/c2), the emissivity profile becomes
steeper as the corona radius decreases. Far away from the black hole (r ≥ 20 GM/c2), the
indices are roughly consistent with the Newtonian value of 3.

Table 1. Measurements of emissivity and illumination indices for spherical coronae of different sizes

Corona radius 1 2 4 8
[GM/c2]

Emissivity profile
q (r ≤ 2 GM/c2) 6.55 6.49 6.32 5.67
q (r ≥ 20 GM/c2) 2.97 3.00 2.98 3.02

Illumination profile
q (r ≤ 2 GM/c2) 2.92 2.92 2.96 3.27
q (r ≥ 20 GM/c2) 3.06 3.06 3.07 3.09

The illumination profile has a similar three-segment broken power-law profile but in the
innermost region it is shallower than the emissivity profile. We also fit the profiles with
a power-law model and present the results in Table 1. We measure the photon index of
the illuminating radiation in the energy band of 20–100 keV and find it to be ∼ 3, greater
than 2. According to Dovciak et al. (2014), in the innermost region of the accretion disc
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Figure 1. The illumination (solid lines) and emissivity (dashed lines) profiles of accretion discs illu-
minated by stationary spherical coronae of different sizes.

g(r) increases with decreasing radius. Therefore the result that the emissivity profile is
steeper than the illumination profile is consistent with the conclusion drawn in Sec. 2.2.

3.1.2 Dependence on corona height

In Fig. 2 we present the illumination and emissivity profiles for spherical coronae located
at different heights above the equatorial plane. The radius of the coronae is 1 GM/c2.
We fit the emissivity and illumination profiles in different regions with a power-law model
and summarise the results in Table 2. In the innermost region, as the height increases, the
emissivity profile becomes steeper. The illumination profile is shallower than the emissivity
profile.

3.2 Co-rotating slab corona in AGNs

In this section we present the results for accretion discs irradiated by slab coronae above the
disc. The slab coronae are co-rotating with the underlying accretion disc. The thickness
of the slab is 2 GM/c2. The optical depth of the corona along the vertical direction is
τT ≡ neσT h/2 = 0.2, and the temperature of the corona is 100 keV. The black hole and
thin disc have the same properties as in the previous subsection.
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Figure 2. The illumination (solid lines) and emissivity (dashed lines) profiles of accretion discs illu-
minated by stationary spherical coronae located at different heights above the accretion disc.

Table 2. Measurements of emissivity and illumination indices for spherical coronae of different
heights

Corona height 3 5 10
[GM/c2]

Emissivity profile
q (r ≤ 2 GM/c2) 5.80 5.90 6.55
q (r ≥ 20 GM/c2) 3.15 3.13 2.97

Illumination profile
q (r ≤ 2 GM/c2) 3.52 3.01 2.92
q (r ≥ 20 GM/c2) 3.13 3.12 3.06

3.2.1 Dependence on corona size

In Fig. 3 we present the illumination and emissivity profiles for accretion discs irradiated
by slab coronae of different sizes. We measure the emissivity and illumination indices and
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Figure 3. The illumination and emissivity profiles of accretion discs illuminated by co-rotating slab
coronae of different sizes.

summarise the results in Table 3. Compared with the spherical coronae, the emissivity
profile is more sensitive to the corona size, with shallower emissivity from more extended
corona. Similarly with spherical coronae, the illumination profile is shallower than the
emissivity profile given the same corona size.

Table 3. Measurements of emissivity and illumination indices for slab coronae of different sizes

Corona radius 1 2 4 8
[GM/c2]

Emissivity profile
q (r ≤ 2 GM/c2) 6.09 4.82 4.42 4.09
q (r ≥ 20 GM/c2) 2.95 2.97 3.00 3.26

Illumination profile
q (r ≤ 2 GM/c2) 2.84 2.84 2.92 3.00
q (r ≥ 20 GM/c2) 3.06 3.05 3.08 3.31
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3.2.2 Dependence on corona height

In Fig. 4 we present the illumination and emissivity profiles for accretion discs irradiated by
slab coronae located at different heights above the accretion disc. As the height increases,
both the emissivity and the illumination profiles become steeper in the innermost region.

Figure 4. The illumination and emissivity profiles for accretion discs illuminated by co-rotating slab
coronae located at different heights above the accretion discs. In the upper and lower panels we
present the profiles for corona radii of 1 and 8 GM/c2, respectively.
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Table 4. Measurements of emissivity and illumination indices for slab coronae of different heights

Corona height 3 5 10
[GM/c2]

Rc = 1 GM/c2

Emissivity profile
q (r ≤ 2 GM/c2) 4.72 5.60 6.09
q (r ≥ 20 GM/c2) 3.28 3.11 2.95

Illumination profile
q (r ≤ 2 GM/c2) 2.30 2.78 2.84
q (r ≥ 20 GM/c2) 3.19 3.17 3.06

Rc = 8 GM/c2

Emissivity profile
q (r ≤ 2 GM/c2) 3.19 3.74 4.09
q (r ≥ 20 GM/c2) 2.97 3.02 3.26

Illumination profile
q (r ≤ 2 GM/c2) 2.77 3.15 3.00
q (r ≥ 20 GM/c2) 2.98 3.02 3.31

3.3 Stationary spherical coronae in XRBs

In the upper panel of Fig. 5 we present the illumination and emissivity profiles of accretion
discs in XRBs illuminated by spherical coronae. The parameters are the same with Sec. 3.1,
but for a M = 10 M) black hole accretion at a rate of 4.32 × 1017 g s−1 (corresponding to
10% Eddington luminosity). The emissivity profile is distinct compared with the emissivity
profile of AGNs (Fig. 1) in that the profile is shallower than the Newtonian case below
∼ 10 GM/c2, and the emissivity even decreases towards lower radius below ∼ 1.6 GM/c2.

To highlight the distinction in the emissivity profile, in the lower panel of Fig. 5 we
compare the profiles of accretion discs around 10 M) and 107 M) black holes. The illu-
mination profiles are identical while the difference in the emissivity profile is obvious. To
understand the difference, we calculate the spectra of the illuminating radiation as observed
by the disc fluid at radii of 1.27, 1.58, and 2.67 GM/c2, respectively, and present the results
in Fig. 6. For M = 107 M), the low-energy cut-off is much lower than EK , as a result
a higher redshift simply leads to more X-ray photons above EK ; whereas for the 10 M)
case, the low-energy cut-off of the count spectra is in the range of 2−10 keV, resulting in a
distinct emissivity profile. This indicates that the energy spectra of the hard X-ray radiation
could substantially affect the emissivity profile.
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Figure 5. Upper panel: the illumination (dashed lines) and emissivity (solid lines) profiles of accre-
tion discs illuminated by spherical coronae of different sizes. The accretion disc is rotating about
a 10 M) black hole. Lower panel: comparison of the profiles between accretion discs around a 10
black hole (black) and a 107 M) black hole (blue). The violet, green, and brown vertical bars indicate
the locations the spectra of which are plotted in Fig. 6.
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Figure 6. The energy spectra of the illuminating radiation observed by disc fluid located at different
radii. The spherical corona is located 10 GM/c2 above the accretion disc and has radius of 1 GM/c2.
The spectra at different radii are plotted in different colors, while the locations are indicated by the
vertical bars in Fig. 5. The vertical dashed line indicates the location of neutral iron K edge at 7.12
keV. In the upper and lower panels we present the spectra for accretion discs around 10 and 107 M),
respectively.
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4 SUMMARY

In this work we present the illumination and neutral iron Kα emissivity profiles of accre-
tion discs irradiated by extended coronae. With our GR Monte Carlo radiative transfer code
Monk, we can calculate the energy spectrum of the illuminating radiation in the rest frame
of the accretion disc. As a result, we are able to calculate both the illumination and emis-
sivity profiles while in most previous studies the authors did not make a clear distinction
between the two. For AGN discs, the emissivity profiles are in general steeper than the il-
lumination profiles for the parameters taken in the calculations; whereas for accretion discs
in black hole X-ray binaries, the distinction is more dramatic: the emissivity even decreases
with decreasing radius in the innermost region of the disc. We find out that the different
behaviors in AGNs and black hole X-ray binaries are due to the difference in energy spectra
of the illuminating radiation as seen by the disc. This suggests that the emissivity profile
of the iron Kα line cannot be determined by black hole spin and corona geometry alone,
and the energy spectrum of the illuminating radiation has to be taken into account. We also
study the dependence of the emissivity profile on the geometry of the corona and find the
emissivity in the innermost region of the disc steepens as the corona becomes less extended
or as the corona has a larger height.
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Vydáno v prosinci 2020

The publication was supported by the INTER-EXCELLENCE project No. LTI17018 and

the internal grant of the Silesian University in Opava No. 07/2015-FPF.

ISBN 978-80-7510-432-8 (Print)

ISBN 978-80-7510-433-5 (Online)

ISSN 2336-5668 (Print)

ISSN 2336-5676 (Online)
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