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ABSTRACT
We present and analyse new exact gyraton solutions of algebraic type II on generalized
Melvin universe of type D which admit non-vanishing cosmological constantΛ. We
show that it generalizes both, gyraton solutions on Melvin and on direct product
spacetimes. When we set Λ = 0 we get solutions on Melvin spacetime and for
Σ = 1 we obtain solutions on direct product spacetimes. We demonstrate that the
solutions are member of the Kundt family of spacetimes as its subcases. We show
that the Einstein equations reduce to a set of equations on the transverse 2-space. We
also discuss the polynomial scalar invariants which are non-constant in general but
constant for sub-solutions on direct product spacetimes.

Keywords: Gyraton solutions – Melvin universe – cosmological constant – Kundt
family – direct product spacetimes – constant polynomial scalar invariants – Einstein
equations

1 INTRODUCTION

In Kadlecová et al. (2009) and Kadlecová and Krtouš (2010) we have investigated the
gyraton solutions on direct product spacetimes and gyraton solutions on Melvin universe.
These solutions are of algebraic type II. In this work we present the gyraton solutions on
Melvin universe with the cosmological constant.

We present our ansatz for the gyraton metric on generalized Melvin universe and the gen-
eralized electromagnetic tensor. We briefly review the derivation of the Einstein–Maxwell
equations. The source-free Einstein equations determine the functions Σ and S, in partic-
ular, there exists a relation between them. Next we derive the non-trivial source equations.
The Einstein–Maxwell equations do decouple for the gyraton metric on generalized Melvin
universe as for its subcase solutions on Melvin and on direct product spacetimes. Next,
we focus on interpretation of our solutions. Especially, we discuss the geometry of the
transverse metric of the generalized Melvin universe in detail for different values of the
cosmological constant. We show explicitly that the Melvin universe and direct product
spacetimes are special cases of our solutions. We also discuss the properties of the scalar
polynomial invariants which are functions of ρ but for subcase solutions on direct product
spacetimes (Σ = 1) the invariants are constant.
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2 THE ANSATZ FOR THE GYRATONS ON GENERALIZED MELVIN
UNIVERSE

The ansatz for the gyraton metric on the generalized Melvin spacetime is the following,

g = −2Σ2 H du2
−Σ2 du ∨ dv + q+Σ2du ∨ a , (1)

where we have introduced the 2-dimensional transversal metric q on transverse spaces
u, v = constant as

q = Σ2 dρ2
+

S(ρ)2

Σ2 dφ2 . (2)

We have assumed that the metric (1) belongs to the Kundt class of spacetimes and that the
transversal metric q has one Killing vector L∂/∂φq = 0. The metric (1) represents gyraton
propagating on the background which is formed by generalized Melvin spacetime. The
metric (1) generalizes only the transversal metric therefore the algebraical type is II as for
the gyraton on the Melvin spacetime Kadlecová and Krtouš (2010), the NP quantities are
listed in Kadlecová (2013).

We have generalized the transversal metric for the Melvin universe by assuming general
function S = S(ρ) instead of the simple coordinate ρ in front of the term dφ2, see
Kadlecová and Krtouš (2010). We will show that these general functionsΣ(ρ) and S(ρ) are
determined by the Einstein–Maxwell equations and have proper interpretation. The presence
of cosmological constant Λ is not allowed for the solution on pure Melvin background
Kadlecová and Krtouš (2010).

The transverse space is covered by two spatial coordinates x i (i = ρ, φ) and it is
convenient to introduce suitable notation on it, technical details can be found in Kadlecová
(2013). The function H(u, v, x) in the metric (1) can depend on all coordinates, but the
functions a(u, x) are v-independent.

The derivation of the Einstein–Maxwell equations is almost identical with the previous
paper Kadlecová and Krtouš (2010) therefore we will describe the derivation of Einstein–
Maxwell equations very briefly.

The metric should satisfy the Einstein equations with cosmological constant Λ and with
a stress-energy tensor generated by the electromagnetic field of the background Melvin
spacetime TEM and the gyratonic source Tgyr as1

G+Λ g = ~
(
TEM
+ Tgyr

)
. (3)

We assume the electromagnetic field is given by

F = E dv ∧ du +
B
Σ2 ε + du ∧

(
E s− B∗(s− a)

)
, (4)

1 ~ = 8πG and εo are gravitational and electromagnetic constants. There are two general choices of geometrical
units: the gaussian with ~ = 8π and εo = 1/4π , and SI-like with ~ = εo = 1.
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where E and B are parameters of electromagnetic field. The self-dual complex form of the
Maxwell2 tensor is

F = B

(
dv ∧ du −

i
Σ2 ε + du ∧

[
s+ i∗(s− a)

])
, (5)

for details see Kadlecová and Krtouš (2010).
We have denoted the complex constant B = E + i B, and we have introduced a con-

stant %EM,

%EM =
~εo

2

(
E2
+ B2) . (6)

We define the gyratonic matter only on a phenomenological level as

~ Tgyr
= ju du2

+ du ∨ j , (7)

where the source functions ju(v, u, x) and j (v, u, x). We assume that the gyraton stress-
energy tensor is locally conserved,

∇ · Tgyr
= 0 . (8)

To conclude, the fields are characterized by functions Σ , S, H , a, and s which must be
determined by the field equations and the gyraton sources ju and j and the constants E and
B of the background electromagnetic field are prescribed.

3 THE EINSTEIN–MAXWELL FIELD EQUATIONS

First, we will start to solve the Maxwell equations, it is sufficient to calculate the cyclic
Maxwell equation for the self-dual Maxwell tensor (5)

0 = dF = B

{
∂v
(
s+ i∗(s− a)

)
dv ∧ du ∧ dx−

[
rot s+ i div(s− a)

]
du ∧ ε

}
. (9)

From the real part we immediately get that the 1-forms s is v-independent, and rotation
free rot s = 0. From imaginary part it follows that the 1-form a is also independent and it
satisfies div(s− a) = 0.

3.1 The trivial Einstein–Maxwell equations – determining the function Σ and S

Next we will derive the Einstein–Maxwell equations from the Einstein tensor and the
electromagnetic stress-energy tensor, which are listed in Kadlecová (2013).

First we will solve the equations which are source free and we will be able to determine
the analytic formula for the functions Σ and S.

2 We will follow the notation of Stephani et al. (2003). Namely, F ≡ F + i?F is complex self-dual Maxwell
tensor, where the 4-dimensional Hodge dual is ?Fµν = εµνρσ Fρσ /2. The self-dual condition reads ?F = −iF .
The orientation of the 4-dimensional Levi–Civita tensor is fixed by the sign of the component εvuρφ = SΣ2. The
energy-momentum tensor of the electromagnetic field is given by Tµν = εoF

ρ
µ F νρ/2.
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The first equation we obtain from the vu-component,

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρ

Σ

S,ρ
S
−

S,ρρ
S
= ΛΣ2

+
%EM

Σ2 , (10)

the next two equations we get from the transverse diagonal components ρρ and φφ,

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρ

Σ

S,ρ
S
+ ∂2

v H = −ΛΣ2
+
%EM

Σ2 , (11)

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρρ

Σ
+ ∂2

v H = −ΛΣ2
+
%EM

Σ2 . (12)

When we compare the equation (11) and (12) we immediately get the relation between the
functions Σ and S, as Σ,ρS,ρ/S = Σ,ρρ, and thus we are able to determine their explicit
relation (Σ,ρ 6= 0) as

Σ,ρ = γ S , (13)

where γ is an integration constant.
After substituting the relation (13) into Eq. (10) then we get equation

−
(Σ,ρ)

2

Σ2 + 2
Σ,ρρ

Σ
+
Σ,ρρρ

Σ,ρ
= ΛΣ2

+
%EM

Σ2 , (14)

which will be useful later.
To determine the function H it is useful to substitute (13) into the Eq. (12) and then

multiply it by Σ/2Σ,ρ , we get

1
2

(
∂2
v H

)
,ρ

Σ

Σ,ρ
− 2

Σ,ρρ

Σ
+

(
Σ,ρ

)2
Σ2 +

Σ,ρρρ

Σ,ρ
= −ΛΣ2

−
%EM

Σ2 . (15)

Now, we add the Eq. (10) to (15) and obtain, (∂2
v H),ρΣ/2Σ,ρ = 0, then for Σ,ρ 6= 0 we

can write that ∂2
v H = −α , where α is a constant.

Thus the metric function H has a structure

H = −
1
2
αv2
+ g v + h , (16)

where we have introduced v-independent functions g(u, x) and h(u, x).
In the following we want to determine an analytical expression for Σ , in order to do that

we substitute the result (16) into (12),

2
Σ,ρρ

Σ
−

(
Σ,ρ

)2
Σ2 = −ΛΣ2

+
%EM

Σ2 + α . (17)

When we add the expression (14) to (17), we obtain that

Σ,ρρρ = −2ΛΣ2Σ,ρ + αΣ,ρ . (18)
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We can rewrite the previous equation as Σ,ρρρ = −2Λ(Σ3),ρ/3 + αΣ,ρ to be able to
integrate it again as

Σ,ρρ = −
2
3
ΛΣ3

+ αΣ +
1
2
β , (19)

which we can rewrite as
1
2

[
(Σ,ρ)

2]
,ρ
= −

1
6
Λ
(
Σ4)

,ρ
+ α

(
Σ2)

,ρ
+

1
2
βΣ,ρ . (20)

After another integration we get the final formula for the derivative of the function Σ ,(
Σ,ρ

)2
= −

1
3
ΛΣ4

+ αΣ2
+ βΣ + c , (21)

and it can be rewritten using (13) as

γ S =
[
−

1
3
ΛΣ4

+ αΣ2
+ βΣ + c

]1/2

, (22)

where α, β and c are integration constants which should be determined.
Furthermore, we are able to determine the constant c explicitly. When we substitute the

result (21) and (19) into (17) we immediately obtain that c = −%EM. The constants α and β
will be determined in the Section 4.1.

3.2 The Einstein–Maxwell equations for the sources

The remaining nontrivial components of the Einstein equations are those involving the
gyraton source (7). To write the source equation we have to evaluate the component Guv
using the expressions for derivatives of Σ . Then the component Guv has the explicit form

Guv = ΛΣ
2
+
%EM

Σ2 . (23)

The ui-components give equations related to j,

Σ2 j =
1
2

rot
(
Σ4 b

)
+Σ2dg − αΣ2a+ 2%EM(s− a) , (24)

where b = rot a.
It is useful to split the source equation into divergence and rotation parts:

div
(
Σ2 j

)
= divΣ2(dg − α a) , (25)

rot
(
Σ2j

)
= −

1
2
M
(
Σ4b

)
+ rot

(
Σ2dg

)
− αrot

(
Σ2a

)
− 2%EM b . (26)

These are coupled equations for g and a. We will return to them below.
The condition (8) for the gyraton source gives, that the sources j must be v-independent

and ju has the structure

ju = v div
(
Σ2j

)
+ ι , (27)
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where ι(u, x) is v-independent function, see Kadlecová and Krtouš (2010) Eq. (2.51). The
gyraton source (7) is therefore determined by three v-independent functions ι(u, x) and
j (u, x).

The uu-component of the Einstein equation gives

ju = v
[

div
(
Σ2dg

)
− α div

(
Σ2a

)]
+Σ2

(
M h −

(
Σ−2)

,ρ
h,ρ

)
+

1
2
Σ4b2

+ 2Σ2a · dg + (∂u + g) div
(
Σ2a

)
− αΣ2a2

− 2%EM (s− a)2 . (28)

Then we can compare the coefficient in front of v with (25) and we get consistent structure
with (27). The nontrivial v-independent part of (28) gives the equation for the metric
function h,

Σ2
(
M h −

(
Σ−2)

,ρ
h,ρ

)
= ι −

1
2
Σ4b2

− 2Σ2a · dg

− (∂u + g) div
(
Σ2a

)
+ αΣ2a2

+ 2%EM

(
s − a

)2
. (29)

Now, let us return to solution of Eqs. (25) and (26). The first equation simplifies if we
use gauge condition

div
(
Σ2a

)
= 0 . (30)

It can be satisfied due to gauge freedom v→ v − χ , a→ a− dχ , cf. the discussion in
Kadlecová and Krtouš (2010). Such a condition implies the existence of a potential λ̃, as
Σ2 a = rot λ̃.

The equation (25) now reduces to

div
(
Σ2dg −Σ2j

)
= 0 . (31)

It guarantees the existence of a scalar ω such that

dg = j+Σ−2rotω . (32)

However, we have to enforce the integrability conditions

rot dg = 0 , (33)

which turns out to be the equation for ω:

div
(
Σ−2dω

)
= rot j . (34)

We thus obtained the decoupled Eqs. (32) and (34) which determine the metric function g.
Substituting Σ2a = rot λ̃ and (32) to (26), and using identity b = rot

(
Σ−2rot λ̃

)
, we

get the decoupled equation for λ̃:

1
2
M
(
Σ4rot

(
Σ−2rot λ̃

))
+ 2%EMrot

(
Σ−2rot λ̃

)
− αM λ̃ = −Mω . (35)
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It is a complicated equation of the forth order. It can be simplified to an ordinary differential
equation if we assume the additional symmetry properties of the fields, e.g. the rotational
symmetry around the axis. The potential λ̃ then determines the metric 1-form a through
Σ2a = rot λ̃.

After finding a one can solve the field equations for s. The potential equations give
immediately that

s = dϕ . (36)

Substituting to the condition div(s− a) = 0 we get the Poisson equation for ϕ:

Mϕ = div a . (37)

Finally, the remaining metric function h is determined by the Eq. (29).

4 THE INTERPRETATION OF THE SOLUTIONS

4.1 The geometries of the transversal spacetime

In this section we will investigate the geometry of the transversal metric q (the wave fronts)
(2) and we will determine the constants α, β in the final Eq. (21). Subsequently, we will
discuss the various geometries of q in proper parametrization and we will determine the
meaning of the parameter γ .

We impose conditions to the derivatives ofΣ (i.e. S) (21), (19) and (18) while using the
relation (13) between Σ,ρ and S to determine α and β.

First, we impose conditions at the axis ρ = 0. We assume that S and Σ,ρ vanish at the
axis ρ = 0, S = 0,Σ,ρ = 0, second, we can always rescale the metric (2) to getΣ |ρ=0 = 1,
third, we want no conical singularities there, therefore we assume Σ,ρρ |ρ=0 = γ, which
we can be justified by computation of the ratio of the circumference o divided by 2π times
radius in limit ρ → 0,

o
2πr
=

2π S
Σ

2π
∫
Σdρ

=
1
Σ

(
S
Σ

)
,ρ

=
1
γ

Σ,ρρΣ −
(
Σ,ρ

)2
Σ3 = 1 . (38)

Applying the conditions from last paragraph, we obtain

−
1
3
Λ+ α + β − %EM = 0 , −

2
3
Λ+ α +

1
2
β = γ . (39)

We can then determine the constants α and β explicitly in terms of the cosmological
constant Λ, the density of electromagnetic field %EM and the parameter γ ,

α = Λ− %EM + 2γ , β = −
2
3
Λ+ 2%EM − 2γ . (40)

We can conveniently rewrite (13),(
γ S
)2
=
(
Σ,ρ

)2
=

[
−

1
3
Λ

γ 2

(
Σ2
− 2

)
Σ −

%EM

γ 2 (Σ − 1)+
2
γ
Σ

]
(Σ − 1) . (41)
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Now we know explicitly the constants in the derivative of Σ and we can investigate
the interpretation of the generalized Melvin spacetime. It is convenient to introduce new
coordinate x as

Σ = 1+ γ x , (42)

then we can write that

S = x,ρ , Σ,ρ = γ x,ρ . (43)

The transversal metric q (2) then can be rewritten as

q =
(
Σ

S

)2

dx2
+

(
S
Σ

)2

dφ2
=

1
G

dx2
+ Gdφ2 , (44)

where we can express the new function G as

G =
(

S
Σ

)2

= −
1
3
Λ

γ 2Σ
2
+
α

γ 2 +
β

γ 2
1
Σ
−
%EM

γ 2
1
Σ2 , (45)

and

S2
= ∓`2γ 2x4

∓ `2γ x3
+
(
∓3`2

− %EM + 2γ
)
x2
+ 2x, (46)

where we denoted ∓`2
= Λ/3 where ± = signΛ.

Before we will discuss the possible geometries given by the transversal metric q (2)
and interpret them accordingly we introduce important characteristics for the generalized
Melvin spacetime.

The radial radius is then defined as

r =
∫ x

0

1
√

G
dx , (47)

the circumference radius is simply given by the function G, R =
√

G. Interestingly, the
ratio of the radia is then determined by the derivative of G,

dR
dr
=
√

G
d
√

G
dx
=

1
2

G,x . (48)

The scalar curvature of q can be also written as

R = −G,xx = −
2
Σ4

[
3Σ,ρ +

2
3
ΛΣ4

− 3αΣ2
− 2βΣ

]
. (49)

The geometries of the transversal spacetime q can be illustrated by investigating the
function G and its roots when we consider different values ofΛ, %EM and of the parameter γ .

First, we consider positive cosmological constant Λ > 0 for any %EM and γ we obtain
closed space where ρ ∈ (0, ρ∗) and ρ∗ represents the first positive root of G where in fact
the spacetime closes itself. The other characteristics are: the radial radius tends to a finite
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Figure 1. The case whenΛ > 0 which represents
closed spacetime. The function G is visualized
for any value of %EM and γ . The coordinate ρ
ranges ρ ∈ (0, ρ∗) where the ρ∗ is the first root
of G where the spacetime closes.

Figure 2. The case when Λ = 0 and %EM > 2γ
represents the closed spacetime. The function G
is visualized for %EM > 2γ and the coordinate ρ
ranges ρ ∈ (0, ρ∗) where the ρ∗ is the root of G
where the spacetime closes.

Figure 3. The case when Λ = 0 and %EM =

2γ then represents the closed spacetime with an
infinite peak. The function G is visualized for
%EM = 2γ and the coordinate ρ ranges ρ →∞.

Figure 4. The case when Λ = 0 and %EM < 2γ
then represents the open spacetime. The function
G is visualized for %EM < 2γ and the coordinate
ρ ranges ρ →∞.

value r → r∗ at the ρ∗ and the circumference radius vanishes R → 0 when ρ → ρ∗. This
special case is visualized in the Fig. 1.

For the vanishing cosmological constant Λ = 0 we obtain three possible spacetimes
according to the values of %EM and γ .

When %EM > 2γ then we get closed space where the range of the coordinate ρ goes again
as ρ ∈ (0, ρ∗) and ρ∗ is then the root of G and it is the closing point of the universe. The
radia are then r → r∗ and R→ 0 when ρ → ρ∗, see the Fig. 2.

When %EM = 2γ then we obtain closed space with and infinite peak for ρ → ∞.
Therefore, when ρ →∞ the radial radius tends to infinity r →∞ and the circumference
radius goes to zero R → 0, see the Fig. 3. This case represents the pure Melvin spacetime
Bonnor (1954); Melvin (1965) which we discussed in Kadlecová and Krtouš (2010).
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Figure 5. The case when Λ < 0 and γ < γcr
represents the closed spacetime. The coordinate
ρ ranges ρ ∈ (0, ρ∗) where the ρ∗ is the root of
G where the spacetime closes.

Figure 6. The case when Λ < 0 and γ = γcr
represents the asymptotically closed spacetime.
The coordinate ρ ranges ρ ∈ (0, ρ∗) where the
ρ∗ is the root of G. The radial distance tends to
infinity and the circumference shrinks to zero.

Table 1. Possible geometries of the transversal spacetime q. HereΛ is a cosmological constant, %EM

is energy density of the electromagnetic field and γ is the parameter of ‘Melviniztion’ of the spacetime.
Critical value γcr (Λ, %EM) is determined by the condition that the function G has degenerated root
at ρ∗.

Λ %EM,γ transversal spacetime ρ r |ρ→ρ∗ R|ρ→ρ∗

Λ > 0 any closed space (0, ρ∗) r∗ 0

γ < %EM/2 closed space (0, ρ∗) r∗ 0
Λ = 0 γ = %EM/2 Melvin universe R+ ∞ 0

γ > %EM/2 open space R+ ∞ R∞

γ < γcr closed space (0, ρ∗) r∗ 0
Λ < 0 γ = γcr closed with∞ peak (0, ρ∗) ∞ 0

γ > γcr open space R+ ∞ ∞

When %EM < 2γ then we obtain an open space for ρ ∈(0,∞). When ρ →∞, the radial
radius tends to infinity r → ∞; however, the circumference radius goes to a finite value,
R→ R∞, see the Fig. 4.

When we consider the negative cosmological constant Λ < 0 we obtain three possible
spacetimes according to the values of γ . For γ smaller than certain critical value γcr (which
depends onΛ and %EM), we get closed space where the range of the coordinate ρ goes again
as ρ ∈ (0, ρ∗) and ρ∗ is then the root of G and the closing point of the universe. The radia
are then r → r∗ and R→ 0 when ρ → ρ∗, see the Fig. 5.

When γ = γcr , we obtain closed space with and infinite peak where the range of the
coordinate ρ goes as ρ ∈ (0, ρ∗) and ρ∗ is the root of G. The radia are then r → ∞ and
R→ 0 when ρ → ρ∗, see the Fig. 6.

When γ > γcr , we obtain open space for ρ ∈ (0,∞). For ρ → ∞, r → ∞, and
R→ R∞, see the Fig. 7.
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Figure 7. The case when Λ < 0 and γ > γcr represents the open spacetime. The coordinate ρ takes
positive real values. For ρ →∞, r →∞, and R→ R∞, see the Fig. 7.

We have summarized our resulting geometries arising from the generalized Melvin uni-
verse in a Table 1.

To conclude this section, we have investigated the transversal spacetime of the generalized
Melvin universe. We have identified the constants α and β, interpreted them in terms of
the cosmological constant Λ, %EM and γ . After suitable parametrization of the transversal
spacetime we have discussed all possible cases of universes which are contained in the
generalized Melvin universe. The Melvin universe occurs as a special case. We have
visualized these cases in figures and summarized them in the Table 1.

The parameter γ changes the character of the influence of the electromagnetic field on
the geometry. With larger γ the influence is stronger and for Λ ≤ 0 it can even change the
global structure of the spacetime, what exactly happens for the critical value γcr (forΛ = 0
γcr = %EM/2).

4.2 The backgrounds for our solutions

The background spacetimes are defined as a limit when h = g = 0 and a = 0, then the
metric (1) reduces to

g = q−Σ2 du ∨ dv + αv2Σ2du2 . (50)

The metric (50) admits one killing vector ∂φ which corresponds to cylindrical symmetry.
Using the adapted null tetrad k = ∂v, l = Σ−2(∂u + αv

2∂v/2), m = (Σ−1∂ρ −

iΣS−1∂φ)/
√

2, the only non-vanishing components of Weyl and Ricci tensors are,

Ψ2 =
1

2Σ4 (βΣ − 2%EM) , Φ11 =
1

2Σ4 %EM . (51)

This demonstrates that the generalized Melvin universe is a non-vacuum solution of type D,
except the points where Ψ2 = 0.
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Table 2. Some of possible background spacetimes in the case γ = 0 which represents the direct
product of two 2-spaces of constant curvature. The parameter Λ+ = Λ+ %EM gives the geometry of
the wave front and Λ− = Λ− %EM determines the conformal structure of the background.

Λ+ Λ− geometry background Λ %EM

0 0 E2
× M2 Minkowski = 0 = 0

Λ Λ S2
× d S2 Nariai > 0 = 0

Λ Λ H2
× Ad S2 anti-Nariai < 0 = 0

%EM −%EM S2
× Ad S2 Bertotti–Robinson = 0 > 0

2Λ 0 S2
× M2 Plebański–Hacyan > 0 = Λ

0 2Λ E2
× Ad S2 Plebański–Hacyan < 0 = |Λ|

The background metric (50) contains several sub-solutions. ForΛ = 0 and %EM = 2γ we
obtain the Melvin universe which serves as a background in Kadlecová and Krtouš (2010)
and the the only non-vanishing Weyl and curvature scalars are

Φ2 = −
%EM

2Σ4 (2−Σ) =
1
2
%EM

Σ4

(
−1+

1
4
%EMρ

2
)
, Ψ11 =

1
2Σ4 %EM , (52)

where we have used theΣ = 1+%EMρ
2/4 which specifies the Melvin spacetime. The scalar

curvature of the transversal spacetime q (49) then becomes

R = 0 , (53)

which agrees with Kadlecová and Krtouš (2010).
For Σ = 1 we get the direct product background spacetimes, the metric (50) reduces to

g = q− du ∨ dv + αv2 du2 , (54)

the only non-vanishing Weyl and curvature scalars then are

Ψ2 =
1
2 (β − 2%EM) = −

Λ
3 , Φ11 =

1
2%EM . (55)

The scalar curvature of the transversal spacetime q (49) then becomes

R = 2(Λ+ %EM) , (56)

which agrees with Kadlecová et al. (2009).
To summarize the background metric (50) generalizes the metric for the pure Melvin

universe and the direct product spacetimes into one background metric and combines their
properties.

5 THE SCALAR POLYNOMIAL INVARIANTS

The scalar invariants are important characteristics of gyraton spacetimes. The gyratons in
the Minkowski spacetime Frolov et al. (2005) have vanishing invariants (VSI) Pravda et al.
(2002), the gyratons in the AdS Frolov and Zelnikov (2005) and direct product spacetimes
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Kadlecová et al. (2009) have all invariants constant (CSI) Coley et al. (2006). The invariants
are independent of all metric functions ai which characterize the gyraton, and have the same
values as the corresponding invariants of the background spacetime. We have shown that
similar property is valid also for the gyraton on Melvin spacetime Kadlecová and Krtouš
(2010), but the invariants are functions of the coordinate ρ and depend on the constant
density %EM.

In these cases, the invariants are independent of all metric functions which characterize
the gyraton, and have the same values as the corresponding invariants of the background
spacetime. We observed that similar property is valid also for the gyraton on Melvin
spacetime and it is valid also for its generalization withΛ, however, in this case the invariants
are generally non-constant, namely, they depend on the coordinate ρ. This property is a
consequence of general theorem holding for the relevant subclass of Kundt solution, see
Theorem II.7 in Coley et al. (2010). For more details, see Kadlecová (2013).

6 CONCLUSION

Our work generalizes the studies of the gyraton on the Melvin universe Kadlecová and Krtouš
(2010). Namely we have generalized the transversal background metric for the pure Melvin
universe where instead of the coordinate ρ we have assumed general function S dependent
only on the coordinate ρ. This change enabled us to find new solutions with possible non-
zero cosmological constant. This is not allowed for the pure Melvin background spacetime.
We were able to derive relation between metric functions Σ and S from the source free
Einstein–Maxwell equations. The derivative of the function Σ,ρ is then polynomial in the
function Σ itself and contains four parameters. We have showed that these parameters can
be expressed using constants Λ, %EM and γ .

The Einstein–Maxwell equations reduce again to the set of linear equations on the 2-di-
mensional transverse spacetime which has non-trivial geometry given by the generalized
Melvin spacetime (2). Fortunately, these equations do decouple and they can be solved least
in principle for any distribution of the matter sources.

In detail, we have studied the transversal geometries of generalized Melvin spacetime (2).
We have discussed the various possible values of constantsΛ, %EM and γ . It occurs that for
Λ > 0 the transversal geometry represents only one type of space, the caseΛ = 0 includes
three different spaces, one of them corresponds to the Melvin spacetime as a special case.
The case Λ < 0 also describes three types of spaces. We have visualized them in several
figures in Section 4 and summarized them in the Table 1. Thanks to this discussion we
were able to interpret the parameter γ as the parameter which makes the electromagnetic
field of the direct product spacetimes stronger.

We have investigated the polynomial scalar invariants. In this generalized case, the
invariants are again not constant and they are functions of the metric function Σ and the
full gyratonic metric has the same invariants as the background metric.
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