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ABSTRACT
We study properties of the magnetized toroidal structures orbiting the Kerr super-
spinars predicted by the string theory. We demonstrate specific features of the un-
magnetized perfect fluid tori created in the deep potential well near the surface of the
superspinars, enabling clear distinction between Kerr superspinars and black holes.
Then we consider the effect of the magnetization of the perfect fluid tori and shift of
their properties induced by the presence of the magnetic field.
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1 INTRODUCTION

Kerr superspinars are considered as primordial, large remnants of very early evolution pe-
riod of the Universe giving thus signature of the string theory effects (Gimon and Hořava,
2009). However it cannot be excluded that Kerr superspinars were created by the collapse
of superspinning differentially rotating compact stars (Giacomazzo et al., 2011). The su-
perspinars are not contradicting the Penrose cosmic censorship hypothesis (Penrose, 1969)
since their extension is expected to be limited to r < R < M covering thus the region of
causality violations by a correctly behaving stringy solution. Outside a Kerr superspinar,
the standard Kerr naked singularity geometry is assumed.

Unstable gravitational perturbation modes has been found for Kerr superspinars with
small values of the spin (Pani et al., 2010), however, it does not prove a general instability
of Kerr superspinars, since mixing of modes, accretion phenomena or change of boundary
conditions related to the Universe expansion could alter the conclusion on the instability.
Although there is no uniqueness theorem for Kerr naked singularities (superspinars) similar
to the one holding for Kerr black holes, studies of astrophysical phenomena in Kerr naked
singularity (superspinars) backgrounds could be quite relevant and useful at least as a
test bed model for more complex objects (D. and Manko, 1991). It is convenient (and
standardly applied in the literature) to assume the surface radius of Kerr superspinars at
r(θ) = R = 0.1 M , here we shall use the minimal restriction of R = 0.

Kerr superspinars (or Kerr naked singularities) were extensively studied for a variety
of astrophysical (de Felice, 1974; Calvani and Nobili, 1979; Stuchlík, 1980; Gibbons and
Hawking, 1977) and optical (Stuchlík, 1981; Stuchlík and Hledík, 2000; Stuchlík and
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Schee, 2010, 2011) phenomena. Considering evolution of primordial Kerr superspinars
due to Keplerian accretion discs, it has been demonstrated that they could well survive to
the era of high-redshift quasars or even longer, if the amount of accreting matter is limited
(Stuchlík et al., 2011). Of course it is of high relevance to consider the properties of thick
accretion discs represented by toroidal structures of perfect fluid that are complementary to
Keplerian thin discs. Here we shall discuss such tori including even the effect of a magnetic
field on their structure assuming for simplicity tori with uniform distribution of the specific
angular momentum.

2 KERR SUPERSPINARS

In the Boyer–Lindquist coordinates and the geometrical units, the exterior of Kerr super-
spinars is governed by the line element (Kerr, 1963; Misner et al., 1973)

ds2
= −

(
1−

2Mr
Σ

)
dt2
+
Σ

∆
dr2
+Σ dθ2

+
A
Σ

sin2 θ dϕ2
−

4M2ar sin2 θ

Σ
dt dϕ , (1)

where

∆ = r2
− 2Mr +

(
aM

)2
, Σ = r2

+
(
aM

)2 cos2 θ , (2)

and

A =
(

r2
+
(
aM

)2)2
−∆

(
aM

)2 sin2 θ , (3)

M is mass and a > 1 is dimensionless spin of the superspinar.
The physical ring singularity of the spacetime is located at r = 0, θ = π/2. The causality

violation region is determined by Carter (1973)

gφφ =
[

r2
+ (aM)2 +

2M3a2r sin2 θ

Σ

]
sin2 θ < 0 ; (4)

it can occur only at r < 0 (Calvani et al., 1978). Realistic models of Kerr superspinars have
to remove the causality violating region and the ring singularity. Therefore, the minimal
condition for the boundary surface of Kerr superspinars reads r(θ) = R = 0. In recent
papers concerning the Kerr superspinars, the boundary at r(θ) = R = 0.1 M is assumed
(Gimon and Hořava, 2009; Takahashi and Takahashi, 2010; Pani et al., 2010; Stuchlík
and Schee, 2010). We keep this assumption, guaranteeing that all the interesting physical
phenomena could be relevant (Stuchlík, 1980; Stuchlík et al., 2011).

The geodesic motion in the Kerr spacetimes is given in a separated and integrated form
by the Carter (1973):

Σ ṙ = ±
√

R(r) , (5)
Σθ̇ = ±

√
W (θ) , (6)

Σφ̇ = −

(
aE −

Φ

sin2 θ

)
+

a
∆

P(r) , (7)

Σ ṫ = −a
(
aE sin2 θ −Φ

)
+

r2
+ a2

∆
P(r) , (8)
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where ˙ ≡d/dw with w being the affine parameter and

P(r) = E
(
r2
+ a2)

−Φa , (9)
R(r) = P2

−∆
[
m2r2

+ (Φ − aE)2 + Q
]
, (10)

W (θ) = Q − cos2 θ

[
a2(m2

− E2)
+

Φ2

sin2 θ

]
. (11)

The motion constants are energy relative to infinity E , angular momentum about the
symmetry axisΦ, rest mass m and Q related to the total angular momentum (Carter, 1973).
For equatorial motion Q = 0. The radial profiles of the specific energy EK/m and specific
axial angular momentum ΦK/m of the equatorial circular geodesics are given by Bardeen
et al. (1972) and Stuchlík (1980):

EK

m
=

r3/2
− 2r1/2

± a

r3/4
√

r3/2 − 3r1/2 ± 2a
, (12)

ΦK

mM
= ±

r2
+ a2

∓ 2ar1/2

r3/4
√

r3/2 − 3r1/2 ± 2a
, (13)

where we introduced dimensionless radial coordinate r/M →r .
The Keplerian velocity with respect to static observers at infinityΩ = dφ/dt is given by

the relation

ΩK = ±
1

M
(
r3/2 ± a

) (14)

and the profile of the specific angular momentum related to the covariant energy is given
by

lK =
ΦK

EK
= ±

r2
∓ 2ar1/2

+ a2

r3/2 − 2r1/2 ± a
. (15)

Behaviour of lK(r; a) is crucial for determining of the equilibrium tori since it determines
the centre and cusps of the tori. The upper (lower) sign in these and the following relations
corresponds to the circular geodesics of the 1st (2nd) family. All the 2nd family orbits
are counterrotating with Φ/mM < 0. The 1st family orbits are co-rotating (Φ/mM > 0)
everywhere in the field of superspinars with spin a > ac = 33/2/4 ∼ 1.3, but they are
counter-rotating, with Φ/mM < 0, if appropriately located in the vicinity of superspinars
with spin a < ac. Clearly, the 1st family orbits can extend down to the superspinar, they
are allowed at all r > 0. On the other hand, the 2nd family orbits are allowed at r > rph;
the retrograde photon circular orbit has radius given by

rph = 2+
[

a +
√

a2 − 1
]2/3

+

[
a +

√
a2 − 1

]−2/3

. (16)

The limit value for extreme black holes is rph(a = 1) = 4. The bound orbits (with
E/m < 1) that could be relevant in toroidal discs (Kozlowski et al., 1978; Stuchlík et al.,
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2000; Slaný and Stuchlík, 2005) are limited by the radii of marginally bound orbits with
E/m = 1 given by

rmb = 2+ a ± 2(1+ a)1/2 , (17)

There is rmb(a = 1) = 5.38 for the 2nd family orbits and rmb(a = 1) = 0.172 for the
1st family orbits. The stable circular orbits determining the inner edge of the Keplerian
discs are allowed at radii r > rms; the innermost (marginally) stable circular orbit (ISCO)
is determined by

rms = 3+ Z2 ∓
√
(3− Z2)(3+ Z1 + 2Z2) , (18)

where

Z1 = 1+
(
1− a2)1/3[(1+ a)1/3(1− a)1/3

]
, Z2 =

√
3a2 + Z2

1 . (19)

The minimal value of rms = 2M/3 is obtained for superspinars with a = ae = (4/3)(2/3)1/2

∼ 1.089 (Stuchlík, 1980). On the other hand, rms → M from below when a → 1 from
above. Notice that the Kerr superspinar surface radius r(θ) = R = 0.1 M is really chosen
in such a way that the inner edge of both thin (rin = rms) and thick (rms > rin > rmb)
accretion discs is located above the surface.

The 1st family orbits are co-rotating relative to distant observers (ΩK > 0) – such
orbits are locally co-rotating (ΦK > 0) in regions distant from superspinars, but could
be locally counter-rotating (ΦK < 0) in vicinity of superspinars with the spin parameter
a < ac = (3/4) 31/2

∼ 1.3. For superspinars with spin a < ae = (3/4) (3/2)1/2
∼ 1.089

the 1st family orbits with ΦK < 0 could have negative energy (E < 0), while located close
enough to the superspinar boundary. The marginally stable circular orbit of 1st family is
located under x = 1 for a < 5/3 (Stuchlík, 1980).

The 1st family orbits reveal a strong jump in their properties when transition from a
naked singularity spacetime to a black hole spacetime occurs. The jump is most profoundly
demonstrated for the profiles of near-extreme Kerr superspinar and Kerr black hole states
with spin a = 1 ± δ, δ � 1 – in the Kerr superspinar spacetimes, stable circular orbits
exist at x = 1 for all δ > 0, while in the Kerr black hole spacetimes, the stable circular
orbits exist at x > 1 for δ > 0 and there is an enormous jump between the energy level
of the ISCO orbits in the superspinar and black hole spacetimes. On the other hand, the
2nd family orbits are counter-rotating relative to distant observers (ΩK < 0) and locally
counter-rotating (ΦK < 0) at all r > rph for all Kerr superspinars. The Keplerian energy
EK and angular momentum ΦK radial profiles of 2nd family orbits change smoothly when
the conversion from the superspinar to the black hole state with a = 1 occurs (Stuchlík
et al., 2011).

3 MAGNETIZED PERFECT FLUID TORI

Properties of the radial profiles of Keplerian specific angular momentum lK(r; a) are crucial
for governing accretion toroidal structures of perfect fluid since the centre of the tori and
its cusp, i.e. the edge of accretion tori, are given by condition l(r) = lK(r), where l(r)
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Figure 1. Behaviour of Keplerian angular momentum lK+ and lK− for (a) a = 1.05, (b) a = 1.1,
(c) a = 1.118 and (d) a = 1.5. The inner disc configurations are possible in the cases (a) and (b),
for the case (c) and (d) the inner disc configuration are not possible. For specific angular momentum
l > lmin in the case (a) and for lmin+ < l < lmax− in the case (b) it is possible to have both inner
and outer discs for the same l = const. As examples we have used two values of the specific angular
momentum l, in the case (a) it is l = 8.0 and in the case (b) it is l = −4.8. Both l = const are show
as dotted horizontal lines. Regions without circular orbits are greyed out.

is the profile of the angular momentum distribution in the equatorial plane of the tori.
Profiles of lK(r; a) are fundamentally different for Kerr black holes and naked singularities
(superspinars), implying fundamental differences of the orbital equilibrium configurations.
Here we give overview for superspinars with boundary surface at minimal surface radius
R = 0 guaranteeing covering of the physical singularity and causality violating region by
some regular, say stringy, solution.

We can separate three basic cases of behaviour of the 1st family orbits due to behaviour
ofΦK(r; a) and EK(r; a), which can be seen in the Fig. 1. In the field of Kerr superspinars
there is no 1st family Keplerian photon circular orbit and the related divergence of lK.
However for superspinars with a < ae = 1.089, there is a discontinuity of lK(r; a) at two
radii where EK(r; a) = 0. For a < ac ∼ 1.3, lK(r; a) of 1st family orbits reaches the
region of L < 0. Then we can obtain possibility to have two distinct tori with the same
l = const < 0, if lK+(min) < lK−(max). We can demonstrate that this condition can be
fulfilled for a = 1.1 < ac.



6 K. Adámek and Z. Stuchlík

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 1  10  100  1000

W

log(x)

-0.04

-0.02

 0

 0.02

 0.04

 10  100  1000

(a)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 1  10  100  1000

W

log(x)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 10  100  1000

(b)

Figure 2. Profiles of the potential W in Kerr–Schild coordinates for a = 1.05, l = 8.0 in the case (a)
and for a = 1.1, l = −4.8 in the case (b).

Rotating perfect fluid is governed by the Boyer’s conditions, which implies that boundary
of any stationary, barotropic, perfect fluid equilibrium configuration has to be an closed
equipotential surface (Boyer, 1965). Equations of the ideal relativistic magnetohydro-
dynamics (RMHD) of the perfect fluid are for fluid described by stress-energy tensor Tµν

and electromagnetic tensor Fµν given by relations (Komissarov, 2006):

∇µTµν = 0 , (20)
∇µ
∗Fµν = 0 , (21)

∇µFµν = J ν , (22)
∇µρuµ = 0 . (23)

The 4-current J ν from Maxwell Eq. (22) can be expressed as

J ν = σeν + q0uν , (24)

where σ is an scalar electric conductivity, q0 is a electric proper charge and eν is 4-vector
of the electric field, which in comoving frame reads eν = (0,E), where E is the 3-vector
of the electric field. In the comoving frame and in the kinetic theory approach (Blackman
and Field, 1993)

J ν = σ E j . (25)

Taking into account the limit of ideal RMHD, σ → ∞, and the condition that 4-current
must be finite, we get

Fµνuν = 0 . (26)

Since Fµν can be fully expressed by the means of bν , the Eq. (22) just defines 4-current and
it is redundant.
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The energy-momentum tensor for ideal perfectly conducting fluid reads

Tµν =
(
ω + b2)uµuν +

(
p +

1
2

b2
)

gµν − bµbν (27)

while the Faraday tensor

∗Fµν = bµuν − bνuµ , (28)

where ω, p and uµ are fluid enthalpy, pressure and 4-velocity respectively, gµν is the metric
tensor and bµ is the 4-vector of the magnetic field. In the comoving frame bµ = (0,B),
where B is 3-vector of the magnetic field measured in comoving frame, thus

uµbµ = 0 . (29)

We assume that

• the flow is stationary and axisymmetric; therefore

∂t f = ∂φ f = 0 (30)

holds for any physical parameter f ,
• the flow rotates only

ur
= uθ = 0 , (31)

• the magnetic field is purely azimuthal:

br
= bθ = 0 . (32)

Under these assumptions the Faraday Eq. (21) and the continuity Eq. (23) are automat-
ically fulfilled and the only non-trivial result follows from projection of the conservation
law of the energy-momentum tensor (20) on the hyperplane orthogonal to 4-velocity by the
projection tensor hαβ = γ

α
β + uαuβ . From (20) we obtain(

ω + b2)uνuν,i +
(

p + b2)
,i − bνbν,i = 0 , (33)

where i = r, θ . The angular velocity and specific angular momentum of the rotating fluid
are defined by

Ω =
uφ

ut , l = −
uφ
ut
, (34)

implying the relation

Ω = −
lgt t + gtφ

lgtφ + gφφ
. (35)

Using Eq. (34) we can rewrite Eq. (33) to a form

(
ln |ut |

)
,i −

Ω

1− lΩ
l,i +

p,i
ω
+

(
Lb2)

,i

2Lω
= 0 , (36)
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where

(
ut
)2
=

g2
tφ − gt t gφφ

gt t l2 + 2gtφl + gφφ
. (37)

Assuming relationship (35), we obtain

d

ln |ut | +

p∫
0

dp
ω
−

l∫
0

Ω dl
1− lΩ

 = −d
(
Lb2)

2Lω
, (38)

where the term in parenthesis is just what we would get for perfect barotropic fluid without
magnetic field in it. Following Komissarov (2006) we assume the relationship

ω̃ = ω̃( p̃m) , (39)

where ω̃ = Lω, p̃m = Lpm and pm = b2/2. Implementing (39) into (38) gives

ln |ut | +

p∫
0

dp
ω
−

l∫
0

Ω dl
1− lΩ

+

pm∫
0

d p̃m

ω̃
= const . (40)

Introducing the total potential W by

W = ln |ut | +

l∞∫
l

Ω dl
1− lΩ

, (41)

where l∞ is the angular momentum at infinity; assuming that l∞ is finite, we obtain
ut (r →∞) = −1 and W = 0. Using total potential we arrive at the relation

W −Win +

p∫
0

dp
ω
+

pm∫
0

d p̃m

ω̃
= 0, (42)

where Win is the value of the total potential at the inner edge of the disc.

4 CONSTRUCTION OF MAGNETIZED TORI

The simplest configuration occurs if the ideal barotropic fluid has uniform distribution of
the specific angular momentum

l = l0 = const . (43)

Then the potential governing the equilibrium tori is given by

W = ln |ut | (44)
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Figure 3. Pressure profiles in Kerr–Schild coordinates for inner discs (a), (b) and outer disc (c),
(d). with initial magnetization (a), (c) βc = 2.5 and (b), (d) βc = 0.25 for parameters a = 1.1,
lms− > l = −4.8 > lmb−. The pressure of the gas at the center of the disc is set to p = 10−18.

and for l = const it is given by geometry of the spacetime only. The shape of the equipoten-
tial toroidal configurations is illustrated in the Figs. 4 or 5. Following Komissarov (2006)
we adopt the these relationships for pressure p and magnetic pressure pm

p = Kωκ , (45)
pm = KmLη−1ωη . (46)

Then we can rewrite Eq. (42) into the form

W −Win +
κ

κ − 1
p
ω
+

η

η − 1
pm

ω
= 0 . (47)

The geometry of the disc is defined by the potential W and the disc center and cusp are
defined as points where specific angular momentum of the disc coincides with the specific
angular momentum of a particle on the geodetical circular orbit, i.e. where

l0 = lK± =
±
(
r2
∓ 2ar1/2

+ a2)
r3/2 − 2r1/2 ± a

; (48)
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the upper sign holds for co-rotating 1st family orbits while the lower sign holds for counter-
rotating 2nd family orbits. Parameters of the model are κ , η, l0 and Win, further parameters
are enthalpy at the center of the disc ωc and initial magnetization

βc = pmc/pc. (49)

From Equation (47) we can separate pressure at the center

pc = ωc (Win −W )

(
κ

κ − 1
+

ηβc

η − 1

)−1

. (50)

Using these we can calculate K and Km, then separating enthalpy ω from (47) we can get
the solution anywhere inside the toroidal disc configuration. We shall focus our attention
to the most interesting case when two toroidal configurations with l = l0 = const can exist.

4.1 Equilibrium configurations of perfect barotropic fluid

Behaviour of the Keplerian angular momentum lK+ and lK− is shown in the Fig. 1. The
profiles of the potential W (44) are shown in the Fig. 2. Behaviour of the function lK+
strongly depends on the spin parameter a. For a < ae < 1.089, a discontinuity occurs due
to the fact that circular geodesics with EK = 0 exist in such spacetimes. Then the inner
configurations with l = l0 > 0 correspond to tori with φ = const < 0 that are co-rotating
relativity to distant observers.

For Kerr naked-singularity metric with rotational parameter a > 1, there are two possible
disc structures with l = l0 = const, inner and outer disc. For the 1st family of orbits both
inner and outer disc structures are admitted. The inner disc configuration is possible for both
l > 0, a < ac and l < 0, a > ac while outer disc configurations can be found only for l > 0.
Also the inner discs with l = l0 < 0 around naked singularities with a > ac are co-rotating
relative to distant observers. The 2nd family admit the outer toroidal configurations only
centred around counter-rotating geodesics. We shall concentrate our attention on the case
when two equilibrium tori with l0 = const are given. We shall study both the inner and
outer tori and we are using Kerr–Schild coordinates

x =
√

r2 + a2 sin θ cosϕ , (51)
y =

√
r2 + a2 sin θ sinϕ , (52)

z = r cos θ , (53)

where y = 0 due to axial-symmetry.

4.2 Behaviour of the pressure extremes

We are interested in behaviour of gas pressure p, magnetic pressure pm and total pressure
pt = p + pm radial profiles and particularly in possible shift of the extreme positions with
comparison to the case of a perfect barotropic fluid without magnetic field. We study the
difference

∆x = x (a)i(o) − xc , (54)
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Figure 4. Equipotential surfaces for inner (a) and outer (b) disc configuration with parameters a = 1.1
and l = −4.8. Each graph shows two sets of vertical lines, which represent the positions of respective
maximums of p, pm and p f . The upper lines are for initial magnetization βc = 0.25 while the lower
ones are for βc = 2.5.
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Figure 5. Equipotential surfaces for inner (a) and outer (b) disc configuration with parameters a = 1.05
and l = 8.0. Each graph shows two sets of vertical lines, which represent the positions of respective
maximums of p, pm and p f . The upper lines are for initial magnetization βc = 0.25 while the lower
ones are for βc = 2.5.

where a = f,m; x (a)i(o) denotes position of the pressure maximum of fluid ( f ) and magnetic
field (m) for inner (i) and outer (o) discs. Pressure profiles for inner disc configurations and
outer disc configurations are shown in the Fig. 3. For outer disc configurations we can see
that maximum of the total pressure is shifted closer to a compact object. For inner discs
the maximum of the total pressure is receding from the compact object. This behaviour is
consistent for all investigated inner and outer disc configurations. Numerical calculations
of extremes of the total pressure are shown in the Figs. 6 and 7.

If the initial magnetization goes to zero (βc → 0) the configuration is reduced to the case
without magnetic field. If βc →∞ the disc is dominated by the magnetic pressure, while
gas pressure vanishes. In this case the maximum of magnetic pressure reaches its maximal
deviation, this is in the Figs. 6 and 7 depicted as a vertical line.
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Figure 6. Behaviour of the maximum’s position x(a)i and it’s distance ∆x = x(a)i − xe from the
disc center xc as a function of the initial magnetization βc for inner toroidal disc configurations with
parameters set to a = 1.05, l = 8.0. On the upper graph we can see the positions of the maximum
of the pressure for p, pm and p f compared with the behaviour of the gas pressure without magnetic
field (filled area). On the lower graph we can see the distance ∆x of the maximum from the disc
center xc.
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Figure 7. Behaviour of the maximum’s position x(a)i and it’s distance ∆x = x(a)i − xe from the
disc center xc as a function of the initial magnetization βc for outer toroidal disc configurations with
parameters set to a = 1.1, l = −4.8. On the upper graph we can see the positions of the maximum
of the pressure for p, pm and p f compared with the behaviour of the gas pressure without magnetic
field (filled area). On the lower graph we can see the distance ∆x of the maximum from the disc
center xc.

5 CONCLUSIONS

We have studied magnetized tori around Kerr superspinars, focusing attention to the study
of cases when doubled tori exist with the same l = const, and different potential depth. We
have demonstrated that the magnetization of the inner tori shifts their pressure maximum
away from the Kerr superspinar, while in the outer tori the shift in maximum is toward the
Kerr superspinar. We expect this effect could influence the character of optical appearance
of oscillating tori around resonant points and we plan to study related phenomena in a future
work.
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