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Editorial assistant: Mgr. Pavlína Adámková

Annotation: In this Proceedings, the talks presented during workshops RAGtime 10–13:
Workshops on black holes and neutron stars, Opava, 15–17/20–22/15–17/14–16 September
2008/2009/2010/2011 are collected.

Copyright c© 2014 Silesian University in Opava

ISBN 978-80-7510-125-9



PREFACE

Since 1999, the RAGtime meetings have been organized by the Relativistic Astrophysics
Group (RAG) at the Institute of Physics, the Faculty of Philosophy and Science of the
Silesian University in Opava in order to provide opportunities for discussing the recent ad-
vances and developments in the field of relativistic astrophysics. During the past sixteen
years, RAGtime has grown from a small workshop to become a regular international con-
ference that brings together collaborators of the Opava’s reseach group who are coming
from EU, USA, China and Japan. It has also provided a starting point for many new collab-
orations. Among the involved institutions are the Astronomical Institute of the Academy
of Sciences of the Czech Republic, the Faculty of Mathematics and Physics of the Charles
University in Prague, the International School for Advanced Studies and the Abdus Salam
International Centre for Theoretical Physics in Trieste, the Institute of Astrophysics at the
University of Oxford, the Department of Astrophysics of the University in Gothenburg, the
Institute of Astronomy of the Polish Academy of Sciences, the Massachusetts Institute of
Technology, the Harvard University, the Cornell University, the Hiroshima University, the
Fudan University, and the Xiamen University.

Concordantly, the scope of the topics discussed at the meetings has widened consider-
ably in recent years. New results have been presented at the conference from different areas,
such as the alternative theories of gravitation and their astrophysical implications, physics
of plasma and magnetic fields in the presence of a strong gravity and X-ray variability
modelling connected, but not limited, to the proposed ESA X-ray missions ATHENA and
LOFT. However, the main focus of the meeting remains on the general physical phenom-
ena connected to accretion processes onto black holes and neutron stars and the internal
structure of neutron stars and quark stars.

The RAGtime workshops and conferences have always provided an important and unique
opportunity for undergraduate and graduate students of the Silesian University to meet and
discuss problems with the world’s leading astrophysicists. Among the regular guests are
Marek Abramowicz, John Miller, Włodzimierz Kluźniak, and Vladimír Karas, Jeff Mc-
Clintock, Shoji Kato, Ron Remillard, Didier Barret, Luciano Rezzolla, Yasufumi Kojima,
Wen Fei Yu.

We would like to thank all the authors for a careful preparation of their contributions. This
publication has been made possible through the support provided in the framework of the
project “Supporting Integration with the International Theoretical and Observational Re-
search Network in Relativistic Astrophysics of Compact Objects”, CZ.1.07/2.3.00/20.0071.
The project is co-financed by the European Social fund and state budget of the Czech Re-
public.

Opava, December 2014 Z. Stuchlík, G. Török and T. Pecháček
editors

v



CONTENTS

K. Adámek and Z. Stuchlík
Magnetized tori around Kerr superspinars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

P. Bakala, M. Urbanec, E. Šrámková, Z. Stuchlík and G. Török
Stationary particles in the field of magnetized slowly rotating neutron stars . . . . . . . . . . . 15

C. Cremaschini, Z. Stuchlík and M. Tessarotto
Stress-energy tensor of magnetized plasmas in spatially
non-symmetric kinetic equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
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Magnetized tori around Kerr superspinars

Karel Adámeka and Zdeněk Stuchlík
Institute of Physics, Faculty of Philosophy & Science, Silesian University in Opava,
Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic
akarel.adamek@fpf.slu.cz

ABSTRACT
We study properties of the magnetized toroidal structures orbiting the Kerr super-
spinars predicted by the string theory. We demonstrate specific features of the un-
magnetized perfect fluid tori created in the deep potential well near the surface of the
superspinars, enabling clear distinction between Kerr superspinars and black holes.
Then we consider the effect of the magnetization of the perfect fluid tori and shift of
their properties induced by the presence of the magnetic field.

Keywords: Kerr spacetime – naked singularity – superspinars – magnetized tori

1 INTRODUCTION

Kerr superspinars are considered as primordial, large remnants of very early evolution pe-
riod of the Universe giving thus signature of the string theory effects (Gimon and Hořava,
2009). However it cannot be excluded that Kerr superspinars were created by the collapse
of superspinning differentially rotating compact stars (Giacomazzo et al., 2011). The su-
perspinars are not contradicting the Penrose cosmic censorship hypothesis (Penrose, 1969)
since their extension is expected to be limited to r < R < M covering thus the region of
causality violations by a correctly behaving stringy solution. Outside a Kerr superspinar,
the standard Kerr naked singularity geometry is assumed.

Unstable gravitational perturbation modes has been found for Kerr superspinars with
small values of the spin (Pani et al., 2010), however, it does not prove a general instability
of Kerr superspinars, since mixing of modes, accretion phenomena or change of boundary
conditions related to the Universe expansion could alter the conclusion on the instability.
Although there is no uniqueness theorem for Kerr naked singularities (superspinars) similar
to the one holding for Kerr black holes, studies of astrophysical phenomena in Kerr naked
singularity (superspinars) backgrounds could be quite relevant and useful at least as a
test bed model for more complex objects (D. and Manko, 1991). It is convenient (and
standardly applied in the literature) to assume the surface radius of Kerr superspinars at
r(θ) = R = 0.1 M , here we shall use the minimal restriction of R = 0.

Kerr superspinars (or Kerr naked singularities) were extensively studied for a variety
of astrophysical (de Felice, 1974; Calvani and Nobili, 1979; Stuchlík, 1980; Gibbons and
Hawking, 1977) and optical (Stuchlík, 1981; Stuchlík and Hledík, 2000; Stuchlík and

978-80-7510-125-9 c© 2014 – SU in Opava. All rights reserved.

http://www.physics.cz/
http://english.slu.cz/
karel.adamek@fpf.slu.cz


2 K. Adámek and Z. Stuchlík

Schee, 2010, 2011) phenomena. Considering evolution of primordial Kerr superspinars
due to Keplerian accretion discs, it has been demonstrated that they could well survive to
the era of high-redshift quasars or even longer, if the amount of accreting matter is limited
(Stuchlík et al., 2011). Of course it is of high relevance to consider the properties of thick
accretion discs represented by toroidal structures of perfect fluid that are complementary to
Keplerian thin discs. Here we shall discuss such tori including even the effect of a magnetic
field on their structure assuming for simplicity tori with uniform distribution of the specific
angular momentum.

2 KERR SUPERSPINARS

In the Boyer–Lindquist coordinates and the geometrical units, the exterior of Kerr super-
spinars is governed by the line element (Kerr, 1963; Misner et al., 1973)

ds2
= −

(
1−

2Mr
Σ

)
dt2
+
Σ

∆
dr2
+Σ dθ2

+
A
Σ

sin2 θ dϕ2
−

4M2ar sin2 θ

Σ
dt dϕ , (1)

where

∆ = r2
− 2Mr +

(
aM

)2
, Σ = r2

+
(
aM

)2 cos2 θ , (2)

and

A =
(

r2
+
(
aM

)2)2
−∆

(
aM

)2 sin2 θ , (3)

M is mass and a > 1 is dimensionless spin of the superspinar.
The physical ring singularity of the spacetime is located at r = 0, θ = π/2. The causality

violation region is determined by Carter (1973)

gφφ =
[

r2
+ (aM)2 +

2M3a2r sin2 θ

Σ

]
sin2 θ < 0 ; (4)

it can occur only at r < 0 (Calvani et al., 1978). Realistic models of Kerr superspinars have
to remove the causality violating region and the ring singularity. Therefore, the minimal
condition for the boundary surface of Kerr superspinars reads r(θ) = R = 0. In recent
papers concerning the Kerr superspinars, the boundary at r(θ) = R = 0.1 M is assumed
(Gimon and Hořava, 2009; Takahashi and Takahashi, 2010; Pani et al., 2010; Stuchlík
and Schee, 2010). We keep this assumption, guaranteeing that all the interesting physical
phenomena could be relevant (Stuchlík, 1980; Stuchlík et al., 2011).

The geodesic motion in the Kerr spacetimes is given in a separated and integrated form
by the Carter (1973):

Σ ṙ = ±
√

R(r) , (5)
Σθ̇ = ±

√
W (θ) , (6)

Σφ̇ = −

(
aE −

Φ

sin2 θ

)
+

a
∆

P(r) , (7)

Σ ṫ = −a
(
aE sin2 θ −Φ

)
+

r2
+ a2

∆
P(r) , (8)
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where ˙ ≡d/dw with w being the affine parameter and

P(r) = E
(
r2
+ a2)

−Φa , (9)
R(r) = P2

−∆
[
m2r2

+ (Φ − aE)2 + Q
]
, (10)

W (θ) = Q − cos2 θ

[
a2(m2

− E2)
+

Φ2

sin2 θ

]
. (11)

The motion constants are energy relative to infinity E , angular momentum about the
symmetry axisΦ, rest mass m and Q related to the total angular momentum (Carter, 1973).
For equatorial motion Q = 0. The radial profiles of the specific energy EK/m and specific
axial angular momentum ΦK/m of the equatorial circular geodesics are given by Bardeen
et al. (1972) and Stuchlík (1980):

EK

m
=

r3/2
− 2r1/2

± a

r3/4
√

r3/2 − 3r1/2 ± 2a
, (12)

ΦK

mM
= ±

r2
+ a2

∓ 2ar1/2

r3/4
√

r3/2 − 3r1/2 ± 2a
, (13)

where we introduced dimensionless radial coordinate r/M →r .
The Keplerian velocity with respect to static observers at infinityΩ = dφ/dt is given by

the relation

ΩK = ±
1

M
(
r3/2 ± a

) (14)

and the profile of the specific angular momentum related to the covariant energy is given
by

lK =
ΦK

EK
= ±

r2
∓ 2ar1/2

+ a2

r3/2 − 2r1/2 ± a
. (15)

Behaviour of lK(r; a) is crucial for determining of the equilibrium tori since it determines
the centre and cusps of the tori. The upper (lower) sign in these and the following relations
corresponds to the circular geodesics of the 1st (2nd) family. All the 2nd family orbits
are counterrotating with Φ/mM < 0. The 1st family orbits are co-rotating (Φ/mM > 0)
everywhere in the field of superspinars with spin a > ac = 33/2/4 ∼ 1.3, but they are
counter-rotating, with Φ/mM < 0, if appropriately located in the vicinity of superspinars
with spin a < ac. Clearly, the 1st family orbits can extend down to the superspinar, they
are allowed at all r > 0. On the other hand, the 2nd family orbits are allowed at r > rph;
the retrograde photon circular orbit has radius given by

rph = 2+
[

a +
√

a2 − 1
]2/3

+

[
a +

√
a2 − 1

]−2/3

. (16)

The limit value for extreme black holes is rph(a = 1) = 4. The bound orbits (with
E/m < 1) that could be relevant in toroidal discs (Kozlowski et al., 1978; Stuchlík et al.,
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2000; Slaný and Stuchlík, 2005) are limited by the radii of marginally bound orbits with
E/m = 1 given by

rmb = 2+ a ± 2(1+ a)1/2 , (17)

There is rmb(a = 1) = 5.38 for the 2nd family orbits and rmb(a = 1) = 0.172 for the
1st family orbits. The stable circular orbits determining the inner edge of the Keplerian
discs are allowed at radii r > rms; the innermost (marginally) stable circular orbit (ISCO)
is determined by

rms = 3+ Z2 ∓
√
(3− Z2)(3+ Z1 + 2Z2) , (18)

where

Z1 = 1+
(
1− a2)1/3[(1+ a)1/3(1− a)1/3

]
, Z2 =

√
3a2 + Z2

1 . (19)

The minimal value of rms = 2M/3 is obtained for superspinars with a = ae = (4/3)(2/3)1/2

∼ 1.089 (Stuchlík, 1980). On the other hand, rms → M from below when a → 1 from
above. Notice that the Kerr superspinar surface radius r(θ) = R = 0.1 M is really chosen
in such a way that the inner edge of both thin (rin = rms) and thick (rms > rin > rmb)
accretion discs is located above the surface.

The 1st family orbits are co-rotating relative to distant observers (ΩK > 0) – such
orbits are locally co-rotating (ΦK > 0) in regions distant from superspinars, but could
be locally counter-rotating (ΦK < 0) in vicinity of superspinars with the spin parameter
a < ac = (3/4) 31/2

∼ 1.3. For superspinars with spin a < ae = (3/4) (3/2)1/2
∼ 1.089

the 1st family orbits with ΦK < 0 could have negative energy (E < 0), while located close
enough to the superspinar boundary. The marginally stable circular orbit of 1st family is
located under x = 1 for a < 5/3 (Stuchlík, 1980).

The 1st family orbits reveal a strong jump in their properties when transition from a
naked singularity spacetime to a black hole spacetime occurs. The jump is most profoundly
demonstrated for the profiles of near-extreme Kerr superspinar and Kerr black hole states
with spin a = 1 ± δ, δ � 1 – in the Kerr superspinar spacetimes, stable circular orbits
exist at x = 1 for all δ > 0, while in the Kerr black hole spacetimes, the stable circular
orbits exist at x > 1 for δ > 0 and there is an enormous jump between the energy level
of the ISCO orbits in the superspinar and black hole spacetimes. On the other hand, the
2nd family orbits are counter-rotating relative to distant observers (ΩK < 0) and locally
counter-rotating (ΦK < 0) at all r > rph for all Kerr superspinars. The Keplerian energy
EK and angular momentum ΦK radial profiles of 2nd family orbits change smoothly when
the conversion from the superspinar to the black hole state with a = 1 occurs (Stuchlík
et al., 2011).

3 MAGNETIZED PERFECT FLUID TORI

Properties of the radial profiles of Keplerian specific angular momentum lK(r; a) are crucial
for governing accretion toroidal structures of perfect fluid since the centre of the tori and
its cusp, i.e. the edge of accretion tori, are given by condition l(r) = lK(r), where l(r)
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Figure 1. Behaviour of Keplerian angular momentum lK+ and lK− for (a) a = 1.05, (b) a = 1.1,
(c) a = 1.118 and (d) a = 1.5. The inner disc configurations are possible in the cases (a) and (b),
for the case (c) and (d) the inner disc configuration are not possible. For specific angular momentum
l > lmin in the case (a) and for lmin+ < l < lmax− in the case (b) it is possible to have both inner
and outer discs for the same l = const. As examples we have used two values of the specific angular
momentum l, in the case (a) it is l = 8.0 and in the case (b) it is l = −4.8. Both l = const are show
as dotted horizontal lines. Regions without circular orbits are greyed out.

is the profile of the angular momentum distribution in the equatorial plane of the tori.
Profiles of lK(r; a) are fundamentally different for Kerr black holes and naked singularities
(superspinars), implying fundamental differences of the orbital equilibrium configurations.
Here we give overview for superspinars with boundary surface at minimal surface radius
R = 0 guaranteeing covering of the physical singularity and causality violating region by
some regular, say stringy, solution.

We can separate three basic cases of behaviour of the 1st family orbits due to behaviour
ofΦK(r; a) and EK(r; a), which can be seen in the Fig. 1. In the field of Kerr superspinars
there is no 1st family Keplerian photon circular orbit and the related divergence of lK.
However for superspinars with a < ae = 1.089, there is a discontinuity of lK(r; a) at two
radii where EK(r; a) = 0. For a < ac ∼ 1.3, lK(r; a) of 1st family orbits reaches the
region of L < 0. Then we can obtain possibility to have two distinct tori with the same
l = const < 0, if lK+(min) < lK−(max). We can demonstrate that this condition can be
fulfilled for a = 1.1 < ac.
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Figure 2. Profiles of the potential W in Kerr–Schild coordinates for a = 1.05, l = 8.0 in the case (a)
and for a = 1.1, l = −4.8 in the case (b).

Rotating perfect fluid is governed by the Boyer’s conditions, which implies that boundary
of any stationary, barotropic, perfect fluid equilibrium configuration has to be an closed
equipotential surface (Boyer, 1965). Equations of the ideal relativistic magnetohydro-
dynamics (RMHD) of the perfect fluid are for fluid described by stress-energy tensor Tµν

and electromagnetic tensor Fµν given by relations (Komissarov, 2006):

∇µTµν = 0 , (20)
∇µ
∗Fµν = 0 , (21)

∇µFµν = J ν , (22)
∇µρuµ = 0 . (23)

The 4-current J ν from Maxwell Eq. (22) can be expressed as

J ν = σeν + q0uν , (24)

where σ is an scalar electric conductivity, q0 is a electric proper charge and eν is 4-vector
of the electric field, which in comoving frame reads eν = (0,E), where E is the 3-vector
of the electric field. In the comoving frame and in the kinetic theory approach (Blackman
and Field, 1993)

J ν = σ E j . (25)

Taking into account the limit of ideal RMHD, σ → ∞, and the condition that 4-current
must be finite, we get

Fµνuν = 0 . (26)

Since Fµν can be fully expressed by the means of bν , the Eq. (22) just defines 4-current and
it is redundant.
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The energy-momentum tensor for ideal perfectly conducting fluid reads

Tµν =
(
ω + b2)uµuν +

(
p +

1
2

b2
)

gµν − bµbν (27)

while the Faraday tensor

∗Fµν = bµuν − bνuµ , (28)

where ω, p and uµ are fluid enthalpy, pressure and 4-velocity respectively, gµν is the metric
tensor and bµ is the 4-vector of the magnetic field. In the comoving frame bµ = (0,B),
where B is 3-vector of the magnetic field measured in comoving frame, thus

uµbµ = 0 . (29)

We assume that

• the flow is stationary and axisymmetric; therefore

∂t f = ∂φ f = 0 (30)

holds for any physical parameter f ,
• the flow rotates only

ur
= uθ = 0 , (31)

• the magnetic field is purely azimuthal:

br
= bθ = 0 . (32)

Under these assumptions the Faraday Eq. (21) and the continuity Eq. (23) are automat-
ically fulfilled and the only non-trivial result follows from projection of the conservation
law of the energy-momentum tensor (20) on the hyperplane orthogonal to 4-velocity by the
projection tensor hαβ = γ

α
β + uαuβ . From (20) we obtain(

ω + b2)uνuν,i +
(

p + b2)
,i − bνbν,i = 0 , (33)

where i = r, θ . The angular velocity and specific angular momentum of the rotating fluid
are defined by

Ω =
uφ

ut , l = −
uφ
ut
, (34)

implying the relation

Ω = −
lgt t + gtφ

lgtφ + gφφ
. (35)

Using Eq. (34) we can rewrite Eq. (33) to a form

(
ln |ut |

)
,i −

Ω

1− lΩ
l,i +

p,i
ω
+

(
Lb2)

,i

2Lω
= 0 , (36)
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where

(
ut
)2
=

g2
tφ − gt t gφφ

gt t l2 + 2gtφl + gφφ
. (37)

Assuming relationship (35), we obtain

d

ln |ut | +

p∫
0

dp
ω
−

l∫
0

Ω dl
1− lΩ

 = −d
(
Lb2)

2Lω
, (38)

where the term in parenthesis is just what we would get for perfect barotropic fluid without
magnetic field in it. Following Komissarov (2006) we assume the relationship

ω̃ = ω̃( p̃m) , (39)

where ω̃ = Lω, p̃m = Lpm and pm = b2/2. Implementing (39) into (38) gives

ln |ut | +

p∫
0

dp
ω
−

l∫
0

Ω dl
1− lΩ

+

pm∫
0

d p̃m

ω̃
= const . (40)

Introducing the total potential W by

W = ln |ut | +

l∞∫
l

Ω dl
1− lΩ

, (41)

where l∞ is the angular momentum at infinity; assuming that l∞ is finite, we obtain
ut (r →∞) = −1 and W = 0. Using total potential we arrive at the relation

W −Win +

p∫
0

dp
ω
+

pm∫
0

d p̃m

ω̃
= 0, (42)

where Win is the value of the total potential at the inner edge of the disc.

4 CONSTRUCTION OF MAGNETIZED TORI

The simplest configuration occurs if the ideal barotropic fluid has uniform distribution of
the specific angular momentum

l = l0 = const . (43)

Then the potential governing the equilibrium tori is given by

W = ln |ut | (44)
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Figure 3. Pressure profiles in Kerr–Schild coordinates for inner discs (a), (b) and outer disc (c),
(d). with initial magnetization (a), (c) βc = 2.5 and (b), (d) βc = 0.25 for parameters a = 1.1,
lms− > l = −4.8 > lmb−. The pressure of the gas at the center of the disc is set to p = 10−18.

and for l = const it is given by geometry of the spacetime only. The shape of the equipoten-
tial toroidal configurations is illustrated in the Figs. 4 or 5. Following Komissarov (2006)
we adopt the these relationships for pressure p and magnetic pressure pm

p = Kωκ , (45)
pm = KmLη−1ωη . (46)

Then we can rewrite Eq. (42) into the form

W −Win +
κ

κ − 1
p
ω
+

η

η − 1
pm

ω
= 0 . (47)

The geometry of the disc is defined by the potential W and the disc center and cusp are
defined as points where specific angular momentum of the disc coincides with the specific
angular momentum of a particle on the geodetical circular orbit, i.e. where

l0 = lK± =
±
(
r2
∓ 2ar1/2

+ a2)
r3/2 − 2r1/2 ± a

; (48)
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the upper sign holds for co-rotating 1st family orbits while the lower sign holds for counter-
rotating 2nd family orbits. Parameters of the model are κ , η, l0 and Win, further parameters
are enthalpy at the center of the disc ωc and initial magnetization

βc = pmc/pc. (49)

From Equation (47) we can separate pressure at the center

pc = ωc (Win −W )

(
κ

κ − 1
+

ηβc

η − 1

)−1

. (50)

Using these we can calculate K and Km, then separating enthalpy ω from (47) we can get
the solution anywhere inside the toroidal disc configuration. We shall focus our attention
to the most interesting case when two toroidal configurations with l = l0 = const can exist.

4.1 Equilibrium configurations of perfect barotropic fluid

Behaviour of the Keplerian angular momentum lK+ and lK− is shown in the Fig. 1. The
profiles of the potential W (44) are shown in the Fig. 2. Behaviour of the function lK+
strongly depends on the spin parameter a. For a < ae < 1.089, a discontinuity occurs due
to the fact that circular geodesics with EK = 0 exist in such spacetimes. Then the inner
configurations with l = l0 > 0 correspond to tori with φ = const < 0 that are co-rotating
relativity to distant observers.

For Kerr naked-singularity metric with rotational parameter a > 1, there are two possible
disc structures with l = l0 = const, inner and outer disc. For the 1st family of orbits both
inner and outer disc structures are admitted. The inner disc configuration is possible for both
l > 0, a < ac and l < 0, a > ac while outer disc configurations can be found only for l > 0.
Also the inner discs with l = l0 < 0 around naked singularities with a > ac are co-rotating
relative to distant observers. The 2nd family admit the outer toroidal configurations only
centred around counter-rotating geodesics. We shall concentrate our attention on the case
when two equilibrium tori with l0 = const are given. We shall study both the inner and
outer tori and we are using Kerr–Schild coordinates

x =
√

r2 + a2 sin θ cosϕ , (51)
y =

√
r2 + a2 sin θ sinϕ , (52)

z = r cos θ , (53)

where y = 0 due to axial-symmetry.

4.2 Behaviour of the pressure extremes

We are interested in behaviour of gas pressure p, magnetic pressure pm and total pressure
pt = p + pm radial profiles and particularly in possible shift of the extreme positions with
comparison to the case of a perfect barotropic fluid without magnetic field. We study the
difference

∆x = x (a)i(o) − xc , (54)
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Figure 4. Equipotential surfaces for inner (a) and outer (b) disc configuration with parameters a = 1.1
and l = −4.8. Each graph shows two sets of vertical lines, which represent the positions of respective
maximums of p, pm and p f . The upper lines are for initial magnetization βc = 0.25 while the lower
ones are for βc = 2.5.
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Figure 5. Equipotential surfaces for inner (a) and outer (b) disc configuration with parameters a = 1.05
and l = 8.0. Each graph shows two sets of vertical lines, which represent the positions of respective
maximums of p, pm and p f . The upper lines are for initial magnetization βc = 0.25 while the lower
ones are for βc = 2.5.

where a = f,m; x (a)i(o) denotes position of the pressure maximum of fluid ( f ) and magnetic
field (m) for inner (i) and outer (o) discs. Pressure profiles for inner disc configurations and
outer disc configurations are shown in the Fig. 3. For outer disc configurations we can see
that maximum of the total pressure is shifted closer to a compact object. For inner discs
the maximum of the total pressure is receding from the compact object. This behaviour is
consistent for all investigated inner and outer disc configurations. Numerical calculations
of extremes of the total pressure are shown in the Figs. 6 and 7.

If the initial magnetization goes to zero (βc → 0) the configuration is reduced to the case
without magnetic field. If βc →∞ the disc is dominated by the magnetic pressure, while
gas pressure vanishes. In this case the maximum of magnetic pressure reaches its maximal
deviation, this is in the Figs. 6 and 7 depicted as a vertical line.
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Figure 6. Behaviour of the maximum’s position x(a)i and it’s distance ∆x = x(a)i − xe from the
disc center xc as a function of the initial magnetization βc for inner toroidal disc configurations with
parameters set to a = 1.05, l = 8.0. On the upper graph we can see the positions of the maximum
of the pressure for p, pm and p f compared with the behaviour of the gas pressure without magnetic
field (filled area). On the lower graph we can see the distance ∆x of the maximum from the disc
center xc.
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Figure 7. Behaviour of the maximum’s position x(a)i and it’s distance ∆x = x(a)i − xe from the
disc center xc as a function of the initial magnetization βc for outer toroidal disc configurations with
parameters set to a = 1.1, l = −4.8. On the upper graph we can see the positions of the maximum
of the pressure for p, pm and p f compared with the behaviour of the gas pressure without magnetic
field (filled area). On the lower graph we can see the distance ∆x of the maximum from the disc
center xc.

5 CONCLUSIONS

We have studied magnetized tori around Kerr superspinars, focusing attention to the study
of cases when doubled tori exist with the same l = const, and different potential depth. We
have demonstrated that the magnetization of the inner tori shifts their pressure maximum
away from the Kerr superspinar, while in the outer tori the shift in maximum is toward the
Kerr superspinar. We expect this effect could influence the character of optical appearance
of oscillating tori around resonant points and we plan to study related phenomena in a future
work.
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ABSTRACT
We study circular motion of charged test particles in the field of magnetized slowly
rotating neutron stars. The gravitational field is approximated by the Lense–Thirring
geometry, the magnetic field is of the standard dipole character. Using a fully-
relativistic approach we determine influence of the electromagnetic interaction (both
attractive and repulsive) on the circular motion. We focus on the behaviour of the
orbital frequency of the motion. Components of the four-velocity of the orbiting
charged test particles are obtained by numerical solution of equations of motion. The
role of the combined effect of the neutron star magnetic field and its rotation in the
character of the orbital frequency is discussed. It is demonstrated that even in the
Lense–Thirring spacetime particles being static relative to distant observers can exist
due to the combined gravo-electromagnetic interaction.

Keywords: Lense–Thirring – neutron star – magnetic and electric fields – accretion

1 INTRODUCTION

Charged particle motion in strong gravitational and electromagnetic fields of black holes and
neutron stars enables us to understand the nature of combined effects of these fields and their
role in astrophysical phenomena. The motion has been investigated both for Kerr–Newman
black holes having intrinsically coupled gravitational and electromagnetic fields and for
strong gravitating objects (black holes and neutron stars) with a test electromagnetic field
influenced by gravity (see, e.g. Johnston and Ruffini, 1974; Prasanna and Vishveshwara,
1978; Prasanna, 1980; Calvani et al., 1982; Bálek et al., 1989; Bičák et al., 1989; Stuchlík
and Hledík, 1998; Stuchlík et al., 1999; Abdujabbarov and Ahmedov, 2009; Frolov and
Shoom, 2010). Motion of charged particles in the magnetic field generated by accretion
discs orbiting black holes was discussed in (Znajek, 1976; Mobarry and Lovelace, 1986).
The magnetic field tied to a neutron star could substantially influence the structure of an
equatorial accretion disc orbiting the neutron star and has been studied in (Kluźniak and
Rappaport, 2007).

In the case of motion in test fields on strong gravity backgrounds, the equations of motion
are complex and have to be integrated numerically (Prasanna and Vishveshwara, 1978;
Prasanna and Sengupta, 1994; Preti, 2004). Numerical integration of the motion equations
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gives a number of interesting results, but is not sufficient for a complete classification and
understanding of the motion in the equatorial plane. In order to extend the understanding of
the charged particle motion, the quasi-circular equatorial epicyclic motion corresponding
to oscillations of particles around stable circular orbits has been studied (Bakala et al.,
2010). Such epicyclic motion can be excited in the innermost parts of the accretion discs
orbiting a neutron star by inhomogeneities (mountains) on its surface (Stuchlík et al., 2008).
Recently, off-equatorial circular orbits were discussed in astrophysically relevant situations
(Kovář et al., 2008, 2010; Kopáček et al., 2010). Of high interest is the equatorial motion,
especially the circular and quasi-circular orbits of charged test particles that seem to be
crucial from the point of view of accretion processes. Moreover, quite recently, fluid
charged tori were discussed in the approximation of zero conductivity (Kovář et al., 2011);
such dielectric tori could be also relevant in some astrophysically interesting situations.

Here we focus attention on the equatorial orbital motion in the combined gravitational and
dipole magnetic fields related to a slowly rotating neutron star. We generalize our previous
results obtained under much simpler case of neutron star represented by the Schwarzschild
geometry and the related magnetic field (Bakala et al., 2010). We assume a dipole field
whose axis of symmetry coincides with the axis of neutron star’s rotation. The spacetime
outside the neutron star is described by the Lense–Thirring geometry that reflects the slow
rotation of the neutron star and influences the structure of the magnetic field – the effects
of frame-dragging are thus considered in the linear approximation. Such approximation is
suitable for describing the charged particles motion around slowly rotating neutron stars
with a relatively weak magnetic field which does not affect the spacetime curvature in
the vicinity of the neutron star, but its structure is governed by the neutron star spacetime
structure.1

In our study we focus our attention on the possibility of existence of charged particles
that appear stationary to distant observers. Existence of such particles was demonstrated for
ultrarelativistic charged particles located near the black hole horizon of charged and rotating
(Kerr–Newman) black hole (Bálek et al., 1989). Here we test such possibility in different
physical conditions when the interplay of gravitational dragging and electromagnetic force
can imply interesting and unexpected results. The problem of the epicyclic motion and the
related frequencies (see e.g. Aliev and Galtsov, 1981; Abramowicz and Kluźniak, 2005;
Török and Stuchlík, 2005) is postponed for future studies.

2 LENSE–THIRRING GEOMETRY AND DIPOLE MAGNETIC FIELD OF
SLOWLY ROTATING NEUTRON STARS

The external gravitational field of slowly rotating neutron or strange stars is sometimes
approximated by the Lense–Thirring metric2 (Lense and Thirring, 1918; Hartle and Sharp,

1 The neutron star magnetic field is however fully dominant over the magnetic field generated by the currents in
the disc.
2 The term “Lense–Thirring metric” is substituted frequently by the term “slow-rotation approximation”
(see Konno and Kojima (2000)).
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1967; Hartle, 1967), with line element given by

ds2
= −η(r)2 dt2

+
dr2

η(r)2
+ r2

[
dθ2
+ sin2 θ

(
dφ2
− 2ω (r) dt dφ

)]
, (1)

where the function η(r) reads

η(r) ≡
(

1−
2M
r

)1/2

. (2)

The Lense–Thirring angular velocity ω(r) can be interpreted as angular velocity of freely
falling observers relative to static observers at infinity and outside the neutron star is given
by

ω(r) =
2J
r3 , (3)

where J is the total angular momentum of the neutron star with mass M and radius R.
Using the moment of inertia I (M, R) and angular velocity of the (rigidly) rotating starΩstar
measured by a static observer at infinity, we can write J = I (M, R)Ωstar. The rotational
parameter of the neutron star (called spin) is given by a = J/M2. We have adopted here
geometric units, c = G = 1, that we will use throughout the paper.

In Rezzolla et al. (2001), an analytical solution of the Maxwell equations is presented
for a general orientation of the dipole magnetic field in the Lense–Thirring metric (1) to
first order in J , including the conditions for matching the internal spacetime of the star
under assumption of both infinite and finite conductivity of the star interior. We assume
for simplicity the symmetry axis of the magnetic dipole identical with rotation axis (zero
declination) and infinitely conductive star interior implying force lines frozen into the star
and dragged by its rotation. Under such assumptions, the relatively complex general dipole
solution is reduced to much simpler form (Konno and Kojima, 2000), with the azimuthal
component of the electromagnetic 4-potential Aφ being identical with the Schwarzschildian
case (e.g. Wasserman and Shapiro, 1983; Braje and Romani, 2001)

Aφ = − f (r)
µ sin2 θ

r
, (4)

i.e. to the magnetic dipole solution of the Maxwell equations in the flat spacetime corrected
by the general relativistic factor f (r,M) that is given by

f (r) =
3r3

8M3

[
ln η(r)2 +

2M
r

(
1+

M
r

)]
. (5)

In contrast to the dipole solution in the static spherically symmetric spacetime, the 4-po-
tential contains also non-zero electrical (time) component that can be expressed in the form

At (r, θ) = at0(r)+ at2(r)P2 (cos θ) ; (6)
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P2 is the Legendre polynome of the 2nd kind (Konno and Kojima, 2000). The terms at0 a
at2 are given by the Maxwell equations and take the form

at0 =
c0

r
+

Jµ
2M3r2 (3r − M)+

Jµ
4M4r

(3r − 4M) ln η2(r) , (7)

at2 =
c1

M2 (r − M)(r − 2M)

+ c2

[
2

Mr

(
3r2
− 6Mr + M2

)
+

3
M2

(
r2
− 3Mr + 2M2

)
ln η2(r)

]
−

Jµ
2M6r2

[(
9r4
− 3Mr3

− 30M2r2
+ 8M3r + 2M4

)
+

(
12r4
− 36Mr3

+ 24M2r2
+ M3r

)
ln η2(r)

]
, (8)

where c0, c1 a c2 are integration constants (Konno and Kojima, 2000). The first constant c0
corresponds to the electric charge of the star and it is astrophysically natural to put (c0 = 0).
Requirement of regularity of the solution at infinity implies (Konno and Kojima, 2000)

c1 =
9Jµ
2M4 ; (9)

c2 can be fixed by the matching conditions on the star surface. Assuming perfectly conduct-
ing interior of a star rotating with angular momentum Ωstar and frozen-in magnetic field
(uµFµν = 0, uµ = (ut , 0, 0,Ωstarut )), we arrive at (Konno and Kojima, 2000)

c2 =

{
µJ

M5 R2

(
12R3

− 24M R2
+ 4M2 R + M3

)
+

µJ
2M6 R

(
12R3

− 36M R2
+ 24M2 R + M3

)
ln η2(r)

−
µΩstar

4M3

[
2M R + 2M2

+ R2 ln η2(r)
]}

/[ 2
M R

(
3R2
− 6M R + M2

)
+

3
M2

(
R2
− 3M R + 2M2

)
ln η2(r)

]
. (10)

The Maxwell tensor Fµν related to the four-potential Aµ by

Fµν =
∂Aν
∂xµ
−
∂Aµ
∂xν

, (11)

has four independent non-vanishing components

Frφ =
µ sin2 θ

(
f (r)− r f ′(r)

)
r2 , (12)

Fθφ = −
µ f (r) sin 2θ

r
, (13)
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Ftr = −a′t0(r)−
a′t2(r)

4
(1+ 3 cos 2θ) , (14)

and

Ftθ = at2(r) 3 cos θ sin θ . (15)

corresponding to appropriate parts of electric and magnetic field three-vectors in the frames
of local observers. Note that “coma” in Eqs. (12, 14) denotes partial derivative with respect
to the radial coordinate r .

Notice that the electric component of the 4-potential is in astrophysically relevant case
of electrically uncharged star induced only by the star rotation and the effect of dragging of
inertial frames is indicated by its dependence on the angular velocity of the star Ωstar and
its internal angular momentum J .

2.1 Relation between spin and angular frequency

The internal angular momentum J and the angular velocity of the star Ωstar are linearly
connected by the moment of inertia through the relation J = IΩstar. To find the value
of angular velocity necessary for matching the condition given by Eq. (10) in terms of a
dimensionless spin a = J/M2, we can use the findings of Lo and Lin (2011) that the
maximal value of spin, amax = 0.7, is almost the same for all masses and equations of
state. Using a model of neutron star with mass M = 1.5 M� we can find (see, e.g. Haensel
et al., 2009) that maximal frequency νmax

star = Ωmax
star /2π for neutron star is roughly 750–

1200 Hz. The exact value of the maximal frequency depends very significantly on the
assumed equation of state of the neutron star matter (Lattimer and Prakash, 2001; Říkovská
Stone et al., 2003; Urbanec et al., 2010). Since we are dealing here with a neutron star
test model, in further analysis we use the value of νmax

star = 1000 Hz. Therefore, the linear
relation between the spin a and the rotational frequency Ωstar can be written in the form

Ωstar = αa , (16)

where parameter α is given as the ratio of maximal values of neutron star’s spin and the
angular velocity;

α = Ωmax
star /amax . (17)

2.2 Intrinsic magnetic dipole moment

Intrinsic magnetic dipole moment of a neutron star µ can be obtained from the presumed
magnetic field strength at the neutron star surface. Locally measured magnetic field strength
is given by the projection of the Maxwell tensor into the orthonormal basis of a observer
connected with the surface of the star, F

α̂β̂
=e µ

α̂
e ν

β̂
Fµν . The tetrad related to the observers at

the surface of the neutron star is given by the relations

et̂ =
{

ut , 0, 0,Ωstar ut
}
, er̂ =

{
0, η(r), 0, 0

}
, (18)
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e
θ̂
=

{
0, 0,

1
r
, 0
}
, e

φ̂
=

{
0, 0, 0,

1
r sin θ

}
,

The magnetic components of the Maxwell tensor of the electromagnetic field in the Lense–
Thirring metric correspond to the static (Schwarzschild) solution – therefore, the relation of
the magnetic dipole moment of the neutron star and the magnetic induction on its surface
takes precisely the same form as in (Bakala et al., 2010)

µ =
4M3 R3/2√R − 2M

6M(R − M)+ 3R(R − 2M) log η (R)2
B θ̂ . (19)

We use here as the test model for our analysis a neutron star with a rather weak magnetic
field strength, B = 107 Gauss '2.875 x 10−16 m−1 ,3 mass M = 1.5M� '2216.85 m and
radius R = 4M ' 8867.4 m, as in our previous analysis of the static geometry (Bakala
et al., 2010). Then we have µ = 1.06 x 10−4 m2

= 2.157 x 10−11 M2.

3 EQUATORIAL CIRCULAR MOTION

In a curved spacetime with presence of an electromagnetic field, the Lorentz equation of
motion for a charged test particle of mass m and charge q reads

dUµ

dτ
+ Γ

µ
αβUαUβ

= q̃ Fµν U ν , (20)

where Uµ is the four-velocity and q̃ ≡q/m is the specific charge of the particle.
Symmetry properties of the spacetime geometry (1) and electromagnetic field (4) allow

for charged test particles circular motion restricted to the equatorial plane θ = π/2. The
four-velocity then has only two non-vanishing components, Uµ

= (U t , 0 , 0 ,Uφ). Solving
the radial component of Eq. (20) together with the normalization condition UµUµ = −1 for
metric (1) and potential (4) we obtain two pair of implicit equations for nonzero components
of Uµ in the form

U t
± =

(
±

√
4a2 M4(Uφ)2 + (r − 2M)r

(
1+ (Uφ)2r2

)
− 2aM2Uφ

)/(
r − 2M

)
, (21)

Uφ
± =

(
1
2

r−3
)[
−2aM2U t

− q̃µΦ(r)

±

√(
2aM2U t + q̃µΦ(r)

)2
+ 2r3U t

(
2MU t + q̃r2Σ(r)

) ]
. (22)

Here and hereafter Φ(r) and Σ(r) are given by

Φ(r) ≡ f (r)− r f ′(r) , (23)

and

Σ(r) ≡ a′t0(r)− 2a′t2(r) . (24)

3 B [cm−1
] = (G1/2/c2) B [Gauss] '2, 875 x 10−25 B [Gauss]



Stationary particles in the field of magnetized slowly rotating neutron stars 21

For uncharged particles we arrive at the equations governing circular geodesic in the
Lense–Thirring spacetime, where non-zero components of 4-velocity and orbital angular
velocity read

Uφ
0± = ±

[
r2

M
(r − 3M)+ 2aM

(
aM ±

√
a2 M2 + r3/M

)]−1/2

, (25)

U t
0± =

(
aM ±

√
a2 M2 + r3/M

)
Uφ

0± , (26)

Ω0± =

(
aM ±

√
a2 M2 + r3/M

)−1

. (27)

In order to obtain appropriate angular velocities in the presence of the Lorentz force,
the pair of Eqs. (21, 22) has to be solved numerically, taking into account only the
physically relevant forward-directed time component of the 4-velocity U t

+. The solution
Ω+ = Uφ

+/U t
+ then corresponds in the geodesic limit to the corotating orbits and will be

referred as corotating in the following, while the solution Ω− = Uφ
−/U t

+ will be referred
as counterrotating (retrograde). Nevertheless, due to the electromagnetic interaction, in the
case of the retrograde solution the real orientation of the orbital velocity depends on the
values of the neutron star spin and the specific charge of the test particle.

For circular motion in the equatorial plane, the Lorentz force on the Rhs of the equations
of motion (20) has the only non-zero, radial component that is given by the expression
K r
= q̃( Fr

tU
t
+ Fr

φUφ), where the first term corresponds to the electric (coulombic) part
of the interaction of the test charged particle with with electric field of the star induced by
its spin, while the second term corresponds to the magnetic part of the interaction induced
by the orbital motion of the charged particle. While orientation of the magnetic component
depends both on the sign of the specific charge of the particle q̃ and the orientation of
the orbital angular velocity Ω±, the electric component is for a fixed neutron star spin
a > 0 always repulsive for q̃ > 0, but attractive for q̃ < 0. Nevertheless, both parts
depend on the product of µ and q̃ determining magnitude of the whole electromagnetic
interaction. Therefore, instead of changing magnitude and orientation of µ we can, without
any loss of generality, study only influence of changes of the specific charge q̃ similarly as in
analysis of the static Schwarzschild case (Bakala et al., 2010). However, we have to analyse
separately the corotating and retrograde orbits due to the rotation of the neutron star. We
analyse behaviour of orbiting test particles with value of specific charge q̃ ∈ (−1.0 x 1013,
1.0 x 1013). Absolute values of such used specific charge values are very low in comparison
with q̃ = 1.111 x 1018 corresponding to matter consisting purely of ions of hydrogen.

4 ORBITAL MOTION AND STATIONARY PARTICLES

For corotating orbits withΩ+ = Uφ
+/U t

+ the magnetic part of the Lorentz force is attractive
for q̃ > 0, while for q̃ < 0 we observe magnetic repulsion. Inversely oriented electric part
of the Lorentz force partially compensates influence of the magnetic component, but for
the family of corotating orbits the magnetic component is decisive for the final orientation
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Figure 1. Contour plot of the orbital frequency ν = Ω/2π as a function of the specific charge q̃ and
the radial coordinate constructed for the test neutron star with M = 1.5 M� and µ = 1.06 x 10−4 m2.
Top left: Corotating solution for spin a = 0.05. Top right: Corotating solution for spin a = 0.3.
Bottom left: Counterrotating solution for spin a = 0.05. Bottom right: Counterrotating solution for
spin a = 0.3. The electrostatic radii at which the stationary particles are located are given by the red
contour line (ν = 0 Hz).

of the Lorentz force. Ω+ increases monotonically with increasing specific charge q̃; in
the region of q̃ < 0 the repulsive electromagnetic interaction causes decreasing of Ω+ in
comparison with the geodesic orbital frequencyΩ0+, while in the attractive region of q̃ > 0
there is Ω+ > Ω0+. In top panels of Fig. 1 we illustrate behaviour of the orbital angular
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velocity Ω (related frequency ν = Ω/2π ) of orbits described by the corotating solution
in dependency on the specific charge q̃ using the test model neutron star with small and
extremal values of the spin, a = 0.05 and a = 0.3.

4.1 Orbital angular velocity of counterrotating solution and stationary particles at
electrostatic radius

In the case of the retrograde solution Ω− = Uφ
−/U t

+ the resulting orientation of the
Lorentz force is inverse in comparison to the corotating solution. Therefore, |Ω−| decreases
monotonically with increasing value of the specific charge q̃. For q̃ < 0 the attractive Lorentz
interaction increases |Ω−| in comparison with the geodesic orbital frequency |Ω0−|, while
in the repulsive region of q̃ > 0 there is |Ω−| < |Ω0−|. Nevertheless the relations of both
components of the Lorentz force are qualitatively different as compared to the case of the
corotating solution.

In the case of the retrograde orbits, both parts of the Lorentz force are oriented identically
and the magnetic repulsion and attraction are supported by the electric part of the interaction.
Starting from a critical specific charge q̃es, character of the electromagnetic interaction at the
repulsive region enables existence of electrostatic radius res(q̃), where the limiting case of
the circular orbit withΩ− = 0 appears. Such particles are static relative to static observers
at infinity, with gravitational attraction of the neutron star being compensated by the electric
repulsion due to the particle charge. (However, the static particles at the electrostatic radii
are rotating relative to the Lense–Thirring spacetime. An analogical situation has been
discovered for motion of charged particles in the equatorial plane of the Kerr–Newman
geometry (Bálek et al., 1989). In both cases the effect is caused by the combined influence
of the frame dragging and the electromagnetic interaction.)

The electric repulsion increases strongly with decreasing radial coordinate. The existence
of retrograde solutions for particles with large specific charges orbiting at low radii (r <
res(q̃), q̃ ≥ q̃es) requires presence of compensating magnetic attraction implying change
of the orbital velocity orientation. Then even the retrograde solution determines a special
family of corotating (relative to observers at infinity) orbits with relatively low orbital
frequencyΩ− > 0 existing paralelly at the same radial coordinate as the orbits of corotating
solution demonstrating high Ω+ > 0.

In bottom panels of Fig. 1 we illustrate behaviour of the orbital angular velocityΩ (related
frequency ν = Ω/2π ) of orbits described by counterrotating solution in dependency on
the specific charge q̃ using test model neutron star with with small and extremal values of
the spin, a = 0.05 and a = 0.3.

5 CONCLUSIONS

The aim of the present paper is to study the influence of the Lorentz force generated by
a dipole magnetic field of a slowly rotating neutron star on the equatorial circular motion.
We focus on the combined effects of the frame dragging and electromagnetic interaction,
representing the frame dragging in the linear approximation of the Lense–Thirring metric.
In general, the Lorentz force may be of attractive or repulsive character depending on the
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sign of orbiting particle’s specific charge, the magnetic dipole moment and orbital velocity
orientations and the sense of rotation of the neutron star. Surprisingly enough, the combined
effect of frame dragging and electro-magnetic interaction implies even in the case of the
slow rotation, and in intermediate radii, i.e. radii not close to the gravitational radius,
the existence of charged particles being in states appearing static relative to distant static
observers. Such particles are located at the so called electrostatic radii. The phenomenon of
stationary particles in strong gravity was discovered for the first time in the case of charged
particles orbiting the Kerr–Newman black hole, but for ultrarelativistic particles located at
close vicinity of the black hole horizon (Bálek et al., 1989). Here we have demonstrated its
existence in slightly less exotic conditions around slowly rotating magnetized neutron stars.
We shall discuss stability of this kind of motion in a future paper.
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ABSTRACT
Collisionless astrophysical plasmas at kinetic equilibrium can exhibit geometrical
structures characterized by the absence of well-defined global spatial symmetries.
Plasmas of this type can arise in the surrounding of compact objects and are likely
to give rise to relativistic regimes, being subject to intense gravitational and electro-
magnetic fields. This paper deals with the investigation of the physical mechanisms
related to the occurrence of a non-vanishing equilibrium fluid stress-energy tensor
associated with each collisionless species of plasma charged particles belonging to
these systems. This permits one to obtain information about the thermal proper-
ties of the plasma and to display the related contributions generated by phase-space
anisotropies. The issue is addressed from a theoretical perspective in the framework
of a covariant Vlasov statistical description, based on the adoption of a relativistic
gyrokinetic theory for the single-particle dynamics.

Keywords: collisionless magnetized plasmas – gyrokinetic theory – kinetic equi-
libria – Vlasov equation – stress-energy tensor

1 INTRODUCTION

The description of the complex phenomenology of plasmas arising in the surrounding
of compact objects represents a challenging problem in theoretical astrophysics. In these
systems, both single-particle and macroscopic fluid velocities of the plasma can become
relativistic, at least in particular subsets of the configuration domains, while space-time
curvature effects associated with strong gravitational fields can be relevant. When these
circumstances occur, relativistic covariant approaches need to be adopted.

In the following we consider strongly-magnetized collisionless plasmas that can be treated
in the framework of a covariant Vlasov–Maxwell formulation and in which single-particle
dynamics is relativistic. This allows for both phase-space single-particle as well as electro-
magnetic (EM) and gravitational collective system dynamics to be consistently taken into
account. Within such a description, the fundamental quantity is represented by the species
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kinetic distribution function (KDF) fs , where s is the species index, whose dynamical
evolution is determined by the Vlasov equation.

Astrophysical magnetized plasmas can generate kinetic plasma regimes which persist
for long times (with respect to the observer and/or plasma characteristic times), despite
the presence of macroscopic time-varying phenomena of various origin, such as flows,
non-uniform gravitational/EM fields and EM radiation, possibly including that arising from
single-particle radiation-reaction processes (Hazeltine and Mahajan, 2004; Cremaschini
and Tessarotto, 2011). For collisionless plasmas, these states might actually correspond to
some kind of kinetic equilibrium which characterizes the species KDFs. This is realized
when the latter distributions are all assumed to be functions only of the single-particle
adiabatic invariants. Therefore, in this sense kinetic equilibria may arise also in physical
scenarios in which macroscopic fluid fields (e.g. fluid stress-energy tensor) and/or the EM
field might be time dependent when observed from an observer reference frame.

For non-relativistic axisymmetric systems, the subject was treated in Cremaschini et al.
(2010, 2011); Cremaschini and Stuchlík (2013); Cremaschini et al. (2013b), where kinetic
equilibria were investigated for collisionless magnetized plasmas subject to stationary or
quasi-stationary EM and gravitational fields. A number of peculiar physical properties have
been pointed out in this reference, which range from quasi-neutrality, the self-generation
of equilibrium EM fields and the production of macroscopic azimuthal and poloidal flow
velocities, together with the occurrence of temperature and pressure anisotropies. Further
interesting developments concern, however, a more general physical setting in which some
of the relevant symmetry properties characteristic of the equilibria indicated above, may be
in part lost. These include both spatially non-symmetric kinetic equilibria in which energy
is conserved (Cremaschini and Tessarotto, 2013) as well as energy-independent kinetic
equilibria (Cremaschini et al., 2013a) in which a continuous spatial symmetry of some kind
still survives.

Extension of these results to relativistic plasmas of the type indicated above has been
established in recent contributions (Cremaschini et al., 2014b,a). In particular, in Cremas-
chini et al. (2014b) kinetic equilibria of relativistic collisionless plasmas in the presence
of non-stationary EM fields have been addressed, while Cremaschini et al. (2014a) dealt
with the covariant formulation of spatially non-symmetric kinetic equilibria in magnetized
plasmas and the determination of the physical mechanisms responsible for the occurrence
of a non-vanishing 4-flow. This concerns systems characterized by non-axisymmetric mor-
phologies as far as the behaviour of both the EM and fluid fields is concerned, while the
background gravitational field can still be allowed to exhibit space-time symmetries of some
kind (e.g. to be defined with respect to the distant observer coordinate system).

In both these cases, the theory has required the development of a systematic non-
perturbative formulation of covariant gyrokinetic theory (Beklemishev and Tessarotto, 1999,
2004) for the appropriate Lagrangian variational description of single-particle dynamics in
relativistic plasma regimes. The GK theory in fact provides the appropriate framework for
the determination of exact and adiabatic phase-space particle conservation laws. In partic-
ular, the novel GK theory presented in Cremaschini et al. (2014b,a) permits one to identify
a non-perturbative representation of the particle magnetic moment, which is shown to be
conserved even when global space-time symmetries may be absent. In addition, in Cremas-
chini et al. (2014a) a perturbative representation of the exact GK theory has been developed
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based on the so-called Larmor-radius expansion, allowing the magnetic moment to be eval-
uated asymptotically as an adiabatic invariant with prescribed accuracy and the higher-order
Larmor-radius corrections to its expression to be consistently determined.

The adiabatic conservation of the single-particle magnetic moment is a distinctive fea-
ture of collisionless magnetized plasmas. Indeed, for both relativistic and non-relativistic
systems, the magnetic moment is the primary source of temperature anisotropy, while
for spatially non-symmetric configurations it is essential in order to generate macroscopic
plasma flows along both the parallel and perpendicular directions with respect to the local
magnetic field.

Based on these premises and extending the research pursued in Cremaschini et al. (2014a),
the purpose of the present work is to investigate the physical mechanisms which determine
the properties of the equilibrium fluid stress-energy tensor Tµν associated with relativistic
collisionless plasmas in spatially non-symmetric configurations. This provides the correct
equilibrium fluid closure condition for these systems, which carries information about the
thermal properties of the plasma and the different contributions generated by phase-space
anisotropies. The issue is addressed from a theoretical perspective in the framework of a
covariant Vlasov statistical description of magnetized plasmas, based on the adoption of
the covariant GK theory for the single-particle dynamics earlier developed. In particular,
the main goals of the study are as follows:

(1) To summarize the main features of the GK theory and provide the perturbative
representation of the relativistic magnetic moment.

(2) To outline the method for the construction of kinetic equilibria, providing an explicit
representation of the species KDF in the form of a generalized Gaussian distribution.

(3) To calculate the expression of the stress-energy tensor and to show that this is gener-
ally non-isotropic. It is pointed out that this feature arises primarily from the conservation
of the magnetic moment carried by the equilibrium KDF. The asymptotic expression of the
magnetic moment correct up to first order in the Larmor-radius expansion is adopted for this
task, which permits an analytical estimate of the corresponding distinctive contributions to
the stress-energy tensor.

2 NON-PERTURBATIVE GK THEORY

In this section we summarize the main results concerning the non-perturbative formulation
of the covariant GK theory, treating particles as point-like having specific charge q ≡
Ze/M0c2, with M0 being the mass of the species component particles, and moving in a
prescribed background metric tensor gµν (r) and EM 4-potential Aµ. The GK theory is
obtained by introducing an extended phase-state transformation of the form

x ≡
(
rµ, uµ

)
↔ z′ ≡

(
y′, φ′

)
, (1)

where φ′ is the gyrophase angle, z′ is the GK state and y′ is a suitable 7-component
vector. The GK state z′ is constructed in such a way that its equations of motion are
gyrophase independent, namely dz′/ds ≡ F(y′, s), where F is a suitable vector field.
A non-perturbative covariant GK theory is established by introducing the extended local
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transformation of the type

rµ = r ′µ + ρ′µ1 , (2)
uµ = u′µ ⊕ ν′µ1 , (3)

denoted as extended guiding-center transformation, where ρ′µ1 = ρ
′µ
1
(
r ′µ, u′µ

)
and ν′µ1 =

ν
′µ
1
(
r ′µ, u′µ

)
are suitably prescribed in terms of

(
r ′µ, u′µ

)
. Here r ′µ is the guiding-center

position 4-vector, with primed quantities denoting dynamical variables which are evaluated
at r ′µ. Thus, ρ′µ1 is referred to as the relativistic Larmor 4-vector, while both uµ and u′µ are
by construction 4-velocities, so that uµuµ = u′µu′µ = 1, with ⊕ denoting the relativistic
4-velocity composition law. Notice that by construction u′µ1 ≡ u′µ ⊕ ν′µ1 is necessarily a
4-velocity, although ν′µ1 is not necessarily so.

The guiding-center transformation (2) and (3) are required to fulfil the equation
d
ds

(
r ′µ + ρ′µ1

)
= u′µ ⊕ ν′µ1 , (4)

which relates the transformed physical velocity to the rate of change of the displacement
vector r ′µ + ρ′µ1 .

The 4-velocity u′µ is projected along the EM-tetrad of unit 4-vectors
(
a′µ, b′µ, c′µ, d ′µ

)
evaluated at the guiding-center position (guiding-center EM-tetrad, see Cremaschini et al.
(2014a)), yielding the representation

u′µ ≡ u′0a′µ + u′
‖
b′µ + w′

[
c′µ cosφ′ + d ′µ sinφ′

]
, (5)

where u′0 =
√

1+ u′2
‖
+ w′2. The derivation of the GK equations of motion and of the

related conservation laws follow standard procedures in the framework of variational La-
grangian approach. In particular, provided the two transformations (1), (2) and (3) actually
exist, i.e. are invertible, one obtains the following expression for the non-perturbative
representation of the particle magnetic moment m′:

m′ =

〈
∂ρ
′µ
1

∂φ′

[(
u′µ ⊕ ν

′

1µ

)
+ q Aµ

]〉
φ′

, (6)

which is by construction a 4-scalar.

3 PERTURBATIVE GK THEORY

The perturbative GK theory is obtained by introducing a perturbative method based on
the introduction of the dimensionless Larmor-radius parameter, namely the frame-invariant
ratio ε ≡ rL/L �1, to be considered as an infinitesimal. Here rL is the Larmor-radius 4-
vector, while L is a suitable characteristic invariant length of the system. Then we introduce
the assumption that both ρ′µ1 and ν′µ1 are considered as infinitesimals and are represented
in terms of the power series

ερ
′µ
1 = εr

′µ
1 + ε

2r ′µ2 + · · · , (7)
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εν
′µ
1 = εv

′µ
1 + ε

2v
′µ
2 + · · · (8)

Similarly, the 4-vector potential is Taylor-expanded in ε around the guiding-center position
r ′µ. Then, introducing these expressions in the GK Lagrangian differential form and
evaluating its gyrophase average yields the following perturbative representation for the
particle magnetic moment m′:

m′ = µ′ + εµ′1 + O
(
ε2) . (9)

In detail, here µ′ is the leading-order contribution given by

µ′ =
w′2

2q H ′
, (10)

where H ′ is the magnetic field strength in the EM-tetrad reference frame. Furthermore, µ′1
is the first-order contribution, which can be written in compact form as

µ′1 = µ
′

(
u′0∆

′

u′0

(
r ′
)
+ u′
‖
∆′u′
‖

(
r ′
))
+ µ′w′∆′w′

(
r ′
)
, (11)

where the 4-scalar coefficients ∆′u′0

(
r ′
), ∆′u′

‖

(
r ′
) and ∆′

w′
(r ′) are only position-dependent. We

omit to calculate here their precise expression as this is not needed for the subsequent
developments.

Some important features must be pointed out regarding the asymptotic representation of
the magnetic moment given above:

(1) The contribution µ′1 is linearly proportional to the leading-order magnetic mo-
ment µ′.

(2) Provided ∆′u′0
(
r ′
)

and ∆′u′
‖

(
r ′
)

are non-zero, the first-order magnetic moment µ′1
contains linear velocity dependences in terms of u′0 and u′

‖
.

(3) The contribution proportional to u′0 is an intrinsically-relativistic effect since u′0 is
related to the other components of the 4-velocity by means of a square-root dependence.
Concerning the dependences in terms of u′

‖
, we notice that besides the linear one, there is

an additional intrinsically relativistic one appearing through u′0.

4 RELATIVISTIC KINETIC EQUILIBRIA

In this section the construction of relativistic spatially non-symmetric kinetic equilibria for
collisionless plasmas in curved space-time is considered. To reach the target, the method of
invariants is implemented, which consists in expressing the species KDF in terms of exact
or adiabatic single-particle invariants. In the present case the latter is identified with the set
(P0,m′), where P0 is the conserved momentum conjugate to the ignorable time coordinate,
as it follows from the stationarity condition. Therefore one can always represent the species
equilibrium KDF in the form fs = f∗s , with

f∗s = f∗s
((

P0,m′
)
,Λ∗

)
(12)
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being a smooth strictly-positive function of the particle invariants only which is sum-able
in velocity-space. Concerning the notation, in Eq. (12)

(
P0,m′

)
denote explicit functional

dependences, whileΛ∗ denotes the so-called structure functions (Cremaschini et al., 2011),
namely functions suitably related to the observable velocity moments of the KDF. In the
following for simplicity the particular choice Λ∗ = const is adopted. Notice that in the
following, for simplicity of notation but without possible misunderstandings, we omit to
indicate the index s in the set of structure functions entering each species KDF.

For the sake of illustration, we consider here a specific realization of each species
KDF f∗s in terms of a generalized Gaussian distribution. To this aim, we denote with
Pµ = (uµ+q Aµ) the particle generalized 4-momentum in the observer (laboratory) frame
which is characterized by the co-moving 4-velocity Uµ, so that in this frame one has simply
Uµ
= (1, 0, 0, 0). As a consequence, in the observer frame PµUµ

= P0 (rest energy),
which is a conserved 4-scalar by assumption. Therefore, it follows that f∗s can be identified
with the 4-scalar

fM∗s = β∗e−PµUµγ∗−m′α∗ , (13)

where the structure functions are represented by the set of 4-scalars fields {Λ∗} ≡
{β∗, γ∗, α∗}. From the physical point of view, here β∗ is related to the plasma 4-flow,
or equivalently the plasma number density when measured in the fluid co-moving frame,
while γ∗ and α∗ are related to the temperature anisotropy. We stress that the representation
of the KDF in Eq. (13) is still exact, in the sense that no asymptotic approximations have
been introduced there, so that the magnetic moment m′ in the exponential factor must be
given by its non-perturbative representation by Eq. (6).

In order to determine explicitly the 4-velocity moments of fM∗s , the magnetic moment
m′ must be preliminarily evaluated at the actual particle position by means of an inverse
guiding-center transformation. When the latter is applied to the perturbative representation
of m′ given by Eq. (9), this leads, with the same accuracy, the following expression for the
magnetic moment m:

m = µ+ εµ1 + εδ(µ) . (14)

Here µ ≡ w2/2q H is the leading-order contribution, µ1 is the first-order term which
coincides with that in Eq. (11) when evaluated at the particle position, while the O (ε)

correction δ(µ) = δ(µ)
(
r, u‖, µ, φ

)
contains explicit gyrophase dependences and originates

from the inverse guiding-center transformation applied to µ′. Finally, in terms of Eq. (14)
and neglecting second-order corrections in ε, the equilibrium species KDF (13) becomes

fM∗s = β∗e−PµRUµ
R (r)γ∗−µα∗

[
1−

(
εµ1 + εδ(µ)

)
α∗

]
, (15)

where all quantities are represented in the EM-tetrad with origin at the actual particle
position. Thus, PµR is the canonical momentum and Uµ

R (r) the 4-velocity corresponding
to Uµ, both expressed in the same EM-reference frame.

5 THE STRESS-ENERGY TENSOR

As shown in Cremaschini et al. (2014a), the phase-space functional dependences contained
in the KDF fM∗s given by Eq. (15) give rise to corresponding fluid equilibria characterized



Stress-energy tensor of spatially non-symmetric plasmas 33

by non-uniform 4-flows Nµ (r). In this section we consider another velocity-moment of
the KDF. In particular we investigate the form of the fluid stress-energy tensor Tµν (r), in
order to prove that this is generally non-isotropic and to identify the different phase-space
contributions that determine its form.

In detail, the plasma stress-energy tensor Tµν (r) is defined as

Tµν (r) =
∑

s

Tµνs , (16)

where Tµνs denotes the generic species stress-energy tensor given by the 4-velocity integral

Tµνs (r) = 2Moc2
∫
√
−g d4uΘ

(
u0
)
δ
(
uµuµ − 1

)
uµuν fM∗s . (17)

In the previous expression the Dirac-delta takes into account the kinematic constraint for the
4-velocity when performing the integration, while

√
−g is the square-root of the determinant

of the background metric tensor. Invoking the EM-tetrad representation for the 4-velocity,
the integral can be reduced to

Tµνs (r) = Moc2
∫ √

−g d3u√
1+ u2

‖
+ w2

uµuν fM∗s . (18)

When the previous integral is evaluated with respect to the EM-tetrad reference frame, then
locally

√
−g = 1, thanks to the principle of equivalence. In such a framework, one can

introduce the cylindrical coordinates in the velocity space:∫
d3u →

∫ 2π

0
dφ
∫
+∞

0
w dw

∫
+∞

−∞

du‖ , (19)

where u‖ and w coincide with the scalar components of the 4-velocity analogous to those
entering Eq. (5) when expressed at the actual particle position and in terms of which the
KDF is represented. Hence, in the EM-tetrad frame the integral becomes finally

Tµνs (r) = Moc2
∫ 2π

0
dφ
∫
+∞

0
w dw

∫
+∞

−∞

du‖
uµuν fM∗s√
1+ u2

‖
+ w2

. (20)

Although its explicit evaluation can be in principle carried out numerically, in this study we
are interested in evaluating its qualitative features in terms of an analytical analysis.

First we notice that, once uµ is represented in the EM-tetrad in terms of the basis
formed by (aµ, bµ, cµ, dµ), the same 4-vectors also identify the tensorial components of
Tµνs (r), which are generally position-dependent. Once the expression of Tµνs (r) is known
in such a frame in terms of the EM-tetrad, its representation can then be determined in
arbitrary reference frames (i.e. coordinate-systems). A second feature to mention is that, by
construction, the tensor Tµνs (r) is symmetric, with non-vanishing diagonal components.
Additional properties can be inferred when the representation (15) is adopted. In particular:
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(1) The leading-order contribution to Tµνs (r) is generated by the velocity dependences
contained in the exponential factor, carried respectively by the 4-scalars PµRUµ

R (r) and µ.
This determines the leading-order fluid closure condition of the system and the tensorial
equation of state of the plasma, to be generally of non-polytropic type for these systems,
providing information about the thermal state of the kinetic equilibrium. Since the magnetic
moment µ depends only on the component w of the 4-velocity, the separate contributions
of the leading-order tensor are different. In the EM-tetrad frame the tensor acquires its
simplest representation and becomes diagonal at this order, so that an anisotropy clearly
arises in analogy with the non-relativistic solution. This realizes the so-called temperature
anisotropy.

(2) The first-order term generated byµ1 contains three separate contributions, according
to the expression (11). In particular, the terms proportional toµu0 andµw yield corrections
to the leading-order solution, thus affecting only the diagonal terms and exhibiting the same
kind of anisotropy when the tensor is expressed in the EM-tetrad frame. Instead, more
interesting, the term proportional to µu‖ is odd in the parallel component u‖, and therefore
it generates non-vanishing contributions in the tensorial directions (hyperplane) aµbν , so
that in the EM-tetrad frame this provides non-diagonal contributions. It is important to stress
that the latter feature is a unique consequence of the first-order correction to the magnetic
moment, which is missing in the leading-order solution, implying that, for consistency, the
first-order perturbations cannot generally be neglected.

(3) Similar considerations apply also to the first-order term associated with the correc-
tion δ(µ) to the magnetic moment. In view of the general form of its functional dependence
and its explicit gyrophase dependence, this term is expected to possibly contribute to all com-
ponents of the stress-energy tensor, thus extending the number of possible non-vanishing
off-diagonal terms (in the EM-tetrad frame).

Finally, a comment is in order concerning the spatial dependences in terms of rµ arising
in Tµνs (r). In the present case in which the structure functions are constant, non-trivial
configuration-space dependences still arise due to the following physical effects: 1) the
explicit dependence in terms of the 4-scalar AµUµ

R (r) associated with Pµ; 2) the functional
form of the 4-vector Uµ

R (r), which is determined by the boost transformation; and finally
3) the spatial dependences appearing in the 4-scalars µ, µ1 and δ(µ) occurring due to the
inhomogeneities of the background EM field.

6 CONCLUSIONS

In this study the physical properties of the stress-energy tensor associated with relativistic
magnetized collisionless plasmas belonging to spatially non-symmetric configurations have
been investigated. An analytical approach has been adopted to address the problem. The
theory has been developed in the framework of a covariant Vlasov statistical description,
based on the adoption of a relativistic gyrokinetic theory for the single-particle dynamics.

A fundamental element is the calculation of the relativistic single-particle magnetic
moment, which represents an adiabatic invariant of prescribed accuracy. A perturbative
solution correct through first-order in the Larmor-radius expansion has been determined
in this context. The expression of the magnetic moment is fundamental for the consis-
tent realization of kinetic equilibria, obtained here in terms of generalized Gaussian-like
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distributions. In addition, it has been shown that the same adiabatic invariant represents
the main source of phase-space anisotropies which ultimately give rise to a non-isotropic
stress-energy tensor. When the latter is evaluated in the EM-tetrad frame, the occurrence
of a leading-order temperature anisotropy is manifest, while non-vanishing off-diagonal
first-order corrections are characteristic of these systems.

The results obtained here are useful in order to display the thermal properties of spatially
non-symmetric plasmas and provide the appropriate theoretical framework for a better
understanding of the statistical features of astrophysical collisionless plasmas arising in
relativistic regimes and subject to the simultaneous action of intense gravitational and
electromagnetic fields.
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Critical curves of triple gravitational microlenses

Kamil Daněk and David Heyrovský
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Charles University, Prague, Czech Republic

ABSTRACT
In the theory of gravitational lensing the lens caustic and its primary image, the critical
curve, have fundamental importance. Knowledge of these curves greatly facilitates
the interpretation and analysis of time-dependent gravitational microlensing events.
A binary lens modelled by two point masses can form caustics of three different
topologies, which correspond to three topologies of the critical curve. Here we anal-
yse critical curve topologies of the triple lens. While the binary lens is characterized
by two parameters, five parameters are needed to describe the triple lens. We present
an example illustrating the analysis of special triple-lens models described by two
parameters. We find analytical conditions for the change of critical-curve topology,
which define boundaries of regions in parameter space with different critical-curve
topology. For each region we present corresponding critical curves and caustics. We
also include sample results for a three-parameter model describing a triple lens with
equal masses in a general spatial configuration.

1 INTRODUCTION

Gravitational microlensing is a special regime of gravitational lensing in which the lensing
body is of stellar or sub-stellar mass, so that the deflection angle is too small for resolving
individual images of a background star (the “source” in lensing terminology). The main
measurable quantity is the time-dependent amplification of flux from the source, i.e. the
light curve of a microlensing event. The amplification peaks sharply when the source crosses
the caustic of the lens, which – if we could resolve individual images – corresponds to the
formation or destruction of a pair of images on the critical curve of the lens.

The single-point-mass lens was discussed in detail by Refsdal (1964). The first theoret-
ical study of two-point-mass lenses was carried out by Schneider and Weiss (1986) who
described the properties of the critical curve and caustic of an equal-mass binary lens.
A complete analysis of caustic and critical-curve topologies of the general binary lens was
performed by Erdl and Schneider (1993).

The first convincing triple-lens microlensing event, OGLE-2006-BLG-109, was found in
2006 (Gaudi et al. 2008). The lens system consisted of a star with two planets forming a
Sun + Jupiter + Saturn analogue. The possibility of detecting triple lenses was discussed
in several papers (e.g. star with an exoplanet with a moon by Liebig and Wambsganss
2010, Han 2008; planet in a binary-star system by Lee et al. 2008, Chung and Park 2010).
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At the same time, gravitational microlensing by a system of three bodies has not been
satisfactorily analysed theoretically yet. Inspired by the Erdl and Schneider (1993) analysis
of the parameter dependence of binary lensing, we extend their approach to special cases
of the triple lens, focusing here on the classification of critical-curve topologies.

For binary lenses, there are only three different topologies of the critical curve, corre-
sponding to three different topologies of the caustic. These are usually labelled according
to the binary separation as “close” (critical curve formed by three loops), “resonant” (one
loop), and “wide” (two loops), with boundaries between the regimes depending on the
binary mass ratio. Apart from the merger of loops at these boundaries, the loops of a binary
lens caustic never self-intersect, never intersect mutually, and are never nested. The more
complex triple-lens caustics often exhibit self-intersections, loop intersections and loop
nesting without a change in critical-curve topology. However, the number of loops of the
caustic is always the same as the number of loops of the critical curve. In the following we
classify the critical-curve topologies by studying the conditions for the merger of critical-
curve loops. Such a classification may then serve as a basis for classifying the topologies
of the triple-lens caustic.

2 CRITICAL CURVES IN GRAVITATIONAL MICROLENSING

For an n-point-mass lens system, the equation tying the position of the source and its images
may be expressed in complex form as

ζ = z −
n∑

i=1

µi

z̄ − z̄i
, (1)

where ζ is the source position, z is the image position in the lens plane, zi are the point-
mass positions (barred variables z̄, z̄i are complex conjugates of z, zi ), and µi are their
relative masses with unit total mass (

∑n
i=1 µi = 1). This complex notation was introduced

by Witt (1990). All angular positions are normalized to the total-mass Einstein radius,
i.e. the radius of a ring-shaped image of a source positioned directly behind a single lens.
The amplification of a given image is obtained as the reciprocal value of the determinant
of the Jacobi matrix of lens Eq. (1), J = (∂ζ/∂z). The equation of the critical curve is
obtained by setting det J = 0, which leads to

n∑
i=1

µi

(z − zi )2
= e−2iφ , (2)

where the real phase φ varies along the curve from 0 to 2π .
The critical curve in fact is the det J = 0 contour of the Jacobian in the lens plane. Hence,

it forms the boundary between regions of positive and negative det J . As a consequence,
the point on a critical curve at which loops of the critical curve merge must also be a saddle
point of det J . The additional saddle-point condition for such a merging point can be
computed from the Hessian, which yields

n∑
i=1

µi

(z − zi )3
= 0 . (3)
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By solving (2) and (3) simultaneously we get analytic conditions for merging points. These
define the boundaries separating regions in parameter space with different critical-curve
topologies.

3 TRIPLE LENS: TWO-PARAMETER MODEL

The triple lens is described by five parameters: two relative masses and three position
parameters. Finding the merger conditions as equations combining all five parameters is
prohibitive because of algebraic complexity and thus demands on computational time.
Therefore, we used special triple-lens models with fewer free parameters for an initial
exploration of the parameter space.

To give a two-parameter example, we present here the results for a triple-lens system in
an equilateral triangle configuration with two masses set equal. Our variable parameters
are the mass µ of the third lens, and the length d of a side of the triangle. Using the
Sylvester matrix method of Erdl and Schneider (1993), we get four independent conditions
for critical-curve merger. Two of them have a similar form, both being polynomials of sixth
degree in d2:

a12d12
+ a10d10

+ a8d8
+ a6d6

+ a4d4
+ a2d2

+ a0 = 0 , (4)
a12d12

− a10d10
+ a8d8

− a6d6
+ a4d4

− a2d2
+ a0 = 0 , (5)

where

a12 = 32 ,
a10 = 48(3µ− 1) ,
a8 = −48(3µ− 1)(3µ− 5) ,
a6 = 8

(
81µ3

+ 27µ2
− 45µ+ 35

)
, (6)

a4 = 6(3µ− 1)
(
621µ3

− 981µ2
+ 351µ+ 25

)
,

a2 = −3(3µ− 1)
(
243µ4

− 972µ3
+ 1098µ2

− 372µ− 13
)
,

a0 = −108µ3
+ 324µ2

− 180µ− 4 .

The third has the form of a polynomial of third degree in d4,

16d12
− 24

(
9µ2
− 6µ− 1

)
d8
−
(
243µ4

+ 972µ3
+ 1134µ2

− 468µ+ 15
)
d4
+

+54µ3
− 162µ2

+ 90µ+ 2 = 0 , (7)

and the fourth is a polynomial of twelfth degree in d4,

12∑
l=0

b4ld4l
= 0 , (8)

where b4l are functions of µ that we don’t specify here due to their complexity.
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Figure 1. Parameter space regions according to critical-curve topology for a triple lens in an
equilateral triangle configuration. Parameters: mass of vertex µ; length of side d .

The curves in the [µ, d] plane given implicitly by Eqs. (4), (5), (7), and (8) form
boundaries that divide the parameter space into several regions. To make sure that regions
on either side of each curve correspond to different topologies, it is necessary to check
whether each solution of (4), (5), (7), and (8) also fulfils the original conditions (2) and (3).

In Figure 1 we plotted the parameter space of the equilateral-triangle lens with curves
given by (4), (5), (7), and (8). These curves divide the parameter space into ten regions,
labelled in the Figure A through J. Examples of critical curves and caustics from all ten
regions are shown in Fig. 2. There are altogether seven different topologies of the critical
curve. The topologies in E and G are the same, so are those in F and H, and in I and J. The
critical curve in B consists of three loops that separate in the limit d → ∞ into Einstein
rings of three single lenses. The critical curve in I and J consists of an outer loop and four
inner loops. In the limiting case d → 0 the inner loops disappear at the lens position and
the outer loop turns into the Einstein ring of a single lens with total mass

∑3
i=1 µi = 1.

The analysis of two other two-parameter models can be found in Daněk (2010).

4 TRIPLE LENS: THREE-PARAMETER MODEL

Using the Sylvester matrix method for three-parameter triple-lens configurations usually
leads to multi-page expressions for merging conditions. Factorizing the final result into
separate surfaces dividing the parameter space presents a further hurdle to this method. It
is necessary, therefore, to find an alternative approach.

We noticed a nice property of (2) and (3) that can be used to obtain the parameters
of critical-curve mergers. If we multiply both sides of (2) by a real positive number α
and perform the transformation z′ = α−1/2z, z′i = α−1/2zi , we obtain the equation of
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Figure 2. Critical curves and caustics of a triple lens in an equilateral triangle configuration. First
and third column: critical curves; second and fourth column: caustics; crosses: lens positions. Letters
labelling the panels correspond to regions in Fig. 1.
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Figure 3. Parameter space regions according to critical-curve topology for a triple lens with equal
masses and circumference o = 4.8. Lengths of sides a, b, c are in units of o.

a Jacobian contour line with det J ′ = 1 − α2 in z′. The saddle-point condition (3) holds
for both transformed and untransformed values. This enables us to find the value of det J ′

in a saddle point z′ for some chosen lens positions z′i and a contour line going through the
saddle point. By inverting the transformation we can find lens parameters zi with a critical
curve equal, up to a scaling factor, to the found contour line. For any configuration of the
triple lens there are six saddle points of the Jacobian. Hence, we obtain six values of det J ′

that tell us how to re-scale the lens positions to obtain parameters of critical-curve mergers.
As an example we present a triple lens with equal masses and arbitrary lens positions.

The system is parametrized by the triangle circumference o and three lengths of sides as
fractions of the circumference a, b, c, constrained by a+b+c = 1. Taking advantage of the
symmetry of this problem we draw o = const slices of the parameter space as ternary plots.
The o = 4.8 slice is shown for illustration in Fig. 3. Here the parameter space is divided into
nineteen regions, due to symmetry representing only six distinct types of regions, labelled
in the Figures A through F.

Examples of critical curves and caustics corresponding to the six regions are presented
in Fig. 4. There are altogether five different critical-curve topologies in this slice of the
parameter space, with regions B and C having the same topology. The topologies in A and
B / C do not occur in the two-parameter equilateral-triangle model described earlier. D has
the same critical-curve topology as A in Fig. 2, their caustics have the same total number of
cusps but the latter has four more intersections. The critical-curve topology and number of
caustic cusps are the same for the following pairs of examples: E from Fig. 4 and D from
Fig. 2; F from Fig. 4 and B from Fig. 2. Note that the example F in Fig. 4 has the parameters
of an equilateral triangle; its parameters lie in B of Fig. 1.
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Figure 4. Critical curves and caustics of a triple lens with equal masses and circumference o = 4.8.
First and third column: critical curves; second and fourth column: caustics; crosses: lens positions.
Letters labelling the panels correspond to regions in Fig. 3.

5 CONCLUSION

The topological analysis of critical curves and caustics of binary lenses provides a priceless
theoretical background for analysing observed microlensing light curves. We have shown
that it is possible to find algebraic conditions for critical-curve merger for special two-
parameter models of triple lenses. We have found a numerical method for obtaining merger
parameters for a general multiple lens, by identifying the contour lines of the Jacobian
passing through its saddle points with the critical curves of re-scaled lens configurations.

The number of possible critical-curve topologies in the full parameter space of a triple lens
still remains unclear. For a more instructive insight into all possible light curves of triple-
lens microlensing we also need to refine the analysis to cover other caustic transformations.
In particular, the number of caustic cusps can change even without mergers. For a complete
caustic-topology analysis, also caustic intersections should be taken into account.
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ABSTRACT
A significant number of early-type stars have been discovered in the innermost
parsec of the Milky Way. Roughly one half of those which are orbiting the central
supermassive black hole at projected distances &0.03 pc appear to form a coherently
rotating disc-like structure. A massive molecular torus and an extended cusp of late-
type stars have also been detected in this region. Assuming that the stellar disc is
initially thin and geometrically circular, we investigate its secular orbital evolution by
means of numerical N -body integration. We include the gravitational influence of
both the torus and cusp, as well as the self-gravity of the disc. Our calculations show
that for a variety of initial configurations, the system evolves to a state compatible
with the current observational data within the life-time of the early-type stars. In
particular, the core of the disc naturally reaches a perpendicular orientation with
respect to the torus. We thus suggest that all the early-type stars may have been born
within a single gaseous disc.

Keywords: numerical methods – stellar dynamics – Galactic Centre

1 INTRODUCTION

The centre of the Milky Way harbours, according to recent observations, nearly 200 early-
type stars moving on Keplerian orbits around a highly concentrated mass (Allen et al.,
1990; Genzel et al., 2003; Ghez et al., 2003, 2005; Paumard et al., 2006; Bartko et al., 2009,
2010), presumably a supermassive black hole (SMBH) of mass≈4× 106 M� (Ghez et al.,
2003; Eisenhauer et al., 2005; Gillessen et al., 2009; Gillessen et al., 2009; Yelda et al.,
2011). Most of them are located at projected distance 0.03 pc .r .0.5 pc from the SMBH
(Bartko et al., 2009, 2010). Out of these stars, roughly one half form a disc-like structure,
the so-called clockwise system (CWS; discovered by Levin and Beloborodov, 2003), while
the other half reside on randomly oriented orbits. Observations indicate that all of these
stars are coeval and 6± 2 Myr old (Paumard et al., 2006). Their origin is, however, rather
puzzling. Due to strong tidal field of the SMBH, it is not possible for a star to be formed
by any standard star formation mechanism. On the other hand, no transport mechanism is
efficient enough to bring them from farther regions, where their formation would be easier,
to the observed location within their estimated lifetime. Various hypotheses have, therefore,
been suggested in order to explain the origin of these stars.
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In situ fragmentation of a self-gravitating disc is probably the currently most widely
accepted formation scenario for the stars of the CWS (Levin and Beloborodov, 2003;
Paumard et al., 2006) as this process naturally forms stars in a disc-like structure. It does
not, however, explain the origin of the stars observed outside the CWS. Hence, in order to
justify the in-disc formation scenario, another mechanism that would force some of the stars
to leave the parent disc plane is needed. Šubr et al. (2009) suggested that this might have
happened due to gravity of a massive (∼106 M�) molecular torus, the circumnuclear disc
(CND), which is observed between 1.6 pc and 2.0 pc from the SMBH (Christopher et al.,
2005). They argue that the CND would cause differential precession of the individual orbits
within the parent stellar disc. Consequently, the stars from the outer parts of the disc would
be dragged out of the disc plane while the inner parts of the disc would remain undisturbed.
This core can be identified as the CWS today.

In this work, we further analyse the mechanism suggested by Šubr et al. (2009). In par-
ticular, we focus on the impact of the self-gravity of the parent stellar disc on its orbital
evolution in a predefined external potential of the SMBH, CND and a cusp of late-type stars
which is also observed in the Galactic Centre (Genzel et al., 2003; Schödel et al., 2007; Do
et al., 2009). As the first approximation, we consider the cusp to be spherically symmetric
and centred on the SMBH.

2 NUMERICAL MODEL

The gravitational potential induced by the SMBH in the vicinity of the stellar disc can be,
to a very high accuracy, considered Keplerian. It is thus natural to describe the stellar
orbits in the disc by means of the Keplerian elements: semi-major axis a, eccentricity e,
inclination i , longitude of the ascending node Ω and argument of pericentre ω. For sake
of definiteness, let us define the z-axis of our reference system as the symmetry axis of
the CND, i.e. orbital inclination i is the angle between the symmetry axis of the CND and
angular momentum of the star. If the only component of the overall gravitational potential
were the gravity of the SMBH, the Keplerian elements of all the individual orbits would
be constant in time. On the other hand, inclusion of any additional gravitational potentials
may lead to an intricate secular evolution of some of the elements.

Šubr et al. (2009) have investigated the influence of the CND and spherical cusp on
the stellar disc with the stars treated as test particles. They found that the CND causes
differential precession of the individual stellar orbits in the disc. Furthermore, provided
the spherical cusp is massive enough, the first time derivative of Ω , the precession rate, is
constant and can be written as

dΩ
dt
= −

3
4

cos i
TK

1+ 3
2 e2

√
1− e2

(1)

with

TK ≡
M•

MCND

R3
CND

a
√

G M•a
, (2)
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where M• represents the mass of the SMBH, MCND and RCND stand for the mass and radius
of the CND, respectively, and G denotes the gravitational constant. It thus appears that the
precession rate strongly depends upon the semi-major axis of the orbit. Hence, the outer
parts of the disc are more affected by the precession than the inner parts, which results in
warping of the disc and, eventually, in its complete dissolution.

Including the gravity of the stars in the disc leads to random variations of the individual
orbital elements due to two-body relaxation of the disc. Although these changes are not
large enough to have an impact on the overall shape of the disc by themselves (Cuadra
et al., 2008), they can, according to formula (1), affect the precession rate of the individual
orbits. Let us, therefore, further focus on the combined effects of differential precession
and two-body relaxation of the disc.

For this purpose, we model the individual components of the Galactic Centre as follows:
(i) the SMBH of mass M• = 4 × 106 M� is considered to be a source of the Keplerian
potential, (ii) the CND is modelled as a single massive particle of mass MCND orbiting
the SMBH on a geometrically circular orbit of radius RCND = 1.8 pc, (iii) the spherical
cusp is represented by a smooth power-law density profile, ρ (r) ∝ r−β , and mass Mc
within the radius RCND, (iv) the stars in the disc are treated as a group of N gravitating
particles orbiting the SMBH on orbits that are initially geometrically circular. Their radii are
generated randomly between 0.04 pc and 0.4 pc in compliance with relation dN ∝ a−1 da.
Distribution of masses of the individual stars in the disc follows a power-law mass function
dN ∝ m−α dm, m ∈[mmin,mmax]. Evolution of this system is investigated numerically by
means of the N -body integration code NBODY6 (Aarseth, 2003).

3 DISCUSSION OF THE RESULTS

The course of the orbital evolution of the stellar disc depends upon many parameters that
describe the overall gravitational potential in the system: MCND, Mc, β, N , mmin, mmax,
α, initial inclination of the disc with respect to the CND, i0

CWS, and its initial half-opening
angle,∆0. Our calculations show that, for a wide set of these parameters, the system reaches
a configuration compatible with the current observational data after ≈6 Myr of its orbital
evolution (for a detailed discussion, see Haas et al., 2011a).

In particular, it appears that the orbits in the outer parts of the disc are indeed affected
by the precession of the ascending node more strongly than those in the inner parts. This
leads, in accord with formula (1), to gradual deformation of the disc and, eventually, to
disruption of its entire outskirts. Moreover, it turns out that the precession is, on longer
time-scales, globally accelerated in the outer parts of the disc, which we attribute to the
two-body relaxation of the disc. This acceleration was not observed by Šubr et al. (2009)
as they had not considered the self-gravity of the disc.

Furthermore, our results show that the mean inclination of the orbits in the outer parts
of the disc is decreasing. On the other hand, it grows up and saturates at ≈ 90◦ in the
inner parts. We further find that the evolution of the mean values of both the inclination
and longitude of the ascending node is similar for all the orbits in the inner parts of the
disc. The core of the disc thus remains undisturbed and coherently changes its orientation
towards perpendicular with respect to the CND. This effect can be seen in the left panel
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Figure 1. Angular momenta of individual stars in the disc in sinusoidal projection after 6 Myr of
orbital evolution. The initial state is denoted by an empty circle. Latitude on the plots corresponds
to i while longitude is related to Ω . Left: One realization of a model with i0

CWS = 70◦. Right:
i0
CWS = 50◦. The other parameters are set to their canonical values for both panels. For a more

convenient comparison with the currently available observational data which suggest that the early-
type stars are massive, only stars with m ≥ 12 M� are displayed. The less massive stars with
m = 4–12 M� have been included in our calculations since it is likely that a number of them exist
undetected in the Galactic Centre.

of Fig. 1 which shows the directions of the individual angular momenta of the stars in
sinusoidal projection for one of the realizations of the ‘canonical’ model: MCND = 0.3 M•,
Mc = 0.03 M•, m ∈[4 M�, 120 M�], N = 200, α = 1, β = 7/4, i0

CWS = 70◦, ∆0 = 2.5◦.
Our results suggest that the compact group of stars at inclination ≈ 90◦ is formed by the
stars from the inner parts of the disc, while the stars scattered all around the bottom half of
the plot represent the disrupted outer parts. Hence, we see that it is possible to reconstruct
the currently observed configuration of the studied early-type stars in the Galactic Centre
from a single and initially thin stellar disc. In particular, its compact core can represent the
CWS observed today while the stars from the dismembered outer parts can be identified
with the stars observed off the CWS plane.

In order to compare our findings with the observations more thoroughly, let us define
the CWS within our data as follows. As the zeroth step, the CWS is taken equivalent to a
fixed number of the innermost stars from the initial disc. In the next step, we exclude all
the stars whose angular momenta deviate from the mean angular momentum of the CWS
by more than 20◦. On the other hand, the stars initially from outside the CWS, which do
not fulfil the latter condition, are included into the CWS. Then, we recalculate the mean
angular momentum of the CWS and repeat the whole procedure iteratively until there are
no changes of the CWS between two subsequent steps.

Observations indicate that the CWS harbours roughly one half of all the early-type stars
between 0.03 pc and 0.5 pc from the SMBH (Paumard et al., 2006; Bartko et al., 2009,
2010). In order to confront this feature, we investigate the evolution of the relative number
N/NCWS of the stars belonging to the CWS within our calculations. As can be seen in the
top left panel of Fig. 2, this number reaches for the canonical model ≈ 0.5 after 6 Myr of
orbital evolution. Observations further suggest that the CWS is roughly perpendicular to
the CND (Paumard et al., 2006). We thus follow in our calculations the inclination iCWS of
the CWS with respect to the CND. The top right panel of Fig. 2 shows that our results are
in agreement even with this observational constraint as iCWS ≈90◦ at t = 6 Myr.
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Figure 2. Evolution of the CWS for a model with i0
CWS = 70◦ (top panels) and i0

CWS = 50◦ (bottom
panels). The other parameters are set to their canonical values in both cases. Only properties of the
stars with m ≥ 12 M� are displayed. The dotted lines denote standard deviation for the set of 12
included realizations. Left: Number of stars within the CWS (i.e. with angular momentum deviating
from the mean angular momentum of the CWS by less than 20◦). Right: Inclination of the CWS with
respect to the CND.

In order to illustrate the dependence of the discovered processes upon the initial pa-
rameters, we also show our results for a model with i0

CWS = 50◦. The other parameters
remain set to their canonical values. As we can learn from the right panel of Fig. 1 and
the bottom panels of Fig. 2, in this case, the CWS contains at t = 6 Myr only ≈ 40 % of
the stars and its inclination reaches only ≈70◦. The evolution on longer time-scales proves
that even though the inclination of the CWS continues to increase, the number of the stars
within the CWS further decreases. Hence, the parent stellar disc is too severely damaged
by the differential precession before its core can reach the perpendicular orientation, and,
therefore, the observational criteria are not fulfilled for this model. Our results suggest that
the studied system evolves after ≈ 6 Myr to a state which accommodates the observational
constraints if i0

CWS & 60◦. A more detailed discussion of the remaining parameters can be
found in Haas et al. (2011a).

3.1 Physical background

As we have shown in Haas et al. (2011b) by means of standard perturbation methods of
celestial mechanics, the dynamical processes described in previous paragraphs are a con-
sequence of preservation of integrals of motion in the considered gravitational potential.
In particular, beside the total energy and z-component of the total angular momentum of
the stars in the disc, the potential energy which corresponds to their mutual interaction in
the field of the CND is also preserved if averaged over one revolution of the stars around the



50 J. Haas and L. Šubr

SMBH. Depending on the strengthens of this interaction, two modes of orbital evolution
are possible. Either the stellar orbits interact strongly and, under such circumstances, they
become dynamically coupled, precessing coherently in the potential of the CND. Or, if their
mutual interaction is weaker, the orbits precess independently, interchanging periodically
their angular momentum, which results in oscillations of inclinations. Hence, the dense core
of the stellar disc, where the interaction of the orbits is strong enough, is not disrupted by
the differential precession. On the other hand, the weakly interacting orbits from the outer
parts can not overcome the disturbing influence of the CND and, therefore, the outskirts of
the disc are entirely dismembered.

Moreover, the core of the disc inevitably changes its inclination towards higher values
due to interaction with the outer parts of the disc as a whole, similarly to the case of two
interacting orbits.

4 CONCLUSIONS

We have investigated the secular evolution of an initially thin and geometrically circular self-
gravitating stellar disc around a dominating central mass. In accord with the observations
of the Galactic Centre, we have included the perturbative gravitational potential of the CND
and the cusp of late-type stars. Our results show that the CND causes differential precession
of the stellar orbits in the disc which leads to gradual dissolution of its outer parts. On the
other hand, the core of the disc remains, due to stronger mutual interaction of its stars,
untouched forming the CWS. Simultaneously, the CWS changes coherently its orientation
towards perpendicular with respect to the CND which is indeed the configuration observed in
the Galactic Centre. We further find that these processes lead to a configuration compatible
with the currently available observational data for a wide set of system parameters. Hence,
we suggest that all the early-type stars observed at projected distances 0.03–0.5 pc from
the SMBH may have been formed within a single gaseous disc and, subsequently, brought
to their present location by the combined effects of differential precession and two-body
relaxation.
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On oscillations in turbulent accretion disks: I. A
general approach

Jiří Horák
Astronomical Institute, Academy of Sciences, Boční II 141 31 Prague, Czech Republic

ABSTRACT
In this note, a general theory of a wave propagation in a turbulent media is re-
viewed. The main attention is paid to the case of the rotating flows with a weak
magneto-hydrodynamic turbulence and vanishing mean magnetic flux. We derive
the inhomogeneous wave equation and identify the excitation and damping terms.
As a consequence of a weak turbulence, these terms can be treated as perturbations
and the oscillations of the turbulent media can be decomposed into the normal modes
of the laminar mean flow. Using the perturbation techniques we estimate the ampli-
tudes of excited oscillations and show that their frequencies are shifted with respect
to the case of the laminar flow.

Keywords: black hole physics – accretion disks – oscillations – turbulence

1 INTRODUCTION

According to a widely accepted scenario, the transport of angular momentum in accretion
disks is accomplished by the magneto-hydrodynamic (MHD) turbulence driven by the
magneto-rotational instability (MRI). On the other hand, in many studies of the accretion
disk oscillations, the effects of turbulence are being neglected. It is not clear whether such
idealized hydrodynamic perturbation of laminar background flow would survive also in
highly turbulent magnetized media typical for real accretion disks.

Several attempts to resolve this issue using numerical simulations have lead to different
conclusions. Brandenburg (2005) explored this problem in local shearing sheet simulations
with negative result – his power spectra of time variability did not show any discrete
frequencies. On the other hand, Arras et al. (2006) performed similar simulations and
found an evidence for excitation of the radial epicyclic mode and various acoustic p-
mode oscillations, but they did not find any evidence for inertial waves. Likely, differences
between these results can be attributed to different strength of MHD turbulence – the zero
net-magnetic-flux simulations by Arras et al. (2006) give rise to the weakest MRI-driven
turbulence possible. There are also several global simulations partially devoted to this
problem. For example, Kato (2004) studied radial and vertical oscillations in a thin MHD
accretion flow. In his work, two pairs of oscillations are present in the region between
3.8 and 6.3 Schwarzschild radii. One of the oscillations could be identified as the radial
m = 1 epicyclic mode excited in a resonance with the orbital motion. Contrary to this
result, there is no evidence for such resonance in another global simulation of Reynolds and
Miller (2009), but they agree with Arras et al. (2006) on the absence of inertial modes.
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Another way how to tackle this problem is to use the semi-analytical methods originally
developed for solving similar problems in stars and Sun. The original idea by Lighthill (1952)
was first used by Goldreich and Keeley (1977) in calculations of excitation/damping of solar
p-modes by turbulent convection and it was later significantly developed by Goldreich and
Kumar (1990); Samadi and Goupil (2001) and others (see Houdek, 2006, for a review).
In this approach, the key role is plaid by so-called inhomogeneous wave equation (IWE)
derived from the set of hydrodynamic equations by keeping also terms that are nonlinear
in perturbations. While the homogeneous part that is linear in perturbations describes the
oscillations of the laminar mean flow, the effects of the turbulence are included in the extra
source terms on the right-hand side of the equation. From the mathematical point of view,
IWE is a stochastic partial differential equation that can be translated to a set of stochastic
ordinary differential equations if the oscillations can be decomposed into the normal modes.

In this paper we adopt this approach to the case of the differentially rotating unmagnetized
flow with weak MHD turbulence. This setup is perhaps suitable for the accretion disks.
In Section 2 we obtain IWE from the set of the nonlinear MHD equations. A decomposition
into the normal modes is done in Section 3. We also derive the ordinary differential equations
describing the instantaneous amplitudes of individual modes. Approximate solutions of
these equations is found in Section 4. Finally, Section 5 is devoted to a discussion and
conclusions.

2 INHOMOGENEOUS WAVE EQUATION

We generalize the approach of Goldreich and Keeley (1977) by considering MHD turbulence
on a stationary (i.e. non-static) unmagnetized background flow. The evolution of the system
is described by the continuity equation, induction equation and Euler equation,

∂ρ

∂t
+∇k

(
ρvk)

= 0 , (1)

∂Bi

∂t
+∇k

(
Bivk
− Bkvi )

= 0 , (2)

∂

∂t

(
ρvi )
+∇k

(
ρvivk)

+ ρ∇ iΦ +∇ i
(

p +
B2

8π

)
−

1
4π
∇k

(
Bk Bi

)
= 0 , (3)

together with the barotropic equation of state, p = p(ρ), and the solenoidal condition
∇k Bk

= 0. We assume that there exist a stationary and axisymmetric configuration with
vanishing magnetic field, obtained from the above equations by setting Bi

= ∂t = ∂φ = 0,
with a smooth velocity field describing a pure rotation vi

= Ω(r, z)δi
φ expressed in the

cylindrical coordinates {r, φ, z}. The exact equations describing perturbations of this
equilibria are
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(
ρδvk
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= Nρ , (4)
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in which the nonlinear terms in perturbations on the right-hand sides are
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and cs = (dp/dρ)1/2 denotes the sound speed.
Using the continuity equation to eliminate the density perturbation from the left hand

side of the Euler equation, we arrive at a single nonlinear equation governing the velocity
perturbation

L̂ δv =N . (9)

The linear differential operator L̂ is defined as

L̂ δvi
= ρ
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and the nonlinear part is given by

N i
= N i

v − ρ∇
i
[
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s
ρ
∂−1
τ Nρ

]
, (11)

where ∂−1
τ is the inverse operator to ∂τ = ∂/∂t + Ω ∂/∂φ (note that in the space of the

quadratically integrable functions this inversion makes sense).
If the nonlinearities are neglected, (i.e. when N i

= 0), the Eq. (9) describes propagation
of the acoustic or inertial waves on the stationary laminar background. If, in addition,
a suitable boundary conditions are specified, this equation gives us the set of the normal
modes of the system. In the presence of a weak turbulence we assume that both, the
oscillations and turbulent fluctuations, can be treated as perturbation to the background
stationary flow. Hence, we decompose the perturbation of any quantity q = {ρ, vi , Bi

}

into the part due to the oscillations and the one due to turbulence,

δq = δqosc + δqturb . (12)

and assume a regime when

|δqosc| � |δqturb| � |q| . (13)



56 J. Horák

Therefore, we safely neglect any influence of the oscillations on the turbulence, but we sup-
pose that properties of both, the background flow and the turbulence, affect the oscillations.

If we now introduce the Lagrangian displacement ξ i corresponding to the oscillations
using the relations,

δvi
osc =

∂ξ i

∂t
+ vk
∇kξ

i
− ξ j
∇ jv

i , δρosc = −∇k
(
ρξ k) , (14)

and substitute into the Eq. (9) keeping only terms linear in ξ i , we arrive at the master
equation(
L̂i

j + D̂ i
j

)
ξ j
= Si . (15)

The operator L̂ is defined by

L̂i
j = δ

i
j

(
∂

∂t
+ vk
∇k

)2

−
1
ρ

[
(γ − 1)∇ i (p∇ j )+∇ j

(
p∇ i )]

+∇
i
∇ jΦ . (16)

and is deterministic being given solely by the background flow quantities. On the other
hand, D̂ i

j and Si are stochastic because they rely on both the background flow and the
turbulent field. The operator D̂ i

j is a contribution of nonlinearity N i ; the part which is
linear in δvosc and δρosc, and therefore in ξ i as well. It modify the operator L̂i

j and therefore
slightly change the eigenfunctions and eigenfrequencies of the oscillation modes. The term
Si on the right-hand side depends only on the turbulent fluctuations and play the role of the
stochastic source term. We do not show complicated expressions of these operator as the
they are not needed in the rest of the paper. For a general discussion presented here their
stochastic nature and the structure of Eq. (15) are sufficient.

3 DECOMPOSITION INTO NORMAL MODES

In absence of the turbulence, both L̂ and S vanish and the Eq. (15) takes the form

L̂ξ = ∂2
t ξ + B̂ ∂tξ + Ĉξ = 0 , (17)

where B̂ and Ĉ are two linear differential operators. With appropriate boundary conditions,
this equation describes linear modes of the system. Glampedakis and Andersson (2007)
show that in absence of electromagnetic radiation on the surface of the body, the operator Ĉ
is Hermitian and B̂ is anti-Hermitian with respect to the standard scalar product weighted
by mass density,

〈ζ , η〉 =

∫
V
(ζ ∗ · η) ρ dV . (18)

Assuming a harmonic time dependence for the perturbation, i.e. ξ = ζ (x) exp[−iwt], we
obtain a set of linear modes {ωα, ζα}, each of them characterized by its eigenfrequency ωα
and eigenfunction ζα . As shown by Schenk et al. (2002), the eigenfunctions (completed by
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the associated functions in the case of Jordan-chain modes) can be used as a basis of the
corresponding phase space H ⊕H . The solution of the general equation

L̂ξ = F (t, x) (19)

can be expressed as a linear combination of modal eigenfunctions(
ξ

∂tξ

)
=

∑
α

cα(t)
(

ζα
−iωαζα

)
, (20)

in which the coefficients cα(t) satisfy the equations of forced oscillators
dcα
dt
+ iωαcα = −

i
bα

〈
ζα,F

〉
(21)

and bα = 〈ζα, iB̂ζα〉 + 2ωα〈ζα, ζα〉.
Equation (15) represents a special case for which F = −D̂ξ + S. With the aid of

expansion (20), the Eq. (21) becomes
dcα
dt
+ i

∑
β

(
ωαδαβ − εDαβ

)
cβ = εSα , (22)

where

εDαβ =
1

bα

〈
ζα, D̂ζ β

〉
, εSα =

1
bα

〈
ζα,S

〉
. (23)

For subsonic turbulence, these terms are small and can be treated as perturbations. That is
why we formally introduced a small parameter ε �1 to the Eq. (22).

4 COHERENT AND RANDOM OSCILLATIONS

The stochastic functions Dαβ(t) and Sα(t) can be separated to the mean and fluctuating
random components,

Dαβ(t) = D̄αβ + D′αβ(t) , Sα(t) = S̄α + S′α(t) . (24)

The mean values and all statistical moments of the random components are assumed to
be time-independent as a consequence of a stationary turbulence. Similarly, we suppose
that also the resulting oscillations can be separated to coherent and random components as
cα(t) = c̄α(t)+ c′α(t). Ansamble average of Eq. (22) gives

dc̄α
dt
+ iωα c̄α − iε

∑
β

[
D̄αβ c̄β +

〈
D ′αβc′β

〉]
= ε S̄α . (25)

Subtracting it from the original Eq. (22) we obtain the equation governing the random
component

dc′α
dt
+ iwαc′α − iε

∑
β

[
D̄αβc′β +D ′αβ c̄β +D ′αβc′β −

〈
D ′αβc′β

〉]
= εS′α . (26)
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We solve these equations using method of multiple time-scales. Instead of the physical
time t , we introduce variables Tn = ε

n t with n = 0, 1, 2, . . . The time derivative is then
replaced by the series

d
dt
= ∂0 + ε∂1 + ε

2∂2 + . . . , ∂n =
∂

∂Tn
(27)

and the solutions are looked for in the form

c̄α(Tn) = c̄(0)α (Tn)+ εc̄(1)α (Tn)+ ε
2c̄(2)α (Tn)+ . . . , (28)

c′α(Tn) = c′(0)α (Tn)+ εc′(1)α (Tn)+ ε
2c′(2)α (Tn)+ . . . (29)

The zero-order equations,

(∂0 + iωα) c̄(0)α = 0 , (∂0 + iωα) c′(0)α = 0 , (30)

give solutions

c̄(0)α = Aα(T1, T2, . . . ) e−iωαT0 , c′(0)α = 0 . (31)

The fluctuating component vanishes as a consequence of the assumption that 〈c′α〉 = 0.
The first-order equations read

(∂0 + iωα) c̄(1)α =− ∂1c̄(0)α + i
∑
β

D̄αβ c̄(0)β + S̄α =

− (∂1 Aα) e−iωαT0 + i
∑
β

D̄αβ Aβe−iωβT0 + S̄α ,

(∂0 + iωα) c′(1)α = i
∑
β

D ′αβ c̄(0)β + S′α . (32)

For simplicity, we suppose that there is no degeneracy (i.e. if α 6= β then also ωα 6= ωβ ).
The secular terms on the right hand side of Eq. (4) are therefore eliminated when

−∂1 Aα + iD̄ααAα = 0 (33)

the solution of which is

Aα(T1, T2, . . . ) = Aα(T2, . . . ) exp
[
−iω(1)α T1

]
, ω(1)α = −D̄αα. (34)

Hence,−εD̄αα is a first-order correction to the eigenfrequency of the coherent oscillations.
A particular solution for the coherent part is

c̄(1)α = −
i
ωα

S̄α +
∑
β 6=α

D̄αβ

ωα − ωβ
Aβe−iωβT0 (35)

and for the random part

c′(1)α = e−iωαT0

∑
β

Iαβ Aβ + Jα

 , (36)
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where

Iαβ =
∫ T0

−∞

D ′αβ(τ )e
i(ωα−ωβ )τ dτ , Jα =

∫ T0

−∞

S′α(τ )e
iωατ dτ. (37)

A second-order approximation for the coherent part of oscillations is governed by

(∂0 + iωα) c̄(2)α =− ∂2c̄(0)α − ∂1c̄(1)α + i
∑
β

(
D̄αβ c̄(1)β +

〈
D ′αβc′(1)β

〉)
=

=− (∂2 Aα) e−iωαT0 −

∑
β 6=α

D̄αβD̄ββ

ωα − ωβ
Aβe−iωβT0

+

∑
β

1
ωβ

D̄αβ S̄β + i
∑
β

∑
γ 6=β

D̄αβD̄βγ

ωβ − ωγ
Aγ eiωγ T0

+ i
∑
β

∑
γ

〈
D ′αβ Iβγ

〉
Aγ +

〈
D ′αβ Jβ

〉 e−iωβT0 . (38)

Due to the stationarity, the correlators on the right-hand side can be expressed as〈
D ′αβ Iβγ

〉
= Cαββγ exp

[
i(ωβ − ωγ )T0

]
, (39)〈

D ′αβ Jβ
〉
= Cαββ exp

[
iωβT0

]
, (40)

where

Cαββγ =
∫ 0

−∞

〈
D ′αβ(0)D

′
βγ (τ )

〉
ei(ωβ−ωγ )τdτ , (41)

Cαββ =
∫ 0

−∞

〈
D ′αβ(0)S

′
β(τ )

〉
eiωβτdτ (42)

are constants. The secular terms on the right-hand side of Eq. (38) are eliminated when

−∂2 Aα + i
∑
β 6=α

D̄αβD̄βα

ωβ − ωα
Aα + i

∑
β

CαββαAα = 0 , (43)

the solution of which is

A(T2) = A exp
[
−iω(2)α T2

]
, ω(2)α = −

∑
β 6=α

D̄αβD̄βα

ωβ − ωα
−

∑
β

Cαββα . (44)

Therefore the eigenfrequency of the coherent oscillations in the turbulent flow is shifted
with respect to the eigenfrequency of the background laminar flow by a correction

∆ωα = −εD̄αα − ε
2
∑
β 6=α

D̄αβD̄βα

ωβ − ωα
− ε2

∑
β

Cαββα . (45)
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5 DISCUSSION AND CONCLUSIONS

In this note, effects of turbulence on oscillations of rotating flow have been examined.
Starting from the ideal MHD equations, we derived IWE describing excitation and damping
of the oscillations. Using decomposition into normal modes we obtained general formulae
for amplitudes of random oscillations [equation (36)] and for the frequency shifts of the
coherent oscillations [equation (45)]. If they are imaginary, these frequency shifts may
describe damping or instabilities induced by the turbulence. Further exploration of this
issue needs a specific model of the turbulence and is left for a further work.
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The gyraton solutions on generalized
Melvin universe with cosmological constant
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V Holešovičkách 2, 180 00 Prague, Czech Republic.
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ABSTRACT
We present and analyse new exact gyraton solutions of algebraic type II on generalized
Melvin universe of type D which admit non-vanishing cosmological constantΛ. We
show that it generalizes both, gyraton solutions on Melvin and on direct product
spacetimes. When we set Λ = 0 we get solutions on Melvin spacetime and for
Σ = 1 we obtain solutions on direct product spacetimes. We demonstrate that the
solutions are member of the Kundt family of spacetimes as its subcases. We show
that the Einstein equations reduce to a set of equations on the transverse 2-space. We
also discuss the polynomial scalar invariants which are non-constant in general but
constant for sub-solutions on direct product spacetimes.

Keywords: Gyraton solutions – Melvin universe – cosmological constant – Kundt
family – direct product spacetimes – constant polynomial scalar invariants – Einstein
equations

1 INTRODUCTION

In Kadlecová et al. (2009) and Kadlecová and Krtouš (2010) we have investigated the
gyraton solutions on direct product spacetimes and gyraton solutions on Melvin universe.
These solutions are of algebraic type II. In this work we present the gyraton solutions on
Melvin universe with the cosmological constant.

We present our ansatz for the gyraton metric on generalized Melvin universe and the gen-
eralized electromagnetic tensor. We briefly review the derivation of the Einstein–Maxwell
equations. The source-free Einstein equations determine the functions Σ and S, in partic-
ular, there exists a relation between them. Next we derive the non-trivial source equations.
The Einstein–Maxwell equations do decouple for the gyraton metric on generalized Melvin
universe as for its subcase solutions on Melvin and on direct product spacetimes. Next,
we focus on interpretation of our solutions. Especially, we discuss the geometry of the
transverse metric of the generalized Melvin universe in detail for different values of the
cosmological constant. We show explicitly that the Melvin universe and direct product
spacetimes are special cases of our solutions. We also discuss the properties of the scalar
polynomial invariants which are functions of ρ but for subcase solutions on direct product
spacetimes (Σ = 1) the invariants are constant.

978-80-7510-125-9 c© 2014 – SU in Opava. All rights reserved.
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2 THE ANSATZ FOR THE GYRATONS ON GENERALIZED MELVIN
UNIVERSE

The ansatz for the gyraton metric on the generalized Melvin spacetime is the following,

g = −2Σ2 H du2
−Σ2 du ∨ dv + q+Σ2du ∨ a , (1)

where we have introduced the 2-dimensional transversal metric q on transverse spaces
u, v = constant as

q = Σ2 dρ2
+

S(ρ)2

Σ2 dφ2 . (2)

We have assumed that the metric (1) belongs to the Kundt class of spacetimes and that the
transversal metric q has one Killing vector L∂/∂φq = 0. The metric (1) represents gyraton
propagating on the background which is formed by generalized Melvin spacetime. The
metric (1) generalizes only the transversal metric therefore the algebraical type is II as for
the gyraton on the Melvin spacetime Kadlecová and Krtouš (2010), the NP quantities are
listed in Kadlecová (2013).

We have generalized the transversal metric for the Melvin universe by assuming general
function S = S(ρ) instead of the simple coordinate ρ in front of the term dφ2, see
Kadlecová and Krtouš (2010). We will show that these general functionsΣ(ρ) and S(ρ) are
determined by the Einstein–Maxwell equations and have proper interpretation. The presence
of cosmological constant Λ is not allowed for the solution on pure Melvin background
Kadlecová and Krtouš (2010).

The transverse space is covered by two spatial coordinates x i (i = ρ, φ) and it is
convenient to introduce suitable notation on it, technical details can be found in Kadlecová
(2013). The function H(u, v, x) in the metric (1) can depend on all coordinates, but the
functions a(u, x) are v-independent.

The derivation of the Einstein–Maxwell equations is almost identical with the previous
paper Kadlecová and Krtouš (2010) therefore we will describe the derivation of Einstein–
Maxwell equations very briefly.

The metric should satisfy the Einstein equations with cosmological constant Λ and with
a stress-energy tensor generated by the electromagnetic field of the background Melvin
spacetime TEM and the gyratonic source Tgyr as1

G+Λ g = ~
(
TEM
+ Tgyr

)
. (3)

We assume the electromagnetic field is given by

F = E dv ∧ du +
B
Σ2 ε + du ∧

(
E s− B∗(s− a)

)
, (4)

1 ~ = 8πG and εo are gravitational and electromagnetic constants. There are two general choices of geometrical
units: the gaussian with ~ = 8π and εo = 1/4π , and SI-like with ~ = εo = 1.
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where E and B are parameters of electromagnetic field. The self-dual complex form of the
Maxwell2 tensor is

F = B

(
dv ∧ du −

i
Σ2 ε + du ∧

[
s+ i∗(s− a)

])
, (5)

for details see Kadlecová and Krtouš (2010).
We have denoted the complex constant B = E + i B, and we have introduced a con-

stant %EM,

%EM =
~εo

2

(
E2
+ B2) . (6)

We define the gyratonic matter only on a phenomenological level as

~ Tgyr
= ju du2

+ du ∨ j , (7)

where the source functions ju(v, u, x) and j (v, u, x). We assume that the gyraton stress-
energy tensor is locally conserved,

∇ · Tgyr
= 0 . (8)

To conclude, the fields are characterized by functions Σ , S, H , a, and s which must be
determined by the field equations and the gyraton sources ju and j and the constants E and
B of the background electromagnetic field are prescribed.

3 THE EINSTEIN–MAXWELL FIELD EQUATIONS

First, we will start to solve the Maxwell equations, it is sufficient to calculate the cyclic
Maxwell equation for the self-dual Maxwell tensor (5)

0 = dF = B

{
∂v
(
s+ i∗(s− a)

)
dv ∧ du ∧ dx−

[
rot s+ i div(s− a)

]
du ∧ ε

}
. (9)

From the real part we immediately get that the 1-forms s is v-independent, and rotation
free rot s = 0. From imaginary part it follows that the 1-form a is also independent and it
satisfies div(s− a) = 0.

3.1 The trivial Einstein–Maxwell equations – determining the function Σ and S

Next we will derive the Einstein–Maxwell equations from the Einstein tensor and the
electromagnetic stress-energy tensor, which are listed in Kadlecová (2013).

First we will solve the equations which are source free and we will be able to determine
the analytic formula for the functions Σ and S.

2 We will follow the notation of Stephani et al. (2003). Namely, F ≡ F + i?F is complex self-dual Maxwell
tensor, where the 4-dimensional Hodge dual is ?Fµν = εµνρσ Fρσ /2. The self-dual condition reads ?F = −iF .
The orientation of the 4-dimensional Levi–Civita tensor is fixed by the sign of the component εvuρφ = SΣ2. The
energy-momentum tensor of the electromagnetic field is given by Tµν = εoF

ρ
µ F νρ/2.
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The first equation we obtain from the vu-component,

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρ

Σ

S,ρ
S
−

S,ρρ
S
= ΛΣ2

+
%EM

Σ2 , (10)

the next two equations we get from the transverse diagonal components ρρ and φφ,

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρ

Σ

S,ρ
S
+ ∂2

v H = −ΛΣ2
+
%EM

Σ2 , (11)

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρρ

Σ
+ ∂2

v H = −ΛΣ2
+
%EM

Σ2 . (12)

When we compare the equation (11) and (12) we immediately get the relation between the
functions Σ and S, as Σ,ρS,ρ/S = Σ,ρρ, and thus we are able to determine their explicit
relation (Σ,ρ 6= 0) as

Σ,ρ = γ S , (13)

where γ is an integration constant.
After substituting the relation (13) into Eq. (10) then we get equation

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρρ

Σ
+
Σ,ρρρ

Σ,ρ
= ΛΣ2

+
%EM

Σ2 , (14)

which will be useful later.
To determine the function H it is useful to substitute (13) into the Eq. (12) and then

multiply it by Σ/2Σ,ρ , we get

1
2

(
∂2
v H

)
,ρ

Σ

Σ,ρ
− 2

Σ,ρρ

Σ
+

(
Σ,ρ

)2
Σ2 +

Σ,ρρρ

Σ,ρ
= −ΛΣ2

−
%EM

Σ2 . (15)

Now, we add the Eq. (10) to (15) and obtain, (∂2
v H),ρΣ/2Σ,ρ = 0, then for Σ,ρ 6= 0 we

can write that ∂2
v H = −α , where α is a constant.

Thus the metric function H has a structure

H = −
1
2
αv2
+ g v + h , (16)

where we have introduced v-independent functions g(u, x) and h(u, x).
In the following we want to determine an analytical expression for Σ , in order to do that

we substitute the result (16) into (12),

2
Σ,ρρ

Σ
−

(
Σ,ρ

)2
Σ2 = −ΛΣ2

+
%EM

Σ2 + α . (17)

When we add the expression (14) to (17), we obtain that

Σ,ρρρ = −2ΛΣ2Σ,ρ + αΣ,ρ . (18)
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We can rewrite the previous equation as Σ,ρρρ = −2Λ(Σ3),ρ/3 + αΣ,ρ to be able to
integrate it again as

Σ,ρρ = −
2
3
ΛΣ3

+ αΣ +
1
2
β , (19)

which we can rewrite as
1
2

[
(Σ,ρ)

2]
,ρ
= −

1
6
Λ
(
Σ4)

,ρ
+ α

(
Σ2)

,ρ
+

1
2
βΣ,ρ . (20)

After another integration we get the final formula for the derivative of the function Σ ,(
Σ,ρ

)2
= −

1
3
ΛΣ4

+ αΣ2
+ βΣ + c , (21)

and it can be rewritten using (13) as

γ S =
[
−

1
3
ΛΣ4

+ αΣ2
+ βΣ + c

]1/2

, (22)

where α, β and c are integration constants which should be determined.
Furthermore, we are able to determine the constant c explicitly. When we substitute the

result (21) and (19) into (17) we immediately obtain that c = −%EM. The constants α and β
will be determined in the Section 4.1.

3.2 The Einstein–Maxwell equations for the sources

The remaining nontrivial components of the Einstein equations are those involving the
gyraton source (7). To write the source equation we have to evaluate the component Guv
using the expressions for derivatives of Σ . Then the component Guv has the explicit form

Guv = ΛΣ
2
+
%EM

Σ2 . (23)

The ui-components give equations related to j,

Σ2 j =
1
2

rot
(
Σ4 b

)
+Σ2dg − αΣ2a+ 2%EM(s− a) , (24)

where b = rot a.
It is useful to split the source equation into divergence and rotation parts:

div
(
Σ2 j

)
= divΣ2(dg − α a) , (25)

rot
(
Σ2j

)
= −

1
2
M
(
Σ4b

)
+ rot

(
Σ2dg

)
− αrot

(
Σ2a

)
− 2%EM b . (26)

These are coupled equations for g and a. We will return to them below.
The condition (8) for the gyraton source gives, that the sources j must be v-independent

and ju has the structure

ju = v div
(
Σ2j

)
+ ι , (27)
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where ι(u, x) is v-independent function, see Kadlecová and Krtouš (2010) Eq. (2.51). The
gyraton source (7) is therefore determined by three v-independent functions ι(u, x) and
j (u, x).

The uu-component of the Einstein equation gives

ju = v
[

div
(
Σ2dg

)
− α div

(
Σ2a

)]
+Σ2

(
M h −

(
Σ−2)

,ρ
h,ρ

)
+

1
2
Σ4b2

+ 2Σ2a · dg + (∂u + g) div
(
Σ2a

)
− αΣ2a2

− 2%EM (s− a)2 . (28)

Then we can compare the coefficient in front of v with (25) and we get consistent structure
with (27). The nontrivial v-independent part of (28) gives the equation for the metric
function h,

Σ2
(
M h −

(
Σ−2)

,ρ
h,ρ

)
= ι −

1
2
Σ4b2

− 2Σ2a · dg

− (∂u + g) div
(
Σ2a

)
+ αΣ2a2

+ 2%EM

(
s − a

)2
. (29)

Now, let us return to solution of Eqs. (25) and (26). The first equation simplifies if we
use gauge condition

div
(
Σ2a

)
= 0 . (30)

It can be satisfied due to gauge freedom v→ v − χ , a→ a− dχ , cf. the discussion in
Kadlecová and Krtouš (2010). Such a condition implies the existence of a potential λ̃, as
Σ2 a = rot λ̃.

The equation (25) now reduces to

div
(
Σ2dg −Σ2j

)
= 0 . (31)

It guarantees the existence of a scalar ω such that

dg = j+Σ−2rotω . (32)

However, we have to enforce the integrability conditions

rot dg = 0 , (33)

which turns out to be the equation for ω:

div
(
Σ−2dω

)
= rot j . (34)

We thus obtained the decoupled Eqs. (32) and (34) which determine the metric function g.
Substituting Σ2a = rot λ̃ and (32) to (26), and using identity b = rot

(
Σ−2rot λ̃

)
, we

get the decoupled equation for λ̃:

1
2
M
(
Σ4rot

(
Σ−2rot λ̃

))
+ 2%EMrot

(
Σ−2rot λ̃

)
− αM λ̃ = −Mω . (35)
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It is a complicated equation of the forth order. It can be simplified to an ordinary differential
equation if we assume the additional symmetry properties of the fields, e.g. the rotational
symmetry around the axis. The potential λ̃ then determines the metric 1-form a through
Σ2a = rot λ̃.

After finding a one can solve the field equations for s. The potential equations give
immediately that

s = dϕ . (36)

Substituting to the condition div(s− a) = 0 we get the Poisson equation for ϕ:

Mϕ = div a . (37)

Finally, the remaining metric function h is determined by the Eq. (29).

4 THE INTERPRETATION OF THE SOLUTIONS

4.1 The geometries of the transversal spacetime

In this section we will investigate the geometry of the transversal metric q (the wave fronts)
(2) and we will determine the constants α, β in the final Eq. (21). Subsequently, we will
discuss the various geometries of q in proper parametrization and we will determine the
meaning of the parameter γ .

We impose conditions to the derivatives ofΣ (i.e. S) (21), (19) and (18) while using the
relation (13) between Σ,ρ and S to determine α and β.

First, we impose conditions at the axis ρ = 0. We assume that S and Σ,ρ vanish at the
axis ρ = 0, S = 0,Σ,ρ = 0, second, we can always rescale the metric (2) to getΣ |ρ=0 = 1,
third, we want no conical singularities there, therefore we assume Σ,ρρ |ρ=0 = γ, which
we can be justified by computation of the ratio of the circumference o divided by 2π times
radius in limit ρ → 0,

o
2πr
=

2π S
Σ

2π
∫
Σdρ

=
1
Σ

(
S
Σ

)
,ρ

=
1
γ

Σ,ρρΣ −
(
Σ,ρ

)2
Σ3 = 1 . (38)

Applying the conditions from last paragraph, we obtain

−
1
3
Λ+ α + β − %EM = 0 , −

2
3
Λ+ α +

1
2
β = γ . (39)

We can then determine the constants α and β explicitly in terms of the cosmological
constant Λ, the density of electromagnetic field %EM and the parameter γ ,

α = Λ− %EM + 2γ , β = −
2
3
Λ+ 2%EM − 2γ . (40)

We can conveniently rewrite (13),(
γ S
)2
=
(
Σ,ρ

)2
=

[
−

1
3
Λ

γ 2

(
Σ2
− 2

)
Σ −

%EM

γ 2 (Σ − 1)+
2
γ
Σ

]
(Σ − 1) . (41)
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Now we know explicitly the constants in the derivative of Σ and we can investigate
the interpretation of the generalized Melvin spacetime. It is convenient to introduce new
coordinate x as

Σ = 1+ γ x , (42)

then we can write that

S = x,ρ , Σ,ρ = γ x,ρ . (43)

The transversal metric q (2) then can be rewritten as

q =
(
Σ

S

)2

dx2
+

(
S
Σ

)2

dφ2
=

1
G

dx2
+ Gdφ2 , (44)

where we can express the new function G as

G =
(

S
Σ

)2

= −
1
3
Λ

γ 2Σ
2
+
α

γ 2 +
β

γ 2
1
Σ
−
%EM

γ 2
1
Σ2 , (45)

and

S2
= ∓`2γ 2x4

∓ `2γ x3
+
(
∓3`2

− %EM + 2γ
)
x2
+ 2x, (46)

where we denoted ∓`2
= Λ/3 where ± = signΛ.

Before we will discuss the possible geometries given by the transversal metric q (2)
and interpret them accordingly we introduce important characteristics for the generalized
Melvin spacetime.

The radial radius is then defined as

r =
∫ x

0

1
√

G
dx , (47)

the circumference radius is simply given by the function G, R =
√

G. Interestingly, the
ratio of the radia is then determined by the derivative of G,

dR
dr
=
√

G
d
√

G
dx
=

1
2

G,x . (48)

The scalar curvature of q can be also written as

R = −G,xx = −
2
Σ4

[
3Σ,ρ +

2
3
ΛΣ4

− 3αΣ2
− 2βΣ

]
. (49)

The geometries of the transversal spacetime q can be illustrated by investigating the
function G and its roots when we consider different values ofΛ, %EM and of the parameter γ .

First, we consider positive cosmological constant Λ > 0 for any %EM and γ we obtain
closed space where ρ ∈ (0, ρ∗) and ρ∗ represents the first positive root of G where in fact
the spacetime closes itself. The other characteristics are: the radial radius tends to a finite
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Figure 1. The case whenΛ > 0 which represents
closed spacetime. The function G is visualized
for any value of %EM and γ . The coordinate ρ
ranges ρ ∈ (0, ρ∗) where the ρ∗ is the first root
of G where the spacetime closes.

Figure 2. The case when Λ = 0 and %EM > 2γ
represents the closed spacetime. The function G
is visualized for %EM > 2γ and the coordinate ρ
ranges ρ ∈ (0, ρ∗) where the ρ∗ is the root of G
where the spacetime closes.

Figure 3. The case when Λ = 0 and %EM =

2γ then represents the closed spacetime with an
infinite peak. The function G is visualized for
%EM = 2γ and the coordinate ρ ranges ρ →∞.

Figure 4. The case when Λ = 0 and %EM < 2γ
then represents the open spacetime. The function
G is visualized for %EM < 2γ and the coordinate
ρ ranges ρ →∞.

value r → r∗ at the ρ∗ and the circumference radius vanishes R → 0 when ρ → ρ∗. This
special case is visualized in the Fig. 1.

For the vanishing cosmological constant Λ = 0 we obtain three possible spacetimes
according to the values of %EM and γ .

When %EM > 2γ then we get closed space where the range of the coordinate ρ goes again
as ρ ∈ (0, ρ∗) and ρ∗ is then the root of G and it is the closing point of the universe. The
radia are then r → r∗ and R→ 0 when ρ → ρ∗, see the Fig. 2.

When %EM = 2γ then we obtain closed space with and infinite peak for ρ → ∞.
Therefore, when ρ →∞ the radial radius tends to infinity r →∞ and the circumference
radius goes to zero R → 0, see the Fig. 3. This case represents the pure Melvin spacetime
Bonnor (1954); Melvin (1965) which we discussed in Kadlecová and Krtouš (2010).
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Figure 5. The case when Λ < 0 and γ < γcr
represents the closed spacetime. The coordinate
ρ ranges ρ ∈ (0, ρ∗) where the ρ∗ is the root of
G where the spacetime closes.

Figure 6. The case when Λ < 0 and γ = γcr
represents the asymptotically closed spacetime.
The coordinate ρ ranges ρ ∈ (0, ρ∗) where the
ρ∗ is the root of G. The radial distance tends to
infinity and the circumference shrinks to zero.

Table 1. Possible geometries of the transversal spacetime q. HereΛ is a cosmological constant, %EM

is energy density of the electromagnetic field and γ is the parameter of ‘Melviniztion’ of the spacetime.
Critical value γcr (Λ, %EM) is determined by the condition that the function G has degenerated root
at ρ∗.

Λ %EM,γ transversal spacetime ρ r |ρ→ρ∗ R|ρ→ρ∗

Λ > 0 any closed space (0, ρ∗) r∗ 0

γ < %EM/2 closed space (0, ρ∗) r∗ 0
Λ = 0 γ = %EM/2 Melvin universe R+ ∞ 0

γ > %EM/2 open space R+ ∞ R∞

γ < γcr closed space (0, ρ∗) r∗ 0
Λ < 0 γ = γcr closed with∞ peak (0, ρ∗) ∞ 0

γ > γcr open space R+ ∞ ∞

When %EM < 2γ then we obtain an open space for ρ ∈(0,∞). When ρ →∞, the radial
radius tends to infinity r → ∞; however, the circumference radius goes to a finite value,
R→ R∞, see the Fig. 4.

When we consider the negative cosmological constant Λ < 0 we obtain three possible
spacetimes according to the values of γ . For γ smaller than certain critical value γcr (which
depends onΛ and %EM), we get closed space where the range of the coordinate ρ goes again
as ρ ∈ (0, ρ∗) and ρ∗ is then the root of G and the closing point of the universe. The radia
are then r → r∗ and R→ 0 when ρ → ρ∗, see the Fig. 5.

When γ = γcr , we obtain closed space with and infinite peak where the range of the
coordinate ρ goes as ρ ∈ (0, ρ∗) and ρ∗ is the root of G. The radia are then r → ∞ and
R→ 0 when ρ → ρ∗, see the Fig. 6.

When γ > γcr , we obtain open space for ρ ∈ (0,∞). For ρ → ∞, r → ∞, and
R→ R∞, see the Fig. 7.
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Figure 7. The case when Λ < 0 and γ > γcr represents the open spacetime. The coordinate ρ takes
positive real values. For ρ →∞, r →∞, and R→ R∞, see the Fig. 7.

We have summarized our resulting geometries arising from the generalized Melvin uni-
verse in a Table 1.

To conclude this section, we have investigated the transversal spacetime of the generalized
Melvin universe. We have identified the constants α and β, interpreted them in terms of
the cosmological constant Λ, %EM and γ . After suitable parametrization of the transversal
spacetime we have discussed all possible cases of universes which are contained in the
generalized Melvin universe. The Melvin universe occurs as a special case. We have
visualized these cases in figures and summarized them in the Table 1.

The parameter γ changes the character of the influence of the electromagnetic field on
the geometry. With larger γ the influence is stronger and for Λ ≤ 0 it can even change the
global structure of the spacetime, what exactly happens for the critical value γcr (forΛ = 0
γcr = %EM/2).

4.2 The backgrounds for our solutions

The background spacetimes are defined as a limit when h = g = 0 and a = 0, then the
metric (1) reduces to

g = q−Σ2 du ∨ dv + αv2Σ2du2 . (50)

The metric (50) admits one killing vector ∂φ which corresponds to cylindrical symmetry.
Using the adapted null tetrad k = ∂v, l = Σ−2(∂u + αv

2∂v/2), m = (Σ−1∂ρ −

iΣS−1∂φ)/
√

2, the only non-vanishing components of Weyl and Ricci tensors are,

Ψ2 =
1

2Σ4 (βΣ − 2%EM) , Φ11 =
1

2Σ4 %EM . (51)

This demonstrates that the generalized Melvin universe is a non-vacuum solution of type D,
except the points where Ψ2 = 0.
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Table 2. Some of possible background spacetimes in the case γ = 0 which represents the direct
product of two 2-spaces of constant curvature. The parameter Λ+ = Λ+ %EM gives the geometry of
the wave front and Λ− = Λ− %EM determines the conformal structure of the background.

Λ+ Λ− geometry background Λ %EM

0 0 E2
× M2 Minkowski = 0 = 0

Λ Λ S2
× d S2 Nariai > 0 = 0

Λ Λ H2
× Ad S2 anti-Nariai < 0 = 0

%EM −%EM S2
× Ad S2 Bertotti–Robinson = 0 > 0

2Λ 0 S2
× M2 Plebański–Hacyan > 0 = Λ

0 2Λ E2
× Ad S2 Plebański–Hacyan < 0 = |Λ|

The background metric (50) contains several sub-solutions. ForΛ = 0 and %EM = 2γ we
obtain the Melvin universe which serves as a background in Kadlecová and Krtouš (2010)
and the the only non-vanishing Weyl and curvature scalars are

Φ2 = −
%EM

2Σ4 (2−Σ) =
1
2
%EM

Σ4

(
−1+

1
4
%EMρ

2
)
, Ψ11 =

1
2Σ4 %EM , (52)

where we have used theΣ = 1+%EMρ
2/4 which specifies the Melvin spacetime. The scalar

curvature of the transversal spacetime q (49) then becomes

R = 0 , (53)

which agrees with Kadlecová and Krtouš (2010).
For Σ = 1 we get the direct product background spacetimes, the metric (50) reduces to

g = q− du ∨ dv + αv2 du2 , (54)

the only non-vanishing Weyl and curvature scalars then are

Ψ2 =
1
2 (β − 2%EM) = −

Λ
3 , Φ11 =

1
2%EM . (55)

The scalar curvature of the transversal spacetime q (49) then becomes

R = 2(Λ+ %EM) , (56)

which agrees with Kadlecová et al. (2009).
To summarize the background metric (50) generalizes the metric for the pure Melvin

universe and the direct product spacetimes into one background metric and combines their
properties.

5 THE SCALAR POLYNOMIAL INVARIANTS

The scalar invariants are important characteristics of gyraton spacetimes. The gyratons in
the Minkowski spacetime Frolov et al. (2005) have vanishing invariants (VSI) Pravda et al.
(2002), the gyratons in the AdS Frolov and Zelnikov (2005) and direct product spacetimes
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Kadlecová et al. (2009) have all invariants constant (CSI) Coley et al. (2006). The invariants
are independent of all metric functions ai which characterize the gyraton, and have the same
values as the corresponding invariants of the background spacetime. We have shown that
similar property is valid also for the gyraton on Melvin spacetime Kadlecová and Krtouš
(2010), but the invariants are functions of the coordinate ρ and depend on the constant
density %EM.

In these cases, the invariants are independent of all metric functions which characterize
the gyraton, and have the same values as the corresponding invariants of the background
spacetime. We observed that similar property is valid also for the gyraton on Melvin
spacetime and it is valid also for its generalization withΛ, however, in this case the invariants
are generally non-constant, namely, they depend on the coordinate ρ. This property is a
consequence of general theorem holding for the relevant subclass of Kundt solution, see
Theorem II.7 in Coley et al. (2010). For more details, see Kadlecová (2013).

6 CONCLUSION

Our work generalizes the studies of the gyraton on the Melvin universe Kadlecová and Krtouš
(2010). Namely we have generalized the transversal background metric for the pure Melvin
universe where instead of the coordinate ρ we have assumed general function S dependent
only on the coordinate ρ. This change enabled us to find new solutions with possible non-
zero cosmological constant. This is not allowed for the pure Melvin background spacetime.
We were able to derive relation between metric functions Σ and S from the source free
Einstein–Maxwell equations. The derivative of the function Σ,ρ is then polynomial in the
function Σ itself and contains four parameters. We have showed that these parameters can
be expressed using constants Λ, %EM and γ .

The Einstein–Maxwell equations reduce again to the set of linear equations on the 2-di-
mensional transverse spacetime which has non-trivial geometry given by the generalized
Melvin spacetime (2). Fortunately, these equations do decouple and they can be solved least
in principle for any distribution of the matter sources.

In detail, we have studied the transversal geometries of generalized Melvin spacetime (2).
We have discussed the various possible values of constantsΛ, %EM and γ . It occurs that for
Λ > 0 the transversal geometry represents only one type of space, the caseΛ = 0 includes
three different spaces, one of them corresponds to the Melvin spacetime as a special case.
The case Λ < 0 also describes three types of spaces. We have visualized them in several
figures in Section 4 and summarized them in the Table 1. Thanks to this discussion we
were able to interpret the parameter γ as the parameter which makes the electromagnetic
field of the direct product spacetimes stronger.

We have investigated the polynomial scalar invariants. In this generalized case, the
invariants are again not constant and they are functions of the metric function Σ and the
full gyratonic metric has the same invariants as the background metric.
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Case of stationary electro-vacuum fields around
black holes
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ABSTRACT
This is the second lecture of ‘RAGtime’ series on electrodynamical effects near
black holes. We will summarize the basic equations of relativistic electrodynamics
in terms of spin-coefficient (Newman–Penrose) formalism.

The aim of the lecture is to present important relations that hold for exact electro-
vacuum solutions and to exhibit, in a pedagogical manner, some illustrative solutions
and useful approximation approaches. First, we concentrate on weak electromagnetic
fields and we illustrate their structure by constructing the magnetic and electric lines
of force. Gravitational field of the black hole assumes axial symmetry, whereas the
electromagnetic field may or may not share the same symmetry. With these solutions
we can investigate the frame-dragging effects acting on electromagnetic fields near
a rotating black hole. These fields develop magnetic null points and current sheets.
Their structure suggests that magnetic reconnection takes place near the rotating
black hole horizon. Finally, the last section will be devoted to the transition from
test-field solution to exact solutions of coupled Einstein-Maxwell equations.

New effects emerge within the framework of exact solutions: the expulsion of the
magnetic flux out of the black-hole horizon depends on the intensity of the imposed
magnetic field.

Keywords: Black holes – Electromagnetic fields – Relativity

1 INTRODUCTION

Electromagnetic fields play an important role in astrophysics. Near rotating compact bodies,
such as neutron stars and black holes, the field lines are deformed by an interplay of rapidly
moving plasma and strong gravitational fields. Here we will illustrate purely gravitational
effects by exploring simplified vacuum solutions in which the influence of plasma is ignored
but the presence of strong gravity is taken into account.

In the first lecture of this workshop series (Karas, 2005, Paper I) we summarized the
basic equations of relativistic magnetohydrodynamics (MHD). In that paper we employed
standard tensorial notation and we focused our attention on situations when the plasma

978-80-7510-125-9 c© 2014 – SU in Opava. All rights reserved.
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motion is governed by MHD and gravitational effects are competing with each other in
the vicinity of a black hole. We limited our discussion to axially symmetric and stationary
flows. The latter assumption will be still maintained in the present talk. In fact, we will
restrict ourselves to purely electro-vacuum solution, however, we will discuss them in greater
depth and, more importantly, we will employ the elegant formalism of null tetrads. We do not
derive new solutions or technique in these lectures, instead, we summarise useful relations
in the form of brief notes paying special attention to effects of strong gravity.

One new point is mentioned in conclusion: with exact solutions of Einstein–Maxwell
electrovacuum fields, an aligned magnetic flux becomes expelled from a rotating black hole
as an interplay between the shape of magnetic lines of force (which become pushed out of
the horizon) and the concentration of the magnetic flux tube toward the rotation axis (which
becomes more concentrated for strong magnetic fields because of their own gravitational
effect). This is, however, important only for very strong magnetic fields only, where ‘very
strong’ means that the magnetic field contributes to the space-time metric.

2 DEFINITIONS, NOTATION, AND BASIC RELATIONS

Field equations

We start with Einstein’s equations which, in the notation of Paper I, take a familiar form of
a set of coupled partial differential equations (e.g. Chandrasekhar, 1983),

Rµν −
1
2

Rgµν = 8πTµν , (1)

where the right-hand side source terms Tµν are of purely electromagnetic origin,

T αβ ≡ T αβEMG =
1

4π

(
FαµFβµ −

1
4

FµνFµνgαβ
)
, (2)

Tµν ;ν = −Fµα jα , Fµν ;ν = 4π jµ , ?Fµν ;ν = 4πMµ . (3)

where ?Fµν ≡ εµνρσ Fρσ /2. We assume that the electromagnetic test-fields reside in a
curved background of a rotating black hole. Such solutions can be found by solving for the
electromagnetic field in a fixed background geometry of Kerr metric (Thorne et al., 1986;
Gal’Tsov, 1986). Here we study classical solutions for (magnetised) Kerr–Newman black
holes that possess a horizon. Higher-dimensional black holes and black rings in external
magnetic fields were explored by, e.g. Ortaggio (2005); Yazadjiev (2006), and references
cited therein, whereas an extension to the case of naked singularity has been discussed
recently by Adámek and Stuchlík (2013).

Killing vectors generate a test-field solution

The presence of Killing vectors corresponds to the symmetry of the spacetime (Chan-
drasekhar, 1983; Wald, 1984), such as stationarity and axial symmetry.

Killing vectors satisfy the well-known equation,

ξµ;ν + ξν;µ = 0 , (4)
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where coordinate system is selected in such a way that the following condition is satisfied:
ξµ = δ

µ
ρ . One can check that Killing vectors obey a sequence of relations:

0 = ξµ;ν + ξν;µ = ξµ,ν − Γ λµνξλ + ξν,µ − Γ
λ
µνξλ = gµν,ρ . (5)

The last equality (5) states that because of symmetry the metric tensor does not depend xρ

coordinate.
The electromagnetic field may or may not conform to the same symmetries as the

gravitational field. Naturally, the problem is greatly simplified by assuming axial symmetry
and stationarity for both fields. In a vacuum spacetime, Killing vectors generate a test-field
solution of Maxwell equations. We define the electromagnetic field by associating it with
the Killing vector field,

Fµν = 2ξµ;ν . (6)

Then

Fµν = 2ξµ;ν = −2ξν;µ = −Fνµ , (7)
Fµν = ξµ;ν − ξν;µ ≡ ξ[µ;ν] . (8)

By employing the Killing equation and the definition of Riemann tensor, i.e. the relations
ξµ;ν;σ − ξµ;σ ;ν = −Rλµνσ ξλ, and Rλ[µνσ ]cycl = 0, we find:

ξµ;ν;σ = Rλσµνξλ , ξµ;ν ;ν = Rµλξλ . (9)

The right-hand side vanishes in vacuum, hence

Fµν ;ν = 0 . (10)

It follows that the well-known field invariants are given by relations

E.B =
1
4
?FµνFµν , B2

− E2
=

1
2

FµνFµν . (11)

Magnetic and electric charges

We start from the axial and temporal Killing vectors, existence of which is guaranteed in
any axially symmetric and stationary spacetime,

ξµ =
∂

∂t
, ξ̃µ =

∂

∂φ
. (12)

In the language of differential forms (e.g. Wald, 1984),

1
2 Fµν dxµ ∧ dxν︸ ︷︷ ︸

F

= ξµ,ν dxµ ∧ dxν︸ ︷︷ ︸
dξ

. (13)
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The above-given equations allow us to introduce the magnetic and electric charges in the
form of integral relations,

Magnetic charge: 4πM =

∫
S

F =
∫

S
dξ = 0 . (14)

Electric charge: 4πQ =
∫

S

?F =
∫

S

?dξ = −8πM , (15)

=

∫
S

?dξ̃ = 16π J , (16)

where M has a meaning of mass and J is angular momentum of the source. Here, integration
is supposed to be carried out far from the source, i.e. in spatial infinity of Kerr metric in our
case. For example for the electric charge we obtain

4πQ =
∫

S

?F =
∫

S

?Fµν dσµν =
∫

V
2Fτα;α dV , (17)

where dσµν = d1xµ ∧ d2xν = dθ dφ.

Wald’s field

In an asymptotically flat spacetime, ∂φ generates uniform magnetic field, whereas the field
vanishes asymptotically for ∂t . These two solutions are known as the Wald’s field (Wald,
1974; King et al., 1975; Bičák and Dvořák, 1980; Nathanail and Contopoulos, 2014):

F =
1
2

B0

(
dξ̃ +

2J
M

dξ
)
. (18)

Magnetic flux surfaces:

4πΦM =

∫
S

F = const . (19)

Magnetic and electric Lorentz force are then given by equations

m u̇ = qm
?F.u , m u̇ = qe F.u . (20)

Finally, magnetic field lines (in the axisymmetric case):

dr
dθ
=

Br

Bθ
, (21)

Magnetic field lines lie in surfaces of constant magnetic flux (see below).

3 SPIN-COEFFICIENT FORMALISM OF NULL TETRADS FOR
ELECTROMAGNETIC FIELDS

The spin-coefficient formalism (Newman and Penrose, 1962) is a special case of the tetrad
formalism where tensors are projected onto a complete vector basis at each point in space-
time. The vector basis is chosen as a complex null tetrad, lµ, nµ, mµ, m̄µ, satisfying
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conditions

lνnν = 1 , mνm̄ν
= −1 , (22)

and zero all other combinations. A natural correspondence with an orthonormal tetrad
reads

e(0) =
l + n
√

2
, e(1) =

l − n
√

2
, e(2) =

m + m̄
√

2
, e(3) =

m − m̄

=
√

2
. (23)

Null tetrads are not unambiguous, as the following three transformations maintain the tetrad
properties:

(i) l → l, m → m + al, n→ n + am̄ + ām + aāl ;
(ii) n→ n, m → m + bm, l → l + bm̄ + b̄m + bb̄n ;
(iii) l → ζ l, n→ ζ−1l, m → e=ψm ;

with ζ , ψ ∈ <.
Instead of six real components of Fµν , the framework of the null tetrad formalism

describes the electromagnetic field by three independent complex quantities,

Φ0 = Fµνlµmν , (24)
Φ1 =

1
2 Fµν

(
lµnν + m̄µmν

)
, (25)

Φ2 = Fµνm̄µnν . (26)

It can be checked that the backward transformation has a form

Fµν = Φ1
(
n[µlν] + m[µm̄ν]

)
+Φ2l[µmν] +Φ0m̄[µnν] + c.c. (27)

The Newman–Penrose formalism defines the following differential operators:

D ≡ lµ∂µ , δ ≡ mµ∂µ , δ̄ ≡ m̄µ∂µ , ∆ ≡ nµ∂µ . (28)

Furthermore, one introduces a set of spin coefficients (Ricci rotations symbols),

α = − 1
2

(
nµ;νlµm̄ν

− m̄µ;νmµm̄ν
)
, (29)

β = 1
2

(
lµ;νnµmν

− mµ;νm̄µmν
)
, (30)

γ = − 1
2

(
nµ;νlµnν − m̄µ;νmµmν

)
, (31)

ε = 1
2

(
lµ;νnµlν − mµ;νm̄µlν

)
, (32)

κ = lµ;νmµlν , λ = −nµ;νm̄µm̄ν , (33)
ρ = lµ;νmµm̄ν , µ = −nµ;νm̄µmν , (34)
σ = lµ;νmµmν , ν = −nµ;νm̄µnν , (35)
τ = lµ;νmµnν , π = −nµ;νm̄µlν . (36)

Despite a seemingly large number of variables we will find this notation very useful and
practical later on. However, first it will be useful to give an explicit example.
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Example of the null tetrad for Schwarzschild metric

The metric is written in the form

ds2
=

(
1−

2M
r

)
dt2
−

(
1−

2M
r

)−1

dr2
− r2 dθ2

− r2 sin2 θ dφ2 . (37)

The appropriate null tetrad is then given by

lµ =
(
[1− 2M/r ]−1, 1, 0, 0

)
, (38)

nµ =
(

1
2 ,

1
2 [1− 2M/r ], 0, 0

)
, (39)

mµ
=

1
√

2 r

(
0, 0, 1,= sin−1 θ

)
. (40)

An arbitrary type-D spacetime (e.g. the Schwarszchild metric) allows to set κ = σ = ν =
λ = 0. In particular, for the Schwarzschild metric the explicit form of non-vanishing spin
coefficients is:

ρ = −
1
r
, µ = −

1
2r

1
1− 2M/r

, α = −β = −
√

2 r cot
θ

2
, γ =

M
2r2 . (41)

Maxwell’s equations

Maxwell’s equations adopt the form

(D − 2ρ + 2ε)Φ1 − (δ̄ + π − 2α)Φ0 = 2π Jl , (42)
(δ − 2τ)Φ1 − (∆+ µ− 2γ )Φ0 = 2π Jm , (43)
(D − ρ + 2ε)Φ2 − (δ̄ + 2π)Φ1 = 2π Jm̄ , (44)
(δ − τ + 2β)Φ2 − (∆+ 2µ)Φ1 = 2π Jn (45)

with

Jl = lµ
(

jµ + =Mµ
)
, Jm = mµ

(
jµ + =Mµ

)
, (46)

Jm̄ = m̄µ

(
jµ + =Mµ

)
, Jn = nµ

(
jµ + =Mµ

)
. (47)

These are four equations for three complex variables.

Teukolsky’s equations

Teukolsky (1973) derived the following form of Maxwell equations:[(
Dε + ε̄ − 2ρ − ρ̄

)(
∆+ µ− 2γ

)
−
(
δ − β − ᾱ − 2τ + π̄

)(
δ̄ + π − 2α

)]
Φ0 = 2π J0 ,[(

D + ε + ε̄ − ρ − ρ̄
)(
∆+ 2µ

)
−
(
δ + β − ᾱ − τ + π̄

)(
δ̄ + 2π

)]
Φ1 = 2π J1 ,[(

∆+ γ − γ̄ + 2µ+ µ̄
)(

D−ρ+ 2ε
)
−
(
δ̄+α+ β̄− τ̄ + 2π

)(
δ− τ + 2β

)]
Φ2 = 2π J2

(48)
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with

J0 =
(
δ − β − ᾱ − 2τ + π̄

)
Jl −

(
D − ε + ε̄ − 2ρ − ρ̄

)
Jm , (49)

J1 =
(
δ + β − ᾱ − τ + π̄

)
Jm̄ −

(
D + ε + ε̄ − ρ − ρ̄

)
Jn , (50)

J2 =
(
∆+ γ − γ̄ + 2µ+ µ̄

)
Jm̄ −

(
δ̄ + α + β̄ + 2π − τ̄

)
Jn . (51)

Clearly this is an extremely useful form: noticed that the above-given differential equations
are entirely decoupled.

Example – Maxwell’s equations in Schwarzschild metric

[
∂

∂r
+

2
r

]
Φ1 +

1
√

2r
?∂̄Φ0 = 2π Jl , (52)

−
1
√

2r
?∂Φ1 +

1
2

[(
1−

2M
r

)
∂

∂r
+

1
r

]
Φ0 = 2π Jm , (53)[

∂

∂r
+

1
r

]
Φ2 +

1
√

2r
?∂̄Φ1 = 2π Jm̄ , (54)

−
1
√

2r
?∂Φ2 +

1
2

(
1−

2M
r

)[
∂

∂r
+

2
r

]
Φ1 = 2π Jn , (55)

where the “edth” operator acts on a spin weight s quantity η is the following manner:

?∂η = −

{
sins θ

[
∂

∂θ
+
=

sin θ
∂

∂φ

]
sin−s θ

}
η . (56)

Spin weight is defined by by the transformation property η→ e=sψη under the transforma-
tion m → e=ψm. Φ0, Φ1, Φ2 have spin weights s = 1, 0, −1, respectively.

Spin harmonics

Spin harmonics form a complete set of orthonormal functions

sYlm(θ, φ) =


√
(l−s)!
(l+s)!

?∂sYlm(θ, φ) for 0 ≤ s ≤ l ,

(−1)s
√
(l+s)!
(l−s)!

?∂−sYlm(θ, φ) for − l ≤ s ≤ 0
(57)

with the orthogonality relation∫ 2π

0

∫ π

0
sYlm(θ, φ) sYl ′m′(θ, φ) sin θ dθ dφ = δll ′δmm′ . (58)

A general stationary vacuum electromagnetic test field can be expanded in terms of spin-s
spherical harmonics.
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3.1 Test fields in Schwarzschild spacetime

Bičák and Dvořák (1980) use the following expansion:

Φ0 =

∞∑
l=1

l∑
m=−l

0 Rlm(r) 1Ylm(θ, φ) , (59)

Φ1 =

∞∑
l=0

l∑
m=−l

1 Rlm(r) 0Ylm(θ, φ) , (60)

Φ2 =

∞∑
l=1

l∑
m=−l

2 Rlm(r)−1Ylm(θ, φ) . (61)

Then the equations for radial functions take a form

r(r − 2M) 0 R′′lm + 4(r − M) 0 R′lm − (l − 1)(l + 2) 0 Rlm = −4π 0 Jlm , (62)
r(r − 2M) 1 R′′lm + 2(2r − 3M) 1 R′lm − (l − 1)(l + 2) 1 Rlm = −4π 1 Jlm , (63)

r(r − 2M) 2 R′′lm + 4(r − 2M) 2 R′lm −
[
(l − 1)(l + 2)+ 4M/r

] 2 Rlm = −4π 2 Jlm , (64)

where

0 Jlm(r) =
∫

J0(r, θ, φ) 1Ȳlm(θ, φ) r2 dΩ , (65)

1 Jlm(r) =
∫

J1(r, θ, φ) 0Ȳlm(θ, φ) r2 dΩ , (66)

2 Jlm(r) =
∫

J2(r, θ, φ)−1Ȳlm(θ, φ) r2 dΩ . (67)

A vacuum field solution is given by a Fuchsian-type equation (Bičák and Dvořák, 1980)

x(x − 1)
d2 1 Rlm

dx2 + (4x − 3)
d 1 Rlm

dx
− (l − 1)(l + 2) 1 Rlm = 0 , (68)

with x ≡r/(2M).
Two independent solutions can be found:

1 R(I )l = F(1− l, l + 2, 3; x),
1 R(I I )

l = (−x)−l−2 F
(
l, l + 2, 2l + 2; x−1)

}
for l 6= 0, (69)

1 R(I )0 =
1
x2 ln(x − 1)+ 1

x
1 R(I I )

0 =
1
x2

}
for l = 0. (70)

A general solution reads 1 Rlm = alm
1 R(I )l + blm

1 R(I I )
l , alm, blm = const. Inserting the

solution for 1 Rlm in Maxwell equations Bičák and Dvořák (1980) find

0 Rlm = alm
0 R(I )l + blm

0 R(I I )
l =

√
2

l(l + 1)
1
r

d
dr

(
r2 1 Rlm

)
, (71)

2 Rlm = alm
2 R(I )l + blm

2 R(I I )
l , (72)
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(a) (b)

Figure 1. An axisymmetric case: (a) a = 0 (static black hole), and (b) a = M (maximally rotating
black hole).

(a) (b)

Figure 2. The case of (a) uniform aligned magnetic field near a fast rotating black hole (a = 0.95 M);
(b) near the maximally rotating hole (a = M).

where

0 R(I )l =
2
√

2
√

l(l + 1)
F(1− l, l + 2, 2; x) , (73)

0 R(I I )
l = −

√
2l

l + 1
(−x)−l−2 F

(
l + 1, l + 2, 2l + 2; x−1) , (74)

2 R(I )l = −

√
2

l(l + 1)
x−1 F(−l, l + 1, 2; x) , (75)

2 R(I I )
l = −

√
l

2(l + 1)
(−x)−l−2 F

(
l + 1, l, 2l + 2; x−1) . (76)
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(a) (b)

Figure 3. Equatorial plane is shown as viewed from top, i.e. along rotation axis, (a) in the frame
of zero angular momentum observers orbiting at constant radius; (b) in the frame of freely falling
observers. In the panel (b), two regions of ingoing/outgoing lines are distinguished by different levels
of shading of the horizon. The hole rotates counter-clockwise (a = M). Based on Karas (1989);
Dovčiak et al. (2000).

We can select a physically appropriate solution by assuming a source between r1 and r2
(r+ ≤ r1 ≤ r2 ≤ ∞). By seeking a well-behaved solution on horizon that vanishes at
infinity, we find

Φ0 =
∑

l,m al,m
0 R(I )l 1Ylm

Φ1 =
∑

l,m al,m
1 R(I )l 0Ylm +

Ea
r2 0Y00

Φ2 =
∑

l,m al,m
2 R(I )l −1Ylm

 for 2M ≤ r < r1 , (77)

Φ0 =
∑

l,m bl,m
0 R(I I )

l 1Ylm

Φ1 =
∑

l,m bl,m
1 R(I I )

l 0Ylm +
Eb
r2 0Y00

Φ2 =
∑

l,m bl,m
2 R(I I )

l −1Ylm

 for r > r2 . (78)

Two examples

First, a spherically symmetric electric field. A unique solution that is well-behaving both at
r = r+ and at r →∞: 1 R(I I )

0 . This term describes a weakly charged Reissner–Nordström
black hole.

Second, an asymptotically uniform magnetic field:

Fµν → B0ez + B1ex , (79)
i.e. Frθ →−B1 r sinφ , (80)

Frφ → B0 r sin2 θ − B1 r sin θ cos θ cosφ , (81)
Fθφ → B0 r2 sin θ cos θ + B1 r2 sin2 θ cosφ . (82)
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3.2 Magnetic and electric lines of force near a rotating black hole

Lorentz force acts on electric/magnetic monopoles residing at rest with respect to a locally
non-rotating frame,

duµ

dτ
∝

?Fµν uν ,
duµ

dτ
∝ Fµν uν . (83)

Magnetic lines are defined (Christodoulou and Ruffini, 1973):

dr
dθ
= −

Fθφ
Frφ

,
dr
dφ
=

Fθφ
Frθ

. (84)

In an axially symmetric case the magnetic flux is:

Φm = πB0

[
r2
− 2Mr + a2

+
2Mr

r2 + a2 cos2θ

(
r2
− a2)] sin2θ = const . (85)

Notice: Φm = 0 for r = r+ and a = M . The flux is expelled out of the horizon (Meissner
effect; Bičák and Ledvinka (2000); Penna (2014)).

The electric fluxes and field lines can be introduced in a similar manner, one only
needs to interchange the electromagnetic field tensor by its dual, the magnetic charge by
the electric charge, and vice versa wherever they appear in the above-given formulae.
It should be evident that the induced electric field vanishes in the non-rotating case. Based
on the classical analogy with a rotating sphere, one would perhaps expect a quadrupole-
type component, but here the leading term of the electric field arises due to gravomagnetic
interaction which is a purely general-relativistic effect, and this electric field falls off radially
as r−2.

Magnetic field lines reside in surfaces of constant magnetic flux, and this way the lines
of force are defined in an invariant way (see Fig. 1). Electric field is induced by the
gravito-magnetic influence of the black hole. The resulting field lines are shown in Fig. 2.
An asymptotic form of the electric field-lines reads

dr
dλ
=

B0aM
r2

(
3 cos2 θ − 1

)
+

3B⊥aM
r2 sin θ cos θ cosφ +O

(
r−3

)
, (86)

dθ
dλ
= O

(
B⊥r−3

)
,

dφ
dλ
= O

(
B⊥r−3

)
. (87)

As mentioned above, an aligned magnetic field produces an asymptotically radial electric
field, rather than a quadrupole field, expected under these circumstances in the classical
electrodynamics. This difference is due to rotation of the black hole.

Figure 3 shows the structure of a uniform magnetic field perpendicular to the black hole
rotation axis (Bičák and Karas, 1989; Karas and Kopáček, 2009; Karas et al., 2012, 2013,
2014). We notice the enormous effect of frame-dragging which acts on field lines and
distorts them in the sense of black hole rotation. Nevertheless, some field lines still enter
the horizon and bring the magnetic flux into the black hole (naturally, the same magnetic
flux has to emerge out of the horizon, so that the total flux through the black hole vanishes
and its magnetic charge is equal zero).
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Figure 4. Cross-sectional area for the capture of magnetic flux by a rotating black hole. The three
curves correspond to different values of the black-hole angular momentum: a = 0 (cross-section is the
circle; its projection coincides with the black-hole horizon, indicated by yellow colour), a = 0.95 M ,
and a = M . The enclosed area contains the field lines of the asymptotically perpendicular magnetic
field which eventually enter into the black hole horizon. From the graph we notice that this area grows
with the black hole spin and its shape is distorted by the gravitomagnetic interaction.

We notice that magnetic null points emerge near the black hole, suggesting that magnetic
reconnection can be initiated by the purely gravitomagnetic effect of the rotating black
hole. Indeed, this new reconnection mechanism has been only recently proposed (Karas
and Kopáček, 2009) in the context of particle acceleration processes near magnetized black
holes. The capture of magnetic field lines is further illustrated in Fig. 4 where we plot the
black hole effective cross sectional area.

Surface charge on the horizon

Surface charge is formally defined by the radial component of electric field in non-singular
coordinates (Thorne et al., 1986),

σH =
B0a

4πΣ+

[
r+ sin2 θ −

M
Σ+

(
r2
+ − a2 cos2 θ

) (
1+ cos2 θ

)]
+

B⊥a
4πΣ+

sin θ cos θ
[

Mr+
Σ+
+ 1

] [
a sinψ − r+ cosψ

]
, (88)

with

ψ = φ +
a

r+ − r−
ln

r − r+
r − r−

∝ ln(r − r+) . (89)

For a �M ,

σH =
a

16πM

[
B0
(
1− 3 cos2 θ

)
+ 3B⊥ sin θ cos θ cosψ

]
. (90)

It should be obvious that σH does not represent any kind of a real charge distribution. Instead,
it is introduced only by pure analogy with junction conditions for Maxwell’s equations in
classical electrodynamics. The classical problem was treated in original works by Faraday,
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Lamb, Thomson and Hertz, and more recently in Bullard (1949); Elsasser (1950). It is
quite enlightening to pursue this similarity to greater depth (see e.g. Karas and Budinová,
2000 and references cited therein) despite the fact that this is purely a formal analogy, as
pointed out by Punsly (2008).

4 ON THE WAY FROM TEST FIELDS TO EXACT SOLUTIONS OF
EINSTEIN–MAXWELL EQUATIONS

So far we discussed test-field solutions of Einstein equations which reside in a prescribed
(curved) spacetime. In the rest of this lecture we will briefly outline a way to construct
exact solutions of mutually couple (vacuum) Einstein–Maxwell equations. Because this
task is very complicated, astrophysically realistic results can be only obtained by numerical
approaches. However, important insight can be gained by simplified analytic solutions. We
will thus explore the latter approach.

The spacetime metric

Let us first assume a static spacetime metric in the form

ds2
= f −1

[
e2γ ( dz2

+ dρ2)
+ ρ2 dφ2

]
− f ( dt − ω dφ)2 , (91)

with f , ω, and γ being functions of z and ρ only. We consider coupled Einstein–Maxwell
equations under the following constraints: (i) electrovacuum case containing a black hole,
(ii) axial symmetry and stationarity, (iii) not necessarily asymptotically flat (see Kramer
et al. (1980); Alekseev and Garcia (1996); Ernst and Wild (1976); Karas and Vokrouhlický
(1991), and references cited therein).

As explained in various textbooks and, namely, in the above-mentioned works, one can
proceed in the following way to find the three unknown metric functions:

• Standard approach: gµν → Γ
µ
νλ→ Rαβγ δ → Gµν .

• Exterior calculus: eµ(λ)→ ωµνΩµν → Rα̂
β̂γ̂ δ̂
→ Gµ̂ν̂ .

• Variation principle: L = − 1
2ρ f −2∇ f ·∇ f + 1

2ρ
−1 f 2∇ω·∇ω .

We denoted nabla operator, ∇ ·
(
ρ−1eφ×∇ϕ

)
= 0 ∀ϕ ≡ ϕ(ρ, z). Now, the vacuum field

equations (without electromagnetic field) can be written in the form:

f∇2 f = ∇ f ·∇ f − ρ−2 f 4
∇ω ·∇ω , ∇ ·

(
ρ−2 f 2

∇ω
)
= 0 . (92)

Let us define functions ϕ(ρ, z), ω(ρ, z) by the prescription

ρ−1 f 2
∇ω = eφ×∇ϕ ,

f −2
∇ϕ = −ρ−1eφ×∇ω .
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By applying∇· operator on the both sides of the last equation, the relation for ϕ comes out,
∇ ·

(
f −2∇ϕ

)
= 0 . Let us further define E ≡ f + =ϕ. Then, both field equations can be

written in the form(
<E

)
∇

2E = ∇E ·∇E . (93)

Now we can proceed to adding the electromagnetic field:

L′ = L+ 2ρ f −1 A0
(
∇A

)2
− 2ρ−1 f

(
∇A3 − ω∇A0

)2
. (94)

Functions f , ω, A0, and A3 are constrained by the variational principle. Define Φ ≡
Φ(A0, A3), E ≡ f − |Φ|2 + =ϕ:(
<E + |Φ|2

)
∇

2E =
(
∇E + 2Φ̄∇Φ

)
·∇E , (95)(

<E + |Φ|2
)
∇

2Φ =
(
∇E + 2Φ̄∇Φ

)
·∇Φ . (96)

Let us assume E ≡ E(Φ) to be an analytic function which satisfies

(
<E +Φ2

) d2E

dΦ2∇Φ ·∇Φ = 0 . (97)

Assume further a linear relation,

E = 1− 2
Φ

q
, q ∈C (98)

and a new variable ξ ,

E ≡
ξ − 1
ξ + 1

, Φ =
q

ξ + 1
, (99)[

ξ ξ̄ −
(
1− qq̄

)]
∇

2ξ = 2ξ̄∇ξ ·∇ξ . (100)

Generating “new” solutions

We introduce new variables by relations

ξ0 → ξ = (1− qq̄)ξ0 , (101)[
ξ0ξ̄0 − 1

]
∇

2ξ0 = 2ξ̄0∇ξ0 ·∇ξ0 , (102)

i.e.

(<E0)∇
2E0 = ∇E0 ·∇E0 , E0 ≡

ξ0 − 1
ξ0 + 1

. (103)

where E0 has a meaning of an “old” vacuum solution.
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Theorem. Let (Φ, E , γαβ) be a solution of Einstein–Maxwell electrovaccum equations
with anisotropic Killing vector field. Then there is another solution (Φ ′, E ′, γ ′αβ), related
to the old one by transformation

E ′ = αᾱE , Φ ′ = αΦ , . . . dual rotation, ?Fµν →
√
α/ᾱ ?Fµν ,

E ′ = E + =b , Φ ′ = Φ , . . . calibration, no change in Fµν ,

E ′ = E − 2β̄Φ − ββ̄ , Φ ′ = Φ + β , . . . calibration . . . ,
E ′ = E(1+ =cE)−1 , Φ ′ = (1+ =cE)−1 ,

E ′ = E(1− 2γ̄ Φ − γ γ̄E)︸ ︷︷ ︸
Λ=1−B0Φ−

1
4 B2

0 E

−1 , Φ ′ = (Φ + γE)(1− 2γ̄ Φ − γ γ̄E)−1 .

E → E ′ = Λ−1E , f → f ′ = |Λ|−2 f , ω→ ω′ = ? , (104)
Φ → Φ ′ = Λ−1(Φ − 1

2 B0E
)
, ∇ω′ = |Λ|2∇ω + ρ f −1(Λ̄∇Λ−Λ∇Λ̄) . (105)

Examples

Example 1. Minkowski spacetime→ Melvin universe.

ds2
=

[
dz2
+ dρ2

− dt2
]
+ ρ2 dφ2 . (106)

f = −ρ2 , ω = 0 , Φ = 0 , E = −ρ2 , ϕ(ω) = 0 ,
f ′ = −Λ−2ρ2 , ω′ = 0 , Φ ′ = 1

2Λ
−1 B0ρ

2 ,

Bz = Λ
−2 B0 , Bρ = Bφ = 0 ,

(107)

ds2
= Λ2

[
dz2
+ dρ2

− dt2
]
+Λ−2ρ2 dφ2 . (108)

Gravity of the magnetic field in balance with the Maxwell pressure. Cylindrical symmetry
along z-axis.

Example 2. Schwarzschild BH→ Schwarzschild–Melvin black hole.

ds2
=

[(
1−

2M
r

)−1

dr2
−

(
1−

2M
r

)
dt2
+ r2 dθ2

]
+ r2 sin2 θ dφ2 , (109)

f = −r2 sin2 θ , ω = 0 , ρ =
√

r2 − 2Mr sin θ ,
Br = Λ

−2 B0 cos θ , Bθ = −Λ−2 B0(1− 2M/r) sin θ ,
(110)

ds2
= Λ2

[
. . .
]
+Λ−2r2 sin2 θ dφ2 . (111)

There the following limits of the magnetized Schwarzschild–Melvin black hole: (i) B0 = 0
. . . Schwarzschild solution, (ii) r/M →∞ . . . Melvin solution, (iii) |B0 M | �1 . . . Wald’s
test field in the region 2M � r � B−1

0 .
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Figure 5. Contours of magnetic flux across a cap on the horizon (latitude angle θ is measured from
the rotation axis) of a magnetized black hole: (a) a = e = 0; (b) a = 1, e = 0; (c) a = 0.2, e = 0;
(d) a = −e = 1/

√
2 (electric charge and spin of the black hole). Here, γ ≡ (1+ β)−1, β ≡ B0 M .

This figure from Karas and Budinová (2000) illustrates strong-gravity effects on magnetic fields that
do not occur in weak-magnetic (test) field approximation, namely, the expulsion of the magnetic flux
as a function of the intensity of the imposed magnetic field.

Example 3. Magnetized Kerr-Newman BH.

g = |Λ|2Σ
(
∆−1 dr2

+ dθ2
−∆A−1 dt2

)
+ |Λ|−2Σ−1 A sin2 θ

(
dφ − ω dt

)2
, (112)

Σ = r2
+ a2 cos2 θ ,∆ = r2

− 2Mr + a2
+ e2, A = (r2

+ a2)2−∆a2 sin2 θ are functions
from the Kerr–Newman metric.
Λ = 1 + βΦ − β2E/4 is given in terms of the Ernst complex potentials Φ(r, θ) and

E(r, θ):

ΣΦ = ear sin2 θ − =e
(
r2
+ a2) cos θ ,

ΣE = −A sin2 θ − e2(a2
+ r2 cos2 θ

)
+ 2=a

[
Σ
(
3− cos2 θ

)
+ a2 sin4 θ − re2 sin2 θ

]
cos θ .

The electromagnetic field can be written in terms of orthonormal LNRF components,

H(r) + iE(r) = A−1/2 sin−1θ Φ ′,θ ,

H(θ) + iE(θ) = − (∆/A)1/2 sin−1θ Φ ′,r ,

where Φ ′(r, θ) = Λ−1 (Φ − βE/2).
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The horizon is positioned at r ≡r+ = 1+
√
(1− a2 − e2), independent of β. As in the

non-magnetized case, the horizon exists only for a2
+ e2
≤1.

There is an issue with this solution, namely, the range of angular coordinates versus the
problem of conical singularity: 0 ≤ θ ≤ π , 0 ≤ φ < 2π |Λ0|

2, where

|Λ0|
2
≡ |Λ(sin θ = 0)|2 = 1+

3
2
β2e2
+ 2β3ae + β4

(
1
16

e4
+ a2

)
. (113)

The total electric charge QH and the magnetic flux Φm(θ) across a cap in axisymmetric
position on the horizon (with the edge defined by θ = const):

QH = −|Λ0|
2
=mΦ ′ (r+, 0) ,

Φm = 2π |Λ0|
2
<eΦ ′

(
r+, θ̄

)∣∣∣θ
θ̄=0 .

The magnetic flux across the black hole hemisphere in the exact magnetized black hole
solution is shown in Fig. 5.
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ABSTRACT
Accretion onto black holes often proceeds via an accretion disc or a temporary disc-
like pattern. Variability features, observed in the light curves of such objects, and
theoretical models of accretion flows suggest that inner accretion discs are inhomo-
geneous and clumpy. We discuss the general relativity effects acting on the radiation
signal from the inner accretion flow. To this end we consider the radiation flux and
polarization properties originating from a blob of gas near a rotating black hole.
The predicted observed polarization at infinity is changed from its local value due
to strong gravity and fast orbital motion. Different processes can produce the ob-
served pattern: in the context of Sgr A* flares, the synchrotron mechanism and the
inverse Compton upscattering appear to be the most likely mechanisms. The energy
dependence of the changing degree and angle of polarization should allow us to
discriminate between rotating (Kerr) and a non-rotating (Schwarzschild) black hole.

Keywords: Black holes – Galactic Center – Relativity

1 INTRODUCTION

Polarization of light originating from different regions of a black hole accretion disc and
detected by a distant observer is influenced by strong gravitational field near a central black
hole. A ‘spotted’ accretion disc is a useful model of an interface of such an inhomogeneous
medium, assuming that there is a well defined boundary between the disc interior and the
outer, relatively empty space. Relativistic corrections to a signal from orbiting spots can
lead to large rotation in the plane of observed X-ray polarization. When integrated over
an extended surface of the source, this can diminish the observed degree of polarization.
Such effects are potentially observable and can be used to distinguish among different
models of the source geometry and the radiation mechanisms responsible for the origin of
the polarized signal. The polarization features show specific energy and time dependencies
which can indicate whether a black hole is present in a compact X-ray source.

978-80-7510-125-9 c© 2014 – SU in Opava. All rights reserved.
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Practical implementation of the idea, originally proposed in the late 1970s (Connors and
Stark, 1977; Pineault, 1977), is a challenging task because the polarimetric investigations
need a high signal-to-noise ratio. Also, the interpretation of the model results is often very
sensitive to the assumptions about the radiation transfer in the source and the geometrical
shape and orientation of the emission region. Nevertheless, the technology has achieved
significant advances since the 1980s and reached a mature state.

We assume that the gravitational field is described by a rotating black hole, and so the Kerr
metric is the right model for the gravitational field. Using a constant of motion along null
geodesics in the Kerr metric (Walker and Penrose, 1970), one can determine the change of
polarization angle along light rays. While the polarization degree is scalar and the grav-
itational influence of the black hole does not change it along the null geodesic (which is
identical with the light ray path in the geometrical optics approximation), the observed po-
larization angle is affected. The calculations show that general-relativistic effects can cause
large rotation of the polarization angle and produce significant fluctuations in the degree
of observed polarization due to gravitational bending.

Although the geometrical effects of strong gravitational fields act on photons inde-
pendently of their energy, the intrinsic emissivity of accretion discs and the influence
of turbulent magnetic fields, intervening via Faraday rotation, are indeed energy dependent.
As a result, the variability amplitudes of both the polarization degree the polarization angle
must be energy dependent quantities as well. Furthermore, the signal resolved with re-
spect to both energy and polarization (i.e. the spectro-polarimetric information) can probe
different regions of the accretion disc due to radially varying temperature.

These dependencies suffer from some degeneracy, which can be avoided with time-
resolved observations. Namely, if the source is an orbiting spot near a black hole, the time
variation of the observed signal reflects the presence of strong gravity effects (Connors
et al., 1980; Bao et al., 1997; Murphy et al., 2009). A related problem of spots rotating
on the surface of a compact star was also investigated (Viironen and Poutanen, 2004).

On the whole, there are some similarities as well as differences between the expected
manifestation of GR polarization changes in X-rays and in other spectral bands, such as the
infrared region. We will mention these interrelations and point out that the near-infrared
polarization measurements of the radiation flares from the immediate vicinity of the horizon
are already now available for Sagittarius A* supermassive black hole in the Galaxy center
(Meyer et al., 2006; Zamaninasab et al., 2008).

2 POLARIZATION FROM BLACK HOLE ACCRETION DISCS

It was realized some four decades ago that X-ray polarization studies could provide decisive
clues to the physics of accreting compact objects (Angel 1969; Bonometto et al. 1970;
Lightman and Shapiro 1975; Rees 1975). In the non-relativistic regime, a conceptually
similar problem was discussed by Rudy (1978) and Fox (1994), who studied the polarization
of star light caused by an ionized circumstellar shell of free electrons.

Wave fronts of light propagating near a rotating black hole do exhibit the frame dragging
effect. On the other hand, the wave fronts do not depend on polarization (in geometrical
optics approximation). Therefore, the impact of strong gravity on observed polarization
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comes in a somewhat complicated manner, through the interplay of light-bending, aberration
and the Doppler effect.

In the context of accretion discs the effect of electron scattering atmosphere has been
also often invoked. Further, polarization of the Comptonized radiation of accretion discs
was examined as a function of various model parameters, such as the optical thickness of
the disc medium, energy of scattered photons and directional angle of the emission (Stark
1981; Williams 1984; Sunyaev and Titarchuk 1985).

Two basic schemes were proposed as being relevant for the X-ray polarization from the
inner accretion disc. Firstly, the accretion disc surface lies below the scattering atmosphere
and acts as a source of seed photons. Polarization of thermal radiation from a black hole ac-
cretion disc was also studied (Laor et al., 1990). The reason for polarization is that photons
from the disc are scattered by electrons within the disc atmosphere. Linear polarization
should arise in the disc local co-rotating reference frame. This situation is expected to be par-
ticularly relevant for Galactic black hole candidates whose discs exhibit phases of strong
multi-blackbody thermal radiation dominating over other spectral components. The early
investigations were recently put forward by several groups (Dovčiak et al., 2008; Li et al.,
2009). Secondly, Matt (1993) and Dovčiak et al. (2004) examined the polarimetric conse-
quences of a specific model of a lamp-post illuminated accretion disc. Within this scheme
the number of reflected (polarized) photons is proportional to the incident flux arriving
from the primary source.

Relativistic effects would be even more prominent and unique if one could include the
higher-order, gravitationally bent light rays (Horák and Karas 2006) and the effects of disc
self-irradiation (Schnittman and Krolik, 2009). In fact, the latter authors argue that the
self-irradiation effects can be surprisingly important for polarization measurements.

3 TIME-VARYING POLARIZATION FROM AN ORBITING SPOT

The model of an orbiting bright spot (e.g. Cunningham and Bardeen, 1972; Broderick and
Loeb, 2006; Meyer et al., 2006; Noble et al., 2007) has been fairly successful in explaining
the observed modulation of various accreting black hole sources. Certainly not all variability
patterns can be explained in this way, however, the scheme is general enough to be able to
capture also the effects of spiral waves and similar kind of transient phenomena that are
expected to occur in the disc (Tagger et al. 1990, 2006; Karas et al. 2001). It can be argued
that the spot lightcurves can be phenomenologically understood as a region of enhanced
emission that performs a co-rotational motion near above the innermost stable circular orbit
(ISCO). For example, within the framework of the flare-spot model (Czerny et al., 2004)
the spots are just regions of enhanced emission on the disc surface rather than massive
clumps that could suffer from fast decay due to shearing motion in the disc. The observed
signal is modulated by relativistic effects. According to this idea, Doppler and gravitational
lensing influence the observed radiation flux and this can be computed by ray-tracing
methods. Such an approach has been extended to compute also strong gravity effects acting
on polarization properties (Dovčiak et al., 2004).

To summarize our model, we assumed a Keplerian geometrically thin and optically thick
disc around Kerr black hole. A spot is supposed to be intrinsically polarized by different
mechanisms – either by reflection of a primary flare on the disc surface or by synchrotron
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Figure 1. Left: A snapshot of a spot orbiting at constant radius r = 1.1 rISCO . The image is
shown in the observer plane (α, β), for a non-rotating black hole observed at a moderate view angle,
θo = 45 deg. The horizon radius (solid curve) and the ISCO (dashed curve) are shown for the
reference. Right: Trajectory of the image centroid during one revolution of the spot. The wobbling
position of the image centroid is indicated by crosses at different moments along the image track
(dotted curve).

emission originating from an expanding blob, as detailed below, or within the framework
of the accretion–ejection scheme (see also Melrose, 1971; Eckart et al., 2008; Huang et al.,
2008 and references cited therein). The blob represents a rotating surface feature in the
accretion flow. It shares the bulk orbital motion of the underlying medium at sufficiently
large radii above the ISCO, gradually decaying due to differential rotation of the disc.

We have applied different prescriptions for the local polarization (see Dovčiak et al.,
2006; Meyer et al., 2006; Zamaninasab et al., 2008 for the detailed description of the
model set-up in the individual cases that we investigated). For example, one set of models
assumes the local emission to be polarized either in the direction normal to the disc plane,
or perpendicular to the toroidal magnetic field. Obviously, in the case of partial local
polarization the observed polarization signal will be diluted by an unpolarized fraction, and
so the polarization degree of the final signal will be proportionally diminished. In another
set of models we assumed a lamp-post illuminated spot as the source of spot polarization
by reflection. For the spot shape we first assumed the spot does not change its shape during
its orbit, but then we also consider the spot decay with time. The relativistic effects can
be clearly identified and understood with these simple (and astrophysically unrealistic) toy
models, as they produce visible signatures in the observed polarization properties.

General relativistic effects present in our model can be split into two categories. Firstly,
it is the symmetry breaking between the approaching and the receding part of the spot orbit.
Doppler beaming as well as the light focusing contribute to the change of the observed flux,
especially at high view angles when the spot orbit is seen almost edge-on. Notice that the
Doppler boosting effect is off phase with respect to the light focusing effect, roughly by
0.25 of the full orbit at the corresponding radius. Here, the precise number depends on the
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Figure 2. As in the left panel of the previous figure, but now the spot emission is assumed to be
intrinsically polarized and recorded in two polarization channels, rotated by 90 degrees with respect
to each other (Zamaninasab et al., 2010).
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Figure 3. Trajectory of the image centroid during one revolution of the spot corresponding to the
previous figure.

black hole spin; it also depends on the inclination through the finite light-travel time from
different parts of the spot orbit towards the observer. Also, higher order images could be
important in case of almost edge-on view of the spot.

Secondly, rotation of the polarization plane along the photon trajectory also plays a role.
This effect is particularly strong for small radii of the spot orbit, in which case a critical
point occurs (Dovčiak et al., 2008). The observed polarization angle exhibits just a small
wobbling around its principal direction when the spot radius is above the critical point,
whereas it starts turning around the full circle once the radius drops below the critical
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Figure 4. Similar to Fig. 3, but now the spot is supposed to become elongated and eventually decay
due to the shearing motion in the accretion disc. Also the disc itself also to part of the emitted
radiation in this example. The case of a rotating black hole, a = 0.5 M , seen at θo = 45 deg. The
final track of the centroid image was extracted, taking into account both the spot and the underlying
disc contributions. As a result of this model set-up, the centroid wobbles slightly off the actual center
of the system, and the centroid motion evolves as the spot gradually disappears. Each orbit remains
just above the ISCO and the image of the corresponding track settles down within one or two full
orbits.

one. Notice that the exact location of the critical point depends on the black hole angular
momentum, in principle allowing us to determine its value.

However, a caveat (and a third point on the list) is caused by sensitivity of the critical
radius to the special relativistic aberration effects, especially at small view angles (i.e. when
the spot is seen almost along the rotation axis). This means that the moment when the
observed polarization angle starts rotating is sensitive to the underlying assumption of
a perfectly planar geometry of the disc surface.

Obviously the turbulent magnetic fields will play a role in diminishing the observed
polarization degree, and that part has been neglected in the present contribution. It is worth
noticing, however, that the impact of Faraday rotation on the observed polarization decreases
with the square of photon energy, and hence it is less restricting in the X-ray band.

By combining the above-mentioned effects together, Dovčiak et al. (2006) have shown
that the observed polarization degree is expected to decrease (in all their models) mainly
in that part of the orbit where the spot moves close to the region where the photons are
emitted perpendicularly to the disc. In this situation the polarization angle changes rapidly.
The decrease in the observed polarization degree for the local polarization perpendicular to
the toroidal magnetic field happens also in those parts of the orbit where the magnetic field
points approximately along light ray.

However, for the more realistic models the resulting polarization shows a much more
complex behaviour. Among persisting features is the peak in polarization degree for the
extreme Kerr black hole for large inclinations, caused by the lensing effect at a particular
position of the spot in the orbit where the polarization angle is changed. This is not visible
in the Schwarzschild case.
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The X-ray polarization lightcurves and spectra are still to be taken by future missions, but
one may envision even a more challenging goal connected with imaging of the inner regions
of accreting black hole sources. Obviously this is a truly distant future: imaging a black
hole shadow would require order of ten microsecond angular resolution. However, what
might be realistically foreseen is the tracking of the wobbling image centroid that a spot is
supposed to produce (Hamaus et al., 2009; Zamaninasab et al., 2010). With the polarimetric
resolution, the wobbling could provide an excellent evidence proving the presence of the
orbiting feature. See Figures 1– 4 for examples of the expected form of the spot images
and the corresponding centroid tracks in a simplified case of a model spot endowed with
an intrinsic polarization that remains constant in the co-orbiting frame.

Figure 1 assumes a spot rotating rigidly at constant radius near above the ISCO. Figure 2
corresponds to the case of intrinsically polarized spot radiation of which is recorded behind
the polarization filter. Orientation of the filter is fixed and indicated in the top-right corner
of the plot. Correspondingly, Fig. 3 shows the tracks of the image centroid. Albeit the
tracks are not identical in the two orientations of the polarization filter, the difference is
rather subtle. Notice that the project of detecting the centroid motion does not necessarily
have to be limited to the X-ray domain. In view of recent results on Sagittarius A* flares,
which have been reported in X-rays as well as in the near infrared, submillimiter and the
radio spectral bands (Eckart et al., 2008), the immediate vicinity of the black hole can be
probed by various techniques. The simultaneous time-dependent measurements equipped
with the polarimetric resolution seem to be a final goal of this effort.

In Figure 4, the contribution from a time-evolving evolving spot and the (axially symmet-
ric and stationary) background disc are taken into account. When put in this way, the spot
represents a travelling disturbance in the disc medium, while the effect of the background
disc causes a small but persisting offset of the centroid track towards the Doppler enhanced
side of the disc. The changes predicted for the observed signal are now visibly larger and
they are caused by the interplay between the relativistic effects and the shearing decay of
the spot.

It may be worth reminding the reader that the KY code, employed in our computations,
is publicly available, either as a part of the XSPEC package or directly from the authors
(Dovčiak et al., 2004). The current version allows the user to include the polarimetric
resolution and to compute the observational consequences of strong-gravity effects from
a Kerr black hole accretion disc. Within the XSPEC notation, this polarimetric resolution is
encoded by a switch defining which of the four Stokes parameters is returned in the photon
count array at the moment of the output from the model evaluation. This way one can test
and combine various models, and pass the resulting signal through the response matrices
of different instruments.

4 CONCLUSIONS

The task of detecting the relativistic effects and in this way determining the physical
parameters of the black hole systems seems to be feasible in near future. Among possible
ways to reach the goal, time-dependent polarization profiles, such as those expected from
orbiting spots, play an important role. In our work, the adopted approach is based on
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mapping the Kerr black hole equatorial plane onto the observer’s plane at radial infinity.
Off equatorial features are first projected onto the disc plane, hence imposing the vertically
averaged approximation. A conceptually similar problem of a vertically thick oscillating
torus has been studied recently by Horák and Bursa (2010), who employed a new three-
dimensional code and with its help examined different modes of the torus oscillation.

To conclude, the strong gravity effects can be revealed as the observable direction of
polarization is changed upon light propagation near a black hole. This may be relevant
not only for the inner regions of active galactic nuclei, for which we assumed the X-ray
reflection as a mechanism producing spectral and polarimetric features, but also for the
radiation coming from individual blobs of gas orbiting near the Galaxy Center, where an
interplay between synchrotron and inverse Compton mechanisms is expected to play a role.
Spots are among viable models capable to explain the occurrence about once per day of
flares from within a few milli-arcseconds of the supermassive black hole, Sagittarius A*.
Because of short time-scales the flares cannot be understood in terms of viscous processes in
the standard accretion disc with some appreciable accretion rate. It has been widely known
that the flares from the very vicinity of the black hole are highly polarized in near-infrared,
however, we are still lacking any polarimetric information on this object in X-rays.
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ABSTRACT
Relativistic current-carrying string loop moving axisymmetrically along the axis of
a Schwarzschild black hole is investigated as model of relativistic jet formation.
Acceleration of the string loop along its axis of symmetry shows regular and also
irregular dependence on initial conditions. We will apply the theory of chaotic
scattering on this problem.

Keywords: string loop – relativistic jets – chaotic scattering – Schwarzschild –
black holes

1 INTRODUCTION

Current-carrying string loop model is relativistic string with circular shape threaded on to
black hole axis. Tension of such string loops prevents their expansion beyond some radius,
while their worldsheet current introduces an angular momentum barrier preventing them
from collapsing into the black hole. The string loop oscillates in the x-z plane propagating
simultaneously in the y-direction. Such model could in a simplified way represent plasma
that exhibits associated string-like behaviour via dynamics of the magnetic field lines in the
plasma (Semenov et al., 2004) or due to thin isolated flux tubes of magnetized plasma that
could be described by an one-dimensional string (Spruit, 1981; Semenov and Bernikov,
1991).

From the astrophysical point of view, one of the most relevant applications of the axisym-
metric string loop motion is the possibility of strong acceleration of the linear translational
string loop motion due to the transmutation process in the strong gravity of extremely
compact objects that could well mimic acceleration of relativistic jets in Active Galactic
Nuclei (AGN) and microquasars (Jacobson and Sotiriou, 2009). Due to chaotic nature of
string loop equation of motion (Frolov and Larsen, 1999), the resulting acceleration in the
terms of the translational velocity or gamma factor shows strong dependence on the initial
conditions (Stuchlík and Kološ, 2009). In this article we would like to address this problem
from the point of view of chaotic scattering theory as it is presented in Chapter 5 of Ott
(1993) and Chapter 8 in Tél and M. (2006).
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Figure 1. Schematic picture of standard chaotic scattering of particle moving towards scattering
region of effective potential (left) and chaotic scattering of string loop on Schwarzschild black hole
(right). On the right, in the case of string loop, we assumed axial symmetry which allows to investigate
only one point of the loop; one point path can represent whole string loop movement. Trajectory of
the loop is then represented by the black curve on the picture, given in 2D x-y plot. If the string loop
is in equatorial plane y = 0, its overall loop circle will be seen in x-z plane.

Let us we have a particle with impact parameter b, entering some part of effective
potential (scattering region), and let’s the particle can escape the scattering region with some
scattering angle α, see Fig. 1 (left). We can define scattering angle (scattering function)
α(b) as a function depending on impact parameter b. Chaotic scattering theory is dealing
with the properties of scattering function α(b), especially when α(b) shows some “strange”
(chaotic behaviour). In our system of string loop winding around black hole, we will shoot
string loops from some position ys giving initial distance from the equatorial plane (impact
parameter), towards to the black hole (effective potential) and we will measure final gamma
factor γ (scattering angle), see Fig. 1 (right). Properties of the scattering function γ (ys)

for string loop dynamics in the vicinity of Schwarzschild black hole are examined in this
report.

2 CURRENT-CARRYING STRING LOOP

We study a string loop motion in the field of a black hole described by the Schwarzschild
metric

ds2
= −A(r) dt2

+ A−1(r) dr2
+ r2(dθ2

+ sin2 θ dφ2), A(r) = 1−
2M
r
. (1)

We use the geometric units with c = G = 1 and the Schwarzschild coordinates. In order to
properly describe the string loop motion, it is useful to use the Cartesian coordinates

x = r sin(θ), y = r cos(θ) . (2)
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The string loop is threaded on to an axis of the black hole chosen to be the y-axis. Due to the
assumed axisymmetry of the string motion one point path can represent whole movement
of the string. Trajectory of the string can be represented by a curve in the 2D x-y plane,
see Fig. 1 (right). The string loop can oscillate, changing its radius in the x-z plane, while
propagating in the y direction.

The string loop motion is governed by barriers given by the string tension and the
worldsheet current determining the angular momentum – these barriers are modified by the
gravitational field. Dynamics of the string is described by the action

S =
∫

d2σ
√
−h
(
µ+ habϕ,aϕ,b

)
, (3)

where ϕ,a = ja determines current of the string and µ > 0 reflects the string tension.
Axisymmetry of the string loop means that the scalar field ϕ = jσσ + jτ τ , where jσ and
jτ are constant components of the current.

The worldsheet stress-energy tensor density Σ̃ab can be expressed in the form (Jacobson
and Sotiriou, 2009)

Σ̃ττ
=

J 2

gφφ
+ µ , Σ̃σσ

=
J 2

gφφ
− µ , Σ̃στ

=
−2 jτ jσ

gφφ
, J 2

≡ j2
σ + j2

τ . (4)

As demonstrated in (Larsen, 1993; Carter and Steer, 2004), the string loop motion in
spherically symmetric spacetime can be described by the Hamiltonian

H =
1
2

grr P2
r +

1
2

gθθ P2
θ +

1
2

gφφ
(
Σττ

)2
+

1
2

gt t E2 . (5)

The equations of motion are given by the Hamilton equations

dXµ

dζ
=
∂H
∂Pµ

,
dPµ
dζ
= −

∂H
∂Xµ

. (6)

Due to symmetries of metrics (1) we have conserved quantities string loop energy E and
string loop angular momentum L , given by

−E = Pt = gt tΣ̃
ττ X t
|τ , L = Pφ = gφφΣ̃στ

= −2 jτ jσ . (7)

Hamiltonian is constant of the motion H = 0. The loci where the string loop has zero
velocity (ṙ = 0, θ̇ = 0) form boundary of the string motion

E = Eb(r, θ) =
√
−gt t gφφ Σ̃ττ . (8)

There are four different types of the behaviour of the energy boundary function for the
string loop dynamics in the Schwarzschild BH spacetime represented by the characteristic
E = const. sections of the Eb(r, θ) function in dependence on parameter J (Jacobson and
Sotiriou, 2009). We can distinguish them according to two properties: possibility of the
string loop to escape to infinity in the y-direction, and possibility to collapse to the black
hole. A detailed discussion can be found in Kološ and Stuchlík (2010).
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The first case corresponds to no inner and outer boundary – the string loop can be captured
by the black hole or escape to infinity. The second case corresponds to the situation with
an outer boundary – the string loop must be captured by the black hole. The third case
corresponds to the situation when both inner and outer boundary exist – the string loop is
trapped in some region forming a potential “lake” around the black hole. The fourth case
corresponds to an inner boundary – the string loop cannot fall into the black hole but it must
escape to infinity, see Fig. 2 in Stuchlík and Kološ (2009). For our following discussion
only the first and fourth case, corresponding to the possibility of the string loop to escape
to infinity in the y-direction, will be relevant.

3 STRING LOOP ASYMPTOTICAL EJECTION SPEED

Since the Schwarzschild spacetime is asymptotically flat, we will discuss the string loop
motion in the flat spacetime that enables clear definition of the acceleration process. The
energy of the string loop (8) in the flat spacetime, expressed in the Cartesian coordinates,
reads

E2
= ẏ2

+ ẋ2
+

(
J 2

x
+ x

)2

= E2
y + E2

x , (9)

where dot denotes derivative with respect to the affine parameter ζ . The energy related to
the motion in the x- and y-directions are given by the relations

E2
y = ẏ2, E2

x = ẋ2
+

(
J 2

x
+ x

)2

= (xi + xo)
2
= E2

0 (10)

where xi (xo) represent the inner (outer) limit of the oscillatory motion. The energy E0
representing the internal energy of the string loop is minimal when the inner and the outer
radii coincide, leading to the relation

E0(min) = 2J (11)

that determines the minimal energy necessary for escaping of the string loop to infinity.
Clearly, Ex = E0 and Ey are constants of the string loop motion and no transformation
between these energy modes is possible in the flat spacetime. However, in strong gravity in
vicinity of black holes or naked singularities, the internal kinetic energy of the oscillating
string can be transmitted into the kinetic energy of the translational linear motion (or vice
versa) due to the chaotic character of the string loop dynamics (Jacobson and Sotiriou,
2009; Stuchlík and Kološ, 2012a).

In order to get a strong acceleration in the Schwarzschild spacetime, the string loop has to
pass the region of strong gravity near the black hole horizon (scattering region), where the
string transmutation effect Ex ↔ Ey can occur. All energy of the transitional (Ey) energy
mode can be transmitted to the oscillatory (Ex) energy mode – oscillations of the string
loop in the x-direction and the internal energy of the string will increase maximally in such
a situation, while the string will stop moving in the y-direction. However, all energy of
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Figure 2. Scattering function γ (ys) (Lorentz factor at infinity) and time spend by the string loop
in the region close to the black hole horizon (scattering region) is calculated for energy E = 25 and
current J = 2. All trajectories starting from the rest with different initial position y0 ∈ (3, 13) while
x0 is calculated from Eb condition (8). Gray points correspond to the string loops collapsed to the
black hole, blue to the scattered and red backscattered string loops. Green are trajectories which were
not able to reach numerical infinity located at r = 1000 in given maximal integration time ζ = 200.
Examples of individual trajectories trajectories can be found in Fig. 1. Maximal acceleration for this
case (13) gives us the limiting gamma factor γmax = 6.25 (dashed line). We show the topical gamma
factor that is numerically found in the sample, γtop, and also the mean value γmean from the sample.
Figure on the left is only zoom in to the figure on the right for values y0 ∈ (4.7, 5.3) (first chaotic
band).

the Ex mode cannot be transmitted into the Ey energy mode – there remains inconvertible
internal energy of the string, E0(min) = 2J , being the minimal potential energy hidden in
the Ex energy mode.

The final Lorentz factor of the transitional motion of an accelerated string loop as observed
in the asymptotically flat region of the Schwarzschild spacetime is, due to (10), determined
by the relation (Jacobson and Sotiriou, 2009; Stuchlík and Kološ, 2012a)

γ =
E
E0
=

E
xi + xo

, (12)
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Figure 3. String loop unstable periodic orbit (UPO) compared to orbits obtained by slight change in
UPO initial conditions. Presented UPO, with initial starting position ys

.
= 5.05905, is responsible for

first chaotic band on left Fig. 2.

where E is the total energy of the string loop moving with the internal energy E0 in the
y-direction with the velocity corresponding to the Lorentz factor γ .

To see how the acceleration of the string loop in the field of Schwarzschild black hole
works, we will start to “shoot” string loops from position xs ∼25, ys ∈ (3, 13) with energy
E = 25 and current J = 2, see Fig. 1 (right). Maintaining the string loop energy E = 25
constant for all trajectories of ys ∈(3, 13) sample, we must calculate the starting coordinate
xs from energy condition (8). For every starting position ys (impact parameter) we will
measure final gamma factor, γ given by (12) and hence obtaining the gamma factor γ (ys)

(scattering function) as function of starting position.
As can be seen from Fig. 2., the scattering function γ (ys) have some regular scattering

regions, example is the region ys ∈(6, 10), where the final γ factor is changing continuously
with initial starting position ys. Such behaviour is expected by common sense, because it
is observed in many normal (non chaotic) scatterings. But for chaotic scattering there are
also chaotic regions (chaotic bands), example is the region ys ∈ (5.0, 5.1), where it is not
possible to predict final γ factor output from neighbouring initial starting points ys ± δ –
the scattering function γ (ys) is not continuous.

To find the origin of chaotic bands in our system, we can compare the scattering function
γ (ys) (upper row of pictures in Fig. 2) with the the integration time which the string loop
is spending in region close to the black hole horizon (scattering region) before escaping
to the infinity (lower row of pictures in Fig. 2). Now it is obvious, that trajectories from
chaotic bands are spending large amount of time in region close to the black hole; many
time crossing the equatorial plane in attempt to decide in which direction to go. The origin
of such string loop motion lies in the existence of the unstable periodic orbits (UPOs) in the
system, (Ott, 1993; Tél and M., 2006).

String loop at an unstable periodic orbit (UPO) will forever periodically oscillate close
to black hole horizon and never leave it, even if there is possibility for escape to infinity
from the energetic point of view (energy boundary function Eb is open to infinity in y
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Figure 4. Particle is coming from infinity with almost maximal speed γ ∼γmax. On the left we have
the case of motion for small values of current parameter J = 2 (1st type of energy boundary) when
the sting loop can collapse to the black hole, while on the right we have J = 12 (4th type of energy
boundary) when the string loop collapse is prohibited.

direction), see Fig. 3. But if the initial conditions for UPO are only sightly changed, the
string loop trajectory are completely different, see Fig. 3. We can not predict final output
from neighbouring initial conditions.

4 MAXIMAL EJECTION SPEED

During the acceleration, the energy of the oscillatory mode Ex is transmitted into trans-
lational energy Ey , but there always remains inconvertible internal energy of the string,
E0(min) = 2J (11), in the Ex mode. This gives limit on string loop maximal acceleration,
there exist the maximal Lorentz factor for string loop ejection speed as shown in (Stuchlík
and Kološ, 2012a)

γmax =
E

2J
. (13)

From this equation we see that large ratio of the string loop energy E versus its angular
momentum given by the current parameter J is needed for ultra-relativistic acceleration.
We can use small values of parameter J or large string loop energy E .

We have calculated 3000 trajectories for string loops with energy E = 25 and current
J = 2, with limiting gamma factor γmax = 6.25 (13), but observed top accelerated string
loop has only γtop

.
= 4.2, see Fig. 2. No trajectory with extreme acceleration γ ∼γmax was

found.
To see for better resolution in Fig. 2, if there can exist an extremely accelerated string

loop, hidden somewhere in the chaotic bands, we will examine more closely how such
trajectory will looks like. For γ = γmax the string loop will stop oscillating in the x
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direction and moves only along the y axis, with constant radius xi = xo = J , see (12).
Since the string loop motion is time reversible t ↔ −t , instead of escape, we will consider
string loop with γ ∼ γmax coming from the infinity towards to the black hole.

Now we can have different situations, depending on the value of the current parameter
J , see Fig. 4. If J is quite small, J ∼3 or smaller, the string loop will collapse to the black
hole horizon. Loops with γ ∼ γmax have very tiny oscillations in x direction and hence
can’t “jump over” black hole. Obviously this is the reason why we do not see extremely
accelerated string loop γ ∼γmax in Fig. 2 – such a trajectory had to be started from the black
hole. However, such a situation can occur on the naked-singularity spacetimes (Stuchlík
and Kološ, 2012b), where the region of strong gravity is not hidden by the event horizon,
and γ ∼ γmax can be obtained (Kološ and Stuchlík, 2013). If parameter J is large, typically
J > 10, extremely accelerated trajectories can not collapse to the black hole (it is prevented
by energetic conditions) but they are also too far from gravity well where the string loop
transmutation process occur.

5 CONCLUSIONS

The existence of chaotic bands in the scattering function γ (ys) is given by presence of
unstable periodic orbit in the system. There exists energetic limit on the maximal string
loop acceleration γmax. Large string acceleration along the y-axis can occurs only for large
E/2J ratios. It is easy to observe extremely accelerated string loop γ ∼γmax in the case of
naked singularity spacetime, where the horizon is missing.

It should be stressed that rotation of the black hole (naked singularity) is not a relevant
ingredient of the acceleration of the string loop motion due to the transmutation effect
(Stuchlík and Kološ, 2012a), contrary to the Blandford–Znajek effect (Blandford and Zna-
jek, 1977) usually considered in modelling acceleration of jet-like motion in AGN and
microquasars.
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ABSTRACT
We study transition from regular to chaotic motion in the neighbourhood of sta-
ble equilibrium point of a relativistic current-carrying string-loop located around
Schwarzschild black hole. We demonstrate successive transfer from the purely reg-
ular, periodic motion through quasi-periodic motion to purely chaotic motion of the
string loop, with increasing of its energy. We also calculated quasi-periodic funda-
mental frequencies, which are important for survival of corresponding KAM tori.
Using maximal Lyapunov exponent we show how the chaoticity of the string loop
motion changes with increase of the string loop energy.

Keywords: chaos and regularity – string loop – Schwarzschild – black holes –
Lyapunov exponent

1 INTRODUCTION

Relativistic current-carrying strings moving axisymmetrically along the axis of a Kerr black
hole have been studied in (Jacobson and Sotiriou, 2009) where it has been proposed that such
a string loop configuration can be used as a model of jet formation and acceleration in the
field of black holes in microquasars or active galactic nuclei. Tension of such string loops
prevents their expansion beyond some radius, while their worldsheet current introduces an
angular momentum barrier preventing them from collapsing into the black hole. It has
bee shown that string loop model could in a simplified way represent plasma that exhibits
associated string-like behaviour via dynamics of the magnetic field lines in the plasma
(Christensson and Hindmarsh, 1999; Semenov et al., 2004) or due to thin isolated flux
tubes of magnetized plasma that could be described by an one-dimensional string (Spruit,
1981; Semenov and Bernikov, 1991; Cremaschini and Stuchlík, 2013).

The astrophysical applications of the current carrying string loops have been focused on
the problem of acceleration of string loops due to the transmutation process (Jacobson and
Sotiriou, 2009), the role of the cosmic repulsion in the string loop motion has been investi-
gated for the Schwarzschild–de Sitter (SdS) spacetime in (Kološ and Stuchlík, 2010a). Since
the string loops can be accelerated to ultra-relativistic velocities in the deep gravitational
potential well of compact objects (Stuchlík and Kološ, 2009; Kološ and Stuchlík, 2010b;
Stuchlík and Kološ, 2012a,b), the string loop transmutation can be well considered as a
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process of formation of ultra-relativistic jets, along with the standard model based on the
Blandford–Znajek process (Blandford and Znajek, 1977). Here we concentrate out attention
on the inverse situation of small oscillations of string loops in vicinity of stable equilibrium
points in the equatorial plane of black holes that was proposed as a possible model of HF
QPOs observed in black hole and neutron star binary systems (Stuchlík and Kološ, 2012b).

2 CURRENT-CARRYING STRING LOOP MOTION

We study a string loop motion in the field of a black hole described by the Schwarzschild
metric

ds2
= −A(r) dt2

+ A−1(r) dr2
+ r2(dθ2

+ sin2 θ dφ2), A(r) = 1−
2M
r
. (1)

We use the geometric units with c = G = 1 and the Schwarzschild coordinates. In order to
properly describe the string loop motion, it is useful to use the Cartesian coordinates

x = r sin(θ), y = r cos(θ) . (2)

The string loop is threaded on to an axis of the black hole chosen to be the y-axis. Due to the
assumed axisymmetry of the string motion one point path can represent whole movement
of the string. Trajectory of the string can be represented by a curve in the 2D x-y plane. The
string loop can oscillate, changing its radius in x-z plane, while propagating in y direction.

The string loop motion is governed by barriers given by the string tension and the
worldsheet current determining the angular momentum – these barriers are modified by the
gravitational field. Dynamics of the string is described by the action

S =
∫

d2σ
√
−h(µ+ habϕ,aϕ,b) , (3)

where ϕ,a = ja determines current of the string and µ > 0 reflects the string tension.
The worldsheet stress-energy tensor density Σ̃ab can be expressed in the form (Jacobson

and Sotiriou, 2009)

Σ̃ττ
=

J 2

gφφ
+ µ , Σ̃σσ

=
J 2

gφφ
− µ , Σ̃στ

=
−2 jτ jσ

gφφ
, J 2

≡ j2
σ + j2

τ . (4)

We shall use for simplicity the dimensionless radial coordinate r/M → r , dimensionless
time coordinate t/M → t , and we make the rescaling Eb/µ→ Eb and J/

√
µ→ J .

As demonstrated in (Larsen, 1993), the string loop motion in spherically symmetric
spacetimes can be described by the Hamiltonian

H =
1
2

grr P2
r +

1
2

gθθ P2
θ +

1
2

gφφ
(
Σττ

)2
+

1
2

gt t E2 . (5)

The motion of string loops is given by the Hamilton equations in the form

dXµ

dζ
=
∂H
∂Pµ

,
dPµ
dζ
= −

∂H
∂Xµ

, (6)

where Xµ is 4-position, Pµ is the 4-momentum and ζ is the affine parameter.
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Due to symmetries of metric (1), conserved quantities occur for the string loop motion,
being the energy E and string the axial angular momentum L , given by

−E = Pt = gt tΣ̃
ττ X t
|τ , L = Pφ = gφφΣ̃στ

= −2 jτ jσ . (7)

The components of the current, jτ , jσ , give the angular momentum of the string loop
(Stuchlík and Kološ, 2012a).

Hamiltonian is constant of the motion, H = 0. The loci where the string loop has zero
velocity (ṙ = 0, θ̇ = 0) form boundary of the string motion

E = Eb(r, θ) =
√
−gt t gφφ Σ̃ττ . (8)

Function Eb(r, θ) is playing the role of effective potential, see discussion in (Stuchlík and
Kološ, 2012a), its shape is determined by current parameter J 2

= j2
τ + j2

σ .
There are four different types of the behaviour of the energy boundary function for the

string loop dynamics in the Schwarzschild BH spacetime represented by the characteristic
E = const sections of the function Eb(r, θ) in dependence on parameter J (Jacobson and
Sotiriou, 2009). We can distinguish them according to two properties: possibility of the
string loop to escape to infinity in the y-direction, and possibility to collapse to the black
hole. A detailed discussion can be found in Kološ and Stuchlík (2010a), here we shortly
summarize the results.

The first case corresponds to no inner and outer boundary – the string loop can be captured
by the black hole or escape to infinity. The second case corresponds to the situation with
an outer boundary – the string loop must be captured by the black hole. The third case
corresponds to the situation when both inner and outer boundary exist – the string loop is
trapped in some region forming a potential “lake” around the black hole. The fourth case
corresponds to an inner boundary – the string loop cannot fall into the black hole but it must
escape to infinity, see Fig. 2. in Stuchlík and Kološ (2009). For our following discussion
only the third case, corresponding to the string loop trapped in toroidal space along black
hole, will be relevant.

3 SMALL OSCILLATIONS AROUND MINIMA OF THE “EFFECTIVE
POTENTIAL”

It is convenient to examine systems which are constructed from regular part, H0, plus some
small non-linear perturbation, Hp,

H = H0 + εHp . (9)

As the non-linear parameter ε increases, it causes a non-linearity in the system. This
“regular+perturbation” separation in not possible in every given Hamiltonian, examples can
be given by string loop model (5), or by charged particles moving in combined magnetic
and gravitational field, (Kopáček et al., 2010).

However the “regular+perturbation” separation (9) of the Hamiltonian can be done in the
neighbourhood of any elliptic point of the Hamiltonian, (Arnold, 1978; Tabor, 1989). The
equilibrium points of the Hamiltonian (5) correspond to the local minima at Xα0 = (r0, θ0)
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Figure 1. Fundamental frequencies Ωr(r) and Ωθ (r), as function of radial coordinate r , for string
loop oscillations in equatorial plane of Schwarzschild BH. Resonant and another important radii, such
as marginally stable rms = 6, marginally bound rmb = 4 orbit for particle motion and marginally
stable sms

.
= 4.3 string loop position, are also given.

of the energy boundary function Eb(r, θ), (Arnold, 1978). It is useful to rewrite the
Hamiltonian in the form

H = HD + HP =
1
2

grr P2
r +

1
2

gθθ P2
θ + HP (r, θ) (10)

where we split H into the “dynamical” HD and the “potential” HP parts. Introducing a
small parameter ε � 1, we can rescale coordinates and momenta by the relations

Xα = Xα0 + ε X̂α , Pα = ε P̂α , (11)

applied for the coordinates α ∈ {r, θ}. We can make polynomial expansion of the Hamil-
tonian into the Taylor series and express it in separated parts according to the power of ε

H
(

P̂α, X̂α
)
= H0 + εH1

(
X̂α
)
+ ε2 H2

(
P̂α, X̂α

)
+ ε3 H3

(
P̂α, X̂α

)
+ · · · , (12)

where Hk is a homogeneous part of the Hamiltonian of degree k considered for the momenta
P̂α and coordinates X̂α . Recall that Pα occurs in the quadratic form in (5) and appears in
Hk only for k ≥ 2. If the string loop is located at a local minimum of the Eb(x, y) function,
we have HD = 0 and hence H0 = 0. The local extrema of the Eb function, given by (6),
imply also H1(X̂α) = 0.

We can divide (12) by the factor ε2 (remember H = 0) expressing the Hamiltonian in
the vicinity of the local minimum in the “regular” plus “perturbation” form

H = H2

(
P̂α, X̂α

)
+ εH3

(
P̂α, X̂α

)
+ . . . (13)

If ε = 0, we arrive to an integrable Hamiltonian

H = H2

(
P̂α, X̂α

)
=

1
2

∑
α

[
gαα

(
P̂α
)2
+ ω̃2

α

(
X̂α
)2
]

(14)
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representing two uncoupled harmonic oscillators. This “perturbation” approach corre-
sponds to the linearisation of the motion Eqs. (6) in the neighbourhood of local minima of
the function Eb(r, θ).

For the string loop motion represented by coordinates r = r0+δr, θ = θ0+δθ we obtain
the periodic harmonic oscillations determined by the equations

δ̈r + ω2
r δr = 0 , δ̈θ + ω2

θ δθ = 0 , (15)

where the locally measured frequencies of the oscillatory motion are given by

ω2
r =

1
grr

∂2 HP

∂r2 , ω2
θ =

1
gθθ

∂2 HP

∂θ2 . (16)

The locally measured angular frequencies

ω(r,θ) =
d f(r,θ)

dζ
(17)

are connected to the angular frequencies related to distant observers,Ω , by the gravitational
redshift transformation

Ω(r,θ) =
d f(r,θ)

dt
=
ω(r,θ)

P t , (18)

where P t
= d t / d ζ = −gt t E . If the angular frequenciesΩ(r,θ), or frequencies ν(r,θ), of

the string loop oscillation are expressed in the physical units, their dimensionless form has
to be extended by the factor c3/G M . Then the frequencies of the string loop oscillations
measured by the distant observers are given by

ν(r,θ) =
1

2π
c3

G M
Ω(r,θ) . (19)

Notice that this is the same factor as the one occurring in the case of the orbital and
epicyclic frequencies of the geodetical motion in the black hole spacetimes, (Török and
Stuchlík, 2005). Therefore, the order of magnitude and scaling of the frequencies of the
radial and vertical oscillations due to the mass of the central object is the same for both
current-carrying string loops and test particles.

In the Schwarzschild spacetime the harmonic oscillations have frequencies (16) relative
to distant observers given by expressions relatively very simple for both string loops and
test particles. Therefore, we can give the frequencies in dimensional form, as an example.
In the case of string loops they read

Ω2
r (r) =

3M2
− 5Mr + r2

r4 , Ω2
θ (r) =

M
r3 , (20)

while for the epicyclic motion of test particles there is

Ω2
r(geo)(r) =

M(r − 6M)
r4 , Ω2

θ(geo)(r) =
M
r3 . (21)
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Figure 2. Poincare surface of section r/pr (θ = π/2) for string loop trajectories in the neighbourhood
of minima of Eb(r, θ) function. Resonant (3:2, 1:1, 2:3, 1:2) and nonresonant (1:ϕ, r0 = 9) radii for
Ωθ (r) : Ωr(r) frequency ratios are depicted. Every picture contains multiple trajectories and every
(regular) trajectory is forming a ring. Trajectories are differing in initial conditions r, Pr, Pθ , but has
the same energy E and parameter J . They are bounded by the Eb function, see thick curve. We see
destruction of the initial tori for 1:1 and 1:2 and formation of new ones on Pr = 0 line. For another
resonances and also for nonresonant radii, the initial tori are preserved. The most resilient tori exist
for golden frequency ratio 1:ϕ.

It is quite interesting that the latitudinal frequency of the string loop oscillations in the
Schwarzschild or other spherically symmetric spacetimes equals to the latitudinal frequency
of the epicyclic geodetical motion as observed by distant observers – for details see (Stuchlík
and Kološ, 2012b).

The radial profiles of the string loop oscillations qualitatively differ from those related to
the radial oscillations of the geodesic, test particle motion in the Schwarzschild geometry,
especially there is a crossing point of the radial and vertical frequencies in the Kerr black
hole spacetimes for the string loop oscillation, while for the test particle oscillations such
a crossing is possible only in the Kerr naked singularity spacetimes, (Török and Stuchlík,
2005; Stuchlík and Schee, 2012).

4 TRANSITION FROM REGULAR TO CHAOTIC MOTION

According to the Kolmogorov–Arnold–Moser (KAM) theory (Arnold, 1978), a string loop
will oscillate in a regular quasi-periodic motion, if the parameter ε remains small. The
trajectory of such regular motion, restricted by energy (8) in its phase space r, θ, Pr, Pθ ,
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Figure 3. Transition from the regular to the chaotic regime of the string loop motion. The string
loop is starting from the rest near the local minimum located (for the string parameter J = 11) at
r0

.
= 9.64, θ0 = π/2, with successively increasing energy E . For every energy level we plotted

the string loop trajectory, the Poincare surface sections (r, Pr),(θ, Pθ ) and the Fourier spectrum for
both coordinates r and θ (Ott, 1993). The vertical lines in the Fourier spectra are the frequencies
ωr/(2π), ωθ/(2π).
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will lies on so called KAM torus. As the parameter ε grows, the condition ε � 1 becomes
violated, the nonlinear parts in the Hamiltonian become stronger, and the string loop enters
the nonlinear, chaotic regime of its motion.

The Birkhoff theorem, ensuring the existence of a canonical transformation (11) putting
a Hamiltonian system into normal form (13) up to a remainder of a given order, is violated,
if for our two degrees of freedom (2 DOF) (5)

k1 ω1 + k2 ω2 = 0 , k1 + k2 < 4 . (22)

So for resonances 1:1, 1:2, 2:1 we can not construct normal forms, with frequencies ω1, ω2.
It does not mean that at resonant radii the motion in the vicinity of minima will not be
regular, we still have regular motion close to the minima of Eb, but the former KAM tori
are destroyed for 1:1, 1:2, 2:1, see Fig. 2.

Increase of non-linearity and chaoticity of a system moving in vicinity of its local stable
equilibrium point is caused by increase of its energy. We demonstrate successive transfer
from the purely regular, periodic motion through quasi-periodic motion to purely chaotic
motion of a string loop in Fig. 3. The Poincare surface sections in the phase space and the
Fourier transforms of the oscillatory motion in the radial and latitudinal direction clearly
represent the transfer to the chaotic motion. Of course, in the entering phase of the motion
with lowest energy, the string loop motion is fully regular and periodic and is represented
by appropriate Lissajousse figures.

It is convenient to represent the transfer to the chaotic system by an appropriate Lyapunov
coefficient. The chaotic systems are sensitive to initial conditions and we can follow two
string loop trajectories separated at the initial time t0 by a small phase-space distance d0.
As the system evolves, the two orbits will be separated at an exponential rate if the motion
of the string loops is in the chaotic regime. The Lyapunov exponent (Ott, 1993)

λL = lim
d0→0
t→∞

(
1
t

ln
(

d(t)
d0

))
(23)

is describing the two orbits separation and hence the measure of chaos. The transition
from the regular to the chaotic regime of the string loop motion is clearly visible due to the
evolution of the maximal Lyapunov exponent (Ott, 1993) demonstrated in Fig. 4. We clearly
see strongly increasing measure of chaos with increasing energy of the moving string loop
when some critical energy is crossed. This effect is genuine to the dynamical systems and
we observed it also for the string loops in the spherically symmetric braneworld spacetimes,
(Stuchlík and Kološ, 2012b).

5 CONCLUSIONS

System will oscillate in a quasi-periodic motion, if the parameter ε remains small. As
the parameter ε grows, the condition ε � 1 becomes violated, the nonlinear parts in the
Hamiltonian become stronger, and we enter the nonlinear, chaotic regime of its motion.
Increase of non-linearity of a system moving in vicinity of its local stable equilibrium point
(minimum) is caused by increase of its energy. The transition from the regular to the chaotic
regime of the motion is the solution to the “focusing” problem of the string loop trajectories
discussed in (Jacobson and Sotiriou, 2009).
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ABSTRACT
We present a detailed comparison of several integration schemes applied to the dy-
namic system consisting of a charged particle on the Kerr background endowed with
the axisymmetric electromagnetic test field. In particular, we compare the perfor-
mance of the symplectic integrator with several non-symplectic routines and discuss
under which circumstances we should choose the symplectic one and when we should
switch to some other scheme. We are basically concerned with two crucial, yet op-
posing aspects – accuracy of the integration and CPU time consumption. The latter
is generally less critical in our application while the highest possible accuracy is
strongly demanded.

Keywords: black hole physics – test particle dynamics – magnetic fields – sym-
plectic integrators – deterministic chaos

1 INTRODUCTION

In our recent study of the test particle dynamics (Kopáček et al., 2010; Kovář et al., 2010)
we faced the problem of numerical integration of relativistic dynamic system described
by the non-integrable equations of motion. Such system generally allows for both regular
and chaotic orbits. We first applied several standard ‘all-purpose’ integration routines to
realize that they are unable to provide sufficiently accurate results concerning the long-term
integration. Seeking for the scheme which would better fit our problem and provide more
reliable results we finally employed symplectic integrators which are specifically designed
for the integration of Hamiltonian systems.

In this contribution we compare performance of a symplectic routine with several non-
symplectic integrators. We treat separately the case of regular and chaotic motion because
we may expect different results. Particular system which we employ in the survey consists
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of a charged test particle orbiting above the outer horizon of the Kerr black hole which
is immersed into the asymptotically uniform magnetic field aligned with the rotation axis
(Wald, 1974). Specification of this system along with the detailed study of the charged
particle dynamics is given by Kopáček et al. (2010). Current paper is based on the results
previously published in the Ph.D. thesis of one of the authors (Kopáček, 2011).

We recall that in the given system the particle of rest mass m is characterized by its
specific angular momentum L̃ ≡ L/m, specific energy Ẽ ≡ E/m and specific charge
q̃ ≡ q/m. Black hole of mass M is described by the spin parameter a and specific test
charge Q̃ ≡ Q/M . Background magnetic field is specified by its asymptotic strength
B0. Inspecting the equations of motion we reveal that q̃, Q̃ and B0 are not independent
variables and we only need to specify values of products q̃ Q̃ and q̃ B0 to characterize the
system. We use standard Boyer–Lindquist coordinates xµ = (t, r, θ, ϕ) and denote the
canonical four-momentum asπµ = (πt , πr , πθ , πϕ). Standard kinematical four-momentum
pµ and canonical four-momentum are related as follows pµ = πµ− q Aµ where Aµ stands
for the electromagnetic four-potential. Integration variable is affine parameter λ defined
as λ ≡ τ/m where τ denotes the proper time of the particle. We use geometrized units
G = c = 1 and scale all quantities by the mass of the black hole M .

We are dealing with the integration of the autonomous Hamiltonian system1 whose
equations of motion form a specific subclass of first order ordinary differential equations
(ODEs). Two fundamental characteristics of the Hamiltonian flow should be highlighted

• conservation of the net energy (Hamiltonian) of the system
• conservation of the symplectic 2-form ω = dπµ ∧ dxµ.

Here d stands for the exterior derivative and ∧ denotes the wedge product.
In the classical mechanics the natural choice of the generalized coordinates leads to

the Hamiltonian which may be interpreted as a net energy of the system. This is true
even for the system of a charged particle in the external electromagnetic field where the
generalized momenta-dependent potential is introduced (Goldstein et al., 2002, Chap. 8).
Time-independence of the Hamiltonian is thus equivalent to the conservation of the net
energy of the system. In the general relativistic version of this system, however, we employ
super-hamiltonian formalism (Misner et al., 1973, Chap. 21) in which the energy of the
particle E , as a negatively taken time component of the canonical momentum E ≡ −πt ,
is conserved by virtue of the Hamilton’s equations it selves providing that the super-
hamiltonian doesn’t depend on the coordinate time t . On the other hand the value of the
super-hamiltonian H = pµ pµ/2 is by construction equal to −m2/2 where m is the rest
mass of the particle. Conservation of the super-hamiltonian in the system is thus equivalent
to the conservation of the rest mass of the particle.

1 Equations of motion may be equivalently expressed in terms of Lorentz force (Misner et al., 1973, p. 898)
which leads to the set of four second order ODEs. Numerical experiments, however, led us to the conclusion that
this formulation is computationally less effective compared to the Hamiltonian formalism. Generally for a given
numerical scheme with the same parameters (resulting in similar accuracy of the integration) the integration of
Hamilton’s equations was roughly two times faster. Moreover, the symplectic methods may only be applied in the
Hamiltonian formulation of the problem.
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Figure 1. Regular trajectory of a charged test particle (q̃ Q̃ = 1, L̃ = 6 M and Ẽ = 1.6) on the
Kerr background (a = 0.9 M) with Wald magnetic field

(
q̃ B0 = 1M−1)

. The particle is launched at
r(0) = 3.68 M , θ(0) = 1.18 with ur (0) = 0.

By conservation of the symplectic 2-form ω we mean that its components ωαβ in the
basis

(
dt (λ),dr(λ),dθ(λ),dϕ(λ),dπt (λ),dπr (λ),dπθ (λ),dπϕ(λ)

)
do not change during

the evolution of the system and for arbitrary value of the affine parameter λ (i.e. at each
point of the phase space trajectory) we obtain

ωαβ =

(
0 −I
I 0

)
, (1)

where I stands for the four-dimensional identity submatrix and 0 is the null submatrix of
the same dimension. Conservation of the symplectic structure expresses in the abstract
geometrical language the fact that the evolution of the system is governed by the Hamil-
ton’s canonical equations. See Arnold (1978) for details on the geometric formulation of
the Hamiltonian dynamics.

It would be highly desirable to use such integration scheme which would conserve both
quantities which are conserved by the original system. It appears, however, that this is not
possible for non-integrable systems and one has to decide whether he employs the scheme
which conserves energy or rather the integrator which keeps the symplectic structure.
The latter are referred to as symplectic integrators and by many accounts provide most
reliable results in numerical studies involving Hamiltonian systems. See Yoshida (1993)
for a comprehensive review on symplectic methods.

We list all the schemes we employ in this survey specifying their basic properties. We shall
actually compare one symplectic method with several standard integrators. Code names we
use for the schemes are those which denote the routines in the MATLAB system.
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Figure 2. Comparison of the integrators in the case of regular trajectory. Symplectic GLS provides
the most reliable results for λ &105. Bottom panel shows that besides secular drift in energy (artificial
excitation or dumping of the system; plot shows absolute values, however) it also oscillates on the
short time scale.
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• GLS – Gauss–Legendre symplectic solver, s-stage implicit Runge–Kutta (RK) method,
crucial control parameter: stepsize h.
• ODE87 – Dormand–Prince 8th-7th order explicit RK scheme, the most precise RK
method

(
local error of order O

(
h8)), adaptive stepsize – RelTol is set to control the local

truncation error.
• ODE113 – multistep Adams–Bashforth–Moulton solver, based on the predictor-corrector
method (PECE), RelTol is set.
• ODE45 – Dormand–Prince seven stage 5th-4th order method of explicit RK family,
adaptive stepsize, default integration method in MATLAB and GNU OCTAVE, error is
controlled by RelTol.

Apart from ODE113 all other routines are single-step (Runge–Kutta like) methods which
means that they express the value of the solution in the next step in terms of a single preceding
step. They may be related explicitly or implicitly. Multistep methods in contrast employ
more preceding steps to calculate the solution at the succeeding point. RelTol (relative
tolerance) is a parameter which specifies the highest allowed relative error in each step of
integration (local truncation error) when the adaptive stepsize methods are used. In the case
of exceeding the RelTol the stepsize is reduced automatically to decrease the error.

We comment that for general non-separable Hamiltonians only implicit symplectic
schemes may be found. Explicit methods exist for separable Hamiltonians and for some
special forms of non-separable ones (Chin, 2009). Besides other implications of the usage
of the implicit methods we note that they necessarily involve some type of iterative scheme
which is typically of a Newton’s type and thus requires to supply Jacobian of the right hand
sides of the equations of motion which is the Hessian matrix of the second derivatives of
the super-hamiltonian H in our case.

integrator ∆|E |/|E | tcomp[h] RelTol stepsize h

GLS ≈10−10 14 N/A 0.25
ODE87 ≈10−9 14 10−14 adaptive
ODE113 ≈10−3 1/3 10−14 adaptive
ODE113 ≈10−3 1/4 10−6 adaptive
ODE45 ≈10−3 1/4 10−14 adaptive

Table 1. Comparison of the performance of several integration schemes for the regular trajectory
integrated up to λ = 4× 105 (see Fig. 2). Quantity tcomp expresses the CPU time in hours.

Another inconvenience connected with the symplectic methods is their failure to conserve
the symplectic structure once the adaptive stepsize method would be used (Skeel and Gear,
1992). Therefore the stepsize has to be set rigidly for a given integration segment when
using symplectic method. Several workarounds have been suggested to combine benefits
of symplectic solvers and variable stepsize algorithms – e.g. Hairer’s symplectic meta-
algorithm (Hairer, 1997) which is, however, only applicable to the separable Hamiltonians.
In our context one would considerably suffer from the fixed timestep only in the case of
highly eccentric orbits.
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Figure 3. Chaotic trajectory of a charged test particle (q̃ Q̃ = 1, L̃ = 6 M and Ẽ = 1.8) on the
Kerr background (a = 0.9 M) with Wald magnetic field (q̃ B0 = 1M−1). The particle is launched at
r(0) = 3.68 M , θ(0) = 1.18 with ur (0) = 0.

2 PERFORMANCE OF THE INTEGRATORS

First we integrate the cross-equatorial regular trajectory depicted in Fig. 1. Comparison of
the performance of the integrators is plotted in Fig. 2. We plot relative deviation of the
particle’s specific energy Ẽ from its initial value rather than the error in super-hamiltonian
because the discussion of motion in Kopáček et al. (2010) was mostly held in terms of Ẽ
whose impact upon the trajectory is thus more familiar to us. We calculate the current value
of Ẽ from the super-hamiltonian H , while the value of πt remains truly constant regardless
the integrator since the Hamilton’s equation for its evolution is simply dπt/dλ = 0.

Stepsize of GLS is set in such a way that the integration consumes roughly the same
amount of the CPU time as it does for ODE87 with RelTol = 10−14 to make the results
comparable. The global accuracy of the GLS solver could be further increased by reducing
the stepsize while decreasing the RelTol hardly improves the secular accuracy of non-
symplectic methods here (we have compared RelTol = 10−6 and RelTol = 10−14 results
for ODE113 obtaining global errors of the same orders in both cases).

integrator |∆E |/|E | tcomp [h] RelTol stepsize h

GLS ≈10−9 14 N/A 0.25
ODE87 ≈10−6 14 10−14 adaptive
ODE113 ≈10−3 1/6 10−14 adaptive
ODE113 ≈10−3 1/6 10−6 adaptive
ODE45 ≈10−3 1/2 10−14 adaptive

Table 2. Comparison of the performance of several integration schemes for the chaotic trajectory
integrated up to λ = 4× 105 (see Fig. 4).
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Figure 4. Comparison of the integrators in the case of chaotic trajectory. For λ & 5× 103 the GLS
dominates in accuracy over other schemes with the difference rising steadily. In the upper panel we
compare ODE113’s outcome for two distinct values of the RelTol parameter. ODE45 is not shown to
avoid overlapping of its plot with ODE113 curves.
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We observe that the error of GLS rises steeply at the beginning and ODE87 is considerably
better for some amount of time. However then the error of GLS almost saturates while
ODE87’s error keeps growing significantly. For λ & 105 which corresponds to ≈ 1000
revolutions around the center2 the GLS scheme becomes more accurate than ODE87 with
the difference further rising steadily. We conclude that in the case of regular trajectory
ODE87 is appropriate for short-term accurate integration and GLS for any longer accurate
integrations. On the other hand for fast, though inaccurate computations one employs
ODE113 on all time scales. See Table 1 for the summary.
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Figure 5. We show how the accuracy of the integration crucially affects the appearance of the Poincarè
surfaces of section of a single regular trajectory with q̃ Q̃ = 1.76, L̃ = 4.02 M and Ẽ = 1.619855 on
the Kerr background a = 0.55 M with Wald magnetic field q̃ B0 = 1.92 M−1. Particle is launched
at r(0) = 2.5012 M , θ(0) = 1.0447 with ur (0) = 0. We distinguish downward crossing with uθ ≥0
(black point) from the upward crossing with uθ < 0 (red point) in the surfaces of section.

2 For instance for M = 106 M� the azimuthal proper period of a given particle reads Tϕ ≈103 s in SI.
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In the case of the chaotic trajectory (depicted in Fig. 3) the dynamics changes in favour
of symplectic solver GLS. In Fig. 4 we observe that in this case the symplectic scheme
is superior to the others in even more convincing manner than it was in the regular case.
Although the initial phase when the error induced by GLS rises more steeply than that of
ODE87 is also present, it turns over very quickly and for λ & 5 × 103 (≈ 50 azimuthal
revolutions) the GLS turns out to be more accurate. The difference then rises much faster
compared to the regular case.

Experiments with ODE113 reveal that here we obtain distinct (though not sharply) errors
by changing the RelTol. Difference of eight orders of magnitude in RelTol resulted in
roughly one order difference in global error. We also note that chaotic regime induces
disorder in short-time oscillations of the global error (see bottom panel of Fig. 4). We
summarize that the chaotic regime accents the supremacy of the symplectic scheme which is
to be applied on all time scale here (except very short integrations where ODE87 dominates)
to obtain the most accurate results. For fast though inaccurate calculation one would switch
to ODE113 as before. Results for the chaotic orbit are summarized in Table 2.

From a practical point of view we demand high accuracy of the long-term integration
when constructing Poincarè surfaces of section. By theory the intersection points with
regular trajectory form one-dimensional curve in the section plane. In Fig. 5 we observe,
however, that the points may be dispersed over the considerable area if the global error
in energy rises causing artificial excitation/dumping of the system. Symplectic integrator
GLS provides the most reliable outcome, with ODE87 the curve is blurred significantly but
the interpretation remains unambiguous. With ODE113 the curve is further blurred and
using ODE45 solver we obtain completely unreliable outcome which could easily lead to
the incorrect interpretation of a trajectory as a chaotic one. We note that we intentionally
chose such trajectory which is highly sensitive to the relative errors in dynamic quantities
since it itself spans small range of coordinate and momenta values.

3 CONCLUSIONS

We confirm that the symplectic integrators are the method of choice in the case of long-term
integration of the Hamiltonian system which in our case consists of a charged test particle
orbiting around the Kerr black hole with stationary and axisymmetric electromagnetic
test field. Its supremacy over non-symplectic methods is even more apparent in the case of
chaotic orbits, where the global accuracy of non-symplectic methods decreases rapidly. The
accuracy of the symplectic integrator could be further increased by reducing the stepsize
(at the cost of the computational time). On the other hand the performance of the non-
symplectic solvers is not considerably affected by reducing the local error (controlled by
the RelTol parameter in our case) across the wide range of the values. Once the integrator
does not fit the problem (= is not symplectic) there is no effective way to control the global
error and even the extremely small local truncation errors do not ensure reliable outcome
on a long time scale.

We suggest that our results are not problem-specific and may be generalized to the
broad class of the systems. In particular, we suppose that symplectic integrators provide
outstanding results in the chaotic regime of any non-integrable Hamiltonian system.
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ABSTRACT
We introduce a pseudo-Newtonian gravitational potential describing the gravitational
field of Schwarzschild black hole surrounded by a quintessential field. We also
show, how the geodesic motion reflected in behaviour of general relativistic effective
potential can be alternatively described by the pseudo-Newtonian one.

Keywords: Schwarzschild black hole – quintessence – geodesic motion – pseudo-
Newtonian potential

1 INTRODUCTION

Starting in late seventies, the conception of the so-called pseudo-Newtonian (PN) gravita-
tional potential came up in astrophysics (Abramowicz, 2009). Those days, the observational
‘discover’ of the black hole Cygnus-X seemed to be widely accepted in astrophysics. Conse-
quently, general relativity started to play its role in investigation of astrophysical processes.
Even these days, however, many astrophysicists neglect the effects of general relativity, be-
ing focused on processes relatively far from sources of gravity, where the general relativistic
effects can be assumed as small corrections to Newtonian calculations only. On the other
hand, coming closer to the objects, like compact objects (black holes, neutron stars, etc.)
are, the Newtonian calculations lose its validity and general relativity approach must be
applied. Accretions discs (toroidal fluid structures) circling round black holes represent the
impressive example of this. The accretion disc treated within Newtonian theory does not
exhibit the cusp, through which the matter flows onto the black hole. Just the application of
general relativistic description shows up the existing cusp (Abramowicz et al., 1978, 1980)
Thus, in dependence on studied problems, it is crucial to decide correctly, which approach
to apply. The exact and general, but complex general relativistic one, or the approximative,
simpler and perhaps more intuitive Newtonian one, but failing in strong gravity very close
to compact objects.

In 1980, however, B. Paczyński and P. Wiita introduced the gravitational potential of
spherically symmetric static object – the source of strong gravity (e.g. Schwarzschild black
hole) ψPW = −1/(r − 2G M/c2) in the paper (Paczyński and Wiita, 1980). Being used
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instead of the standard Newtonian one ψN = −G M/r in the Newtonian theory, such a
gravitational potential ‘helps’ the Newtonian approach to describe also some features of
processes taking place close to Schwarzschild black holes.

There is a variety of different approaches in defining the PN gravitational potential
describing different kinds of black holes and various aspects of their spacetime structure
(Paczyński and Wiita, 1980; Chakrabarti and Khanna, 1992; Nowak and Wagoner, 1991;
Artemova et al., 1996; Semerák and Karas, 1999; Mukhopadhyay, 2002; Mukhopadhyay
and Misra, 2003; Ghosh and Mukhopadhyay, 2007; Abramowicz, 2009). In the case of
Schwarzschild spacetimes, it seems (Artemova et al., 1996) that to reflect the accretion
disc properties, the most convenient is the original Paczyński–Wiita gravitational potential
ψPW. It enables us to calculate positions of the marginally stable and bound circular orbits
at the same radii as follow from the general relativistic calculations.

Originally, the Paczyński–Wiita potential was introduced by a guess, when attempting
to include the Schwarzschild radius r = 2G M/c2 into the Newtonian gravity. There
is, however, a simple heuristic method for derivation of the PN potentials that yields the
Paczyński–Wiita potential. The same method was used for the derivation of the PN gravita-
tional potential for the equatorial plane of rotating Kerr black hole as well (Mukhopadhyay,
2002). Then the position of the marginally stable circular orbit corresponds to the posi-
tion determined by using the general relativistic approach, and differences in positions of
marginally bound circular orbit determined in both the ways are relatively small.

Standardly, this kind of approach, i.e. using the common Newtonian routines and for-
mulas, but with the PN gravitational potential is called the PN approach. The gravity,
however, is not the only widely manifesting force in the universe influencing the astro-
physical processes. Cosmological observations of distant Ia-type supernova explosions
indicate an accelerating universe. Starting at the cosmological redshift z ≈ 1, the acceler-
ated expansion should be generated by some appropriate form of the so-called dark energy
(S. Perlmutter et al., 1999; Riess and et al., 2004). These results are in accord with a large
variety of cosmological tests including gravitational lensing, galaxy number counts, etc.
(Ostriker and Steinhardt, 1995). The recent detailed studies of the cosmic microwave back-
ground (CMB) anisotropies indicate that the energy content of the dark energy represents
∼74.5% of the energy content in the observable universe, and the sum of energy densities is
very close to the critical energy density ρcrit, corresponding to almost flat universe (Spergel
D. N. et al., 2003, 2007).

A large variety of possible candidates for the dark energy is discussed these days. First
of all, there is the standard possibility represented by the cosmological constant Λ. Its
Lorentz invariant form enables interpretation in terms of a ground state or vacuum energy
of quantum fields (Dolgov et al., 1988). The energy density ρΛ, which can be associated
with the cosmological constant, remains unchanged during the cosmic expansion, and its
pressure to energy density ratio (equation of state) is w = pΛ/ρΛ = −1.

Further, there is a variety of scalar fields evolving outside of their energy minimum,
called quintessence, which possess a time varying energy density and equation of state with
−1 < w < −1/3 (Zlatev et al., 1999). Such a scenario can be realised by light scalar
field coming from modified f (R) gravity (Nojiri and Odintsov, 2003), string-inspired
cosmologies (Tsujikawa and Sami, 2001), cosmology with extra dimensions (Neupane,
2004), or by k-essence being a scalar field with a non-canonical kinetic term (Armendariz-
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Picon et al., 1999). Similar behaviour is exhibited by the coupled dark energy, i.e. a scalar
field coupled to the dark matter. For example, Chaplygin gas or its generalization called
quartessence explain both dark energy and dark matter from an unified physical origin
(Kamenshchik et al., 2001).

Several years ago, trying to have an effective PN tool even for processes with the dark
energy, we constructed the PN gravitational potential describing the gravitational field of
Schwarzschild black hole in the universe with the cosmological constant Λ (Stuchlík and
Kovář, 2008; Stuchlík et al., 2009). The general relativistic description of such a configu-
ration is represented by the Schwarzschild–de Sitter spacetimes (Stuchlík, 1990; Stuchlík
et al., 2000; Stuchlík, 2005). Here we follow this kind of investigation, introducing the PN
gravitational potential for the gravitational field of Schwarzschild black hole immersed in a
quintessence, representing an alternative explanation of the dark energy.

2 SCHWARSCHILD BLACK HOLE SURROUNDED BY QUINTESSENCE IN
GENERAL RELATIVITY

In the standard Schwarzschild coordinates (t, r, θ, φ) and the geometric system of units
(c = G = 1), the spacetime of Schwarzschild black hole surrounded by a quintessence
field is determined by the static and spherically symmetric Kiselev solution of the Einstein
equations (Kiselev, 2003)

ds2
= −g(r) dt2

+
dr2

g(r)
+ r2(dθ2

+ sin2 θ dφ2) , (1)

with the lapse function

g(r) = 1−
2M
r
−

α

r3w+1 , (2)

where M is the mass parameter of the spacetime,w is the quintessential state parameter and
α is the normalization factor. The quintessential parameter relates the quintessence pressure
p and density ρ in the equation of state p = wρ and takes values from −1 < w < −1/3,
whereas the limiting value w = −1 corresponds to the dark energy not being quintessence
but the vacuum energy (cosmological constant). Moreover, in that case of α = Λ/3, where
Λ is the cosmological constant, the solution (1) reduces exactly to the Schwarzschild–
de Sitter solution. Comparison of both the solutions is given in the paper (Fernando,
2013).

In the following, we focus on the exemplary case w = −2/3, when the metric lapse
function takes a simple form

g(r) = 1−
2M
r
− αr . (3)

Singularities of the lapse function giving the black-hole and cosmological horizons are
determined by the equation r − 2M − αr2

= 0 and are located at

rbh =
1−
√

1− 8αM
2α

, rc =
1+
√

1− 8αM
2α

. (4)
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Both the horizons exist for 1 − 8αM > 0, separating the spacetimes into two dynamic
regions and one static region between rbh and rc. For M = 1/(8α), both the horizons
coalesce at the radius rbh = rc = 1/(2α).

The heuristic method (see, e.g. Mukhopadhyay (2002)), enabling us to define the PN
gravitational potential is based on the knowledge of exact general relativistic relations for the
angular momentum per particle mass Lc and energy per particle mass Ec of particles moving
along circular geodesics. Then, we have to realize that in Newtonian physics, the Newtonian
gravitational potentialψN for central gravitational fields is related to the Newtonian angular
momentum per particle mass lN,c of free particles moving along circular orbits by the
relation dψN/dr = l2

N,c/r3. Now, the main idea in definition of the PN gravitational
potential ψ is in the transposition lN,c → Lc/Ec ≡ lc,1 thus we define the potential by the
relation

ψ =

∫
L2

c
E2

c r3 dr . (5)

Note that the described method of PN determination works quite well in spherically symmet-
ric (non-rotating) spacetimes, or in the equatorial plane of axially symmetric (rotating, e.g.
Kerr or KdS) spacetimes. However, it is much more complicated task to find a PN potential
for regions outside the equatorial plane of the rotating spacetimes, because of a non-trivial
influence of the dragging of inertial frames. There is a need to upgrade this method (Ghosh
and Mukhopadhyay, 2007) or use completely different way of the gravitational potential
definition (Semerák and Karas, 1999).

3 CIRCULAR GEODESICS IN GENERAL RELATIVITY

In general relativity, the circular geodesics at rc correspond to extrema of the effective
potential, given in the equatorial plane of static and spherically symmetric spacetimes in
terms of the metric coefficients gφφ and gt t , and the angular momentum L , by the relation
(Misner et al., 1973)

V 2
eff = −gt t

(
1+

L2

gφφ

)
, (6)

thus, for the Schwarzschild-quintessential spacetime, it is given by the relation

V 2
eff =

(
1−

2M
r
− αr

)(
1+

L2

r2

)
. (7)

1 The quantity lc = Lc/Ec plays its role only when the PN (e.g., Paczyński–Wiita) gravitational potential is
defined. Later, standard Newtonian quantities in Newtonian theory are used along with the PN gravitational
potential.
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The extrema condition for this effective potential, ∂r Veff |rc = 0, enables us to determine
the constants of motion related to the circular geodesic orbits in the form

L2
c =

r2
c
(
αr2

c − 2M
)

αr2
c − 2rc + 6M

, (8)

E2
c = −

2
(
αr2

c − rc + 2M
)2

rc
(
αr2

c − 2rc + 6M
) . (9)

Dropping now the subscript ‘c’, the PN gravitational potential (5) can be written in the form

ψ = −
r

2
(
r − 2M − αr2

) +K , (10)

where K is an integration constant having no physical meaning, but enabling to specify a
proper form of the potential ψ . Here, we demand that for α = 0 expression (11) takes the
form of the Paczyński–Wiita potential. This corresponds to the choice K = 1/2 and the
PN gravitational potential can be then written in its final form

ψ = −
2M + αr2

2
(
r − 2M − αr2

) . (11)

We can see that the potential diverges at the radii of horizons and reflects the position of
the static radius rs (corresponding to the local maximum of this potential) of the Kiselev
spacetime (see Fig. 1).

Along with the horizons, the static radius is the crucial feature of the Kiselev spacetime.
It is the radius where the gravitational attraction of the central black hole is balanced by the
cosmic repulsion caused by the quintessence matter. In more details, test particle can stay
at rest at that radius – its angular momentum must vanish, Lc = αr2

c − 2M = 0, which
determines the static radius as

rs =
√

2M/α . (12)

4 TEST-PARTICLE MOTION IN THE PN POTENTIAL

In the case of central gravitational fields, test-particle motion is confined to central planes
(e.g. to the equatorial plane). Following the Newtonian physics, the radial equation of the
Keplerian equatorial motion can be written in the form

1
2

(
dr
dt

)2

= e − veff , (13)

where e is the total PN energy per particle mass (energy hereafter) and veff is the PN
effective potential per particle mass (effective potential in the following) defined by the
standard relation

veff = ψ +
l2

2r2 . (14)
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Figure 1. Pseudo-Newtonian gravitational potential for the gravitational field of Schwarzschild black
hole surrounded by the quintessence with w = 2/3. The solid curve represents the behaviour of the
limit case α = 0 of the potential, the dashed curve shows its behaviour for α = 1/10 M−1, while
the dotted curve represents the limit case α = 1/8 M−1, when the horizons coalesce at the radius
r = 4 M.

Here,ψ is the PN gravitational potential (11) and l is the PN angular momentum per particle
mass (angular momentum hereafter) defined in Section 2. The circular Keplerian orbits
(geodesics) correspond to the effective potential extrema.2 Thus, their angular momentum
is governed by the function

l2
c = −

r3(αr2
− 2M

)
2
(
αr2 − r + 2M

)2 , (15)

and the corresponding energy (effective potential extreme) is governed by the function

ec =
2
(
αr2
+ 2M

)2
− r

(
3αr2

+ 2M
)

4
(
αr2 − r + 2M

)2 . (16)

2 Keplerian circular motion can be equivalently given also directly from the PN gravitational potential (11) using
relations for orbital and angular velocities, and for the angular momentum and energy

v =

(
r

dψ
dr

)1/2
, Ω =

(
1
r

dψ
dr

)1/2
, lc =

(
r3 dψ

dr

)1/2
, ec =

1
2
v2
+ ψ .

However, in some sense, the method of effective potential (Misner et al., 1973), combining the gravitational
potential and potential of centrifugal forces, is more general, illustrative and convenient for our case.
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5 CONCLUSION

In general, the PN gravitational potential, being used instead of the Newtonian one in the
Newtonian approach represents very useful tool to describe the test particle motion (and not
only that problem, as we show, e.g. in (Stuchlík et al., 2009)) within the Newtonian physics,
taking into account some of the most important features following from general relativity
effects when strong gravitational field is present. It also enables us to simply incorporate
cosmic repulsive forces (caused by the cosmological constant, quintessence matter, etc.)
into our consideration, having an impact on astrophysical phenomena as well.

Few years ago, we presented the construction of the PN gravitational potential for the
gravitational field of Schwarzschild black hole in the universe with cosmological constant
(Schwarzschild–de Sitter spacetime) and tested its accuracy. We showed that the PN gravi-
tational potential defined for the Schwarzschild–de Sitter spacetimes reflects precisely the
existence of the static radius, diverges at both the black-hole and cosmological horizons,
and predicts locations of both the inner and outer marginally stable and marginally bound
circular orbits at the same radii as those following from the full general relativity (Stuchlík
and Kovář, 2008). The energy difference between the inner and outer marginally stable
circular orbit, which plays a crucial role in the theory of thin discs, has been shown very
close to the relativistic result. We also demonstrated that the PN potential can be well
applied even for description of thick discs orbiting Schwarzschild–de Sitter black holes;
it provides exact determination of the equipressure (equipotential) surfaces governing the
shape of toroidal discs in equilibrium configuration (Stuchlík et al., 2009).

Here, we have presented the construction of the PN gravitational potential describing the
gravitational field of a Schwarzschild black hole surrounded by a quintessence representing
source of the accelerated expansion of the universe. We have presented its form that reduces
to the well-known Paczyński–Wiita gravitational potential (describing the gravitational field
of the pure Schwarzschild black hole) when the quintessence parameter α tends to zero (the
quintessence is not present). The PN gravitational potential diverges on both the horizons
and reflects the position of the static radius as well.

In the future, we plan to deeply go through the testing of accuracy of the presented
potential in the same way as we have done for the case of the PN gravitational potential for
the Schwarzschild black hole gravitational field and cosmological constant, summarized
above.
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ABSTRACT
The time in which we live is characterized by an ever-increasing amount of data
that we are able to explore and acquire. In all fields of science we could find some
examples. Processing large volumes of information thus brings the requirement for
engaging computational science. With increasing demands on data processing is
advantageous to use new technology and start using parallel computation. Effective
use of current technology requires from programmers new knowledge and skills.
They meet with the countless new programming models and tools. In this article, we
summarize the most commonly used programming models and points which good
programming model should meet. The article also try to highlight the reasons why
one should use a structured parallel programming.

Keywords: patterns – parallel computing – many-core systems – heterogeneous
systems – programming models – parallel software development

1 INTRODUCTION

There is constantly increasing number of sold devices (smartphones, tablets, etc.) which
enable parallelized applications. Not only availability of these systems is on the rise, also
computational demands of applications are increasing that leads to the development and
usage of certain methods. We are at a time when multi-core or many-core architectures are
becoming mainstream.

In physics, the need to begin using the accelerated calculations appears in several areas.
For example, the arrival of new types of radio telescopes such as the SKA (Square Kilometre
Array) requires use of High Performance Computing (HPC). HPC is also often needed in
areas of research such as cosmology (mostly real-time processing area) and galaxy evolution,
pulsars, star and planet formation, etc.

Computational science where a massive amounts of calculations are processed is no
longer a domain of supercomputers or distributed platforms. For scientific computations is
now possible to use besides CPU specified coprocessors (e.g. Xeon Phi) and the graphic
cards. Each of these devices has its own advantages and disadvantages. The choice either to
use the CPU or many-core coprocessors is not easy and is often dependent on a computing
problem.
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It turns out that to get better performance, it is necessary to abandon the serial pro-
gramming and start from the beginning using the parallel program development approach.
Generally, it appears as the best to use a so-called heterogeneous approach. That is a division
of the algorithm into several parts and calculations, which are distributed among different
computational units (hosts and devices).

Nevertheless, the programmer should keep in mind that his main goal is to write scalable
code, i.e. code should be able to use any amount of available parallel hardware.

Software engineers designing parallel programs have several options how to proceed.
Their choice is often dependent on their skills, experience and intended objective of the
application itself.

One of the easiest way is to rewrite few lines of the existing serial program or add specific
lines (e.g. Directives) and use compilers ability of auto-parallelization. The other way is
to use structured patterns of parallelism. The use of these patterns has it’s advantages,
such as ease of readability, scalability, extensibility and so on. Most patterns avoid non-
deterministic behaviour as well as the serial programming, which is deterministic by nature.

Using current programming tools may nevertheless lead to worse results because of
unnecessary serialization. Among programmers, this is known as a serial trap. Recognition
and avoidance is perhaps the hardest part of parallel programming.

For example imagine you have two workers and four tasks. One worker take the first
two tasks and the second worker the rest. The two workers can run in parallel as long as
there is no dependency between the four tasks. But if there is some, like the third task need
results from the first task, the system need to run serially. Moreover sometimes you can
find that each task can take different time to process. If you cannot divide further then the
total running time of the program is the sum of the dependent tasks or the task that takes
longest. This is the span of example above.

We are in an era in which to get any enhancements in application performance we must
use parallel thinking. Together with the above mentioned patterns finding serial traps is
deemed as a first step to think parallel.

2 MOTIVATION

Hardware is parallel by nature because of several techniques like instruction level parallelism
(ILP), pipelining, vector instructions, hyperthreading, etc. but CPU architects and designers
made it so that CPU seemed serial on the outside. CPUs started to use implicit parallel
operations long ago without programmers explicitly telling them to do so. That is so-called
serial illusion. More about this problem could be found in literature.(McCool et al., 2008)
Programmers depended on this illusion for a long time and now this approach does not lead
to any significant improvement as is shown in the right bottom of the Fig. 1. Moreover the
performance of serial program will not grow over time as show dark blue and green color
in the figure.

To achieve improvement programmer can either rewrite the sequential code with special
directives or use the compiler’s automatic parallelization tools. However it is not universally
working and mostly it comes with no significant improvements as is shown in the Fig. 1.
The right bottom part of the figure indicates that the individual benchmark tests are rather
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Figure 1. The figure is showing the trends over the years with emphasizing of the year 2006 when
the multi-core era comes. The number of transistors is raising with accordance to the Moore law on
the other hand clock rates nowadays are stalling. Data comes from CPU DB.(Stanford VLSI Group,
2014)

flat when the auto-parallelization is allowed.1 The gain in performance per core using
auto-parallelization over the years is not particularly a trend and therefore exploitation of
the parallel nature of the hardware generally leads to the need of using the explicit parallel
programming.(Herb Sutter, 2005) We are not saying to not use the benefits coming of the
rather easy way to run application quicker. We want only stress that auto-parallelization is
not always the best choice and in time scale not most effective.

Data in the Fig. 1 come from CPU DB (Danowitz et al., 2012) which gather information
about CPU performance since 1973. In the figure could be observed several trends. Firstly
we can see that since 1975 until 2006 the clock rate is exponentially increasing. In past the
increase of clock rate was enough to improve performance of CPU until it reached so-called
power wall, memory wall2 and ILP wall3. In the figure since year 2006 can be spotted
continual stagnation of clock rate, thermo-design power and performance per Watt. Still

1 The CPU2006 Spec is an industry standard benchmark providing data on CPU performance since beginning
of the multicore era around year 2006. To fully understand the nature of these benchmarks we address to read
(Stanford Performance Evaluation Corporation, 2014; Subcommittee, 2006).
2 The growth of off-chip memory is not as fast as the on-chip memory. The programmer nowadays cannot ignore
the overall data rate (bandwidth) and the time between submitted and satisfied request (latency).
3 The hardware is parallel in nature and for example if two close instructions do not depend on each other, they
can be ran parallelly. However the useful limit for most real problems is around six instructions.
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according to Moore law the amount of transistors in CPU is growing exponentially and that
is why the performance per Watt is slightly going up as demonstrate dark blue color in the
Fig. 1.

Secondly, we can see that around year 2004 the increase in thermal design power (green
dots) gets to its maximum that can be effectively air-cooled (power wall). That was the most
severe issue which appeared and led to creation of multi-core architectures.

Nevertheless, the theoretical performance continues to grow. It is clear that a programmer
to obtain better results need to move from just rewriting the serial algorithm (refactoring4)
and using the auto-parallelization. Nowadays to improve the code and be able to scale it in
time developers must explicitly specify parallel algorithms.

In many cases the way to think parallel and use new programming models seems the best
solution. However with that more problems arises: knowledge of new models, finding the
most time consuming chain of tasks which needs to be run serially (span5), etc.

Finally learning parallel programming side by side with serial programming is not the
best approach. Teaching how to think parallel needs to be done from the beginning and
alone to avoid certain serial assumptions. Structured approach to parallel programming is
essential and it is one of the best strategies for writing effective scalable program. Using a
set of patterns with standard names help to design such programs and also aid in readability.

3 PARALLEL SOFTWARE DEVELOPMENT

The process of software development today provides various methodologies that have been
proven over time. Their structure often helps to set a few questions that are advised to
answer before starting programming, or before refactoring. (Figure 2 shows the three most
commonly used methods).

These questions may specify for example, exactly what do we want from the application?
On which architectures will it run or which hardware is available (this decision is mostly
set during the design phase, see 2)? Where are the input data and what type of data have we
available? These are the types of questions that will assist us in the software development
process and possibly help us find the span of the program.

During the implementation phase, it is also preferable to use development environments
and tools such as profilers, debuggers, etc. This fact is highlighted in documentation from
nVidia (best practice guide).(nVidia, 2014)

In its essence nVidia best practice guide introduces four elements: assess, parallelize,
optimize and deploy (APOD cycle) which is very similar to the spiral methodology. There
should be emphasized that this is a cyclical process and it is always necessary to verify the
results with a control test in the verification phase.

Finally, McCool et al. (2008) highlight problems that must be discussed in process of
parallel algorithm design:

4 It is true that this is sometimes sufficient, and certainly one of the simplest ways to parallelize code.(Fowler
et al., 1999)
5 Span refers to the longest set of tasks that must run serially. This chain in computer science is known as a
critical path.
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Figure 2. The three basic approaches applied to software development methodology frame-
works.(Wikimedia Foundation, 2014)

• “Total amount of computational work.
• Critical path (span).
• Total amount of communication.”

In question of amount of computational work we believe in heterogeneous approach, i.e.
systems with different kind of units. Every programmable unit has its own specifics and it
is favourable to use certain kind depending on its abilities.

Critical path refers to recognition and finding chains of instruction which needs to be run
serially as mentioned above in Section 2.

The last mentioned concerns the fact that memory access and communication between
cores costs time. How much time it costs depends on the location of the work unit (locality).
Relatively low cost are threads which run on the same core, more cost those which share
an on-chip memory and even more cost those in another socket. It may indicate that the
problem is memory bandwidth limited and not computational limited.6 Finally we can say
that finding the bottleneck of the program is the most critical problem.

4 PROGRAMMING MODELS AND PATTERNS

Effective management of communication and redistribution of work is required for meaning-
ful parallel programming. Usage of patterns should facilitate both. Programming models
that enable effective implementation of patterns are also necessary.

Unfortunately none of the most widely used programming languages are adapted for
needs of parallel programming. However, if we look at the amount of serial code already
written, it would be a shame not to reuse it. For this reason, most parallel models are in fact
an extension of the current programming practices and tools.

6 In the case of heterogeneous systems must be also taken into account the bandwidth of the PCI Express bus.
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Intel Cilk Plus

C/C++ programming language extension.

Intel Threading Building Blocks

C++ template library for parallelism.

Domain specific libraries

Intel Integrated Performance Primitives (IPP)

Intel Math Kernel Library (MKL)

cuFFT, CUBLAS, CURAND, . . .

Established standards

Message Passing Interface (MPI)

OpenMP

OpenCL

OpenACC

Research and Development

Intel Array Building Blocks (ArBB)

Intel Concurrent Collections (CnC)

River Trail (JavaScript engine)

CUDA

C/C++ programming language extension.

Figure 3. Examples of most frequently used programming models and libraries for parallel program-
ming.(McCool et al., 2008)

In Figure 3 are examples of most frequently used extensions and libraries in industry
and science. Despite the fact that each of them has its advantages and disadvantages, it is
important to know that the models have the following properties:

• performance,
• productivity,
• portability.

For portability there is need to extend functionality and performance across operating
systems and compilers. Programming languages like Java, C and C++ are portable and
most of the programming models in the Fig. 3 too. Just CUDA language does not fulfil this
criteria. To be able to compile the CUDA code you need to use nVidia compiler and for
running the program a CUDA enabled graphics card is required.

In general, using abstractions like elemental functions or array operations is preferable.
This approach is better in general than a program specifically suited to concrete hardware
although such a program is very efficient. For example each Intel’s processor today can
support different vector instruction set extension, that is why using abstraction to specify
vectorization7 instead of vector intrinsic8 is better. However, we must keep in mind that in
some cases programming for the specific pieces of hardware is desired.

In terms of productivity models we should make it possible to debug and maintain
programs as well as easily implement a range of suitable algorithms and maintain compos-
ability. By that we mean the ability to use a feature regardless to other features used in the
linked library or elsewhere in the code. Consider a case where this is not true and using
for statement somewhere in the code meant that you cannot use if statement anywhere.
It’s something we do not want, but unfortunately can happen.

7 Vectorization is a concrete form of parallelism enabling simultaneous computing using vector hardware by
instructions such as MMX, SSE, and AVX.
8 Intrinsics seems like a function in programming language but are supported directly by the compiler.
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Oversubscription is another quite common problem, i.e. each use of parallelism could
define a new set of threads and so exceed the number of threads that system can handle.

To obtain reasonable improvement of performance we must sustain scalability. In other
words, generating more parallelism when the problem grows larger is crucial. This can
be achieved by so called data parallelism and each programming model in the figure is
supporting it. For example Cilk Plus has a “special” array notation extensions for C and
C++ (see, algorithm 1) which explicitly specify data parallelism operations. The ArBB has
even simpler solution as long as the data are stored in the appropriate containers. Such
abstractions built in the models make possible to use regular data parallelism9 explicitly
and not rely only on the compilers.

Algorithm 1: Examples of vector addition in different programming models.
Serial vector addition in C:

for i ← 0 to 100000 do
a[i] = b[i] + c[i];

end

Parallel vector addition in Cilk Plus:

a[0:100000] = b[0:100000] + c[0:100000];

Parallel vector addition in ArBB:

input : a
output: b, c

a = b + c;

Above mentioned models and usage of elementary functions or compiler directives such
as pragma, are helping to vectorize the code and work in the context of regular data
parallelism. At last, sometimes to support vectorization, change of the data layout (array of
structures or structure of arrays) is preferable.

Selecting the programming model is not an easy task, despite the fact that some models
overlap its functionality, but not portability. Next factor may be the hardware on which will
the application run. Other may be the requirement for fine control of architecture or vice
versa ease of implementation (see Fig. 4).

Structured programming using patterns is now commonly used and proven method of
development of applications in various fields such as natural language learning (Kamiya,
2012), software architectures (Buschmann et al., 1996; Schmidt et al., 2000) and so on. Per-
haps that is why they have became best practice tool among the software engineers.(Gamma
et al., 1994)

In computer science there are three different strategies: Design Patterns, Implementation
Patterns and Algorithmic Strategy Patterns. The first two mentioned have rather abstract
character. The first of them can be classified as a high level and the second as a low level

9 That is a subcategory of data parallelism which is mapped onto vector instruction of the hardware.
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Figure 4. Here is shown the relevance between easy of implementation and fine control from
different models provided by Leibnitz Supercomputing Centre in their guide for users.(Leibnitz
Supercomputing Centre, Bavarian Academy of Sciences and Humanities, 2014-07-21)

(tied to specific hardware). Algorithmic Strategy pattern lies somewhere between these
two, and thanks to it’s semantic behaviour and ease of implementation appears to be best
choice for most of the cases. Because they affect how your algorithms are organized, we
strongly believe that algorithmic strategy patterns are good for learning and teaching parallel
thinking. These design in literature are usually so-called algorithmic skeletons.(Cole, 1989;
Aldinucci and Danelutto, 2007)

Lots of Algorithmic Strategic Patterns nowadays are already implemented in the program-
ming models and often knowledge of these patterns helps to teach programming languages.
Still, knowledge and use of algorithmic skeletons exceeds certain programming languages
and models in being more general.

Examples of the three most useful and frequently used patterns are: nesting, mapping
and fork-join. Nesting is often used in sequential programming and is important for a
modular approach. Yet its transfer to the parallel programme is a challenge. The key
to implement map pattern is a division of the problem into smaller tasks and run those
parallelly. This is called embarrassing parallelism. Problems where this pattern can be
used are well scalable and lead to efficient vectorization. Last pattern: fork-join divide tasks
recursively into simpler ones and combines them later. In fact, it is one of the pillars of the
strategy divide and conquer in computational science.

All these mentioned patterns highlight that to get good scalable code we need to pay
attention to the data parallelism method. In other words, dividing problems into smaller
ones with possibility to grow with increasing overall problem size.

Generally, the programmer should use a structured approach for better readability, de-
bugability and scalability of the code. Patterns should be used as basic building blocks. They
also become a common vocabulary when discussing ways of how to solve computational
problems. In addition, patterns are independent of the usage of a particular programming
model, programming language or even computing architecture.
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5 SHORT OVERVIEW OF PARALLEL PROGRAMMING MODELS

The following paragraphs briefly describe selected programming models satisfying above
mentioned properties.

Cilk Plus

Cilk Plus is an extension of the programming languages C and C++ it supports task and
data parallelism. It is very easy to use and compared to sequential code it differs only in
adding keywords (i.e. cilk_sync) and array section notation. This characteristic is mainly
due to the fact that Cilk Plus is embedded into most compilers. In fact if you run Cilk Plus
program with one thread it will act as the special keywords are ignored (serial illusion).
Other features are:

• “Fork-join to support irregular programming patterns and nesting.” (McCool et al., 2008)
• Parallel loops to support patterns such as map.
• Explicit vectorization by using array section like pragma simd.
• “Load balancing via work-stealing.” (McCool et al., 2008)

For more information and specification see Intel (2014a).

Threading Building Blocks (TBB)

This is a C++ library under development by Intel. Because it is not a language extension
it is supported by all standard (ISO C++) compilers. In order to run the blocks of code in
parallel TBB requires the use of functors.

Just as Cilk Plus TBB supports parallelism based on the tasking model. In other words,
the individual operations are considered as tasks and are dynamically allocated to each core
using the library run-time engine and automating efficient use of the CPU cache.

TBB provides following features:

• “Template library supporting regular and irregular parallelism.” (McCool et al., 2008)
• Support for certain pattern (fork-join, scan, reduction).
• Load balancing via work-stealing.

Advantage of TBB is in algorithms that are written with respect to the minimum assump-
tion of data structure. The literature describes TBB as part of generic programming and
C++ standard template library (STL) is a good example of its philosophy.

Commonly seen in practice are the use of the individual components of TBB with
other programming models such as OpenMP and Cilk Plus. For more information and
specification see Intel (2014b).

Open Multi-Processing (OpenMP)

OpenMP is a standard developed by a consortium of major brands in hardware and soft-
ware. This is an application programming interface (API) that supports shared memory
multiprocessing programming. OpenMP is based on using a set of compilation directives
or pragmas in Fortran, C and C++.
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In its essence OpenMP is based on multi-threading model, i.e. the main thread divide
and run multiple threads sub-dividing the task among them. This property is especially
beneficial for certain types of algorithms and memory hierarchy platforms often seen in
high-performance computing (HPC). The main problem of the explicit threading model is
mentioned oversubscription.

One of the advantages over Cilk Plus and TBB is the ability to explicitly manage threads
using the thread ID and the number of threads to control how the work is mapped to threads.
This feature is often used by HPC programmers. On the other hand, it is a limiting factor
too. It prevents system to determine the load balancing.

In summary OpenMP interface provides following features:

• “A tasking model that supports execution by an explicit group of threads.
• Creations of group of threads that jointly execute a block of code.
• Support for atomic operations and locks.”(McCool et al., 2008)

For more information and specification see OpenMP Architecture Review Board (2014).

Array Building Blocks (ArBB)

ArBB is compiler independent C++ library supporting data parallelism on different ar-
chitectures such as multi-core processors, graphics processing unit (GPU), Intel Many
Integrated Core Architecture (MIC). The parallelization is mediated by a set of operations
which operate on a group of data. It provides following features:

• “High level programming language with elemental functions and vector operations.
• Offloading to attached many-core architectures without changing source code.” (McCool
et al., 2008)
• Safe by default: preventing parallel programming bugs such as deadlocks and data races.

This programming model is classified as a high-level programming language. It was
developed by Intel as experimental library. During October 2012 was announced discon-
tinuation of development in favour of Cilk Plus and TBB.(Intel, 2011)

Open Computing Language (OpenCL)

OpenCL is an open standard maintained by the Khronos group and is used for writ-
ing programs that can execute on heterogeneous machines such as CPUs, GPUs, field-
programmable gate arrays (FPGAs) and others.

OpenCL framework divides computing system into two parts: CPU (host) and accelera-
tors (devices). Therefore, it includes a kernel language10 and an API for data management
and execution of the kernels on the devices from the host.

As a low-level language is primarily designed for performance programming. This fact
requires more effort from programmers to specify computations into detail and often write
different versions of kernel for each class of devices.

Although OpenCL is not considered as mainstream among programmers as the previous
models, we believe that it has it’s place among others and should not be ignored. For more
information and specification see OpenMP Architecture Review Board (2014).
10 The language is a standard C99 including certain features.
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Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing platform using primarily GPUs. It is developed by NVIDIA
Corporation and its implemented on graphics cards of their brand.

For software engineers CUDA is programming model accessible through a set of acceler-
ated libraries, compilation directives (OpenACC) and as an extension of C/C++ and Fortran
languages with using specific compilers.

Despite this programming model does not comply the requirement for portability and
works only on certain devices, is it highly extended and used in computational science.
For example third party wrappers are available for Python, Java, Perl, MATLAB, and also
software Mathematica have its native support.

In addition to OpenCL, CUDA is for beginning programmers a little easier and has very
good documentation on the Web (nVidia, 2014-08-01). This and the above mentioned are
arguments why it should be one of the options in deciding which programming model to
use.

CONCLUSION

Mainstream computers and other electronic devices around us are changing in its essence
and to be able to get better performance and scalability of old or new software we need
to switch to a new concept of thinking. Furthermore, as we have shown in Section 2
programmers cannot rely on so-called serial illusion any-more. We reached the three walls:
power wall, memory wall and ILP wall. Because of that we are driven by the need to change
to the explicit parallel programming.

Today in computer science and in science in general are increasingly used heterogeneous
systems, i.e. systems based on multi-core and many-core computational units. To make
better use of these machines, it is good to use parallel programming models. Some examples
of programming models and their properties we described in Section 5.

Furthermore, to achieve effective programming, it is the best practice to use parallel
patterns. They are easily scalable, debugable and among computational scientists settle
basic vocabulary. That is why we want to stress that usage of parallel patterns and models
is for a computational scientist inevitable.

ACKNOWLEDGEMENTS

I would like to express my special thanks to Karel Adámek and Anna Janíková for their
valuable and constructive suggestions during writing this paper and for many consultations.
The presented work was supported by EU grant Synergy CZ.1.07./2.3.00/20.0071

REFERENCES

Aldinucci, M. and Danelutto, M. (2007), Skeleton-based parallel programming: Functional and
parallel semantics in a single shot, Computer Languages, Systems & Structures, 33(3-4), pp.
179–192, ISSN 14778424.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996), Pattern-Oriented
Software Architecture Volume 1: A System of Patterns, Wiley, Chichester ; New York, ISBN
9780471958697.



154 J. Novotný

Cole, M. I. (1989), Algorithmic Skeletons: Structural Management of Parallel Computation, The MIT
Press, London : Cambridge, Mass, ISBN 9780262530866.

Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P. and Horowitz, M. (2012), CPU DB: recording
microprocessor history, Communications of the ACM, 55(4), pp. 55–63, URL http://dl.acm.
org/citation.cfm?id=2133822.

Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. (1999), Refactoring: Improving the Design
of Existing Code, Addison-Wesley Professional, Reading, MA, 1st edition, ISBN 9780201485677.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, Reading, Mass, 1st edition,
ISBN 9780201633610.

Herb Sutter (2005), The free lunch is over: A fundamental turn toward concurrency in software, Dr.
Dobbs Journal, 30(3), URL http://www.gotw.ca/publications/concurrency-ddj.htm.

Intel (2011), Intelr Array Building Blocks, URL https://software.intel.com/en-us/
articles/intel-array-building-blocks.

Intel (2014a), Intelr CilkTM Plus, URL https://software.intel.com/en-us/node/522579.
Intel (2014b), Intelr Threading Building Blocks (Intelr TBB) User Guide, URL https:
//software.intel.com/en-us/node/506045.

Kamiya, T. (2012), Japanese Sentence Patterns for Effective Communication: A Self-Study Course
and Reference, Kodansha USA, New York, ISBN 9781568364209.

Leibnitz Supercomputing Centre, Bavarian Academy of Sciences and Humanities (2014-07-21), LRZ:
SuperMIC - intel xeon phi cluster, URL http://www.lrz.de/services/compute/supermuc/
supermic/.

McCool, M., Reinders, J. and Robison, A. (2008), Structured Parallel Programming: Patterns for
Efficient Computation, Morgan Kaufmann, Amsterdam, 1st edition, ISBN 9780124159938.

nVidia (2014), CUDA C programming guide, URL http://docs.nvidia.com/cuda/cuda-c-programming
-guide/index.html.

nVidia (2014-08-01), CUDA toolkit documentation, URL http://docs.nvidia.com/cuda/
index.html.

OpenMP Architecture Review Board (2014), OpenMP.org, URL http://openmp.org/wp/.
Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F. (2000), Pattern-Oriented Software Architecture

Volume 2: Patterns for Concurrent and Networked Objects, Wiley, Chichester England ; New York,
ISBN 9780471606956.

Stanford Performance Evaluation Corporation (2014), SPEC - standard performance evaluation cor-
poration, URL http://www.spec.org/.

Stanford VLSI Group (2014), CPU DB - looking at 40 years of processor improvements | a complete
database of processors for researchers and hobbyists alike., cPUDBv1.2-11-30-gcbf16c8, URL
http://cpudb.stanford.edu/.

Subcommittee, S. C. (2006), SPEC CPU2006 benchmark descriptions, ACM SIGARCH Computer
Architecture News, 34(4), pp. 1–17, URL http://dl.acm.org/citation.cfm?id=1186737.

Wikimedia Foundation (2014), Software development process, URL http://en.wikipedia.org/
w/index.php?title=Software_development_process&oldid=627519437.

http://dl.acm.org/citation.cfm?id=2133822
http://dl.acm.org/citation.cfm?id=2133822
http://www.gotw.ca/publications/concurrency-ddj.htm
https://software.intel.com/en-us/articles/intel-array-building-blocks
https://software.intel.com/en-us/articles/intel-array-building-blocks
https://software.intel.com/en-us/node/522579
https://software.intel.com/en-us/node/506045
https://software.intel.com/en-us/node/506045
http://www.lrz.de/services/compute/supermuc/supermic/
http://www.lrz.de/services/compute/supermuc/supermic/
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
http://openmp.org/wp/
http://www.spec.org/
http://cpudb.stanford.edu/
http://dl.acm.org/citation.cfm?id=1186737
http://en.wikipedia.org/w/index.php?title=Software_development_process&oldid=627519437
http://en.wikipedia.org/w/index.php?title=Software_development_process&oldid=627519437


Proceedings of RAGtime 10–13, 15–17/20–22/15–17/14–16 September, 2008/2009/2010/2011, Opava, Czech Republic 155
Z. Stuchlík, G. Török and T. Pecháček, editors, Silesian University in Opava, 2014, pp. 155–163

Comparison of the CDM halo and MOND
models of the Magellanic Cloud motion in the
field of Milky Way

Jan Schee and Zdeněk Stuchlík
Institute of Physics, Faculty of Philosophy & Science, Silesian University in Opava,
Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

ABSTRACT
There is an explanation of the rotation curves in the periphery of spiral galaxies based
on MOdified Newtonian Dynamics (MOND). Considering the motion of Magellanic
Clouds in the gravitational field of Milky Way, we compare predictions of the CDM
halo model with the cosmic repulsion term included to those obtained in the frame-
work of the MOND theory. Our results demonstrate that the predictions of the CDM
halo and MOND models differ very substantially, especially in the case of the Large
Magellanic Cloud motion.

Keywords: MOND – galactic motion – Milky Way – Magellanic Clouds

1 INTRODUCTION

An alternative to the model of Cold Dark Matter (CDM) explanation of the rotation curves
in the periphery of spiral galaxies, based on MOdified Newtonian Dynamics (MOND)
(Milgrom, 1983), is realized on the Newtonian level, modifying the Newton dynamic law
by introducing an additional term depending on the ratio of acceleration and some critical
acceleration a0 below which the Newton second law in not valid. The MOND dynamic law
relating the acceleration a of a test particle with mass m and the acting force F takes the
general form

mµ(x)a = F , x =
a
a0
, (1)

where we assume that the modification is given by the function µ(x) such that µ(x) ∼ 1
for x � 1 and µ(x) ∼ x for x � 1. In the MOND regime the gravitational acceleration is
proportional to 1/r and its fall is much slower in comparison with the standard Newtonian
dependence 1/r2. The MOND is successful in explaining the rotation curves of spiral
galaxies by putting a0 ∼ 10−8cm · s−2 (Milgrom, 1983). Various interpolation formulae
has been proposed to cover the transition between the Newton and MOND regime, but it
seems that the simplest one that will be used later works quite well (Famaey and Binney,
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2005; Iorio, 2009). The compatibility of MOND with data from Solar System was discussed
in a number of works (Sereno and Jetzer, 2006; Iorio, 2008). However, it is of high relevance
to test its predictions in the case of the motion of satellite galaxies.

A relativistic covariant formulation of the MOND theory was discussed by (Bekenstein
and Milgrom, 1984; Bruneton and Esposito-Farèse, 2007; Zhao, 2007; Milgrom, 2008).
There are some other non-standard approaches to explanation of the galactic rotation curves
without using the CDM (Iorio, 2009). Of special interest is MOdified Gravity (MOG) –
a fully covariant gravity theory where a massive vector field coupled to matter exists, giving
a Yukava-like modification of gravity (Moffat and Toth, 2009), but here we restrict our
attention to the MOND theory.

It is of high interest to test the gravitational influence of the Milky Way on its close
companions. For example, the motion of the tidal debris of the Sagittarius dwarf at 17.4 kpc
from the Milky Way center was studied (Read and Moore, 2005). However, there is another
important possibility for such testing due to the closest galaxies to the Milky Way, namely
the Magellanic Clouds. They have their total mass much smaller than the Milky Way total
mass – their mass is estimated to be smaller than (1/10)MMW. Further, their distance from
the Milky Way exceeds substantially its dimension. Therefore, the Magellanic Clouds can
be well approximated as test particles moving in the gravitational field of the Galaxy.

Quite recently it has been shown that the cosmic repulsion inferred from the cosmological
observations (Riess et al., 2004) seems to be very important for determining the character
of the satellite galaxy motion and their trajectories in the standard framework of the Galaxy
model with the CDM halo (Stuchlík and Schee, 2011). The effects of the cosmological
constant are on the 10 per cent level or higher, if we consider the binding mass of Milky
Way relative to SMC and LMC through their initial positions and velocities. The results
of the models of the motion put serious doubts on the binding of the LMC to the Milky
Way if the CDM halo model is the relevant one – see also Besla et al. (2007). Nevertheless,
the problem of LMC binding remains to be open due to uncertainties in determination of
the initial velocity due to the Galaxy rotation velocity (Shattow and Loeb, 2009; Stuchlík
and Schee, 2011). We compare here the predictions of the CDM halo model of the Galaxy
gravitational field to those given by the MOND model of the satellite galaxy motion. Since
the role of the cosmological constant has been shown to be important in the CDM halo
model, we add the cosmic repulsion potential in the Newtonian limit

UΛ = −
Λc2

6
r2 , (2)

to the CDM halo model – see Stuchlík and Schee (2011). On the other hand, we do not
include the effects of the cosmic repulsion into the MOND model, since the trajectories
predicted by the model are much closer to the Galaxy, being limited to regions where the
role of the cosmic repulsion has to be suppressed. The Galaxy gravitational field is reflected
by the (ellipsoidal) potential of the Galaxy disc and (spherical) potential of the Galactic
bulge (Binney and Tremaine, 1987). For simplicity these can be substituted by a spherical
Newtonian potential of a point source located at the Galaxy centre and having total mass of
the visible Galaxy, since the motion of Magellanic Clouds is restricted to regions distant to
the visible Galaxy.



Comparison of the CDM halo and MOND models 157

2 THE GALAXY GRAVITATIONAL FIELD

The Galaxy is represented by its visible, baryonic parts, i.e. by the disk and the bulge that
could be considered as central point sources, neglecting the non-sphericity of the Galaxy
disc. The recent estimate of the total baryonic mass of the Galaxy is

M = 6.5× 1010 M� (3)

with the composition given by Mdisc = 5 × 1010 M� and Mbulge = 1.5 × 1010 M� (Mc-
Gaugh, 2008; Xue et al., 2008; Iorio, 2009).

The elliptical gravitational potential of the Galactic disk reads

Udisc = −
ξG Mdisc√

x2 + y2 +
(

k +
√

z2 + b2
)2
, (4)

while the galactic bulge potential is simulated by

Ubulge = −
G Mbulge

r + c
, (5)

where ξ = 1, k = 6.5 kpc, b = 0.26 kpc, c = 0.7 kpc. We shall compare, for completeness,
the effect of the detailed potential

U = Udisc(Mdisc)+Ubulge
(
MMbulge

)
(6)

and the point Newtonian potential UPN(MG).

3 THE MOND MODEL OF GRAVITATIONAL INTERACTIONS ON COSMIC
SCALES

The MOND is invented in order to enable explanation of matter motion in the outer parts of
galaxies, including the Milky Way, where discrepancy between the rotation curves of matter
and the gravitational effect of galactic visible matter is observed. Usually, this discrepancy
is explained by the effect of an invisible CDM, while MOND is trying to explain it by
modification of the Newton dynamical law (Milgrom, 1983), modifying the acceleration of
matter at large distances from the galaxy center.

3.1 Modification of the Newton gravitational law

Considering the Newtonian gravitational force, the MOND dynamical law reads

mµ(x)a = −G
Mm
r2 , (7)

where µ(x) is the modifying acceleration function, x = a/a0 is its argument determining
the magnitude of the modification and a0 is the critical acceleration specifying the limit
of validity of the standard Newtonian mechanics. From fitting of rotational curves in the
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Figure 1. Comparison of MOND model with CDM models with different gravitational potentials
UPN+Uhalo (top), Udisk+Ubulge+Uhalo−Λc2r2/6 (bottom) is plotted. On the left the trajectories
of SMC are plotted. There are three types of dots in the plot. Big black refers to the time instant
t = 0, the small dots refer to the time instant t = 5 Gyr and big colored dots refer to the time instant
t = 10 Gyr. The red color dots belong to dashed lines and blue ones to the solid lines. On the right
the functions δr = r1 − r2 and δv = v1 − v2 are plotted where index 1 refers to MOND model and
index 2 refers to CDM model.

Milky Way and other spiral galaxies the critical acceleration is established to be (Begeman
et al., 1991)

a0 = 1.2× 10−10m · s−2 (8)

giving thus the acceleration scale. Then in terms of the interpolation function µ(x) the
actual acceleration is related to the Newtonian one by aN = µ(x)a (McGaugh, 2008).

Clearly, for any gravitating mass a critical radius r0 related to the critical acceleration can
be defined by the relation

r0 =

(
G M
a0

)1/2

(9)

that represents a critical distance from the source of the gravitational field beyond which
the MOND regime becomes effective. Using the critical value of a0 determined by fitting
the rotational curves of galaxies (8) and the total mass of the visible galactic disc and bulge
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Figure 2. Comparison of MOND model with CDM models with different gravitational potentials
UPN+Uhalo (top), Udisk+Ubulge+Uhalo−Λc2r2/6 (bottom) is plotted. On the left the trajectories
of LMC are plotted. There are three types of dots in the plot. Big black refers to the time instant
t = 0, the small dots refer to the time instant t = 5 Gyr and big colored dots refer to the time instant
t = 10 Gyr. The red color dots belong to dashed lines and blue ones to the solid lines. On the right
the functions δr = r1 − r2 and δv = v1 − v2 are plotted where index 1 refers to MOND model and
index 2 refers to CDM model.

of the Milky Way (M ∼6.5× 1010 M�), we arrive at the characteristic radius relevant for
the Milky Way

r0 ∼2.62× 1020 m ∼8.45 kpc . (10)

representing nearly 2/3 of the visible Galaxy extension.

3.2 The modification function and the critic acceleration

The modification function µ(x) interpolating transition between the Newtonian and fully
MOND regimes was originally given in the form (Bekenstein and Milgrom, 1984)

µ(x) =
x(

1+ x2
)1/2 . (11)

However, there is a simpler possibility (Famaey and Binney, 2005)

µ(x) =
x

1+ x
(12)

that yields better results in fitting the rotation velocity curves in the Milky Way and galaxy
NGC 3198 (Zhao and Famaey, 2006; Famaey et al., 2007). The effective MOND “gravita-



160 J. Schee and Z. Stuchlík

tional” acceleration can then be given by (Iorio, 2009)

a =
aN

2

[
1+

(
1+

4a0

aN

)1/2
]
. (13)

Using the critical radius rc, we can express the MOND acceleration in the form

a = −
1
2

G M
r2

1+

(
1+

4r2

r2
0

)1/2
 . (14)

3.3 Modified gravitational potential and the motion of Magellanic Clouds around
Milky Way

The MOND theory can be expressed by a modification of the Newtonian gravitational
potential. The form of this modification is determined by the function µ(x) and using the
explicit form of this function (12) we obtain the MOND gravitational potential in the form

ΦMOND =
G M
2r
+

G M
2r

√
1+

4r2

r2
0
−

G M
r0

sinh−1
(

2r
r0

)
. (15)

Notice that we assume spherically symmetric source of gravity neglecting thus all the
details of the galactic gravitational field; of course, we do not consider the CDM halo
gravitational potential. In general (non-relativistic) non-spherical situations the modified
Poisson equation (Bekenstein and Milgrom, 1984)

∇ ·

[
µ

(
|∇U |

a0

)
∇U

]
= 4πG% (16)

must be used to determine the MOND potential and, consequently, acceleration. Of course,
for our purposes, the gravitational acceleration given by Eq. (15) corresponding to the
simplest version of MOND using the spherically symmetric acceleration formula is quite
convenient. We consider the point source with MG = Mdisk + Mbulge.

4 CDM HALO MODEL

The dark matter halo is assumed spherical and its gravitational potential can be represented
by the logarithmic formula of the form (Binney and Tremaine, 1987)

Uhalo = v
2
halo ln

(
r2
+ d2) , (17)

where vhalo = 114 km · s−1 and d = 12 kpc. This halo model implies the halo mass formula

Mhalo =
2v2

halor3

G
(
r2 + d2

) (18)

giving mass of the Galaxy halo (Iorio, 2009)

Mhalo(r = 60 kpc) = 3.5× 1011 M� (19)
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in agreement with value of Mhalo(r = 60 kpc) = (4.0±0.7)×1011 M� used in (Xue et al.,
2008). For different models of the CDM halo (see, e.g. Einstein, 1939; Lake, 2004; Haager,
1997, 1998; Saxton and Ferreras, 2010).

For halos more extended, crossing the radius of r ∼ 60 kpc corresponding approximately
to the present positions of both the SMC and LMC, the halo mass and its influence on the
motion of the Magellanic Clouds will be higher. For details see Stuchlík and Schee (2011)
where the halo extension and its mass are controlled by the so called cut-off radius, assuming
the same conditions to be fulfilled at the reference radius of r ∼60 kpc. Here we adopt the
results of Xue et al (Xue et al., 2008) giving the CDM halo mass Mhalo = 1 × 1012 M�.
For simplicity, we do not consider here the role of the dynamical friction Mulder (1983) on
the motion of the SMC and LMC through the CDM halo. Of course, the dynamic friction
effect is irrelevant for the MOND model since it does not assume any halo.

5 MOTION OF MAGELLANIC CLOUDS AROUND MILKY WAY

The visible Galaxy gravitational field will be common for both the CDM and MOND
models. For completeness, we use the detailed and simplified point potential of the visible
Galaxy composed with the CDM halo and Λ term.

x y z

xi 15.3 -36.9 -43.3
vi -87± 48 -247± 42 149± 37

Table 1. Galactocentric coordinates (in kpc) and
velocity components (in km·s−1) of SMC (r0 =
58.9 kpc, v0 = 302± 52 km/s).

x y z

xi -0.8 -41.5 -26.9
vi -86± 12 -268± 11 252± 16

Table 2. Galactocentric coordinates (in kpc) and
velocity components (in km·s−1) of LMC (r0 =
49.5 kpc, v0 = 378± 18 km/s).

When alternative explanations of galactic rotation velocity curves are considered, based
on modified gravitational laws, the CDM halos are not taken into account and only the
Galactic mass inferred mainly from the electromagnetic radiation emitted by the baryonic
mass is considered.

In the MOND framework only the point source is considered, as the role of the detailed
potential is shown to negligible. The recent motion of the Magellanic Clouds is characterized
by their position and the velocity relative to the Galaxy plane that are presented in the Table 1
for the Small Magellanic Cloud (SMC) and in Table 2 for the Large Magellanic Cloud (LMC)
(Iorio, 2009). These positions and velocities, given in the so called Galactocentric reference
system (Shattow and Loeb, 2009) are taken as initial conditions in the integration of the
motion equations giving trajectory of SMC and LMC in the field of the Galaxy.

We have confronted the trajectories of both SMC and LMC reflecting the influence of
the Galaxy and its CDM Halo combined with the cosmological constant effect that were
constructed and in detail discussed in Stuchlík and Schee (2011), with the trajectories
obtained by the MOND – therefore, all the external field effects (e.g. those coming from
the Andromeda galaxy) are considered as irrelevant. The trajectories are given in Fig. 1
for SMC and Fig. 2 for LMC. Clearly, the differences in the character of the trajectories
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of the Magellanic Clouds are substantial being of the same order as the extension of the
trajectories and could thus serve potentially as an efficient test of the validity of the MOND
models. Significant differences of the MOND and CDM halo trajectories have been found,
both for the SMC and LMC galaxies. For LMC the differences are bigger than for SMC.

6 CONCLUSIONS

We compared the trajectories constructed using the models including the CDM halo and
the cosmological constant to the those based on the MOND, modelling the rotation curves
of visible Galaxy without necessity of the CDM halo. The results, shown in Fig. 1 for SMC
and in Fig. 2 for LMC galaxy, indicate enormous differences in the predicted trajectories.
In the case of SMC trajectories there is δr ∼ 100 kpc and δv ∼ 0.2 kpc/Myr. In the case
of the LMC trajectories the differences approach even higher values δr ∼ 500 kpc and
δv ∼0.3 kpc/Myr. On the other hand, the detailed description of the gravitational potential
of the visible Galaxy is shown to be quite irrelevant for the motion of the Magellanic Clouds.
We have found that the trajectories of both SMC and LMC constructed under the model of
MOND differ significantly from the trajectories based on the CDM halo models. The CDM
halo models were shown to be strongly dependent on the cosmic repulsion represented by
the cosmological constant term Stuchlík and Schee (2011). It could be thus interesting to
test the role of the cosmic repulsion even in the case of the MOND model. Nevertheless,
we expect these effects to be suppressed relative to the CDM model since the closer binding
of the SMC and LMC trajectories to the Galaxy.
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mass particles
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ABSTRACT
We study the result of the U-H-E collisions of particles radially colliding in the strong
gravity of Kerr superspinars. The colliding particles have different masses m1 6= m2
and we quantify the outcome of such collision taking place at fixed radius r = 1 in
the field of Kerr superspinar determined by spin parameter a under assumption of
both inelastic and elastic collisions.

1 INTRODUCTION

Recently a wide interest is devoted to the so called Banados–Silk–White (BSW) process
(Bañados et al., 2009) where centre of mass energy of colliding particles can be highly
ultrarelativistic if they collide in vicinity of the black hole horizon (Zaslavskii, 2010;
Harada et al., 2013; Tursunov et al., 2013), or in the strong gravity of naked singularity
spacetimes, as those related to the Kerr superspinars (Stuchlík et al., 2011; Stuchlík and
Schee, 2012, 2013; Stuchlík et al., 2014). In those processes it is usually assumed that the
collisions are inelastic and the rest energy of the colliding particles is transformed into the
energy of outgoing particles and photons. Here we shall consider also the possibility when
the particles are scattered in an elastic process.

2 SPACETIME GEOMETRY AND EQUATIONS OF MOTION

According to String theory there exist a class of solutions interpreted as spinning object of
mass M violating the general relativistic bound of spin of black holes, having a > 1. They
are called Kerr superspinars which, in the astrophysical area of interest, can be primordial
remnants of high energy phase of very early period of evolution of the Universe. It turns
out that the geometry generated by Kerr superspinar is the well known Kerr geometry and
its line element in Boyer–Lindquist coordinates read

ds2
= −

(
1−

2r
Σ

)
dt2
+
Σ

∆
dr2
+Σ dθ2

+
A
Σ

sin2 θ dϕ2
−

4ar sin2 θ

Σ
dt dϕ , (1)

where is ∆ = r2
− 2r + a2, Σ = r2

+ a2 cos2 θ , and A = (r2
+ a2)2 − a2∆ sin2 θ .
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It was shown that the equations of motion are separable and can be found by Hamilton–
Jacobi separation process. For the motion in the equatorial plane we have the following set
of equations of test particle motion

Σ ṙ = ±
√

R(r) , (2)
Σϕ̇ = − (aE − L z)+

a
∆

P(r) , (3)

Σ ṫ = −a (aE − L z)+
r2
+ a2

∆
P(r) , (4)

where ˙ ≡ d/dw with w being the affine parameter and

P(r) = E
(
r2
+ a2)

− L za , (5)
R(r) = P2

−∆
[
m2r2

+
(
L z − aE

)2]
. (6)

There are two constants of motion introduced reflecting temporal and azimuthal symmetries
of Kerr spacetime, they are covariant energy E = −pt and azimuthal angular momentum
L z = pϕ .

3 LOCALLY NON-ROTATING FRAMES

The collision process is studied in the frames connected with the zero-angular-momentum
observers, those with L z = 0. Such frame are commonly named as Locally Non-Rotating
Frames (LNRF), and the corresponding tetrad reads

ω(r) =

{
0,

√
Σ

∆
, 0, 0

}
, (7)

ω(θ) =
{

0, 0,
√
Σ, 0

}
, (8)

ω(t) =

{√
∆Σ

A
, 0, 0, 0

}
, (9)

ω(ϕ) =

{
−ΩLNRF

√
A
Σ

sin θ, 0, 0,

√
A
Σ

sin θ

}
(10)

with the angular frequency of LNRF being

ΩLNRF =
2ar
A
. (11)

4 THE PARTICLES COLLISION

We assume the elastic collision between two particles taking place in the equatorial plane,
θ = π/2. The constant of motion Q = 0 and it takes place at rc = 1. We let collide
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radially freely falling (1) and radially freely receding (2) particles with constants of motion
E1 = m1, L z1 = 0, E2 = m2, and L z2 = 0. The only non-zero components of 4-momentum
in the LNRF frame are temporal and radial, i.e.

P(µ)i =

(
P(t)i , P(r)i , 0, 0

)
, (12)

which in particular case of our two particles reads

P(µ)1 =

(
m1γ,m1γ v

(r), 0, 0
)
, (13)

P(µ)2 =

(
m2γ,−m2γ v

(r), 0, 0
)
. (14)

with the radial 3-velocity component v(r) given by relation

v(r) =
ω
(r)
µ Uµ

ω
(t)
µ Uµ

= ±

√√√√ 2
(
1+ a2

)(
1+ a2

)2
−
(
1− a2

)
a2
. (15)

and γ = (1− [v(r)]2)−1/2.
Just before the collision the total 4-momentum P(µ) is

P(µ) = P(µ)1 + P(µ)2 =

(
(m1 + m2)γ, (m1 − m2)γ v

(r), 0, 0
)
. (16)

We first assume that masses of particles remain the same after collision, then the cor-
responding components of 4-momenta of colliding particles after collision follow from
conservation principles and from normalization of 4-momentum, i.e.

P ′(t) = P ′(t)1 + P ′(t)2 = P(t) = (m1 + m2)γ , (17)
P ′(r) = P ′(r)1 + P ′(r)2 = P(r) = (m1 − m2)γ v

(r) , (18)

−m2
1 = −

[
P ′(t)1

]2
+

[
P ′(r)1

]2
, (19)

−m2
2 = −

[
P ′(t)2

]2
+

[
P ′(r)2

]2
. (20)

Solving this set of equations and using

v′
(r)
i =

P ′(r)i

P ′(t)i

, i = 1, 2 (21)

the resulting radial 3-velocity of particles after collision read

v′
(r)
1 =

B D +
√

B2 D2 −
(

A2 − B2
)(

4A2m2
1 − D2

)
AD −

√
A2 D2 −

(
A2 − B2

)(
4B2m2

1 + D2
) , (22)

v′
(r)
2 =

2B
(

A2
− B2)

− B D −
√

B2 D2 −
(

A2 − B2
)(

4A2m2
1 − D2

)
2A
(

A2 − B2
)
− AD +

√
A2 D2 −

(
A2 − B2

)(
4B2m2

1 + D2
) , (23)
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where we have introduced A = (m1 + m2)γ , B = (m1 − m2)γ v
(r), and

D = (m1 + m2)
[
m1 − m2 + (m1 + m2)γ

2
]
− (m1 − m2)

2γ 2
[
v(r)

]2
. (24)

In the second case we assume that the mass of collision products are the same having value
of m we have

−m2
= −

[
P ′(t)1

]2
+

[
P ′(r)1

]2
, (25)

−m2
= −

[
P ′(t)2

]2
+

[
P ′(r)2

]2
. (26)

From Equations (17), (18), (25), and (26) the resulting radial 3-velocities of collision
products are

v′
(r)
1± =

B ± A
√

1− 4m2

A ∓
√

2A2 − B2
(
1+ 4m2

) , (27)

v′
(r)
2± =

2A − B ∓ A
√

1− 4m2

2B − A ±
√

2A2 − B2
(
1+ 4m2

) . (28)

In the third case we asked a question, what are the conditions for masses of colliding
particles and the masses of the products if we want the products of the collision to became
static just after the collision? In this case we have following set of equations

P ′(t)1 + P ′(t)2 = γ (m1 + m2) , (29)

P ′(r)1︸︷︷︸
0

+ P ′(r)2︸︷︷︸
0

= 0 = γ v(r)(m1 − m2) . (30)

Which imply the masses of particles before collision are same m1 = m2 and the masses of
the products is determined by formula

m = γm1 =
1√

1− [v(r)]2
m1 . (31)

The characteristic parameter of collision is the centre-of-mass energy ECM. It is the total
energy of system measured by observer at rest in CM. In the case of two particle collision
we have Ptot = P1 + P2 which imply the energy

E2
CM = −Ptot · Ptot = m2

1 + m2
2 − 2gµν Pµ1 Pν2 , (32)

and, in our particular case, it reads

E2
CM = m2

1 + m2
2 +

2
r2

{[
m1m2

(
r2
+ a2)2

+ 2r
√

m1m2
(
r2
+ a2)] 1

∆
− a2m1m2

}
. (33)
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Figure 1. Plots of v′(r)1 and v′(r)2 curves as functions of spin parameter for fixed values of particle
masses. Plots on the left (right) are constructed for m1 = 2 and m2 = 1 (m1 = 1 and m2 = 2).
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Figure 2. The difference between the magnitude of velocities of two particles collision products
gaining after it same mass m. Each curve is plotted for a representative value of collision product
masses. Each curve is asymptotically for a →∞ getting to limiting value which in presented cases
are ∆v′lim(m = 1.0) = 0.0928676, ∆v′lim(m = 1.5) = 0.205702, and 0.357901.

5 RESULTS

We let collide two particles with L z = 0 at r = 1. The particles have distinct masses
m1 6= m2. With respect to collision products masses we have studied two situations:

• Masses of products do not change during collision. We first study the case of m1 = m′1 =
1 and m2 = m′2 = 2 and of m1 = m′1 = 2 and m2 = m′2 = 1.
• The masses of products is the same m′1 = m′2 = m. In our simulations the mass m = 1,
1.5, and 2.0.

The outcome of the collision is reflected in the plots of curves v′(r)1 (a) and v′
(r)
2 (a) in Fig. 1.

There are two limiting values as spin a→∞, v′(r)1 limit=−0.528321 and v′
(r)
2 limit=0.935984 in the first

choice of particle masses and v′
(r)
1 limit=±0.81651 for the second choice of particle masses. The

maximal values of velocities of particles is reached for spins close to extreme Kerr black
hole state.
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Figure 3. We demonstrate the strength of head on collision of two radially moving test particles with
masses m1 = 1 and m2 = 2, which are moving radially, by the square of centre-of-mass energy E2

CM.

The square of centre of mass energy E2
CM, given by formula (33), of collision taking

place at r = 1 of two radially moving particles with masses m1 = 1 and m2 = 2 is given at
Fig. 3.

6 CONCLUSION

We can conclude that in the case of the elastic collisions, the efficiency is largest for near-
extreme Kerr superspinars, similarly to the case of the collisions where the rest energy of
the colliding particles is transformed into energy of outgoing particles and photons.
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ABSTRACT
We study the non-monotonic Keplerian velocity profiles related to locally non-
rotating frames (LNRF) in the field of near-extreme braneworld Kerr black holes and
naked singularities in which the non-local gravitational effects of the bulk are repre-
sented by a braneworld tidal charge b and the 4D geometry of the spacetime structure
is governed by the Kerr–Newman geometry. We show that positive tidal charge has
a tendency to restrict the values of the black hole dimensionless spin a admitting ex-
istence of the non-monotonic Keplerian LNRF-velocity profiles; the non-monotonic
profiles exist in the black hole spacetimes with tidal charge smaller than b = 0.41005
(and spin larger than a = 0.76808). With decreasing value of the tidal charge (which
need not be only positive), both the region of spin allowing the non-monotonicity
in the LNRF-velocity profile around braneworld Kerr black hole and the velocity
difference in the minimum-maximum parts of the velocity profile increase implying
growing astrophysical relevance of this phenomenon.

Keywords: Aschenbach effect – Randall Sundrum – Brane-world

1 INTRODUCTION

Fast rotating black holes play a crucial role in understanding processes observed in quasars
and Active Galactic Nuclei (AGN) or in microquasars. It has been shown that supermassive
black holes in AGN evolve into states with dimensionless spin a ∼1 due to accretion from
thin discs, Volonteri et al. (2005); Shapiro (2005). This statement is supported by analysis
of profiled X-ray (Fe56) lines observed in some AGN (e.g. in MCG-6-30-15), Tanaka et al.
(1995); Miyakawa et al. (2009); Reynolds et al. (2009) and in some microquasars (e.g. GRS
1915+105), McClintock et al. (2006). Evidence for the existence of near-extreme Kerr
black holes comes from high-frequency quasi-periodic oscillations (QPOs) of observed
X-ray flux in some microquasars, Török et al. (2005); Steiner et al. (2008). A fast rotating
black hole could be also located in the Galaxy center source Sgr A∗, Aschenbach (2004);
Török (2005); Meyer et al. (2006).
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It is widely accepted that the phenomena observed in AGN and microquasars are related
to accretion discs orbiting Kerr black holes. However, we can consider also the possibility to
explain these phenomena by Kerr superspinars with external field described by the geometry
of Kerr naked singularity spacetime, Gimon and Hořava (2009). Then both accretion and
related optical effects and the QPOs effects enable us to find clear signature of the Kerr
superspinar presence, de Felice (1974, 1978); Stuchlík (1980, 1981); Stuchlík and Schee
(2010); Stuchlík et al. (2011).

Properties of accretion discs can be appropriately represented by circular orbits of test
particles or fluid elements orbiting black holes (superspinars). The local properties can be
efficiently expressed when related to the locally non-rotating frames (LNRF), since these
frames corotate with the spacetime in a way that enables to cancel the frame-dragging effects
as much as possible, Bardeen et al. (1972). A new phenomenon related to the LNRF-velocity
profiles of matter orbiting near-extreme Kerr black holes has been found by B. Aschenbach,
Aschenbach (2004, 2008); Stuchlík et al. (2005), namely a non-monotonicity in the velocity
profile of the Keplerian motion in the field of Kerr black holes with dimensionless spin
a > 0.9953. Such a hump in the LNRF-velocity profile of the corotating orbits is a typical
and relatively strong feature in the case of Keplerian motion in the field of Kerr naked
singularities, but in the case of Kerr black holes it is a very small effect appearing for near-
extreme black holes only – see Fig. 1. In the naked singularity case we call the orbits to be
of 1st family rather than corotating, since these can be retrograde relative to the LNRF in
vicinity of the ring singularity for small values of spin (a < 5/3), while they are corotating
for larger values of spin, Stuchlík (1980); the humpy character of the LNRF-velocity
profile ceases for naked singularities with a > 4.0014 – as demonstrated in the Fig. 1.
A study of non-Keplerian distribution of specific angular momentum (l = const), related
to geometrically thick discs of perfect fluid, has shown that the “humpy” LNRF-velocity
profile appears for near-extreme Kerr black holes with a > 0.9998, Stuchlík et al. (2005).
The humpy LNRF-velocity profile emerges in the ergosphere of near-extreme Kerr black
holes, at vicinity of the marginally stable circular orbit. Maximal velocity difference
between the local minimum and maximum of the humpy Keplerian velocity profiles is
∆v ≈0.07 c and takes place for a = 1 , Stuchlík et al. (2007).

Here, we shall study existence of the humpy LNRF-velocity profiles in the field of brane-
world rotating black holes considering both negative and positive values of the braneworld
tidal charge. Our results related to b > 0 are relevant also in the case of the standard Kerr–
Newman spacetimes (with b → Q2 ), for uncharged particles. We restrict our attention to
the Keplerian LNRF-velocity profiles postponing the study of perfect fluid configurations
to future work.

2 ORBITAL MOTION IN THE BRANEWORLD KERR SPACETIMES

Motion of test particles in the field of braneworld rotating black holes is given by the geodesic
structure of the Kerr–Newman spacetimes with the tidal charge b. The braneworld parameter
reflects the tidal effects of the bulk space and has no influence on the motion of charged
particles. The geodesic structure given by the Carter equations, Carter (1973) is relevant for
both uncharged and charged test particles. The circular test particle orbits of the braneworld



Aschenbach Effect for Brany Kerr Black Holes and Naked Singularities 175

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

V (’)

K  (r;a)

r

(a)

a=0.999
a=0.777
a=0.555
a=0.000

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

V (’)

K  (r;a)

r

(b)

(

)

a=1.0
a=1.3
a=1.8
a=5.0

Figure 1. Keplerian velocity profiles related to the LNRF. (a): Kerr black holes – the velocity profiles
presented for some values of the black hole spin. The Aschenbach effect appears for near-extreme
black holes and is weak. (b): Kerr naked singularities – the velocity profiles are given for some values
of the spin, demonstrating existence of Aschenbach effect for orbits with negative valued velocity.
For completeness, the velocity profile is given also for extreme black hole, demonstrating velocity
jump at r = 1.

Kerr black holes are identical to the circular geodesics of the Kerr–Newman spacetime with
properly chosen charge parameter.

We shall study the Aschenbach effect, i.e. we look for the non-monotonicity (humps) in
the LNRF-velocity profiles of Keplerian discs orbiting near-extreme braneworld Kerr black
holes or naked singularities.

2.1 Geometry

Using standard Boyer-Lindquist coordinates (t, r, θ, ϕ) and geometric units (c = G = 1),
we can write the line element of rotating (Kerr) black hole on the 3D-brane in the form

ds2
= −

(
1−

2Mr − b
Σ

)
dt2
−

2a(2Mr − b)
Σ

sin2θ dt dϕ

+
Σ

∆
dr2
+Σ dθ2

+

(
r2
+ a2

+
2Mr − b
Σ

a2sin2θ

)
sin2θ dϕ2 , (1)

where

∆ = r2
− 2Mr + a2

+ b , (2)
Σ = r2

+ a2cos2θ , (3)

M and a = J/M are the mass parameter and the specific angular momentum of the back-
ground, while the braneworld parameter b, called “tidal charge”, represents the imprint of
non-local (tidal) gravitational effects of the bulk space, Aliev and Gümrükçüoğlu (2005).
The physical “ring” singularity of the braneworld rotating black holes (and naked singular-
ities) is located at r = 0 and θ = π/2, as in the Kerr spacetimes.



176 Z. Stuchlík, M. Blaschke and P. Slaný

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

-10

-8

-6

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8  9  10

b

a

P

P=(0.768082, 0.41005)

Q

Q=(5.99, 2.14)

BH 
NS 
NS retrograde

Figure 2. Classification of the braneworld Kerr spacetimes according to existence of the Aschenbach
effect. The Aschenbach effect is allowed in the black region representing black holes, dark-grey region
representing naked singularities with corotating orbits only, and lighter-grey region representing naked
singularities with retrograde motion in the LNRF-velocity profile (corresponding to negative values
of the function V

(ϕ)
K ).

The form of the metric (1) is the same as that of the standard Kerr–Newman solution of
the 4D Einstein-Maxwell equations, with tidal charge b being replaced by squared electric
charge Q2, Misner et al. (1973). The stress tensor on the brane Eµν takes the form

E t
t = −Eϕϕ = −

b
Σ3

[
Σ − 2

(
r2
+ a2)] , (4)

Er
r = −E θθ = −

b
Σ2 , (5)

E t
ϕ = −

(
r2
+ a2) sin2E

ϕ
t = −

2 a
Σ3

(
r2
+ a2)sin2θ , (6)

that is fully analogical (b→Q2) to components of the electromagnetic energy-momentum
tensor of the Kerr–Newmann solution in Einstein’s general relativity, Aliev and Gümrükçüo-
ğlu (2005). For negative values of the tidal charge (b < 0), the values of the black hole spin
a > M are allowed. Such a situation is forbidden for the standard 4D Kerr black holes. In
the following, we put M = 1 in order to work with completely dimensionless formulae.
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Figure 3. Non-monotonic LNRF-related velocity profiles for braneworld Kerr black hole backgrounds
given for some values of the tidal charge b and appropriately chosen values of the a. The black points
denote loci of rms.

2.2 Locally non-rotating frames and orbital motion

The orbital velocity of matter orbiting a braneworld Kerr black hole along circular orbits
is given by appropriate projections of its 4-velocity U = (U t , 0, 0,Uϕ) onto the tetrad of
a locally non-rotating frame (LNRF), Bardeen et al. (1972)

e(t) =
(
ω2gϕϕ − gt t

) 1
2 dt , (7)

e(ϕ) =
(
gϕϕ

) 1
2 (dϕ − ω dt) , (8)

e(r) =
(
Σ

∆

) 1
2

dr , (9)

e(θ) = Σ
1
2 dθ , (10)

where ω is the angular velocity of the LNRF relative to distant observers and reads

ω = −
gtϕ

gϕϕ
=

a(2r − b)
Σ
(
r2 + a2

)
+ (2r − b) a2 sin2θ

. (11)
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For the circular motion, the only non-zero component of the 3-velocity measured locally
in the LNRF is the azimuthal component that is given by

V
(ϕ)
LNRF =

[Ω − ω]√(
(ω2 −

gt t
gϕϕ

) =
[(

r2
+ a2)2

− a2∆ sin2 θ
]

sin θ (Ω − ω)

Σ
√
∆

, (12)

where

Ω =
Uϕ

U t = −
lgt t + gtϕ

lgtϕ + gϕϕ
(13)

is the angular velocity of the orbiting matter relative to distant observers and

l = −
Uϕ
Ut

(14)

is its specific angular momentum; Ut ,Uϕ are the covariant components of the 4-velocity
field of the orbiting matter.

Using (1) we arrive to the formula, Stuchlík and Kotrlová (2009)

Ω =
(Σ − 2r + b) l + a(2r − b) sin2θ[

Σ
(
r2 + a2

)
+ (2r − b) a2 sin2θ

]
sin2θ − la(2r − b) sin2θ

. (15)

Motion of test particles following circular geodetical orbits in the equatorial plane (θ =
π/2) is described by the Keplerian distribution of the specific angular momentum, which
in the braneworld Kerr backgrounds takes the form:

lK± = ±

(
r2
+ a2)√r − b ∓ a(2r − b)

r2 − 2r + b ± a
√

r − b
, (16)

where the signs refer to two distinct families of orbits in the Kerr braneworld spacetimes.
Putting all relevant equations together we end up with expression for (ϕ) component of
LNRF 3 orbital Keplerian velocity in the form:

V
(ϕ)
K± = ±

√
r − b

(
r2
− a2)

∓ a(2r − b)(
r2 + a

√
r − b

)√
∆

. (17)

Non-monotonic behaviour of this function can be seen in Fig. 3 and possible combinations
of parameters a and b allowing this effect are shown in Fig. 2.

3 ASCHENBACH EFFECT FOR TOROIDAL DISKS

Putting (1), (11) and (15) into (12), and restricting our attention only to equatorial plane
(θ = π/2) we get the LNRF-velocity profile for l = const > 0 distribution in the form

V
ϕ
LNRF =

r2∆1/2l
r2
(
r2 + a2

)
+ (2r − b)a2 − a(2r − b)l

. (18)
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Figure 4. Spacetimes with change of sign of the gradient of LNRF velocity. Function lex,max(a, b)
(upper solid curve), lex,min(a, b) (lower solid curve), lms(a, b) (dashed thick curve) and lmb(a, b)
(dashed curve).

The radial gradient of the l = const LNRF-velocity profile reads:

∂V
ϕ
LNRF
∂r

=

[
2r∆+ r2(r − 1)

]
K − r2∆K ′

∆
1
2 K 2

l, (19)

where K is denominator of the Eq. (18) and K ′ = ∂K/∂r . The humpy profiles are
determined by condition

∂V
ϕ
LNRF
∂r

= 0 (20)

that has to be satisfied for the minimum-maximum structure of the profile; notice however
the presence of another maximum of l = const velocity profiles existing for all l > 0 and
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Figure 5. Classifications of the Kerr black-hole spacetimes according to the properties of the function
lex(r; a, b)(solid curve) and lK(r; a, b)(dashed curves) for a = 0.996. The constant specific angular
momentum tori can exist in the shaded region only along l = const. lines.

a > 0 in the pure Kerr black holes spacetimes, Stuchlík et al. (2005). Using function (19)
we arrive to the relevant conditions that has to satisfied for the extrema of VϕLNRF(r; a, b)

l = lex(r; a, b) ≡ a −
r3 (a2(1+ r)+ (r − 3)r2

+ 2rβ
)

a
(
4r3 − 3r2β + 7rβ − 2a2β − 2β2 − 6r2 + 2ra2

) . (21)

From the relation (21) we can create the function lex(r; b) indicative of extremal value of
the specifics momentum l for given r and b, which zeroing term (19). If we now consider
rotating disk with constant l, the Aschenbach effect can occur only for

l ∈
〈
lex,min(r; b), lex,max(r; b)

〉
. (22)

With the aid of two following equations for rmb and rms

rmb : r
(

4r − r2
− 4b + a2

)
+ b

(
b − a2

)
± 2a(b − 2r)

√
r − b = 0 , (23)

rms : r
(

6r − r2
− 9b + 3a2

)
+ 4b

(
b − a2

)
∓ 8a (r − b)3/2 = 0 , (24)

we can create two functions lms(a, b) and lmb(a, b), specific momentum for marginally stable
and marginally bound orbits. The figure 4 shows regions where the Aschenbach effect can
occur. We see that the positives values of the tidal charge b has repressing influence,
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Figure 6. Classifications of the Kerr black-hole spacetimes according to the properties of the function
lex(r; a, b) (solid curve) and lK(r; a, b) (dashed curves) for some values of black hole spin parameter
a and brany tidal charge parameter b. The constant specific angular momentum tori can exist in the
blued region only along l = const lines.

whereas negative values have positive influence on the region where the Aschenbach effect
can exist. It is very similar effect like case for Keplerian orbits.

In the Fig. 5 there is demonstrated the influence of the tidal charge b on the mb-marginally
bound and ms-marginally stable orbits for one chosen specific angular momentum a =
0.996.

4 CONCLUSIONS

We have shown that the Aschenbach effect is a typical feature of the circular geodetical
motion in the field of both standard and braneworld Kerr naked singularities with a rela-
tively large interval of spins above the extreme black-hole limit. For naked-singularity spin
sufficiently close to the extreme black-hole state, the Aschenbach effect is manifested by
the retrograde plus-family circular orbits. For black hole spacetimes, such retrograde orbits
can appear under the inner horizon, being thus irrelevant from the astrophysical point of
view. In the field of near-extreme rotating black holes, the Aschenbach effect located above
the outer black hole horizon can be thus considered as a small remnant of typical naked
singularity phenomenon.
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ABSTRACT
We study ejection speed of current-carrying string-loops governed by the presence
of an outer tension barrier and an inner angular momentum barrier in the field of the
Schwarzschild black holes. We restrict attention to the axisymmetric motion of string
loops with energy high enough, when the string loop can overcome the gravitational
attraction and escape to infinity. Due to the chaotic character of the string loop motion,
the strings can be scattered and the energy of the string oscillations can be efficiently
converted to the energy of the linear motion that can represent a jet motion. We give
the condition limiting energy available for conversion onto jet-like motion.

Keywords: string loops – black holes – Schwarzschild – spacetime – accelerating
jets

1 INTRODUCTION

Relativistic current carrying strings moving axisymmetrically along the axis of a Kerr black
hole (Jacobson and Sotiriou, 2009) or a Schwarzschild-de Sitter black hole (Kološ and
Stuchlík, 2010) could in a simplified way represent plasma that exhibits associated string-
like behaviour via dynamics of the magnetic field lines in the plasma (Christensson and
Hindmarsh, 1999; Semenov et al., 2004) or due to thin isolated flux tubes of plasma that
could be described by an one-dimensional string (Spruit, 1981). Tension of such a loop
string prevents its expansion beyond some radius, while its worldsheet current introduces an
angular momentum barrier preventing the loop from collapsing into the black hole. Such
a configuration was also studied in (Larsen, 1994; Frolov and Larsen, 1999). It has been
proposed in (Jacobson and Sotiriou, 2009) that this current configuration can be used as a
model for jet formation. Here we shall test the possibility to converse motion of a string loop
originally oscillating around a black hole in one direction to the perpendicular direction,
modelling thus an accelerating jet. It is well known that due to the chaotic character of the
motion of string loops, such a transformation of the energy from the oscillatory to the linear
mode is possible (Jacobson and Sotiriou, 2009; Kološ and Stuchlík, 2010). Here we make
the estimate of efficiency of such a transformation in the Schwarzschild gravitation field.
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Figure 1. Schematic picture of a string loop moving around a black hole. Assumed axial symmetry
of the string loop allows to investigate only one point on the loop; one point path can represent whole
string movement. Trajectory of the loop is then represented by the black curve on the picture, given
in 2D x-y plot.

2 CURRENT-CARRYING STRING LOOPS

We study a string loop motion in the field of a black hole described by the Schwarzschild
metric

ds2
= −A(r) dt2

+ A−1(r) dr2
+ r2(dθ2

+ sin2 θ dφ2) , A(r) = 1−
2M
r
. (1)

We use the geometric units with c = G = 1 and the Schwarzschild coordinates. In order to
properly describe the string loop motion, it is useful to use the Cartesian coordinates

x = r sin(θ) , y = r cos(θ) . (2)

The string loop is threaded on to an axis of the black hole chosen to be the y-axis – see
Fig. 1. The string loop can oscillate, changing its radius in x-z plane, while propagating
in y direction. The string loop tension and worldsheet current form barriers governing
its dynamics. These barriers are modified by the gravitational attraction of the black hole
characterized by the mass M .

2.1 Equations of motion

The string worldsheet is described by the spacetime coordinates Xα(σ a) (with α =

0, 1, 2, 3) given as functions of two worldsheet coordinates σ a (with a = 0, 1) that im-
ply induced metric on the worldsheet in the form

hab = gαβXα,a Xβ ,b . (3)

Any two-dimensional metric is conformally flat metric, i.e. in our case when we use the
standard Schwarzschild coordinates (1), there is

−hττ = hσσ = gφφ , hτσ = hστ = 0 , (4)

where we adopt coordinates a = (τ, σ ).
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Dynamics of the string is described by the action related to a scalar field ϕ and tension µ
(worldsheet with minimal area), expressed in the form (Jacobson and Sotiriou, 2009)

S =
∫

d2σ
√
−h(µ+ habϕ,aϕ,b) , (5)

where ϕ,a = ja determines current of the string and µ > 0 reflects the string tension. For
ja = 0, we have Nambu–Goto string (Zwiebach, 2004), for ja = 0, µ = 0 we have null
string.

Varying the action with respect to ϕ yields the 1+ 1 dimensional wave equation(√
−hhabϕ,a

)
,b
= 0 . (6)

Using the scalar field equation of motion (6) and the assumption of axisymmetry we can
conclude that the scalar field can be expressed in linear form with constants jσ and jτ

ϕ = jσσ + jτ τ . (7)

Varying the action with respect to the induced metric hab yields the worldsheet stress-
energy tensor density Σ̃ab with the components that can be expressed in the form (Jacobson
and Sotiriou, 2009)

Σ̃ττ
=

J 2

gφφ
+ µ , Σ̃σσ

=
J 2

gφφ
− µ , Σ̃στ

=
−2 jτ jσ

gφφ
, J 2

≡ j2
σ + j2

τ . (8)

Varying the action with respect to Xα , we arrive to equations of motion(
Σ̃abgαγ Xα,a

)
,b
−

1
2
Σ̃abgαβ,γ Xα,a Xβ ,b = 0 . (9)

In spherically symmetric spacetimes, the axisymmetric string loops can be characterized
by coordinates

Xα(τ, σ ) =
(

t (τ ), r(τ ), θ(τ ), σ
)
. (10)

Equation of motion (9) for coordinates γ = t and γ = φ imply two conserved quantities(
Σ̃ττ gt t ṫ

)
,τ
= 0 ,

(
Σ̃στ gφφ

)
,τ
= 0 , (11)

while for coordinates γ = r and γ = θ we obtain two second order ordinary differential
equations describing the string motion (Kološ and Stuchlík, 2010).

2.2 Hamiltonian formulation in spherically symmetric spacetimes

The string motion can be also formulated using Hamiltonian formalism (Larsen, 1993). We
can consider Hamiltonian

H̃ =
1
2

gαβ PαPβ +
1
2
µ2r2 sin2 θ + µJ 2

+
1
2

(
j2
τ − j2

σ

)2
r2 sin2 θ

, (12)
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1 2 3 4

Figure 2. In the Schwarzschild spacetimes, we can distinguish four different types of the behavior of
the boundary energy function Eb.

where α, β correspond to coordinates t, r, θ, φ. The spacetimes symmetries imply existence
of two constants of motion

Pt = −E , Pφ = L = −2 jτ jσ . (13)

Then in spherically symmetric spacetimes the Hamiltonian can be expressed in the form

H =
1
2

A(r)P2
r +

1
2

1
r2 P2

θ −
1
2

E2

A(r)
+

Veff(r, θ)
A(r)

, (14)

where an effective potential for the string motion has been introduced by the relation

Veff(r, θ) =
1
2

A(r)
(
µr sin θ +

J 2

r sin θ

)2

. (15)

The Hamilton equations

dXµ

dλ
=
∂H
∂Pµ

,
dPµ
dλ
= −

∂H
∂Xµ

(16)

applied to the Hamiltonian (14) imply equation of motion in the form

r ′ = APr , (Pr )
′
=

1
A

P2
θ

r4

(
Ar −

1
2

dA
dr

r2
)
−

dA
dr

P2
r −

1
A

dVeff

dr
, (17)

θ ′ =
Pθ
r2 , (Pθ )′ = −

1
A

dVeff

dθ
. (18)

where prime is derivative with respect to the lambda: f ′ = d f/dλ.
Systems of equations for the string motion in the form (9) and (17–18) are related by

transformation

dτ = Σττ dλ . (19)
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3 STRING LOOP IN SCHWARZSCHILD SPACETIME

The Schwarzschild metric (1) introduces a characteristic length scale corresponding to the
radius of the black hole horizon (that is given by the condition A(r) = 0, rh = 2M). It
is convenient to use the dimensionless coordinates r̃ = r/M (x̃ = x/M, ỹ = y/M), the
dimensionless string (angular momentum) parameter J̃ = J/M and energy Ẽ = E/M .
Then the condition H = 0 can be written in the form

Ẽ2
=
(
(r ′)2 + Ar2(θ ′)2

)
+ 2Ṽeff , (20)

The conditions r ′ = 0, θ ′ = 0 determine boundary for the string motion. The boundary
energy reads

Ẽ2
b = 2Ṽeff . (21)

In Cartesian coordinates it takes the form

Eb(x, y) =
√

A(r)
(

J 2/x + xµ
)
=

√
A(r) f (x) , (22)

where r = r(x, y) =
√

x2 + y2. The function A(r) reflects the spacetime properties,
while f (x) those of the string loop. The behaviour of the boundary energy function is
given by interplay of the functions A(r) and f (x). The local extrema of the boundary
energy function Eb, given by

(Eb)
′
x = 0⇔ x A′r f = −2r A f ′x (Eb)

′
y = 0⇔ A′r y = 0 , (23)

are of crucial importance since they determine the regions of different character of the string
loop motion.

In the Schwarzschild geometry the extrema equations (23) can be expressed in the form

J̃ 2
= J̃ 2

E ≡
x̃2(x̃ − 1)

x̃ − 3
, ỹ = 0 . (24)

The boundary energy function Eb has two extrema, maximum and minimum, located above
the black-hole horizon (at x̃ > 2), when

J̃ > J̃E(min)
.
= 7 . (25)

The detailed discussion of the properties of the effective potential and the string loop motion
can be found in (Kološ and Stuchlík, 2010). Here we summarize some relevant results.

We can distinguish four different types of the behaviour of the boundary energy function
Eb in the Schwarzschild spacetimes; in Fig. 2 we denote them by numbers 1 to 4. The
first case corresponds to no inner and outer boundary and the string can be captured by the
black hole or escape to infinity. In the second case, there is an outer boundary, the string
loop cannot escape to infinity and it must be captured by the black hole. The third case
corresponds to the situation when both inner and outer boundary exist and the string is
trapped in some region forming a potential “lake” around the black hole. In the fourth case
string cannot fall into the black hole but it can escape to infinity (or be trapped).
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Figure 3. Conversion of energy between Ex and Ey modes – string transmutation effect in the
Schwarzschild spacetime. Thick lines represents string trajectory, while thin lines on the first column
form boundary for the string motion Eb. The string with current J̃ = 11 is starting from region
away from black hole horizon x̃ = 22 and ỹ = 115 (first row), ỹ = 111.5 (second row). Near
the starting point the spacetime is almost flat, so string oscillates in the x-direction, while moving
with initial speed in y direction v(λ1)

.
= 0.41 c towards the black hole. Around conformal factor

λ ∼8 the string approaches region near the black hole horizon, where transmutation regime begins,
and crosses the equatorial plane. Near the black hole horizon, the modes of energy in the x and y
direction are interchanging, and the string is chaotically scattered. First row of pictures represents
acceleration of the string in y direction v(λ2)

.
= 0.67 c, while the second one represents its deceleration

v(λ2)
.
= 0.08 c.

4 STRING TRANSMUTATION

4.1 Flat spacetime energies

The Schwarzschild metric is flat at infinity. Therefore, we first discuss the motion of the
string loop in the flat spacetime. The energy of the string loop (20) in Cartesian coordinates
is given by

E2
= (y′)2 + (x ′)2 +

(
J 2/x + x

)2
= E2

y + E2
x , (26)

where prime is derivative with respect to the affine parameter λ. We introduce energy in x
and y directions by the relations

E2
y = (y

′)2 , E2
x = (x

′)2 +
(

J 2/x + x
)2
= (xi + xo)

2
= E2

0 . (27)

The energy in x direction E0 (for flat spacetime we introduce new marking Ex = E0) can
be determined by the inner xi and outer xo radii limiting motion of the string loop

xo,i =
1
2

(
E ±

√
E2 − 4J 2

)
. (28)
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The energy E0 is minimal if the inner and the outer radii coincide – then xi = xo = J ;
there is

E0(min) = 2J . (29)

Clearly, Ex and Ey are constants of the string loop motion in the flat spacetime and no
transmutation is possible.

4.2 Schwarzschild spacetime energies

If the spacetime in not flat, A(r) 6= 1, we can write the string loop energy (20) in Cartesian
coordinates in the form

E2
= A(r)

[
gxx

(
x ′
)2
+ 2gxy

(
x ′
)(

y′
)
+ gyy

(
x ′
)2]
+ A(r)

(
Σ̃ττ

)2x2 , (30)

where metric coefficients for the Schwarzschild spacetime in x and y coordinates are given
by

gxx =
x2
+ Ay2

A
(
x2 + y2

) , gxx =
y2
+ Ax2

A
(
x2 + y2

) , gxy = xy
1+ A

A
(
x2 + y2

) . (31)

The term gxy(x ′)(y′) is responsible for interchange of energy between Ex and Ey modes –
string transmutation effect. The coefficient gxy is significant only in the neighbourhood of
the black hole, so the effect of string transmutation can occur only in this region.

All energy from the Ey mode can be transmitted to the Ex mode – oscillations of the
string loop in the x direction will grown up, while the string will stop moving in the y
direction. On the other hand, all energy from Ex mode can not be transmitted to the Ey
mode – there remains always inconvertible energy E0(min) = 2J in Ex mode, see (29) .

The string motion transmutation will change rate of the string propagation in the y
direction; an example of acceleration (deceleration) in the y direction can be found on
Fig. 3.

4.3 String ejection speed

We consider the toy model of jets represented as string loops starting from region near
equatorial plane. We are interested in the maximum speed in y direction that strings can
achieve through the transmutation effect, if starting from the rest.

The relativistic gamma factor reads (Jacobson and Sotiriou, 2009)

γ 2
=

1
1− v2 =

E2

E2
0
, (32)

where E is the energy, E0 is energy of the string in the x-direction taken at infinity, and v
is string velocity in y direction (v ∈ [0, 1 c)).

Maximal gamma factor (32) (maximal speed) can be obtained if the string loop energy E
is large and the final energy in x direction (its value at infinity) is minimal, i.e. E0(min) = 2J .
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Figure 4. Speed of the string starting from the rest with fixed current J = 11 and starting point
x̃ = 20 while ỹ position (and total energy Ẽ) is changing. There are velocities up to the v = 0.65 c.
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Figure 5. Speed of the string starting from the rest with fixed current J = 2 and starting point x̃ = 20
while ỹ position (and total energy Ẽ) is changing. There are velocities up to the v = c.

In order to reach acceleration of the string loop in the y-direction the string must past region
near the black hole horizon, where string transmutation effect Ex ↔ Ey occurs.

Astrophysically most interesting situation corresponds to the string loop initially oscil-
lating in (or near) the equatorial plane when the oscillatory energy is transmitted to the
perpendicular direction; such transmutation represents jet ejection. The largest velocities
for the string ejection reported in (Jacobson and Sotiriou, 2009) is v = 0.39 c. On the other
hand, in our study of strings with J̃ > J̃E(min) we have found substantially higher values
of speed with v = 0.65 c. The results are represented in Fig. 4 clearly demonstrating the
chaotic nature of the string transmutation effect. Notice that the regular part of the results
of the simulations (in the region 3 < ỹ < 9) gives maximal v ∼ 0.3 c, or v ∼ 0.4 c for
ỹ ∼ 11, in accord with results of (Jacobson and Sotiriou, 2009), while the chaotic region
allows v ∼0.65 c.

There is an important question, whether ultrarelativistic speed of the jet model can be
achieved, and under which conditions. The ultra relativistic speeds can be achieved only for
small string currents J̃ < J̃E(min) starting from region out of the equatorial plane. We have
type 1 of the motion boundary is such case of J̃ < J̃E(min) and any string starting close to
the equatorial plane will collapse to the black hole. This implies necessity to start the string
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motion in sufficient distance from the equatorial plane. The results of modelling chaotic
string loop motion finishing at infinity for J̃ < J̃E(min) is demonstrated in Fig. 5. Notice
that now even in the regular part ultrarelativistic speeds v ∼c occur.

5 CONCLUSIONS

We can summarize the possibility of substantial acceleration of string loops that can model
jet ejection in the field of Schwarzschild black hole by the statements

• string transmutation effect Ex ↔ Ey occurs only near the black hole horizon,
• string can be accelerated for J̃ > J̃min up to v ∼0.65 c and up to v ∼c only for small J
and for type 1 of energy boundary.
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ABSTRACT
The current-carrying string loops oscillating around a stable equilibrium position in
the Kerr background are considered to explain the twin high-frequency quasiperiodic
oscillations (HF QPOs) observed in the low-mass X-ray binary 4U 1636-53 contain-
ing a neutron star. The frequencies of the radial and vertical string loop oscillations
are governed by the mass and spin parameters of the neutron star, and by the string
parameter describing combined effects of its tension and angular momentum. The
frequencies of the radial and vertical modes of the string loop oscillations can cover
the large scatter of the twin HF QPO data observed in the 4U 1636-53 source, but the
estimates of the mass M and spin a of the neutron star are rather high, M ∼2.65 M�
and a ∼ 0.45, while related to the theory of the neutron star structure. Therefore,
the string loop oscillation model in the case of the 4U 1636-53 source requires a
correction based on an electrically charged string loop interacting with the magnetic
field of the neutron star.

Keywords: string loop oscillations – X-ray variability – HF QPO observations

1 INTRODUCTION

Current-carrying string loops can represent combined systems of magnetic field and plasma,
exhibiting a string-like behaviour due to dynamics of the magnetic field lines (Semenov
et al., 2004; Christensson and Hindmarsh, 1999), or due to the thin flux tubes of magnetized
plasma simply described as 1D strings (Semenov and Bernikov, 1991; Cremaschini and
Stuchlík, 2013; Cremaschini et al., 2013; Kovář, 2013). The string loops are governed by
their tension and angular momentum. (Recall that first the cosmic strings were introduced
as remnants of the phase transitions in the very early universe (Vilenkin and Shellard, 1995),
and strings represented as superconducting vortices were introduced by (Witten, 1985)).
Dynamics of axially symmetric string loops in axially symmetric backgrounds is relatively
very simple and can be fully governed by an appropriately defined effective potential, in
analogy with test particle motion (Jacobson and Sotiriou, 2009; Kološ and Stuchlík, 2010;
Stuchlík and Kološ, 2012a; Kološ and Stuchlík, 2013). The current-carrying string loops
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moving axisymmetrically along the symmetry axis of the Kerr or Schwarzschild–de Sitter
black holes can be relevant in astrophysical processes (Jacobson and Sotiriou, 2009; Kološ
and Stuchlík, 2010; Stuchlík and Kološ, 2012a; Kološ and Stuchlík, 2013). Electrically
charged current-carrying string loops oscillating in combined external gravitational and
electromagnetic fields can be also fully described by an effective potential, if the string loop
and the background have common axial symmetry (Tursunov et al., 2013).

Recently, the axisymmetric current-carrying string loops were considered as a model
of ultrarelativistic jet formation due to transmutation effect governing transmission of the
internal energy of the oscillatory motion to the energy of translational motion (Stuchlík and
Kološ, 2012a,b; Kološ and Stuchlík, 2013). On the other hand, it has been shown that small
oscillations of the current-carrying string loops can explain frequency of the HF QPOs
observed with frequency ratio 3:2 in the three Galactic microquasars, GRS 1915+105,
XTE 1550-564, GRO 1655-40, i.e. Low-Mass X-ray Binary (LMXB) systems containing
a black hole (Stuchlík and Kološ, 2014b), and the special set of HF QPOs observed in the
peculiar neutron star low-mass X-ray binary XTE 1701-407 (Stuchlík and Kološ, 2014a).
The string loop oscillation model in both the cases assumes relevance of some resonant
phenomena and predicts reasonable restrictions on the values of the mass and spin of the
black holes in the microquasars, and the neutron star in the XTE J1701-407 source.

Here we test the string loop oscillation model in the case of the well studied atoll source
4U 1636-53, where a large scatter of the twin HF QPOs is observed (Barret et al., 2005,
2006; Belloni et al., 2007a; Wang et al., 2013, 2014). Then a different approach has to
be applied in order to match the observed twin HF QPOs where resonant phenomena are
not taken into consideration. On the other hand, we keep the assumption that mass of
the neutron star is large enough so that the external field of the neutron star can be well
approximated by the Kerr geometry (Urbanec et al., 2013).

2 STRING LOOP OSCILLATION MODEL

2.1 Motion of axisymmetric string loops

Dynamics of an axisymmetric current-carrying string loop in a given axially symmetric
and stationary, Kerr, spacetime with metric gαβ was treated in (Jacobson and Sotiriou,
2009; Kološ and Stuchlík, 2013). Oscillations of such string loops have been studied in
(Stuchlík and Kološ, 2014b). The oscillations of the string loop can be characterized by two
parameters, J and ω, reflecting the effect of the magnitude and components of the angular
momentum and the string tension (Stuchlík and Kološ, 2014b).

As demonstrated in (Larsen, 1993; Stuchlík and Kološ, 2014b), the string loop motion
can be described by the Hamilton equations and an appropriately defined Hamiltonian
H with a dynamic, HD, and a potential, HP, parts. The potential part is related to the
constants of motion associated to the background symmetries, namely, the energy E and
the angular momentum parameters J and ω. The boundary of the string loop motion is
given by vanishing of the potential parts of the Hamiltonian that implies the so called
energy boundary function Eb(r, θ; a, J, ω), (Kološ and Stuchlík, 2013; Stuchlík and Kološ,
2014b), serving as an effective potential of the string loop motion. The turning points of
the string loop motion are determined by the condition E = Eb(r, θ; a, J, ω).
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In the Kerr metric and the standard Boyer–Lindquist r, θ coordinates, (Carter, 1973), the
energy boundary function takes the form (Stuchlík and Kološ, 2014b),

Eb(r, θ; a, J, ω) =
4aωJ 2r(
ω2 + 1

)
G
+
√
∆

(
J 2 R2

G sin(θ)
+ sin(θ)

)
, (1)

where

G(r, θ; a) =
(

a2
+ r2

)
R2
+ 2a2r sin2(θ) , (2)

and

R2
= r2
+ a2 cos2 θ , ∆ = r2

− 2Mr + a2 , (3)

a denotes spin and M mass parameters of the Kerr spacetimes. Here we consider only the
Kerr black hole spacetimes (a < M), at the external region located above the outer event
horizon given by

r+ = M +
(

M2
− a2

)1/2
. (4)

Of course, for the exterior of neutron stars we have to consider only the part of the Kerr
spacetime limited by the condition r ≥ Rsurface > r+.

In the following, we shall use for simplicity the dimensionless radial coordinate r → r/M ,
dimensionless time coordinate t → t/M and dimensionless spin a → a/M ; this is
equivalent to using of M = 1 in the metric tensor. We will return to the dimensional
quantities in the Section 3.

Detailed discussion of the properties of the energy boundary function Eb(r, θ) is pre-
sented in (Kološ and Stuchlík, 2013) for both the Kerr black hole and naked singularity
spacetimes. Here we focus on the properties in the black hole spacetimes that can be
relevant for rotating neutron stars as demonstrated in (Urbanec et al., 2013; Török et al.,
2008) – in this case the local extrema of the energy boundary function can be located in the
equatorial plane only.

The local extrema of the energy boundary function Eb(r; a, J, ω), governing the equi-
librium positions of the string loops in the equatorial plane (θ = π/2), are determined by
the relation (Kološ and Stuchlík, 2013; Stuchlík and Kološ, 2014b),

J 2
= J 2

E(r; a, ω) ≡
(r − 1)

(
ω2
+ 1

)
H2

4aω
√
∆
(
a2 + 3r2

)
+
(
ω2 + 1

)
F
, (5)

where

H(r; a) = r3
+ a2(2+ r), F(r; a) = (r − 3)r4

− 2a4
+ a2r

(
r2
− 3r + 6

)
. (6)

The oscillations of the string loops around a stable equilibrium position in the Kerr back-
ground has been discussed in (Kološ and Stuchlík, 2013; Stuchlík and Kološ, 2014b). In
the basic approximation, for the first term in the perturbation expansion of the Hamiltonian
around the stable equilibrium positions, the oscillations can be separated to two modes of
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Figure 1. String-loop oscillatory frequencies νr (thin curves) and νθ (thick curves), calculated for
the Kerr metrics with M = 2 M�. Their radial profiles are illustrated for values of dimensionless
spin a = 0, 0.4 that are characteristic of our study of neutron star system. We demonstrate extension
of the frequency radial profiles for the complete range of the string loop parameter ω ∈ 〈−1, 1〉. The
vertical frequency curves are restricted to the region of existence (zero point) of the corresponding
radial frequency curves – the relevant region is greyed.

independent linear-harmonic oscillations in the radial and vertical direction. The higher
order terms of the expansion govern subsequent transition to the quasiharmonic oscillations
and finally to the fully chaotic oscillatory motion; it is very important that frequency of
the quasiharmonic oscillations of the string loops agrees with frequency of their harmonic
oscillations, (Stuchlík and Kološ, 2014b).

The rotating neutron stars are conveniently described by the Hartle–Thorne geometry
that is characterized in the exterior part by three parameters: mass M , dimensionless spin
a, and dimensionless quadrupole moment q , as shown in (Hartle, 1967; Hartle and Thorne,
1968; Chandrasekhar and Miller, 1974). The Hartle–Thorne model can be used for rotating
neutron stars with rotation frequency significantly smaller that the mass-shedding frequency,
fm−sh ∼ 1100 Hz, and spin a < 0.5 (Urbanec et al., 2013). The rotation frequency of
neutron stars described well by the Hartle–Thorne model can be as high as frot ∼ 600 Hz.

For q/a2
= 1, the Hartle–Thorne geometry coincides with Kerr geometry, and for

1 < q/a2 < 2 these two geometries are very close each other giving very close predictions
for astrophysical phenomena (Török et al., 2008; Török et al., 2010; Bejger et al., 2010;
Bini et al., 2013). It has been demonstrated recently that for a wide variety of equations
of state, the Hartle–Thorne models predict q/a2 < 2, if the neutron star mass is close to
the maximum allowed by a given equation of state, implying thus applicability of the Kerr
geometry (Urbanec et al., 2013).

2.2 Frequency of the radial and vertical harmonic oscillatory modes

For the string loop harmonic oscillations around a stable equilibrium position at a given r0
and θ0 = π/2 the locally measured angular frequencies of the radial and vertical oscillatory
motion reads (Stuchlík and Kološ, 2014b)

ω2
r =

1
grr

∂2 HP

∂r2 , ω2
θ =

1
gθθ

∂2 HP

∂θ2 . (7)
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The partial derivatives of the potential part of the Hamiltonian are calculated at the local
minimum of the energy boundary function at r0 and θ0 = π/2. The location of the stable
equilibrium point is determined by the angular momentum parameters J and ω of the string
loop – see (Stuchlík and Kološ, 2014b).

The locally measured angular frequencies are connected to the angular frequencies related
to distant observers,Ω(r,θ), by the gravitational redshift transformation (Stuchlík and Kološ,
2014b),

Ω(r,θ) =
ω(r,θ)

P t . (8)

If the angular frequencies Ω(r,θ), or frequencies ν(r,θ), are expressed in the physical units,
their dimensionless form has to be extended by the factor c3/G M . Then the frequencies of
the string loop oscillations measured by the distant observers are given by

ν(r,θ) =
1

2π
c3

G M
Ω(r,θ) . (9)

The same factor occurs in the case of the orbital and epicyclic frequencies of the geodesic
motion in the Kerr spacetime (Aliev and Galtsov, 1981; Török and Stuchlík, 2005; Stuchlík
and Schee, 2012). The mass-scaling of the frequencies of the radial and vertical oscillations
is the same for both the current-carrying string loops and test particles and we are approved
to expect that the string loop oscillations could serve as an explanation of the HF QPOs
observed in the strong gravity regions of black holes and neutron stars. In the Kerr geometry,
the angular frequencies of the string loop oscillations related to distant observers take the
dimensionless form (Stuchlík and Kološ, 2014b),

Ω2
r (r; a, ω) =

JE(ex)

(
2aω
√
∆
(
a2
+ 3r2)

+
(
ω2
+ 1

)
F1

)
2r
(
a2(r + 2)+ r3

)2 F2
3

, (10)

Ω2
θ (r; a, ω) =

√
∆
(

2aω
√
∆
(
2a2
− 3a2r − 3r3)

+
(
ω2
+ 1

)
F2

)
r2
(
a2(r + 2)+ r3

)
F3

, (11)

where

F1(r, a) = a2r3
− a2∆+ r5

− 2r4 , (12)
F2(r; a) = a4(3r − 2)+ 2a2(2r − 3)r2

+ r5 , (13)
F3(r; a, ω) = 2aω

(
a2
+ 3r2)

+
√
∆
(
ω2
+ 1

)(
r3
− a2) , (14)

JE(ex)(r; a, ω) ≡
(
ω2
+ 1

)
H(r − 1)

(
6a2r − 3a2r2

− 6a2
− 5r4

+ 12r3)
+ 4aωH∆−1/2

[
(a2
+ 3r2)

(
∆−

(
r − 1

)2)
− 6∆r(r − 1)

]
−
(
ω2
+ 1

)[
F H + 2F

(
a2
+ 3r2)(r − 1)

]
+ 8aω

√
∆
(
a2
+ 3r2)2(r − 1) . (15)

The function JE(ex)(r; a, ω) determines the local extrema of the function JE(r; a, ω) and
character of the local extrema of the energy boundary function. Its zero points correspond
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to the marginally stable equilibrium positions of the string loops – the frequency of the
radial oscillatory modes of the string loops vanishes there. The conditions

JE(ex) = 0 and J 2
E ≥ 0 , (16)

satisfied simultaneously, put the limit on validity of the formulae giving the angular fre-
quencies of the radial and vertical oscillations (Stuchlík and Kološ, 2014b).

In the case of spherically symmetric spacetimes, a = 0, the parameter ω is irrelevant for
the string loop oscillatory motion. The vertical oscillations are then fully governed by the
gravity effect of the black hole (or neutron star) and the string tension and angular momentum
play no role (Kološ and Stuchlík, 2013). The frequency of the vertical oscillations of
the string loops equals those of the test particle epicyclic motion. In the rotating Kerr
spacetimes, even for string loops withω = 0, the vertical harmonic oscillations are different
for the string loops and test particles, implying relevance of the string tension and angular
momentum even in the simplest state of ω = 0 (Stuchlík and Kološ, 2014b).

Behaviour of the radial profiles of the radial and vertical frequencies of the string loop
harmonic oscillations is illustrated in Figure 1 for two characteristic values of the Kerr spin
parameter a = 0, 0.4. In the Schwarzschild spacetime (a = 0), a degeneration occurs, and
both the frequencies are independent of the parameter ω. In the Kerr spacetimes, the range
of the radial and vertical frequencies depends on the string-loop parameter ω, and the spin
parameter a of the spacetime. Extension of the range of allowed frequencies increases with
increasing spin a, if we consider the full range of the angular momentum parameter ω. For
all values of the spin, and at each radius where the two oscillatory modes can occur, the
vertical frequency has its maximum (minimum) for string loops with ω = −1 (ω = +1),
while the radial frequency has its maximum (minimum) for string loops with ω = +1
(ω = −1) – see Fig. 1.

3 TWIN HF QPOS IN ATOLL AND Z SOURCES

The low mass X-ray binary (LMXB) systems containing neutron stars are separated into two
categories – the so called atoll and Z sources. This categorisation reflects distinct spectral
properties of the sources and its details can be found in (Hasinger and van der Klis, 1989).
Distinctions of these two classes of the neutron star LMXB systems are discussed, e.g. in
(van der Klis, 2006); remarkably, the Z sources are persistent, brighter and harder than the
atoll sources. Both atoll and Z sources demonstrate twin HF QPOs. Details of observed
HF QPO are presented in original papers related to individual sources, a review detailed
study comparing properties of HF QPOs in a large variety of observed atoll and Z sources
is prepared in (Török et al., 2014), other details are presented in (Barret et al., 2005; Belloni
et al., 2007b; Wang et al., 2013).

In the LMXB systems the frequencies of observed quasiperiodic oscillations range from
∼ 10−2 Hz up to ∼ 103 Hz. We restrict attention to the kHz (high-frequency) QPOs,
with frequencies in the range 200–1300 Hz that are comparable to the frequencies of the
orbital motion in strong gravity near neutron stars and stellar-mass black holes (van der
Klis, 2006). In the neutron-star sources, HF QPOs usually occur as two simultaneously
observed peaks in the X-ray flux, with frequencies that substantially change over time – see,
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e.g. (Barret et al., 2005; Méndez, 2006).1 According to the standard convention, we call
the two peaks corresponding to a twin HF QPOs the lower and upper QPO denoting their
frequencies νL < νU. The observed twin HF QPOs span in the atoll or Z sources a large
frequency range following an approximately linear νL − νU relation (Belloni et al., 2005).
The frequency ratio in twin HF QPOs changes in the range of 3:2 to 5:4 in the atoll sources
and in some of the Z sources, but for a variety of the Z sources the frequency ratio starts at
3:1 and finishes at 3:2. Recall that we know also a peculiar neutron star source XTE J1701-
407 where the observed HF QPOs resemble those observed in the microquasars, displaying
two twin HF QPOs with frequency ratio 3:2 and a single HF QPO (Pawar et al., 2013). A
similar behaviour occurs in the case of the peculiar source XTE J1701-462 (Homan et al.,
2007).

The string loop oscillation model has been successfully applied to explain the frequencies
of the HF QPOs with ratio 3:2 observed in the three Galactic microquasars GRS 1915+105,
XTE 1550-564, GRO 1655-40 (Stuchlík and Kološ, 2014b), and the frequencies of HF
QPOs observed in the peculiar source XTE 1701-407 where one observed frequency is
mixed with two twin frequencies with ratio very close to the 3:2 ratio, typically observed
in the black hole systems (microquasars), (Stuchlík and Kološ, 2014a). In both the cases,
relevance of resonant phenomena in the string loop oscillation model has been assumed,
and the limits of the string loop model implied for the black hole (neutron star) mass and
spin are in agreement with independent measurements of these spacetime parameters. The
resonance phenomena can be relevant for the behaviour of the oscillating string loops as
indicated by the Kolmogorov–Arnold–Moser (KAM) theory (Möser, 1962; Stuchlík and
Kološ, 2014b), or some resonance phenomena could be relevant even for creation of the
string loops, selecting thus some special radii related to the resonant phenomena.

4 FITTING THE FREQUENCIES OF THE TWIN KHZ QPOS IN THE ATOLL
SOURCE 4U 1636-53

Here we concentrate our attention on the frequency distribution of the observed twin HF
QPOs in the widely studied atoll source 4U 1636-53. In this case the resonant phenomena
cannot be relevant in explaining the observed twin HF QPOs because of the large scatter
of the 4U 1636-53 observational data spanning the whole interval of the frequency ratio
3:2–5:4 (Barret et al., 2005; Török, 2009). The data reflecting all the observed twin HF
QPOs in 4U 1636-53 are illustrated in Fig. 2.

For a given twin HF QPOs observed in a given source, we have to consider fixed
values of the string parameter ω and the spacetime parameters M and a. For a variety
of twin HF QPOs being observed in the source, the spin and mass parameters have to be
fixed, but the string loop parameter ω can be varied. Various twin frequency observations
could be generated by different string loops being created and decayed successively with
different values of the parameter ω reflecting locally different conditions in the source. The

1 In the black hole systems (microquasars), the HF QPOs are detected at constant frequencies that are characteristic
of a given source (Remillard and McClintock, 2006). When two or more frequencies are detected, they occur with
a fixed small-number ratio; for twin observations the ratio 3:2 typically occurs (Török et al., 2005).
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string-loop oscillation model thus naturally introduces a possibility of significant scatter
in distribution of frequencies of the twin HF QPOs. A large scatter in the distribution of
twin HF QPOs in the νL − νU diagram can occur, if string loops with differing parameter
ω arise at a fixed radius of the disc under evolving conditions, or if they arise at different
radii of the disc under differing local conditions. Naturally, we can expect mix of these two
possibilities. On the other hand, a regular distribution of the twin HF QPOs along a line
in the νL − νU diagram is possible only if string loops with a fixed parameter ω occur on
different radii of the Kerr spacetime describing the exterior of the neutron star; however,
this is not the case of the 4U 1636-53 source.

For the largely scattered twin HF QPOs in the atoll sources 4U 1636-53, the resonance
phenomena are evidently irrelevant in the framework of the string loop oscillation model
and will not be considered here. Each point representing a twin HF QPO in the νL − νU
diagram determines both the upper and lower frequencies, and their ratio. The frequencies
given by an observed twin HF QPOs can be related to the frequencies of the radial and
vertical oscillatory modes of the string loop. The upper frequency can be identified to the
vertical (radial) frequency, if the oscillating string loop is located under (above) the radius
of coincidence of the radial and vertical frequencies of a given string loop governed by its
parameter ω.

The procedure of fitting the string loop oscillation frequencies to the observed frequencies
in an observational event of a twin HF QPO has been determined in (Stuchlík and Kološ,
2014b). The fitting procedure gives for each of the observed events an allowed region of
the parameter space of the spacetime parameters M, a, determined by the limiting values of
the string loop parameter ω ∈〈−1, 1〉. The resulting restriction of the spacetime and string
parameters M, a, ω is then given by the conjunction of the restrictions given for individual
twin-frequency data points. While this procedure works quite efficiently for the simple
situations of the observed HF QPOs in the microquasars and the XTE J1701-407 neutron
star source, for the complex data sets related to the atoll source 4U 1636-53 it is complex
and inconvenient.

Therefore, we use a different method, giving directly the dependence of the frequency
of the radial and vertical oscillatory modes in the νL − νU diagram of the observed data
points, assuming that the whole interval of the string loop parameterω ∈〈−1, 1〉 is relevant.
For given mass parameter M , the fitting predicts only one line of the radial and vertical
frequencies for the spin a = 0, due to the degeneracy of the radial profiles of the string loop
oscillation frequencies in the Schwarzschild spacetimes (a = 0), i.e. their independence of
the stringy parameterω. Extension of the frequency region covered by the lines of the radial
and vertical frequencies being related to the whole interval of the string loop parameter
ω ∈ 〈−1, 1〉 (i.e. the interval of allowed values of frequencies) increases with increasing
spin a. We have to look for the values of the neutron star parameters M, a when the region
of the allowed radial and vertical frequencies of the string loops cover all the observed
twin HF QPO data. The situation is illustrated in Fig. 2 (left), where the example of the
νr − νθ dependence is given for properly chosen values of the spacetime parameters M, a.
The limiting lines correspond to the limiting values of ω ∈ 〈−1, 1〉. The spin parameter
has been taken at the value of a = 0.5 corresponding to the limit of applicability of the
Hartle–Thorne theory (Urbanec et al., 2013).
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Finally, the restrictions on the spacetime parameters M, a of the neutron stars in the atoll
sources 4U 1636-53, predicted by the string loop oscillation model, are presented in Fig. 2
(right). The allowed region of the neutron star spacetime parameters is determined by a
numeric procedure searching for the values of M, a parameters allowing to cover all the
twin HF QPO data of the given source with the whole range of the string loop parameter ω.
For completeness, we have considered whole the range of the neutron star spin, a < 0.7,
as predicted by the fully general relativistic models of neutron stars (Lo and Lin, 2011). In
the presented approach, restrictions on the string loop parameter ω are not discussed, as the
whole range of ω ∈ (−1,+1) is allowed. In Figure 3, the radial profiles of the frequency
of the radial and vertical harmonic oscillatory modes are presented in a typical situation
enabling fitting of observational data, while limiting role of the neutron star surface is
depicted.

We can see that the string loop oscillation model allows for the neutron star atoll source
4U 1636-53 its spin in the range 0.45 < a < 0.7 and its mass in the range 2.5M� < M <

2.9M�. These ranges seem to be in marginal agreement with the Hartle–Thorne theory
of the neutron stars, and the limits implied on neutron star mass by realistic equations of
state (Urbanec et al., 2013). In fact, the limiting value of a = 0.45 implies the mass of
M ∼2.65 M� that can be explained by the very hard, mean-field equation of state.

5 CONCLUSIONS

We have demonstrated that the twin HF QPOs observed in the atoll 4U 1636-53 source
can be explained by the string loop oscillation model introduced in (Stuchlík and Kološ,
2014b). This model, reflecting oscillations of string loops governed by interplay of the
tension and angular momentum that can approximate magneto-plasma toroidal structures,
has been for the atoll source applied in a way different to those related to simple systems
of HF QPOs observed in microquasars or the peculiar neutron star XTE J1701-407 system,
where resonant phenomena can be assumed. In the atoll source 4U 1636-53, the string
loop oscillation model gives restrictions on the spacetime parameters M, a assuming no
restrictions on the string loop parameter ω. We summarize that

• we cannot fit the observed data in the 4U 1636-53 source assuming only one string loop
having a fixed value of the parameter ω, but we have to consider string loop with ω varied
in the whole interval of allowed values ω ∈(−1,+1).
• the neutron star has to be fast rotating, as the spin has to be in the range 0.45 < a < 0.7,
• the neutron star has to be very massive, with mass parameter limited to the interval
2.5 M� < M < 2.8 M�.

Since the neutron star has to be very massive, we can conclude that the application
of the Kerr geometry in the fitting procedure is justified, as for the near-maximum-mass
neutron stars the exterior Hartle–Thorne geometry has to be close to the exterior Kerr
geometry, giving close predictions of the physical phenomena occurring in their vicinity.
However, the predicted spin, a ≥ 0.45, is too high for the Hartle–Thorne theory to be
applicable. The applicability can be only marginal. Therefore, we could expect that some
proper modifications of the spacetime parameters of the external field of the neutron star
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are possible due to an additional electromagnetic interaction of electrically charge string
loops with the magnetic field of the neutron star (Tursunov et al., 2013, 2014).

Therefore, it is clearly worth to investigate the string loop oscillation model in more
detailed way, concentrating on the conditions for creation of “magnetic” string loops due
to the kinetic dynamo effect along the lines proposed in (Cremaschini and Stuchlík, 2013;
Cremaschini et al., 2013).
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ABSTRACT
X-ray spectroscopy of active galaxies and black hole binaries provides an opportu-
nity to explore the innermost regions of black hole accretion discs. Some of the
recent measurements have revealed a very steep radial decrease of the disc reflection
emissivity, especially in the central region, suggesting the disc-irradiating corona
to be compact and very centrally localised. We discuss whether the special condi-
tions on the corona properties are indeed required, and / or whether the steep radial
emissivity could be an artefact of model assumptions. The inter-dependencies and
possible degeneracies between the radial emissivity index and other parameters of
the relativistic reflection model are studied. A set of simulations using a prelimi-
nary response matrix for a planned Athena mission is performed for this purpose.
We show that the measurements of the radial emissivity are indeed degenerate with
some model assumptions and parameters, even for more sensitive spectra than for
those available from current X-ray missions. We also realise that the radial depen-
dence of the disc ionisation might be another factor which can account for the steep
radial emissivities.

Keywords: black holes – accretion discs – relativistic iron lines

1 INTRODUCTION

Relativistic iron lines in X-ray spectra of active galactic nuclei and black hole binaries
represent one of the most suitable opportunities to measure the angular momentum of
accreting black holes, see e.g. Reynolds and Nowak (2003) for a review. Spin measurements
are influenced by the geometry of the disc-illuminating corona and local properties of the
disc that affect the re-processing and re-emission of the incident photon. Usually, the current
iron line models (Laor, 1991; Dovčiak et al., 2004; Beckwith and Done, 2004; Brenneman
and Reynolds, 2006) employ a simplified approach where the complex relationship between
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the disc illumination and consequent emission is approximated by a simple or broken power-
law dependence on radial coordinate, and local angular emissivity profile is assumed to be
either isotropic or limb-darkened.

In our recent paper (Svoboda et al., 2009), we investigated the effect of different emission
angular directionality on the spin measurements. Here, we extend our analysis by study
of a possible degeneracy between the assumption of the angular distribution and model
parameters describing the radial profile of the emissivity. More generally, we investigate
further effects which might account for the radial emissivity profile, namely the localisation
of the corona and the radial structure of the disc ionisation.

The intrinsic disc emissivity is naturally expected to decrease with the growing distance.
The temperature of the disc decreases as r−3 (Shakura and Sunyaev, 1973; Novikov and
Thorne, 1973). Therefore, one of the naive assumptions is to assume the same dependence
for the reflection, i.e. the reflection emissivity ε ∝r−q , where q = 3. The simplest physical
picture is that of a corona uniformly sandwiching the disc. The more energetic photons are
injected in the innermost regions, and so, more intense irradiation of the disc occurs there.

However, non-thermal coronal emission does not necessarily need to behave in the same
way as the thermal dissipation of the disc. The interaction between the disc and the corona
is more complicated, including the radiation and magnetic processes (see e.g. Haardt and
Maraschi, 1991; Czerny and Goosmann, 2004; Goosmann et al., 2006; Różańska et al.,
2011). Especially when the magnetic field is considered, the resulting profile might be as
steep as e.g. r−5 (Kawanaka et al., 2005).

Steep radial emissivities were indeed reported in several sources, in active galaxies like
MCG -6-30-15 (Fabian et al., 2002; Vaughan and Fabian, 2004; Miniutti et al., 2007),
1H0707-495 (Fabian et al., 2009; Zoghbi et al., 2010; Dauser et al., 2012), IRAS 13224-
3809 (Ponti et al., 2010) as well as in black hole binaries, e.g. XTE J1650-500, GX 339-4
(Miller, 2007). In order to provide a physical picture of the steep radial emissivity in MCG -
6-30-15, Wilms et al. (2001) invoke strong magnetic stresses that should act in the innermost
region of the system. This should correspond to the enhanced dissipation of a considerable
amount of energy in the accretion disc at small radii. If the magnetic field lines thread the
black hole horizon, the dissipation could be triggered by magnetic extraction of the black
hole rotational energy, perhaps via Blandford–Znajek effect (Blandford and Znajek, 1977),
but it could be also supplemented by a rather efficient slowing of the rotation, as also seen
in recent GRMHD simulations (e.g. Penna et al., 2010). The efficiency of the competing
processes still needs to be assessed.

Martocchia et al. (2000) examined whether the required steep emissivity law as well as
the predicted equivalent width of the cold reflection line of iron and the Compton reflection
component can be reproduced in a phenomenological (lamp-post) model where the X-ray
illuminating source is located on the common symmetry axis of the black hole and the
equatorial accretion disc. These works suggested that the radial emissivity function of the
reflection component steepens when the height parameter of the primary irradiation source
decreases. The enhanced anisotropy of the primary X-rays was identified as a likely agent
acting in this process. The emissivity in the XMM-Newton spectrum of MCG -6-30-15 was
successfully reproduced with the lamp-post geometry (Martocchia et al., 2002; Miniutti
et al., 2003).
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In some cases, like in the spectrum of 1H0707-495, the measured radial emissivity in the
innermost region q ≈7 (Fabian et al., 2009; Wilkins and Fabian, 2011) is, however, steeper
than any current theoretical model predicts. In this paper, we will discuss some possible
explanations of detecting such steep radial emissivities. To this end, we explore several
simple test models and analyse them with the simulated data.

2 DATA SIMULATION

We used a preliminary response matrix1 for the planned X-ray mission Athena (Nandra,
2011) in our various simulations. There are several reasons for this choice. First of all,
this mission has been proposed only recently and ongoing scientific discussions on feasible
applications are timely. We would like to show by this analysis that in the case of approval
the Athena mission will be suitable for studying reflection features from the innermost
accretion discs around black holes. The main aim of these simulations is to constrain
possible degeneracies among different parameters of the relativistic reflection model. For
this purpose, Athena allows for a more sensitive analysis than is possible with the spectra
from current X-ray missions. Using a sensitive response planned for the future mission
allows us to find degeneracies which are not only adherent to the current data, but which
also will not be resolved with the on-coming X-ray detectors.

We performed the spectral analysis between 2–10 keV energy range where one of the
most prominent reflection feature, the iron Kα line, occurs. We re-binned the response
matrix by a factor of 10 between channels 2700 and 8800 (2–10 keV), the other channels
were not used. We used Xspec (Arnaud, 1996), version 12.6.0ab for the spectral fitting.
We used the most recent version of KY code (Dovčiak et al., 2004) which includes the
lamp-post geometry (Dovčiak et al., in prep.). The flux of the model was chosen to be
similar to that of bright Seyfert galaxies, i.e. ≈ 3 × 10−11 ergs·cm−2 s−1 (Nandra et al.,
2007). The simulated observation time was always 100 ks, which is a typical value for
average exposure time of AGN observed with the current X-ray satellites.

3 LAMP-POST SCHEME

First, we investigate how the radial emissivity depends on the geometry of the corona. If the
corona is localised the illumination of the disc decreases with the growing distance from the
source in a particular way determined by the position of the corona and by the gravitational
pull of the central black hole. The configuration when the corona is very compact and
located just above the black hole, known also as the lamp-post scheme, has been studied
as a simple disc-corona scenario by Matt et al. (1991); George and Fabian (1991). In a
physical picture, the source above the black hole can be imagined, e.g. as a base of a jet.

In this scenario the irradiation far from the source radially decreases as r−3. In the central
region, the relativistic effects – energy shift, aberration and light-bending – influence the
disc illumination, and thus shape the reflection spectra of black hole accretion discs (Miniutti
and Fabian, 2004). As a result, the different parts of the disc are irradiated with different

1 up-to-date to 9/5/2011, ftp://ftp.rssd.esa.int/pub/athena/09052011 Responses
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Table 1. The inner radial emissivity index qin, and the break radius rb inferred for different heights
and directionalities in the lamp-post model.

a = 0.94
numerical limb brightening isotropic limb darkening

h[rg] qin rb qin rb qin rb qin rb

1.5 4.8+0.2
−0.1 6.1+0.2

−0.2 4.5+0.1
−0.1 6.4+0.2

−0.2 5.0+0.4
−0.1 6.0+0.3

−0.2 5.3+0.1
−0.1 5.7+0.2

−0.1

3.0 3.3+0.1
−0.1 6.3+1.9

−1.1 3.2+0.3
−0.2 8.0+3.4

−2.6 3.2+0.1
−0.1 15+10

−3 3.3+0.1
−0.1 20+70

−5

10 1.3+0.1
−0.2 16+1

−1 2.3+0.1
−0.1 55+9

−10 2.3+0.2
−0.1 48+5

−7 2.5+0.1
−0.1 60+15

−15

intensity, making the emissivity profile in reflection models distinct from the standard value
of q = 3. If the height of the source is sufficiently close to the black hole event horizon the
light bending implies higher irradiation of the innermost region compared to the outer parts
of the disc. In the most extreme scenario, when the source is moving towards the black
hole, the Doppler boosting might increase this effect. However, there is no observational
evidence for such an inflow of the matter perpendicular to the disc plane, while outflows in
the form of a jet are observed in many sources (e.g. Merloni et al., 2003).

Further, we consider the stationary lamp-post source and investigate the radial emissivity
profile of the disc reflection radiation for different heights of the source. The fully relativistic
code including the azimuthal dependence of the reflected emission coming from a neutral
disc was employed. The radial emissivity profiles are shown in Dovčiak et al. (in prep.).
Here, we study whether it is possible to approximate the radial emissivity in the lamp-post
model by a simplified profile in the form of a broken power-law, as this is usually used in
current modelling of the data.

Figures 1 and 2 show contour plots for the radial emissivity index and the spin, and the
break radius, respectively. The fiducial value of the spin was set to a = 0.94 (indicated
by the dashed line). The other parameters of the seed model were the photon index of the
primary power-law radiation Γ = 1.9, the inclination of the disc i = 30 deg, the inner
radius rin = rms, and the outer radius rout = 400 rg. The data were modelled by the
power-law component with the fixed value of the photon index and the KYRLINE model for
the iron line with the adopted broken power-law for the radial emissivity. Different angular
directionality was used (see the next section for further details). The best-fit parameters
are summarised in Table 1. In the contour calculations, only the two interesting parameters
were allowed to vary. Others were fixed to their default or best-fit (in the case of break
radius) values.

Figures 6–8 show the same but for different parameters. The steep radial emissivity is
reached only if the primary source is at a very low height above the black hole where the
strong gravity considerably bends the light rays of the primary radiation. Very steep radial
emissivities detected in the spectra would imply that the black hole must be rapidly rotating,
and moreover, the source would have to be very bright because the radiation would lose its
intensity on its way out of the deep gravitational well.
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Figure 1. Contour plots of the spin a and the radial emissivity parameter q . The data were generated
with the lamp-post model with the height h = 1.5 rg. The default value of the spin was a = 0.94,
which is indicated by a dashed line in the graph. Different prescriptions for the angular emissivity
were used: Top left: angular emissivity from numerical calculations. Top right: limb brightening.
Bottom left: isotropic. Bottom right: limb darkening. The χ2 values corresponding to the best fit
(minimum) and to the 1σ, 2σ, 3σ levels are indicated in the text legend.

4 INTERPLAY BETWEEN THE RADIAL AND ANGULAR EMISSIVITY
PROFILE

When fitting the data, the local intensity of the re-processed radiation emitted from the disc
is often assumed to be divided into two separate parts – the radial and angular dependence.
The latter one characterises the emission directionality. However, due to large rotational
velocity of the disc and the strong gravity near the black hole, the photons that reach the
observer are emitted under different angles at different locations. Therefore, the angular
part of the emissivity depends on radius as well, and the above separation is not valid.
The relativistic effects, aberration and light bending, cause that the emission angle in the
innermost region is always very high (almost 90 degrees with respect to the disc normal) –
see Appendix C in Dovciak (2004), or Fig. 3 in Svoboda et al. (2009). Although it is not
an axi-symmetric problem, the almost radial decrease of the emission angle is apparent,
which invokes the link between the radial and angular emissivity (Beckwith and Done,
2004; Svoboda et al., 2009).
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Figure 2. Contour plots of the radial emissivity and the break radius for the height h = 1.5 rg. The
legend is the same as in Fig. 1. The spin and the inclination were frozen to their default values.

Hence, we used different assumptions about the directionality:

(1) our numerical computations2 (Svoboda et al., 2009),
(2) limb brightening I (µe) ≈ ln(1+ µ−1

e ) (Haardt, 1993),
(3) isotropic,
(4) limb darkening I (µe) ≈1+ 2.06µe (Laor, 1991),

where µe is the cosine of the emission angle. The simulated data were created with our
numerical model of the directionality calculated with the NOAR code (Dumont et al., 2000).
Free-free absorption, the recombination continua of hydrogen- and helium- like ions, the
direct and inverse Compton scattering were taken into account (see Svoboda et al., 2009,
for more details).

The fact that we get different results confirms that constraining the radial emissivity is
influenced by the prescription for the angular emissivity. Steeper radial emissivities are
required in the best fits with limb darkening. This emissivity law is widely used in the
reflection models, however, it is somewhat in contradiction with several models of X-ray
illuminated disc atmospheres (Ghisellini et al., 1994; Zycki and Czerny, 1994; Goosmann

2 integrated over incident angles
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et al., 2006; Różańska et al., 2011). Its application causes an appreciable underestimation
of the innermost flux. The radial emissivity parameter must then be set to an artificially
steeper value in order to compensate this loss of the counts from the central region where
the emission angle is grazing.

5 RADIALLY STRUCTURED IONISATION OF THE DISC

The interplay between the radial and angular emissivity shows that the steep radial emissivity
in the observational data might be caused by an invalid model assumption. Yet, there is
another frequently used assumption in the reflection scenario that can contribute to this
effect as well – the constant ionisation over the whole surface of the disc. The intensity
of the disc irradiation, whether it is approximated by a (broken) power-law decrease or
by a lamp-post illumination in curved space-time, decreases with the radius. Therefore
the ionisation of the disc surface may respond accordingly, as suggested before by Matt
et al. (1993).

Ballantyne et al. (2001) investigated the importance of the photo-ionisation of the disc
surface in active galactic nuclei. The presence of ionised reflection features in their X-ray
spectra was reported in several sources (see Ballantyne et al., 2011, and references therein).
The photo-ionisation was also suggested as a possible explanation for non-detection of the
spectral imprints of the relativistically smeared reflection (Reynolds et al., 2004; Svoboda
et al., 2010; Bhayani and Nandra, 2011; Brenneman et al., 2012). The radially dependent
ionisation was discussed recently with the existing data by Zhou et al. (2011).

More generally, the ionisation of the disc surface depends on several other physical
quantities like density, vertical structure, thermal heating etc. (see e.g. Nayakshin and
Kallman, 2001; Różańska et al., 2002; Goosmann et al., 2007 and references therein).
A detailed description of the disc ionisation is beyond the scope of this paper. Here, we
simply suppose that the radial dependence of the ionisation may be relevant, as a natural
consequence of the radial dependence of the disc illumination by the primary radiation.
Thus, we suppose that the accretion disc around a black hole might be more ionised in the
central region and colder in the outer regions.

5.1 Test case: two ionisation zones

Currently, no model can consistently describe the radial structure of the disc ionisa-
tion. Hence, as a test case, we used two REFLIONX models (Ross and Fabian, 2005)
with a different ionisation state convolved with KY model (Dovčiak et al., 2004), corre-
sponding to different emission regions on the disc. The inner disc ionisation was set to
ξ = 50, 80, 100, 130, 150, 200 ergs·cm s−1, respectively, and the outer disc ionisation was
ξ = 30 ergs·cm s−1. The boundary radius was set to rboundary = 4 rg. The innermost radius
coincides with the marginally stable orbit, and the outer radius was set to 400 rg. The spin
value was chosen to be a = 0.94, i.e. rms ≈ 2 rg. The inclination angle was chosen to
30 deg which is a typical value for the inclination of Seyfert 1 galaxies. The primary power-
law radiation photon index and normalisation were set to Γ = 1.9 and KΓ = 10−3. We
assumed isotropic irradiation, i.e. disc-sandwiching corona scenario. The standard value,
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Figure 3. Left: Dependence of the fit-goodness on the radial emissivity parameter of the single
reflection model. Right: The contour graph between the radial emissivity and the break radius. The
default data were created by the two-reflection model with the inclination i = 30 deg, the break radius
rb,def = 4 rg, and the ionizations ξin = 130 and ξout = 30.

Table 2. Resulting parameter values of the single reflection model applied to the data simulated by
a “two-reflection” model.

ξin / ξout (def.) q rb ξ χ2/ν

50 / 30 4.04+0.76
−0.48 6.1+1.7

−1.2 28+11
−6 544/604

80 / 30 4.70+0.73
−0.87 6.6+0.8

−0.9 25+8
−3 542/604

100 / 30 4.88+0.36
−0.69 6.1+1.2

−0.6 23+3
−2 548/604

130 / 30 4.93+0.20
−0.26 7.1+0.7

−0.6 24+3
−2 569/604

150 / 30 5.51+0.19
−0.43 6.3+0.8

−0.4 21+1
−1 602/604

200 / 30 4.95+0.45
−0.15 8.3+0.8

−1.0 21+1
−5 652/604

Table 3. Resulting parameter values of the single reflection model applied to the data simulated by
a “complex” reflection model.

parameter default value fit value error

photon index 1.9 2.10 0.05
power-law norm. 10−3 2.55× 10−3 0.15× 10−3

spin 0.94 0.94 f
inclination [deg] 30 30 f

inner rad. emissivity 3 4.2 0.1
break radius [rg] – 35 20

ionisation [ergs·cm s−1] different 40 10
refl. norm. 10−5 2× 10−4 0.5× 10−4

fit goodness χ2/ν ≈0.96 χ2/ν ≈1.13 –

Note: the sign ‘f’ in the error column means that the values were frozen during the fitting procedure.
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q = 3, was adopted for the radial emissivity index. For the reflection components, we
used solar iron abundances and normalisation K R = 10−5, fixed to the same value for each
component.

We generated the data by this model in the same way as described in Section 2. Then
we fit the data in the 2–10 keV energy range with a model consisting of only a power-law
continuum and a single reflection component with a broken power-law radial emissivity.
The photon index, the inner radial emissivity index, the break radius, the ionisation and
the normalisations were the only parameters which were allowed to vary during the fitting
procedure. The best-fit values and the errors are summarised in Table 2. A significant
steepening of the radial emissivity occurs already for a relatively small ionisation gradient.
The highest value of the radial emissivity index, q ≈ 5.5, was found for ξin = 150
ergs·cm s−1. The dependence of the fit goodness and the contours between the radial
emissivity and the break radius are shown in Fig. 3 for this case, and in the Appendix
(Figs. 9–14) for the other parameters.

For larger values than ξin ≈200, the ionisation component becomes much more significant
than the cold reflection, dominates in the total spectrum, and the interplay between the
ionised and the cold component vanishes. This is due to the fact that the efficiency of
the reflection from the ionised surface is much higher (Ross and Fabian, 2005). Table 2
also shows the goodness of the best fit. The resulting χ2-values increase with the larger
ionisation gradient in the simulated data. This suggests that the radially structured ionisation
cannot be simply modelled in the 2–10 keV energy range by a single-ionisation component
with the broken power-law radial emissivity and with the assumption of the existence of the
outer disc (rout = 400 rg) where the radial emissivity decreases as r−3.

Rather surprising result is that the best-fit value of the single ionisation parameter has
always a lower value than the default one for the outer-disc ionisation. Also, the value of the
break radius of the radial emissivity is in all the fits higher than the value of the boundary
radius used in the simulations.

5.2 Smooth decrease of ionisation

The previous analysis showed that ionisation gradient plays an important role in the total
shape of the reflection spectra. Further, we considered a rather smooth radial decrease of
the disc ionisation. We used 10 regions with decreasing ionisation: 200, 170, 140, 110, 80,
50, 30, 20, 15, 10 ergs·cm s−1, with the boundaries at the radii: 3, 4, 5, 7, 9, 11, 13, 15,
17 rg, respectively. The other parameters were the same as before. We call this model as a
“complex” reflection model, and it is plotted in the 1–10 keV energy range in Fig. 4.

The data were generated by this model in the same way as described in Section 2, and
then fitted in the 2–10 keV energy range with a model consisting of only a power-law
continuum and a single reflection component with a broken power-law radial emissivity.
The photon index, the inner radial emissivity index, the break radius, the ionisation and
the normalisations were the only parameters which were allowed to vary during the fitting
procedure. The best-fit model is compared to the seed model in Fig. 4.

Figure 5 (left panel) shows how well the single-reflection model suits to the data in the
2–10 keV energy range. This clearly reveals the degeneracy between the radially-structured
ionisation and the radial emissivity of the re-processed radiation smeared by the relativistic
effects. The radial emissivity index is required to be significantly steeper in the single-
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reflection model, q ≥ 4, whereas with the standard value, q = 3, the fit gives high
χ2/ν ≈ 3.1. See also the right panel of Fig. 5. The best-fit parameters are summarised
in Table 3. In addition to the steepening of the radial emissivity, the photon index of the
primary power-law was found to be significantly larger. It changed from the value Γ = 1.9
to Γ = 2.1. This softening of the primary power-law is due to the different slope of the
ionised reflection continuum.

6 DISCUSSION

We addressed steep radial emissivities recently detected in the reflection components of
the X-ray spectra of active galaxies and black-hole binaries. We investigated some possible
explanations. To this end, we performed several simulations to reveal the degeneracies of
the radial emissivity with other parameters and intrinsic assumptions of the relativistic
reflection model.

6.1 Lamp-post scenario

The steep radial emissivity may be related to the properties of the disc-illuminating corona
as suggested before by Wilms et al. (2001). The geometry of the emitting region certainly
plays a significant role. A very centrally localised source at a low height above the black
hole horizon would irradiate the disc mainly in its central region. The illumination in this
area is greatly enhanced due to the gravitational light-bending effect (Miniutti and Fabian,
2004; Wilkins and Fabian, 2011, Dovčiak et al., in prep.).

To achieve steep radial emissivity, which is assumed to be proportional to the illumination,
the source must be sufficiently close to the black hole. However, in this case the primary
emission has to be extremely bright because only a small fraction would overcome the strong
gravitational pull of the black hole and reach the observer (see Fig. 2 in Dovčiak et al.,
2011). The importance of these effects drops quickly with the height. Already at heights
h & 3 rg the radial emissivity profile is similar to the simple power-law with the standard
value (q = 3). For even larger heights, the irradiation profile is more complicated (see
Fig. 3 and 4 in Dovčiak et al., 2011). It decreases steeply only very close to the black-hole
horizon, then becomes rather flat (q < 3) still in the inner parts of the disc and finally
reaches the standard value far from the centre.

Although this effect may steepen the radial emissivity significantly, a very large value,
q ≈7, as observed by Fabian et al. (2009); Wilkins and Fabian (2011) has not been reached
in our calculations (Dovčiak et al., in prep.) even when the height was set very close to the
black hole. We therefore proposed additional explanation.

6.2 Angular directionality

For the angular emissivity, the limb darkening law is frequently used. Several simulations,
however, suggest that the directionality is opposite to limb darkening (see e.g. Różańska
et al., 2011 and references therein). The emission angle in the innermost region of the
disc is always very high due to the strong aberration. The flux contribution from this
region is therefore underestimated by models with limb darkening if the angular emissivity
is indeed different. This effect could lead to an approximately 20 % overestimation of
the spin or the inner radial emissivity parameter. Svoboda et al. (2009) re-analysed the
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XMM-Newton observation of MCG -6-30-15 and showed that the radial emissivity might
be a more sensitive parameter to the angular directionality than the spin. This is especially
true when the spin value itself is very high (close to one).

6.3 Radially structured ionisation

We also discussed the impact of the probable radial dependence of the disc surface ionisation.
The disc illumination by corona is commonly assumed to be stronger in the innermost
regions. Therefore, we simply assumed that the ionisation is higher at the innermost region
as well, and decreases with the radius. We have not considered other aspects which affect
the ionisation structure of the disc such as the density profile, vertical structure, and thermal
processes (the last one especially relevant for the stellar-mass black hole binaries). With
our simple assumption, we performed several tests with the simulated data using different
initial values of the model parameters.

The broad iron-line profile is formed by two competing effects – the ionisation that shifts
the rest energy of the line to higher values and the gravitational redshift with the opposite
impact. The latter effect prevails sufficiently close to the black hole, and so the line is
still shifted downwards from the rest neutral iron line energy in the more ionised central
regions. The contribution to the reflection spectral component is higher from the more
ionised part of the disc, which is located closer to the centre. Thus, ionisation contributes
to the red wing of the broad relativistic line, as limb brightening and steep radial emissivity
do. Consequently, when a simplified model with a single ionisation is used for fitting the
data it may lead to an underestimation of the flux from the innermost regions.

In the presented analysis, we used an assumption of the fixed normalisations between
the individual REFLIONX components. The ionisation parameter is defined there as ξ =
4πFinc/nH, where Finc is the incident flux, and nH is the hydrogen number density. This
means that the higher ionisation parameter implies larger incident flux and consequently,
also the more intense reflected flux. The mutual dependence between the irradiating flux
and the ionisation parameter can be intuitively expected. However, a simple proportionality
will have to be eventually replaced by a more complicated relation taking into account the
actual solution of the radiation reprocessing of the incident flux in the disc medium as well
as the effects of general relativity.

The contribution from the ionised reflection is thus larger for a given value of the
normalisation. The higher radial emissivity parameter, q , found in the fitting by the single-
reflection model is partly due to higher ionising incident flux and partly due to a different
shape of the ionised reflection component. As a next step, we intend to fix the normalisation
factors in a self-consistent way with the assumed incident flux that decreases smoothly with
the radius. We also plan to take the radial dependence of the density into account in the
forthcoming analysis.

7 CONCLUSIONS

The very steep radial emissivity of the disc reflection, which has been recently detected
in the X-ray spectra of active galactic nuclei and black hole binaries, may be explained
by geometrical properties of the disc-illuminating corona, by radially structured ionisation
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and/or by use of an improper model assumption about the angular directionality. The first
puts rather extreme requirements on the corona. It needs to be very bright and occur at
a very low height above the black hole. We realised that the radial decrease of the disc
ionisation may account for the radial-emissivity steepness equally well as the assumption
of the centrally localised corona. If the ionisation decreases with growing distance from
the black hole, the contribution from the innermost region is enhanced due to the larger
reflection efficiency. The reported very high values for the radial emissivity in several
sources, like q ≈ 7, suggest that all of the discussed effects may take part together. Due
to degeneracy it is difficult to distinguish among these effects from the spectral analysis of
real data, and therefore, more theoretical attempts to constrain the disc-corona interactions
are desirable. Development of a model with the self-consistent calculations of the disc
surface ionisation that would depend on the irradiation intensity should be the next step in
this research.
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Figure 6. The same as in Fig. 1 and 2 but for the height h = 3 rg.
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Figure 7. The same as in Fig. 1 and 2 (h = 1.5 rg) but for inclination 70 deg.
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Figure 8. The same as in Fig. 6 (h = 3 rg) but for inclination 70 deg.
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Figure 9. The same as in Fig. 3 but for ξin = 50 and ξout = 30.
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Figure 10. The same as in Fig. 3 but for ξin = 80 and ξout = 30.
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Figure 11. The same as in Fig. 3 but for ξin = 100 and ξout = 30.
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Figure 12. The same as in Fig. 3 but for ξin = 130 and ξout = 30.
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Figure 13. The same as in Fig. 3 but for ξin = 200 and ξout = 30.
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Figure 14. The same as in Fig. 13 but for spin a = 0.99.
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