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ABSTRACT
Collisionless astrophysical plasmas at kinetic equilibrium can exhibit geometrical
structures characterized by the absence of well-defined global spatial symmetries.
Plasmas of this type can arise in the surrounding of compact objects and are likely
to give rise to relativistic regimes, being subject to intense gravitational and electro-
magnetic fields. This paper deals with the investigation of the physical mechanisms
related to the occurrence of a non-vanishing equilibrium fluid stress-energy tensor
associated with each collisionless species of plasma charged particles belonging to
these systems. This permits one to obtain information about the thermal proper-
ties of the plasma and to display the related contributions generated by phase-space
anisotropies. The issue is addressed from a theoretical perspective in the framework
of a covariant Vlasov statistical description, based on the adoption of a relativistic
gyrokinetic theory for the single-particle dynamics.
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1 INTRODUCTION

The description of the complex phenomenology of plasmas arising in the surrounding
of compact objects represents a challenging problem in theoretical astrophysics. In these
systems, both single-particle and macroscopic fluid velocities of the plasma can become
relativistic, at least in particular subsets of the configuration domains, while space-time
curvature effects associated with strong gravitational fields can be relevant. When these
circumstances occur, relativistic covariant approaches need to be adopted.

In the following we consider strongly-magnetized collisionless plasmas that can be treated
in the framework of a covariant Vlasov–Maxwell formulation and in which single-particle
dynamics is relativistic. This allows for both phase-space single-particle as well as electro-
magnetic (EM) and gravitational collective system dynamics to be consistently taken into
account. Within such a description, the fundamental quantity is represented by the species
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kinetic distribution function (KDF) fs , where s is the species index, whose dynamical
evolution is determined by the Vlasov equation.

Astrophysical magnetized plasmas can generate kinetic plasma regimes which persist
for long times (with respect to the observer and/or plasma characteristic times), despite
the presence of macroscopic time-varying phenomena of various origin, such as flows,
non-uniform gravitational/EM fields and EM radiation, possibly including that arising from
single-particle radiation-reaction processes (Hazeltine and Mahajan, 2004; Cremaschini
and Tessarotto, 2011). For collisionless plasmas, these states might actually correspond to
some kind of kinetic equilibrium which characterizes the species KDFs. This is realized
when the latter distributions are all assumed to be functions only of the single-particle
adiabatic invariants. Therefore, in this sense kinetic equilibria may arise also in physical
scenarios in which macroscopic fluid fields (e.g. fluid stress-energy tensor) and/or the EM
field might be time dependent when observed from an observer reference frame.

For non-relativistic axisymmetric systems, the subject was treated in Cremaschini et al.
(2010, 2011); Cremaschini and Stuchlík (2013); Cremaschini et al. (2013b), where kinetic
equilibria were investigated for collisionless magnetized plasmas subject to stationary or
quasi-stationary EM and gravitational fields. A number of peculiar physical properties have
been pointed out in this reference, which range from quasi-neutrality, the self-generation
of equilibrium EM fields and the production of macroscopic azimuthal and poloidal flow
velocities, together with the occurrence of temperature and pressure anisotropies. Further
interesting developments concern, however, a more general physical setting in which some
of the relevant symmetry properties characteristic of the equilibria indicated above, may be
in part lost. These include both spatially non-symmetric kinetic equilibria in which energy
is conserved (Cremaschini and Tessarotto, 2013) as well as energy-independent kinetic
equilibria (Cremaschini et al., 2013a) in which a continuous spatial symmetry of some kind
still survives.

Extension of these results to relativistic plasmas of the type indicated above has been
established in recent contributions (Cremaschini et al., 2014b,a). In particular, in Cremas-
chini et al. (2014b) kinetic equilibria of relativistic collisionless plasmas in the presence
of non-stationary EM fields have been addressed, while Cremaschini et al. (2014a) dealt
with the covariant formulation of spatially non-symmetric kinetic equilibria in magnetized
plasmas and the determination of the physical mechanisms responsible for the occurrence
of a non-vanishing 4-flow. This concerns systems characterized by non-axisymmetric mor-
phologies as far as the behaviour of both the EM and fluid fields is concerned, while the
background gravitational field can still be allowed to exhibit space-time symmetries of some
kind (e.g. to be defined with respect to the distant observer coordinate system).

In both these cases, the theory has required the development of a systematic non-
perturbative formulation of covariant gyrokinetic theory (Beklemishev and Tessarotto, 1999,
2004) for the appropriate Lagrangian variational description of single-particle dynamics in
relativistic plasma regimes. The GK theory in fact provides the appropriate framework for
the determination of exact and adiabatic phase-space particle conservation laws. In partic-
ular, the novel GK theory presented in Cremaschini et al. (2014b,a) permits one to identify
a non-perturbative representation of the particle magnetic moment, which is shown to be
conserved even when global space-time symmetries may be absent. In addition, in Cremas-
chini et al. (2014a) a perturbative representation of the exact GK theory has been developed
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based on the so-called Larmor-radius expansion, allowing the magnetic moment to be eval-
uated asymptotically as an adiabatic invariant with prescribed accuracy and the higher-order
Larmor-radius corrections to its expression to be consistently determined.

The adiabatic conservation of the single-particle magnetic moment is a distinctive fea-
ture of collisionless magnetized plasmas. Indeed, for both relativistic and non-relativistic
systems, the magnetic moment is the primary source of temperature anisotropy, while
for spatially non-symmetric configurations it is essential in order to generate macroscopic
plasma flows along both the parallel and perpendicular directions with respect to the local
magnetic field.

Based on these premises and extending the research pursued in Cremaschini et al. (2014a),
the purpose of the present work is to investigate the physical mechanisms which determine
the properties of the equilibrium fluid stress-energy tensor Tµν associated with relativistic
collisionless plasmas in spatially non-symmetric configurations. This provides the correct
equilibrium fluid closure condition for these systems, which carries information about the
thermal properties of the plasma and the different contributions generated by phase-space
anisotropies. The issue is addressed from a theoretical perspective in the framework of a
covariant Vlasov statistical description of magnetized plasmas, based on the adoption of
the covariant GK theory for the single-particle dynamics earlier developed. In particular,
the main goals of the study are as follows:

(1) To summarize the main features of the GK theory and provide the perturbative
representation of the relativistic magnetic moment.

(2) To outline the method for the construction of kinetic equilibria, providing an explicit
representation of the species KDF in the form of a generalized Gaussian distribution.

(3) To calculate the expression of the stress-energy tensor and to show that this is gener-
ally non-isotropic. It is pointed out that this feature arises primarily from the conservation
of the magnetic moment carried by the equilibrium KDF. The asymptotic expression of the
magnetic moment correct up to first order in the Larmor-radius expansion is adopted for this
task, which permits an analytical estimate of the corresponding distinctive contributions to
the stress-energy tensor.

2 NON-PERTURBATIVE GK THEORY

In this section we summarize the main results concerning the non-perturbative formulation
of the covariant GK theory, treating particles as point-like having specific charge q ≡
Ze/M0c2, with M0 being the mass of the species component particles, and moving in a
prescribed background metric tensor gµν (r) and EM 4-potential Aµ. The GK theory is
obtained by introducing an extended phase-state transformation of the form

x ≡
(
rµ, uµ

)
↔ z′ ≡

(
y′, φ′

)
, (1)

where φ′ is the gyrophase angle, z′ is the GK state and y′ is a suitable 7-component
vector. The GK state z′ is constructed in such a way that its equations of motion are
gyrophase independent, namely dz′/ds ≡ F(y′, s), where F is a suitable vector field.
A non-perturbative covariant GK theory is established by introducing the extended local
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transformation of the type

rµ = r ′µ + ρ′µ1 , (2)
uµ = u′µ ⊕ ν′µ1 , (3)

denoted as extended guiding-center transformation, where ρ′µ1 = ρ
′µ
1
(
r ′µ, u′µ

)
and ν′µ1 =

ν
′µ
1
(
r ′µ, u′µ

)
are suitably prescribed in terms of

(
r ′µ, u′µ

)
. Here r ′µ is the guiding-center

position 4-vector, with primed quantities denoting dynamical variables which are evaluated
at r ′µ. Thus, ρ′µ1 is referred to as the relativistic Larmor 4-vector, while both uµ and u′µ are
by construction 4-velocities, so that uµuµ = u′µu′µ = 1, with ⊕ denoting the relativistic
4-velocity composition law. Notice that by construction u′µ1 ≡ u′µ ⊕ ν′µ1 is necessarily a
4-velocity, although ν′µ1 is not necessarily so.

The guiding-center transformation (2) and (3) are required to fulfil the equation
d
ds

(
r ′µ + ρ′µ1

)
= u′µ ⊕ ν′µ1 , (4)

which relates the transformed physical velocity to the rate of change of the displacement
vector r ′µ + ρ′µ1 .

The 4-velocity u′µ is projected along the EM-tetrad of unit 4-vectors
(
a′µ, b′µ, c′µ, d ′µ

)
evaluated at the guiding-center position (guiding-center EM-tetrad, see Cremaschini et al.
(2014a)), yielding the representation

u′µ ≡ u′0a′µ + u′
‖
b′µ + w′

[
c′µ cosφ′ + d ′µ sinφ′

]
, (5)

where u′0 =
√

1+ u′2
‖
+ w′2. The derivation of the GK equations of motion and of the

related conservation laws follow standard procedures in the framework of variational La-
grangian approach. In particular, provided the two transformations (1), (2) and (3) actually
exist, i.e. are invertible, one obtains the following expression for the non-perturbative
representation of the particle magnetic moment m′:

m′ =

〈
∂ρ
′µ
1

∂φ′

[(
u′µ ⊕ ν

′

1µ

)
+ q Aµ

]〉
φ′

, (6)

which is by construction a 4-scalar.

3 PERTURBATIVE GK THEORY

The perturbative GK theory is obtained by introducing a perturbative method based on
the introduction of the dimensionless Larmor-radius parameter, namely the frame-invariant
ratio ε ≡ rL/L �1, to be considered as an infinitesimal. Here rL is the Larmor-radius 4-
vector, while L is a suitable characteristic invariant length of the system. Then we introduce
the assumption that both ρ′µ1 and ν′µ1 are considered as infinitesimals and are represented
in terms of the power series

ερ
′µ
1 = εr

′µ
1 + ε

2r ′µ2 + · · · , (7)



Stress-energy tensor of spatially non-symmetric plasmas 31

εν
′µ
1 = εv

′µ
1 + ε

2v
′µ
2 + · · · (8)

Similarly, the 4-vector potential is Taylor-expanded in ε around the guiding-center position
r ′µ. Then, introducing these expressions in the GK Lagrangian differential form and
evaluating its gyrophase average yields the following perturbative representation for the
particle magnetic moment m′:

m′ = µ′ + εµ′1 + O
(
ε2) . (9)

In detail, here µ′ is the leading-order contribution given by

µ′ =
w′2

2q H ′
, (10)

where H ′ is the magnetic field strength in the EM-tetrad reference frame. Furthermore, µ′1
is the first-order contribution, which can be written in compact form as

µ′1 = µ
′

(
u′0∆

′

u′0

(
r ′
)
+ u′
‖
∆′u′
‖

(
r ′
))
+ µ′w′∆′w′

(
r ′
)
, (11)

where the 4-scalar coefficients ∆′u′0

(
r ′
), ∆′u′

‖

(
r ′
) and ∆′

w′
(r ′) are only position-dependent. We

omit to calculate here their precise expression as this is not needed for the subsequent
developments.

Some important features must be pointed out regarding the asymptotic representation of
the magnetic moment given above:

(1) The contribution µ′1 is linearly proportional to the leading-order magnetic mo-
ment µ′.

(2) Provided ∆′u′0
(
r ′
)

and ∆′u′
‖

(
r ′
)

are non-zero, the first-order magnetic moment µ′1
contains linear velocity dependences in terms of u′0 and u′

‖
.

(3) The contribution proportional to u′0 is an intrinsically-relativistic effect since u′0 is
related to the other components of the 4-velocity by means of a square-root dependence.
Concerning the dependences in terms of u′

‖
, we notice that besides the linear one, there is

an additional intrinsically relativistic one appearing through u′0.

4 RELATIVISTIC KINETIC EQUILIBRIA

In this section the construction of relativistic spatially non-symmetric kinetic equilibria for
collisionless plasmas in curved space-time is considered. To reach the target, the method of
invariants is implemented, which consists in expressing the species KDF in terms of exact
or adiabatic single-particle invariants. In the present case the latter is identified with the set
(P0,m′), where P0 is the conserved momentum conjugate to the ignorable time coordinate,
as it follows from the stationarity condition. Therefore one can always represent the species
equilibrium KDF in the form fs = f∗s , with

f∗s = f∗s
((

P0,m′
)
,Λ∗

)
(12)
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being a smooth strictly-positive function of the particle invariants only which is sum-able
in velocity-space. Concerning the notation, in Eq. (12)

(
P0,m′

)
denote explicit functional

dependences, whileΛ∗ denotes the so-called structure functions (Cremaschini et al., 2011),
namely functions suitably related to the observable velocity moments of the KDF. In the
following for simplicity the particular choice Λ∗ = const is adopted. Notice that in the
following, for simplicity of notation but without possible misunderstandings, we omit to
indicate the index s in the set of structure functions entering each species KDF.

For the sake of illustration, we consider here a specific realization of each species
KDF f∗s in terms of a generalized Gaussian distribution. To this aim, we denote with
Pµ = (uµ+q Aµ) the particle generalized 4-momentum in the observer (laboratory) frame
which is characterized by the co-moving 4-velocity Uµ, so that in this frame one has simply
Uµ
= (1, 0, 0, 0). As a consequence, in the observer frame PµUµ

= P0 (rest energy),
which is a conserved 4-scalar by assumption. Therefore, it follows that f∗s can be identified
with the 4-scalar

fM∗s = β∗e−PµUµγ∗−m′α∗ , (13)

where the structure functions are represented by the set of 4-scalars fields {Λ∗} ≡
{β∗, γ∗, α∗}. From the physical point of view, here β∗ is related to the plasma 4-flow,
or equivalently the plasma number density when measured in the fluid co-moving frame,
while γ∗ and α∗ are related to the temperature anisotropy. We stress that the representation
of the KDF in Eq. (13) is still exact, in the sense that no asymptotic approximations have
been introduced there, so that the magnetic moment m′ in the exponential factor must be
given by its non-perturbative representation by Eq. (6).

In order to determine explicitly the 4-velocity moments of fM∗s , the magnetic moment
m′ must be preliminarily evaluated at the actual particle position by means of an inverse
guiding-center transformation. When the latter is applied to the perturbative representation
of m′ given by Eq. (9), this leads, with the same accuracy, the following expression for the
magnetic moment m:

m = µ+ εµ1 + εδ(µ) . (14)

Here µ ≡ w2/2q H is the leading-order contribution, µ1 is the first-order term which
coincides with that in Eq. (11) when evaluated at the particle position, while the O (ε)

correction δ(µ) = δ(µ)
(
r, u‖, µ, φ

)
contains explicit gyrophase dependences and originates

from the inverse guiding-center transformation applied to µ′. Finally, in terms of Eq. (14)
and neglecting second-order corrections in ε, the equilibrium species KDF (13) becomes

fM∗s = β∗e−PµRUµ
R (r)γ∗−µα∗

[
1−

(
εµ1 + εδ(µ)

)
α∗

]
, (15)

where all quantities are represented in the EM-tetrad with origin at the actual particle
position. Thus, PµR is the canonical momentum and Uµ

R (r) the 4-velocity corresponding
to Uµ, both expressed in the same EM-reference frame.

5 THE STRESS-ENERGY TENSOR

As shown in Cremaschini et al. (2014a), the phase-space functional dependences contained
in the KDF fM∗s given by Eq. (15) give rise to corresponding fluid equilibria characterized
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by non-uniform 4-flows Nµ (r). In this section we consider another velocity-moment of
the KDF. In particular we investigate the form of the fluid stress-energy tensor Tµν (r), in
order to prove that this is generally non-isotropic and to identify the different phase-space
contributions that determine its form.

In detail, the plasma stress-energy tensor Tµν (r) is defined as

Tµν (r) =
∑

s

Tµνs , (16)

where Tµνs denotes the generic species stress-energy tensor given by the 4-velocity integral

Tµνs (r) = 2Moc2
∫
√
−g d4uΘ

(
u0
)
δ
(
uµuµ − 1

)
uµuν fM∗s . (17)

In the previous expression the Dirac-delta takes into account the kinematic constraint for the
4-velocity when performing the integration, while

√
−g is the square-root of the determinant

of the background metric tensor. Invoking the EM-tetrad representation for the 4-velocity,
the integral can be reduced to

Tµνs (r) = Moc2
∫ √

−g d3u√
1+ u2

‖
+ w2

uµuν fM∗s . (18)

When the previous integral is evaluated with respect to the EM-tetrad reference frame, then
locally

√
−g = 1, thanks to the principle of equivalence. In such a framework, one can

introduce the cylindrical coordinates in the velocity space:∫
d3u →

∫ 2π

0
dφ
∫
+∞

0
w dw

∫
+∞

−∞

du‖ , (19)

where u‖ and w coincide with the scalar components of the 4-velocity analogous to those
entering Eq. (5) when expressed at the actual particle position and in terms of which the
KDF is represented. Hence, in the EM-tetrad frame the integral becomes finally

Tµνs (r) = Moc2
∫ 2π

0
dφ
∫
+∞

0
w dw

∫
+∞

−∞

du‖
uµuν fM∗s√
1+ u2

‖
+ w2

. (20)

Although its explicit evaluation can be in principle carried out numerically, in this study we
are interested in evaluating its qualitative features in terms of an analytical analysis.

First we notice that, once uµ is represented in the EM-tetrad in terms of the basis
formed by (aµ, bµ, cµ, dµ), the same 4-vectors also identify the tensorial components of
Tµνs (r), which are generally position-dependent. Once the expression of Tµνs (r) is known
in such a frame in terms of the EM-tetrad, its representation can then be determined in
arbitrary reference frames (i.e. coordinate-systems). A second feature to mention is that, by
construction, the tensor Tµνs (r) is symmetric, with non-vanishing diagonal components.
Additional properties can be inferred when the representation (15) is adopted. In particular:
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(1) The leading-order contribution to Tµνs (r) is generated by the velocity dependences
contained in the exponential factor, carried respectively by the 4-scalars PµRUµ

R (r) and µ.
This determines the leading-order fluid closure condition of the system and the tensorial
equation of state of the plasma, to be generally of non-polytropic type for these systems,
providing information about the thermal state of the kinetic equilibrium. Since the magnetic
moment µ depends only on the component w of the 4-velocity, the separate contributions
of the leading-order tensor are different. In the EM-tetrad frame the tensor acquires its
simplest representation and becomes diagonal at this order, so that an anisotropy clearly
arises in analogy with the non-relativistic solution. This realizes the so-called temperature
anisotropy.

(2) The first-order term generated byµ1 contains three separate contributions, according
to the expression (11). In particular, the terms proportional toµu0 andµw yield corrections
to the leading-order solution, thus affecting only the diagonal terms and exhibiting the same
kind of anisotropy when the tensor is expressed in the EM-tetrad frame. Instead, more
interesting, the term proportional to µu‖ is odd in the parallel component u‖, and therefore
it generates non-vanishing contributions in the tensorial directions (hyperplane) aµbν , so
that in the EM-tetrad frame this provides non-diagonal contributions. It is important to stress
that the latter feature is a unique consequence of the first-order correction to the magnetic
moment, which is missing in the leading-order solution, implying that, for consistency, the
first-order perturbations cannot generally be neglected.

(3) Similar considerations apply also to the first-order term associated with the correc-
tion δ(µ) to the magnetic moment. In view of the general form of its functional dependence
and its explicit gyrophase dependence, this term is expected to possibly contribute to all com-
ponents of the stress-energy tensor, thus extending the number of possible non-vanishing
off-diagonal terms (in the EM-tetrad frame).

Finally, a comment is in order concerning the spatial dependences in terms of rµ arising
in Tµνs (r). In the present case in which the structure functions are constant, non-trivial
configuration-space dependences still arise due to the following physical effects: 1) the
explicit dependence in terms of the 4-scalar AµUµ

R (r) associated with Pµ; 2) the functional
form of the 4-vector Uµ

R (r), which is determined by the boost transformation; and finally
3) the spatial dependences appearing in the 4-scalars µ, µ1 and δ(µ) occurring due to the
inhomogeneities of the background EM field.

6 CONCLUSIONS

In this study the physical properties of the stress-energy tensor associated with relativistic
magnetized collisionless plasmas belonging to spatially non-symmetric configurations have
been investigated. An analytical approach has been adopted to address the problem. The
theory has been developed in the framework of a covariant Vlasov statistical description,
based on the adoption of a relativistic gyrokinetic theory for the single-particle dynamics.

A fundamental element is the calculation of the relativistic single-particle magnetic
moment, which represents an adiabatic invariant of prescribed accuracy. A perturbative
solution correct through first-order in the Larmor-radius expansion has been determined
in this context. The expression of the magnetic moment is fundamental for the consis-
tent realization of kinetic equilibria, obtained here in terms of generalized Gaussian-like
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distributions. In addition, it has been shown that the same adiabatic invariant represents
the main source of phase-space anisotropies which ultimately give rise to a non-isotropic
stress-energy tensor. When the latter is evaluated in the EM-tetrad frame, the occurrence
of a leading-order temperature anisotropy is manifest, while non-vanishing off-diagonal
first-order corrections are characteristic of these systems.

The results obtained here are useful in order to display the thermal properties of spatially
non-symmetric plasmas and provide the appropriate theoretical framework for a better
understanding of the statistical features of astrophysical collisionless plasmas arising in
relativistic regimes and subject to the simultaneous action of intense gravitational and
electromagnetic fields.
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