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ABSTRACT
We study circular motion of charged test particles in the field of magnetized slowly
rotating neutron stars. The gravitational field is approximated by the Lense–Thirring
geometry, the magnetic field is of the standard dipole character. Using a fully-
relativistic approach we determine influence of the electromagnetic interaction (both
attractive and repulsive) on the circular motion. We focus on the behaviour of the
orbital frequency of the motion. Components of the four-velocity of the orbiting
charged test particles are obtained by numerical solution of equations of motion. The
role of the combined effect of the neutron star magnetic field and its rotation in the
character of the orbital frequency is discussed. It is demonstrated that even in the
Lense–Thirring spacetime particles being static relative to distant observers can exist
due to the combined gravo-electromagnetic interaction.
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1 INTRODUCTION

Charged particle motion in strong gravitational and electromagnetic fields of black holes and
neutron stars enables us to understand the nature of combined effects of these fields and their
role in astrophysical phenomena. The motion has been investigated both for Kerr–Newman
black holes having intrinsically coupled gravitational and electromagnetic fields and for
strong gravitating objects (black holes and neutron stars) with a test electromagnetic field
influenced by gravity (see, e.g. Johnston and Ruffini, 1974; Prasanna and Vishveshwara,
1978; Prasanna, 1980; Calvani et al., 1982; Bálek et al., 1989; Bičák et al., 1989; Stuchlík
and Hledík, 1998; Stuchlík et al., 1999; Abdujabbarov and Ahmedov, 2009; Frolov and
Shoom, 2010). Motion of charged particles in the magnetic field generated by accretion
discs orbiting black holes was discussed in (Znajek, 1976; Mobarry and Lovelace, 1986).
The magnetic field tied to a neutron star could substantially influence the structure of an
equatorial accretion disc orbiting the neutron star and has been studied in (Kluźniak and
Rappaport, 2007).

In the case of motion in test fields on strong gravity backgrounds, the equations of motion
are complex and have to be integrated numerically (Prasanna and Vishveshwara, 1978;
Prasanna and Sengupta, 1994; Preti, 2004). Numerical integration of the motion equations

978-80-7510-125-9 c© 2014 – SU in Opava. All rights reserved.



16 P. Bakala et al.

gives a number of interesting results, but is not sufficient for a complete classification and
understanding of the motion in the equatorial plane. In order to extend the understanding of
the charged particle motion, the quasi-circular equatorial epicyclic motion corresponding
to oscillations of particles around stable circular orbits has been studied (Bakala et al.,
2010). Such epicyclic motion can be excited in the innermost parts of the accretion discs
orbiting a neutron star by inhomogeneities (mountains) on its surface (Stuchlík et al., 2008).
Recently, off-equatorial circular orbits were discussed in astrophysically relevant situations
(Kovář et al., 2008, 2010; Kopáček et al., 2010). Of high interest is the equatorial motion,
especially the circular and quasi-circular orbits of charged test particles that seem to be
crucial from the point of view of accretion processes. Moreover, quite recently, fluid
charged tori were discussed in the approximation of zero conductivity (Kovář et al., 2011);
such dielectric tori could be also relevant in some astrophysically interesting situations.

Here we focus attention on the equatorial orbital motion in the combined gravitational and
dipole magnetic fields related to a slowly rotating neutron star. We generalize our previous
results obtained under much simpler case of neutron star represented by the Schwarzschild
geometry and the related magnetic field (Bakala et al., 2010). We assume a dipole field
whose axis of symmetry coincides with the axis of neutron star’s rotation. The spacetime
outside the neutron star is described by the Lense–Thirring geometry that reflects the slow
rotation of the neutron star and influences the structure of the magnetic field – the effects
of frame-dragging are thus considered in the linear approximation. Such approximation is
suitable for describing the charged particles motion around slowly rotating neutron stars
with a relatively weak magnetic field which does not affect the spacetime curvature in
the vicinity of the neutron star, but its structure is governed by the neutron star spacetime
structure.1

In our study we focus our attention on the possibility of existence of charged particles
that appear stationary to distant observers. Existence of such particles was demonstrated for
ultrarelativistic charged particles located near the black hole horizon of charged and rotating
(Kerr–Newman) black hole (Bálek et al., 1989). Here we test such possibility in different
physical conditions when the interplay of gravitational dragging and electromagnetic force
can imply interesting and unexpected results. The problem of the epicyclic motion and the
related frequencies (see e.g. Aliev and Galtsov, 1981; Abramowicz and Kluźniak, 2005;
Török and Stuchlík, 2005) is postponed for future studies.

2 LENSE–THIRRING GEOMETRY AND DIPOLE MAGNETIC FIELD OF
SLOWLY ROTATING NEUTRON STARS

The external gravitational field of slowly rotating neutron or strange stars is sometimes
approximated by the Lense–Thirring metric2 (Lense and Thirring, 1918; Hartle and Sharp,

1 The neutron star magnetic field is however fully dominant over the magnetic field generated by the currents in
the disc.
2 The term “Lense–Thirring metric” is substituted frequently by the term “slow-rotation approximation”
(see Konno and Kojima (2000)).
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1967; Hartle, 1967), with line element given by

ds2
= −η(r)2 dt2

+
dr2

η(r)2
+ r2

[
dθ2
+ sin2 θ

(
dφ2
− 2ω (r) dt dφ

)]
, (1)

where the function η(r) reads

η(r) ≡
(

1−
2M
r

)1/2

. (2)

The Lense–Thirring angular velocity ω(r) can be interpreted as angular velocity of freely
falling observers relative to static observers at infinity and outside the neutron star is given
by

ω(r) =
2J
r3 , (3)

where J is the total angular momentum of the neutron star with mass M and radius R.
Using the moment of inertia I (M, R) and angular velocity of the (rigidly) rotating starΩstar
measured by a static observer at infinity, we can write J = I (M, R)Ωstar. The rotational
parameter of the neutron star (called spin) is given by a = J/M2. We have adopted here
geometric units, c = G = 1, that we will use throughout the paper.

In Rezzolla et al. (2001), an analytical solution of the Maxwell equations is presented
for a general orientation of the dipole magnetic field in the Lense–Thirring metric (1) to
first order in J , including the conditions for matching the internal spacetime of the star
under assumption of both infinite and finite conductivity of the star interior. We assume
for simplicity the symmetry axis of the magnetic dipole identical with rotation axis (zero
declination) and infinitely conductive star interior implying force lines frozen into the star
and dragged by its rotation. Under such assumptions, the relatively complex general dipole
solution is reduced to much simpler form (Konno and Kojima, 2000), with the azimuthal
component of the electromagnetic 4-potential Aφ being identical with the Schwarzschildian
case (e.g. Wasserman and Shapiro, 1983; Braje and Romani, 2001)

Aφ = − f (r)
µ sin2 θ

r
, (4)

i.e. to the magnetic dipole solution of the Maxwell equations in the flat spacetime corrected
by the general relativistic factor f (r,M) that is given by

f (r) =
3r3

8M3

[
ln η(r)2 +

2M
r

(
1+

M
r

)]
. (5)

In contrast to the dipole solution in the static spherically symmetric spacetime, the 4-po-
tential contains also non-zero electrical (time) component that can be expressed in the form

At (r, θ) = at0(r)+ at2(r)P2 (cos θ) ; (6)
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P2 is the Legendre polynome of the 2nd kind (Konno and Kojima, 2000). The terms at0 a
at2 are given by the Maxwell equations and take the form

at0 =
c0

r
+

Jµ
2M3r2 (3r − M)+

Jµ
4M4r

(3r − 4M) ln η2(r) , (7)

at2 =
c1

M2 (r − M)(r − 2M)

+ c2

[
2

Mr

(
3r2
− 6Mr + M2

)
+

3
M2

(
r2
− 3Mr + 2M2

)
ln η2(r)

]
−

Jµ
2M6r2

[(
9r4
− 3Mr3

− 30M2r2
+ 8M3r + 2M4

)
+

(
12r4
− 36Mr3

+ 24M2r2
+ M3r

)
ln η2(r)

]
, (8)

where c0, c1 a c2 are integration constants (Konno and Kojima, 2000). The first constant c0
corresponds to the electric charge of the star and it is astrophysically natural to put (c0 = 0).
Requirement of regularity of the solution at infinity implies (Konno and Kojima, 2000)

c1 =
9Jµ
2M4 ; (9)

c2 can be fixed by the matching conditions on the star surface. Assuming perfectly conduct-
ing interior of a star rotating with angular momentum Ωstar and frozen-in magnetic field
(uµFµν = 0, uµ = (ut , 0, 0,Ωstarut )), we arrive at (Konno and Kojima, 2000)

c2 =

{
µJ

M5 R2

(
12R3

− 24M R2
+ 4M2 R + M3

)
+

µJ
2M6 R

(
12R3

− 36M R2
+ 24M2 R + M3

)
ln η2(r)

−
µΩstar

4M3

[
2M R + 2M2

+ R2 ln η2(r)
]}

/[ 2
M R

(
3R2
− 6M R + M2

)
+

3
M2

(
R2
− 3M R + 2M2

)
ln η2(r)

]
. (10)

The Maxwell tensor Fµν related to the four-potential Aµ by

Fµν =
∂Aν
∂xµ
−
∂Aµ
∂xν

, (11)

has four independent non-vanishing components

Frφ =
µ sin2 θ

(
f (r)− r f ′(r)

)
r2 , (12)

Fθφ = −
µ f (r) sin 2θ

r
, (13)
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Ftr = −a′t0(r)−
a′t2(r)

4
(1+ 3 cos 2θ) , (14)

and

Ftθ = at2(r) 3 cos θ sin θ . (15)

corresponding to appropriate parts of electric and magnetic field three-vectors in the frames
of local observers. Note that “coma” in Eqs. (12, 14) denotes partial derivative with respect
to the radial coordinate r .

Notice that the electric component of the 4-potential is in astrophysically relevant case
of electrically uncharged star induced only by the star rotation and the effect of dragging of
inertial frames is indicated by its dependence on the angular velocity of the star Ωstar and
its internal angular momentum J .

2.1 Relation between spin and angular frequency

The internal angular momentum J and the angular velocity of the star Ωstar are linearly
connected by the moment of inertia through the relation J = IΩstar. To find the value
of angular velocity necessary for matching the condition given by Eq. (10) in terms of a
dimensionless spin a = J/M2, we can use the findings of Lo and Lin (2011) that the
maximal value of spin, amax = 0.7, is almost the same for all masses and equations of
state. Using a model of neutron star with mass M = 1.5 M� we can find (see, e.g. Haensel
et al., 2009) that maximal frequency νmax

star = Ωmax
star /2π for neutron star is roughly 750–

1200 Hz. The exact value of the maximal frequency depends very significantly on the
assumed equation of state of the neutron star matter (Lattimer and Prakash, 2001; Říkovská
Stone et al., 2003; Urbanec et al., 2010). Since we are dealing here with a neutron star
test model, in further analysis we use the value of νmax

star = 1000 Hz. Therefore, the linear
relation between the spin a and the rotational frequency Ωstar can be written in the form

Ωstar = αa , (16)

where parameter α is given as the ratio of maximal values of neutron star’s spin and the
angular velocity;

α = Ωmax
star /amax . (17)

2.2 Intrinsic magnetic dipole moment

Intrinsic magnetic dipole moment of a neutron star µ can be obtained from the presumed
magnetic field strength at the neutron star surface. Locally measured magnetic field strength
is given by the projection of the Maxwell tensor into the orthonormal basis of a observer
connected with the surface of the star, F

α̂β̂
=e µ

α̂
e ν

β̂
Fµν . The tetrad related to the observers at

the surface of the neutron star is given by the relations

et̂ =
{

ut , 0, 0,Ωstar ut
}
, er̂ =

{
0, η(r), 0, 0

}
, (18)
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e
θ̂
=

{
0, 0,

1
r
, 0
}
, e

φ̂
=

{
0, 0, 0,

1
r sin θ

}
,

The magnetic components of the Maxwell tensor of the electromagnetic field in the Lense–
Thirring metric correspond to the static (Schwarzschild) solution – therefore, the relation of
the magnetic dipole moment of the neutron star and the magnetic induction on its surface
takes precisely the same form as in (Bakala et al., 2010)

µ =
4M3 R3/2√R − 2M

6M(R − M)+ 3R(R − 2M) log η (R)2
B θ̂ . (19)

We use here as the test model for our analysis a neutron star with a rather weak magnetic
field strength, B = 107 Gauss '2.875 x 10−16 m−1 ,3 mass M = 1.5M� '2216.85 m and
radius R = 4M ' 8867.4 m, as in our previous analysis of the static geometry (Bakala
et al., 2010). Then we have µ = 1.06 x 10−4 m2

= 2.157 x 10−11 M2.

3 EQUATORIAL CIRCULAR MOTION

In a curved spacetime with presence of an electromagnetic field, the Lorentz equation of
motion for a charged test particle of mass m and charge q reads

dUµ

dτ
+ Γ

µ
αβUαUβ

= q̃ Fµν U ν , (20)

where Uµ is the four-velocity and q̃ ≡q/m is the specific charge of the particle.
Symmetry properties of the spacetime geometry (1) and electromagnetic field (4) allow

for charged test particles circular motion restricted to the equatorial plane θ = π/2. The
four-velocity then has only two non-vanishing components, Uµ

= (U t , 0 , 0 ,Uφ). Solving
the radial component of Eq. (20) together with the normalization condition UµUµ = −1 for
metric (1) and potential (4) we obtain two pair of implicit equations for nonzero components
of Uµ in the form

U t
± =

(
±

√
4a2 M4(Uφ)2 + (r − 2M)r

(
1+ (Uφ)2r2

)
− 2aM2Uφ

)/(
r − 2M

)
, (21)

Uφ
± =

(
1
2

r−3
)[
−2aM2U t

− q̃µΦ(r)

±

√(
2aM2U t + q̃µΦ(r)

)2
+ 2r3U t

(
2MU t + q̃r2Σ(r)

) ]
. (22)

Here and hereafter Φ(r) and Σ(r) are given by

Φ(r) ≡ f (r)− r f ′(r) , (23)

and

Σ(r) ≡ a′t0(r)− 2a′t2(r) . (24)

3 B [cm−1
] = (G1/2/c2) B [Gauss] '2, 875 x 10−25 B [Gauss]
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For uncharged particles we arrive at the equations governing circular geodesic in the
Lense–Thirring spacetime, where non-zero components of 4-velocity and orbital angular
velocity read

Uφ
0± = ±

[
r2

M
(r − 3M)+ 2aM

(
aM ±

√
a2 M2 + r3/M

)]−1/2

, (25)

U t
0± =

(
aM ±

√
a2 M2 + r3/M

)
Uφ

0± , (26)

Ω0± =

(
aM ±

√
a2 M2 + r3/M

)−1

. (27)

In order to obtain appropriate angular velocities in the presence of the Lorentz force,
the pair of Eqs. (21, 22) has to be solved numerically, taking into account only the
physically relevant forward-directed time component of the 4-velocity U t

+. The solution
Ω+ = Uφ

+/U t
+ then corresponds in the geodesic limit to the corotating orbits and will be

referred as corotating in the following, while the solution Ω− = Uφ
−/U t

+ will be referred
as counterrotating (retrograde). Nevertheless, due to the electromagnetic interaction, in the
case of the retrograde solution the real orientation of the orbital velocity depends on the
values of the neutron star spin and the specific charge of the test particle.

For circular motion in the equatorial plane, the Lorentz force on the Rhs of the equations
of motion (20) has the only non-zero, radial component that is given by the expression
K r
= q̃( Fr

tU
t
+ Fr

φUφ), where the first term corresponds to the electric (coulombic) part
of the interaction of the test charged particle with with electric field of the star induced by
its spin, while the second term corresponds to the magnetic part of the interaction induced
by the orbital motion of the charged particle. While orientation of the magnetic component
depends both on the sign of the specific charge of the particle q̃ and the orientation of
the orbital angular velocity Ω±, the electric component is for a fixed neutron star spin
a > 0 always repulsive for q̃ > 0, but attractive for q̃ < 0. Nevertheless, both parts
depend on the product of µ and q̃ determining magnitude of the whole electromagnetic
interaction. Therefore, instead of changing magnitude and orientation of µ we can, without
any loss of generality, study only influence of changes of the specific charge q̃ similarly as in
analysis of the static Schwarzschild case (Bakala et al., 2010). However, we have to analyse
separately the corotating and retrograde orbits due to the rotation of the neutron star. We
analyse behaviour of orbiting test particles with value of specific charge q̃ ∈ (−1.0 x 1013,
1.0 x 1013). Absolute values of such used specific charge values are very low in comparison
with q̃ = 1.111 x 1018 corresponding to matter consisting purely of ions of hydrogen.

4 ORBITAL MOTION AND STATIONARY PARTICLES

For corotating orbits withΩ+ = Uφ
+/U t

+ the magnetic part of the Lorentz force is attractive
for q̃ > 0, while for q̃ < 0 we observe magnetic repulsion. Inversely oriented electric part
of the Lorentz force partially compensates influence of the magnetic component, but for
the family of corotating orbits the magnetic component is decisive for the final orientation
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Figure 1. Contour plot of the orbital frequency ν = Ω/2π as a function of the specific charge q̃ and
the radial coordinate constructed for the test neutron star with M = 1.5 M� and µ = 1.06 x 10−4 m2.
Top left: Corotating solution for spin a = 0.05. Top right: Corotating solution for spin a = 0.3.
Bottom left: Counterrotating solution for spin a = 0.05. Bottom right: Counterrotating solution for
spin a = 0.3. The electrostatic radii at which the stationary particles are located are given by the red
contour line (ν = 0 Hz).

of the Lorentz force. Ω+ increases monotonically with increasing specific charge q̃; in
the region of q̃ < 0 the repulsive electromagnetic interaction causes decreasing of Ω+ in
comparison with the geodesic orbital frequencyΩ0+, while in the attractive region of q̃ > 0
there is Ω+ > Ω0+. In top panels of Fig. 1 we illustrate behaviour of the orbital angular
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velocity Ω (related frequency ν = Ω/2π ) of orbits described by the corotating solution
in dependency on the specific charge q̃ using the test model neutron star with small and
extremal values of the spin, a = 0.05 and a = 0.3.

4.1 Orbital angular velocity of counterrotating solution and stationary particles at
electrostatic radius

In the case of the retrograde solution Ω− = Uφ
−/U t

+ the resulting orientation of the
Lorentz force is inverse in comparison to the corotating solution. Therefore, |Ω−| decreases
monotonically with increasing value of the specific charge q̃. For q̃ < 0 the attractive Lorentz
interaction increases |Ω−| in comparison with the geodesic orbital frequency |Ω0−|, while
in the repulsive region of q̃ > 0 there is |Ω−| < |Ω0−|. Nevertheless the relations of both
components of the Lorentz force are qualitatively different as compared to the case of the
corotating solution.

In the case of the retrograde orbits, both parts of the Lorentz force are oriented identically
and the magnetic repulsion and attraction are supported by the electric part of the interaction.
Starting from a critical specific charge q̃es, character of the electromagnetic interaction at the
repulsive region enables existence of electrostatic radius res(q̃), where the limiting case of
the circular orbit withΩ− = 0 appears. Such particles are static relative to static observers
at infinity, with gravitational attraction of the neutron star being compensated by the electric
repulsion due to the particle charge. (However, the static particles at the electrostatic radii
are rotating relative to the Lense–Thirring spacetime. An analogical situation has been
discovered for motion of charged particles in the equatorial plane of the Kerr–Newman
geometry (Bálek et al., 1989). In both cases the effect is caused by the combined influence
of the frame dragging and the electromagnetic interaction.)

The electric repulsion increases strongly with decreasing radial coordinate. The existence
of retrograde solutions for particles with large specific charges orbiting at low radii (r <
res(q̃), q̃ ≥ q̃es) requires presence of compensating magnetic attraction implying change
of the orbital velocity orientation. Then even the retrograde solution determines a special
family of corotating (relative to observers at infinity) orbits with relatively low orbital
frequencyΩ− > 0 existing paralelly at the same radial coordinate as the orbits of corotating
solution demonstrating high Ω+ > 0.

In bottom panels of Fig. 1 we illustrate behaviour of the orbital angular velocityΩ (related
frequency ν = Ω/2π ) of orbits described by counterrotating solution in dependency on
the specific charge q̃ using test model neutron star with with small and extremal values of
the spin, a = 0.05 and a = 0.3.

5 CONCLUSIONS

The aim of the present paper is to study the influence of the Lorentz force generated by
a dipole magnetic field of a slowly rotating neutron star on the equatorial circular motion.
We focus on the combined effects of the frame dragging and electromagnetic interaction,
representing the frame dragging in the linear approximation of the Lense–Thirring metric.
In general, the Lorentz force may be of attractive or repulsive character depending on the
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sign of orbiting particle’s specific charge, the magnetic dipole moment and orbital velocity
orientations and the sense of rotation of the neutron star. Surprisingly enough, the combined
effect of frame dragging and electro-magnetic interaction implies even in the case of the
slow rotation, and in intermediate radii, i.e. radii not close to the gravitational radius,
the existence of charged particles being in states appearing static relative to distant static
observers. Such particles are located at the so called electrostatic radii. The phenomenon of
stationary particles in strong gravity was discovered for the first time in the case of charged
particles orbiting the Kerr–Newman black hole, but for ultrarelativistic particles located at
close vicinity of the black hole horizon (Bálek et al., 1989). Here we have demonstrated its
existence in slightly less exotic conditions around slowly rotating magnetized neutron stars.
We shall discuss stability of this kind of motion in a future paper.
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