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ABSTRACT
This is the second lecture of ‘RAGtime’ series on electrodynamical effects near
black holes. We will summarize the basic equations of relativistic electrodynamics
in terms of spin-coefficient (Newman–Penrose) formalism.

The aim of the lecture is to present important relations that hold for exact electro-
vacuum solutions and to exhibit, in a pedagogical manner, some illustrative solutions
and useful approximation approaches. First, we concentrate on weak electromagnetic
fields and we illustrate their structure by constructing the magnetic and electric lines
of force. Gravitational field of the black hole assumes axial symmetry, whereas the
electromagnetic field may or may not share the same symmetry. With these solutions
we can investigate the frame-dragging effects acting on electromagnetic fields near
a rotating black hole. These fields develop magnetic null points and current sheets.
Their structure suggests that magnetic reconnection takes place near the rotating
black hole horizon. Finally, the last section will be devoted to the transition from
test-field solution to exact solutions of coupled Einstein-Maxwell equations.

New effects emerge within the framework of exact solutions: the expulsion of the
magnetic flux out of the black-hole horizon depends on the intensity of the imposed
magnetic field.
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1 INTRODUCTION

Electromagnetic fields play an important role in astrophysics. Near rotating compact bodies,
such as neutron stars and black holes, the field lines are deformed by an interplay of rapidly
moving plasma and strong gravitational fields. Here we will illustrate purely gravitational
effects by exploring simplified vacuum solutions in which the influence of plasma is ignored
but the presence of strong gravity is taken into account.

In the first lecture of this workshop series (Karas, 2005, Paper I) we summarized the
basic equations of relativistic magnetohydrodynamics (MHD). In that paper we employed
standard tensorial notation and we focused our attention on situations when the plasma
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motion is governed by MHD and gravitational effects are competing with each other in
the vicinity of a black hole. We limited our discussion to axially symmetric and stationary
flows. The latter assumption will be still maintained in the present talk. In fact, we will
restrict ourselves to purely electro-vacuum solution, however, we will discuss them in greater
depth and, more importantly, we will employ the elegant formalism of null tetrads. We do not
derive new solutions or technique in these lectures, instead, we summarise useful relations
in the form of brief notes paying special attention to effects of strong gravity.

One new point is mentioned in conclusion: with exact solutions of Einstein–Maxwell
electrovacuum fields, an aligned magnetic flux becomes expelled from a rotating black hole
as an interplay between the shape of magnetic lines of force (which become pushed out of
the horizon) and the concentration of the magnetic flux tube toward the rotation axis (which
becomes more concentrated for strong magnetic fields because of their own gravitational
effect). This is, however, important only for very strong magnetic fields only, where ‘very
strong’ means that the magnetic field contributes to the space-time metric.

2 DEFINITIONS, NOTATION, AND BASIC RELATIONS

Field equations

We start with Einstein’s equations which, in the notation of Paper I, take a familiar form of
a set of coupled partial differential equations (e.g. Chandrasekhar, 1983),

Rµν −
1
2

Rgµν = 8πTµν , (1)

where the right-hand side source terms Tµν are of purely electromagnetic origin,

T αβ ≡ T αβEMG =
1

4π

(
FαµFβµ −

1
4

FµνFµνgαβ
)
, (2)

Tµν ;ν = −Fµα jα , Fµν ;ν = 4π jµ , ?Fµν ;ν = 4πMµ . (3)

where ?Fµν ≡ εµνρσ Fρσ /2. We assume that the electromagnetic test-fields reside in a
curved background of a rotating black hole. Such solutions can be found by solving for the
electromagnetic field in a fixed background geometry of Kerr metric (Thorne et al., 1986;
Gal’Tsov, 1986). Here we study classical solutions for (magnetised) Kerr–Newman black
holes that possess a horizon. Higher-dimensional black holes and black rings in external
magnetic fields were explored by, e.g. Ortaggio (2005); Yazadjiev (2006), and references
cited therein, whereas an extension to the case of naked singularity has been discussed
recently by Adámek and Stuchlík (2013).

Killing vectors generate a test-field solution

The presence of Killing vectors corresponds to the symmetry of the spacetime (Chan-
drasekhar, 1983; Wald, 1984), such as stationarity and axial symmetry.

Killing vectors satisfy the well-known equation,

ξµ;ν + ξν;µ = 0 , (4)
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where coordinate system is selected in such a way that the following condition is satisfied:
ξµ = δ

µ
ρ . One can check that Killing vectors obey a sequence of relations:

0 = ξµ;ν + ξν;µ = ξµ,ν − Γ λµνξλ + ξν,µ − Γ
λ
µνξλ = gµν,ρ . (5)

The last equality (5) states that because of symmetry the metric tensor does not depend xρ

coordinate.
The electromagnetic field may or may not conform to the same symmetries as the

gravitational field. Naturally, the problem is greatly simplified by assuming axial symmetry
and stationarity for both fields. In a vacuum spacetime, Killing vectors generate a test-field
solution of Maxwell equations. We define the electromagnetic field by associating it with
the Killing vector field,

Fµν = 2ξµ;ν . (6)

Then

Fµν = 2ξµ;ν = −2ξν;µ = −Fνµ , (7)
Fµν = ξµ;ν − ξν;µ ≡ ξ[µ;ν] . (8)

By employing the Killing equation and the definition of Riemann tensor, i.e. the relations
ξµ;ν;σ − ξµ;σ ;ν = −Rλµνσ ξλ, and Rλ[µνσ ]cycl = 0, we find:

ξµ;ν;σ = Rλσµνξλ , ξµ;ν ;ν = Rµλξλ . (9)

The right-hand side vanishes in vacuum, hence

Fµν ;ν = 0 . (10)

It follows that the well-known field invariants are given by relations

E.B =
1
4
?FµνFµν , B2

− E2
=

1
2

FµνFµν . (11)

Magnetic and electric charges

We start from the axial and temporal Killing vectors, existence of which is guaranteed in
any axially symmetric and stationary spacetime,

ξµ =
∂

∂t
, ξ̃µ =

∂

∂φ
. (12)

In the language of differential forms (e.g. Wald, 1984),

1
2 Fµν dxµ ∧ dxν︸ ︷︷ ︸

F

= ξµ,ν dxµ ∧ dxν︸ ︷︷ ︸
dξ

. (13)
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The above-given equations allow us to introduce the magnetic and electric charges in the
form of integral relations,

Magnetic charge: 4πM =

∫
S

F =
∫

S
dξ = 0 . (14)

Electric charge: 4πQ =
∫

S

?F =
∫

S

?dξ = −8πM , (15)

=

∫
S

?dξ̃ = 16π J , (16)

where M has a meaning of mass and J is angular momentum of the source. Here, integration
is supposed to be carried out far from the source, i.e. in spatial infinity of Kerr metric in our
case. For example for the electric charge we obtain

4πQ =
∫

S

?F =
∫

S

?Fµν dσµν =
∫

V
2Fτα;α dV , (17)

where dσµν = d1xµ ∧ d2xν = dθ dφ.

Wald’s field

In an asymptotically flat spacetime, ∂φ generates uniform magnetic field, whereas the field
vanishes asymptotically for ∂t . These two solutions are known as the Wald’s field (Wald,
1974; King et al., 1975; Bičák and Dvořák, 1980; Nathanail and Contopoulos, 2014):

F =
1
2

B0

(
dξ̃ +

2J
M

dξ
)
. (18)

Magnetic flux surfaces:

4πΦM =

∫
S

F = const . (19)

Magnetic and electric Lorentz force are then given by equations

m u̇ = qm
?F.u , m u̇ = qe F.u . (20)

Finally, magnetic field lines (in the axisymmetric case):

dr
dθ
=

Br

Bθ
, (21)

Magnetic field lines lie in surfaces of constant magnetic flux (see below).

3 SPIN-COEFFICIENT FORMALISM OF NULL TETRADS FOR
ELECTROMAGNETIC FIELDS

The spin-coefficient formalism (Newman and Penrose, 1962) is a special case of the tetrad
formalism where tensors are projected onto a complete vector basis at each point in space-
time. The vector basis is chosen as a complex null tetrad, lµ, nµ, mµ, m̄µ, satisfying
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conditions

lνnν = 1 , mνm̄ν
= −1 , (22)

and zero all other combinations. A natural correspondence with an orthonormal tetrad
reads

e(0) =
l + n
√

2
, e(1) =

l − n
√

2
, e(2) =

m + m̄
√

2
, e(3) =

m − m̄

=
√

2
. (23)

Null tetrads are not unambiguous, as the following three transformations maintain the tetrad
properties:

(i) l → l, m → m + al, n→ n + am̄ + ām + aāl ;
(ii) n→ n, m → m + bm, l → l + bm̄ + b̄m + bb̄n ;
(iii) l → ζ l, n→ ζ−1l, m → e=ψm ;

with ζ , ψ ∈ <.
Instead of six real components of Fµν , the framework of the null tetrad formalism

describes the electromagnetic field by three independent complex quantities,

Φ0 = Fµνlµmν , (24)
Φ1 =

1
2 Fµν

(
lµnν + m̄µmν

)
, (25)

Φ2 = Fµνm̄µnν . (26)

It can be checked that the backward transformation has a form

Fµν = Φ1
(
n[µlν] + m[µm̄ν]

)
+Φ2l[µmν] +Φ0m̄[µnν] + c.c. (27)

The Newman–Penrose formalism defines the following differential operators:

D ≡ lµ∂µ , δ ≡ mµ∂µ , δ̄ ≡ m̄µ∂µ , ∆ ≡ nµ∂µ . (28)

Furthermore, one introduces a set of spin coefficients (Ricci rotations symbols),

α = − 1
2

(
nµ;νlµm̄ν

− m̄µ;νmµm̄ν
)
, (29)

β = 1
2

(
lµ;νnµmν

− mµ;νm̄µmν
)
, (30)

γ = − 1
2

(
nµ;νlµnν − m̄µ;νmµmν

)
, (31)

ε = 1
2

(
lµ;νnµlν − mµ;νm̄µlν

)
, (32)

κ = lµ;νmµlν , λ = −nµ;νm̄µm̄ν , (33)
ρ = lµ;νmµm̄ν , µ = −nµ;νm̄µmν , (34)
σ = lµ;νmµmν , ν = −nµ;νm̄µnν , (35)
τ = lµ;νmµnν , π = −nµ;νm̄µlν . (36)

Despite a seemingly large number of variables we will find this notation very useful and
practical later on. However, first it will be useful to give an explicit example.
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Example of the null tetrad for Schwarzschild metric

The metric is written in the form

ds2
=

(
1−

2M
r

)
dt2
−

(
1−

2M
r

)−1

dr2
− r2 dθ2

− r2 sin2 θ dφ2 . (37)

The appropriate null tetrad is then given by

lµ =
(
[1− 2M/r ]−1, 1, 0, 0

)
, (38)

nµ =
(

1
2 ,

1
2 [1− 2M/r ], 0, 0

)
, (39)

mµ
=

1
√

2 r

(
0, 0, 1,= sin−1 θ

)
. (40)

An arbitrary type-D spacetime (e.g. the Schwarszchild metric) allows to set κ = σ = ν =
λ = 0. In particular, for the Schwarzschild metric the explicit form of non-vanishing spin
coefficients is:

ρ = −
1
r
, µ = −

1
2r

1
1− 2M/r

, α = −β = −
√

2 r cot
θ

2
, γ =

M
2r2 . (41)

Maxwell’s equations

Maxwell’s equations adopt the form

(D − 2ρ + 2ε)Φ1 − (δ̄ + π − 2α)Φ0 = 2π Jl , (42)
(δ − 2τ)Φ1 − (∆+ µ− 2γ )Φ0 = 2π Jm , (43)
(D − ρ + 2ε)Φ2 − (δ̄ + 2π)Φ1 = 2π Jm̄ , (44)
(δ − τ + 2β)Φ2 − (∆+ 2µ)Φ1 = 2π Jn (45)

with

Jl = lµ
(

jµ + =Mµ
)
, Jm = mµ

(
jµ + =Mµ

)
, (46)

Jm̄ = m̄µ

(
jµ + =Mµ

)
, Jn = nµ

(
jµ + =Mµ

)
. (47)

These are four equations for three complex variables.

Teukolsky’s equations

Teukolsky (1973) derived the following form of Maxwell equations:[(
Dε + ε̄ − 2ρ − ρ̄

)(
∆+ µ− 2γ

)
−
(
δ − β − ᾱ − 2τ + π̄

)(
δ̄ + π − 2α

)]
Φ0 = 2π J0 ,[(

D + ε + ε̄ − ρ − ρ̄
)(
∆+ 2µ

)
−
(
δ + β − ᾱ − τ + π̄

)(
δ̄ + 2π

)]
Φ1 = 2π J1 ,[(

∆+ γ − γ̄ + 2µ+ µ̄
)(

D−ρ+ 2ε
)
−
(
δ̄+α+ β̄− τ̄ + 2π

)(
δ− τ + 2β

)]
Φ2 = 2π J2

(48)
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with

J0 =
(
δ − β − ᾱ − 2τ + π̄

)
Jl −

(
D − ε + ε̄ − 2ρ − ρ̄

)
Jm , (49)

J1 =
(
δ + β − ᾱ − τ + π̄

)
Jm̄ −

(
D + ε + ε̄ − ρ − ρ̄

)
Jn , (50)

J2 =
(
∆+ γ − γ̄ + 2µ+ µ̄

)
Jm̄ −

(
δ̄ + α + β̄ + 2π − τ̄

)
Jn . (51)

Clearly this is an extremely useful form: noticed that the above-given differential equations
are entirely decoupled.

Example – Maxwell’s equations in Schwarzschild metric

[
∂

∂r
+

2
r

]
Φ1 +

1
√

2r
?∂̄Φ0 = 2π Jl , (52)

−
1
√

2r
?∂Φ1 +

1
2

[(
1−

2M
r

)
∂

∂r
+

1
r

]
Φ0 = 2π Jm , (53)[

∂

∂r
+

1
r

]
Φ2 +

1
√

2r
?∂̄Φ1 = 2π Jm̄ , (54)

−
1
√

2r
?∂Φ2 +

1
2

(
1−

2M
r

)[
∂

∂r
+

2
r

]
Φ1 = 2π Jn , (55)

where the “edth” operator acts on a spin weight s quantity η is the following manner:

?∂η = −

{
sins θ

[
∂

∂θ
+
=

sin θ
∂

∂φ

]
sin−s θ

}
η . (56)

Spin weight is defined by by the transformation property η→ e=sψη under the transforma-
tion m → e=ψm. Φ0, Φ1, Φ2 have spin weights s = 1, 0, −1, respectively.

Spin harmonics

Spin harmonics form a complete set of orthonormal functions

sYlm(θ, φ) =


√
(l−s)!
(l+s)!

?∂sYlm(θ, φ) for 0 ≤ s ≤ l ,

(−1)s
√
(l+s)!
(l−s)!

?∂−sYlm(θ, φ) for − l ≤ s ≤ 0
(57)

with the orthogonality relation∫ 2π

0

∫ π

0
sYlm(θ, φ) sYl ′m′(θ, φ) sin θ dθ dφ = δll ′δmm′ . (58)

A general stationary vacuum electromagnetic test field can be expanded in terms of spin-s
spherical harmonics.
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3.1 Test fields in Schwarzschild spacetime

Bičák and Dvořák (1980) use the following expansion:

Φ0 =

∞∑
l=1

l∑
m=−l

0 Rlm(r) 1Ylm(θ, φ) , (59)

Φ1 =

∞∑
l=0

l∑
m=−l

1 Rlm(r) 0Ylm(θ, φ) , (60)

Φ2 =

∞∑
l=1

l∑
m=−l

2 Rlm(r)−1Ylm(θ, φ) . (61)

Then the equations for radial functions take a form

r(r − 2M) 0 R′′lm + 4(r − M) 0 R′lm − (l − 1)(l + 2) 0 Rlm = −4π 0 Jlm , (62)
r(r − 2M) 1 R′′lm + 2(2r − 3M) 1 R′lm − (l − 1)(l + 2) 1 Rlm = −4π 1 Jlm , (63)

r(r − 2M) 2 R′′lm + 4(r − 2M) 2 R′lm −
[
(l − 1)(l + 2)+ 4M/r

] 2 Rlm = −4π 2 Jlm , (64)

where

0 Jlm(r) =
∫

J0(r, θ, φ) 1Ȳlm(θ, φ) r2 dΩ , (65)

1 Jlm(r) =
∫

J1(r, θ, φ) 0Ȳlm(θ, φ) r2 dΩ , (66)

2 Jlm(r) =
∫

J2(r, θ, φ)−1Ȳlm(θ, φ) r2 dΩ . (67)

A vacuum field solution is given by a Fuchsian-type equation (Bičák and Dvořák, 1980)

x(x − 1)
d2 1 Rlm

dx2 + (4x − 3)
d 1 Rlm

dx
− (l − 1)(l + 2) 1 Rlm = 0 , (68)

with x ≡r/(2M).
Two independent solutions can be found:

1 R(I )l = F(1− l, l + 2, 3; x),
1 R(I I )

l = (−x)−l−2 F
(
l, l + 2, 2l + 2; x−1)

}
for l 6= 0, (69)

1 R(I )0 =
1
x2 ln(x − 1)+ 1

x
1 R(I I )

0 =
1
x2

}
for l = 0. (70)

A general solution reads 1 Rlm = alm
1 R(I )l + blm

1 R(I I )
l , alm, blm = const. Inserting the

solution for 1 Rlm in Maxwell equations Bičák and Dvořák (1980) find

0 Rlm = alm
0 R(I )l + blm

0 R(I I )
l =

√
2

l(l + 1)
1
r

d
dr

(
r2 1 Rlm

)
, (71)

2 Rlm = alm
2 R(I )l + blm

2 R(I I )
l , (72)



Electro-vacuum fields around black holes 83

(a) (b)

Figure 1. An axisymmetric case: (a) a = 0 (static black hole), and (b) a = M (maximally rotating
black hole).

(a) (b)

Figure 2. The case of (a) uniform aligned magnetic field near a fast rotating black hole (a = 0.95 M);
(b) near the maximally rotating hole (a = M).

where

0 R(I )l =
2
√

2
√

l(l + 1)
F(1− l, l + 2, 2; x) , (73)

0 R(I I )
l = −

√
2l

l + 1
(−x)−l−2 F

(
l + 1, l + 2, 2l + 2; x−1) , (74)

2 R(I )l = −

√
2

l(l + 1)
x−1 F(−l, l + 1, 2; x) , (75)

2 R(I I )
l = −

√
l

2(l + 1)
(−x)−l−2 F

(
l + 1, l, 2l + 2; x−1) . (76)
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(a) (b)

Figure 3. Equatorial plane is shown as viewed from top, i.e. along rotation axis, (a) in the frame
of zero angular momentum observers orbiting at constant radius; (b) in the frame of freely falling
observers. In the panel (b), two regions of ingoing/outgoing lines are distinguished by different levels
of shading of the horizon. The hole rotates counter-clockwise (a = M). Based on Karas (1989);
Dovčiak et al. (2000).

We can select a physically appropriate solution by assuming a source between r1 and r2
(r+ ≤ r1 ≤ r2 ≤ ∞). By seeking a well-behaved solution on horizon that vanishes at
infinity, we find

Φ0 =
∑

l,m al,m
0 R(I )l 1Ylm

Φ1 =
∑

l,m al,m
1 R(I )l 0Ylm +

Ea
r2 0Y00

Φ2 =
∑

l,m al,m
2 R(I )l −1Ylm

 for 2M ≤ r < r1 , (77)

Φ0 =
∑

l,m bl,m
0 R(I I )

l 1Ylm

Φ1 =
∑

l,m bl,m
1 R(I I )

l 0Ylm +
Eb
r2 0Y00

Φ2 =
∑

l,m bl,m
2 R(I I )

l −1Ylm

 for r > r2 . (78)

Two examples

First, a spherically symmetric electric field. A unique solution that is well-behaving both at
r = r+ and at r →∞: 1 R(I I )

0 . This term describes a weakly charged Reissner–Nordström
black hole.

Second, an asymptotically uniform magnetic field:

Fµν → B0ez + B1ex , (79)
i.e. Frθ →−B1 r sinφ , (80)

Frφ → B0 r sin2 θ − B1 r sin θ cos θ cosφ , (81)
Fθφ → B0 r2 sin θ cos θ + B1 r2 sin2 θ cosφ . (82)
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3.2 Magnetic and electric lines of force near a rotating black hole

Lorentz force acts on electric/magnetic monopoles residing at rest with respect to a locally
non-rotating frame,

duµ

dτ
∝

?Fµν uν ,
duµ

dτ
∝ Fµν uν . (83)

Magnetic lines are defined (Christodoulou and Ruffini, 1973):

dr
dθ
= −

Fθφ
Frφ

,
dr
dφ
=

Fθφ
Frθ

. (84)

In an axially symmetric case the magnetic flux is:

Φm = πB0

[
r2
− 2Mr + a2

+
2Mr

r2 + a2 cos2θ

(
r2
− a2)] sin2θ = const . (85)

Notice: Φm = 0 for r = r+ and a = M . The flux is expelled out of the horizon (Meissner
effect; Bičák and Ledvinka (2000); Penna (2014)).

The electric fluxes and field lines can be introduced in a similar manner, one only
needs to interchange the electromagnetic field tensor by its dual, the magnetic charge by
the electric charge, and vice versa wherever they appear in the above-given formulae.
It should be evident that the induced electric field vanishes in the non-rotating case. Based
on the classical analogy with a rotating sphere, one would perhaps expect a quadrupole-
type component, but here the leading term of the electric field arises due to gravomagnetic
interaction which is a purely general-relativistic effect, and this electric field falls off radially
as r−2.

Magnetic field lines reside in surfaces of constant magnetic flux, and this way the lines
of force are defined in an invariant way (see Fig. 1). Electric field is induced by the
gravito-magnetic influence of the black hole. The resulting field lines are shown in Fig. 2.
An asymptotic form of the electric field-lines reads

dr
dλ
=

B0aM
r2

(
3 cos2 θ − 1

)
+

3B⊥aM
r2 sin θ cos θ cosφ +O

(
r−3

)
, (86)

dθ
dλ
= O

(
B⊥r−3

)
,

dφ
dλ
= O

(
B⊥r−3

)
. (87)

As mentioned above, an aligned magnetic field produces an asymptotically radial electric
field, rather than a quadrupole field, expected under these circumstances in the classical
electrodynamics. This difference is due to rotation of the black hole.

Figure 3 shows the structure of a uniform magnetic field perpendicular to the black hole
rotation axis (Bičák and Karas, 1989; Karas and Kopáček, 2009; Karas et al., 2012, 2013,
2014). We notice the enormous effect of frame-dragging which acts on field lines and
distorts them in the sense of black hole rotation. Nevertheless, some field lines still enter
the horizon and bring the magnetic flux into the black hole (naturally, the same magnetic
flux has to emerge out of the horizon, so that the total flux through the black hole vanishes
and its magnetic charge is equal zero).
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Figure 4. Cross-sectional area for the capture of magnetic flux by a rotating black hole. The three
curves correspond to different values of the black-hole angular momentum: a = 0 (cross-section is the
circle; its projection coincides with the black-hole horizon, indicated by yellow colour), a = 0.95 M ,
and a = M . The enclosed area contains the field lines of the asymptotically perpendicular magnetic
field which eventually enter into the black hole horizon. From the graph we notice that this area grows
with the black hole spin and its shape is distorted by the gravitomagnetic interaction.

We notice that magnetic null points emerge near the black hole, suggesting that magnetic
reconnection can be initiated by the purely gravitomagnetic effect of the rotating black
hole. Indeed, this new reconnection mechanism has been only recently proposed (Karas
and Kopáček, 2009) in the context of particle acceleration processes near magnetized black
holes. The capture of magnetic field lines is further illustrated in Fig. 4 where we plot the
black hole effective cross sectional area.

Surface charge on the horizon

Surface charge is formally defined by the radial component of electric field in non-singular
coordinates (Thorne et al., 1986),

σH =
B0a

4πΣ+

[
r+ sin2 θ −

M
Σ+

(
r2
+ − a2 cos2 θ

) (
1+ cos2 θ

)]
+

B⊥a
4πΣ+

sin θ cos θ
[

Mr+
Σ+
+ 1

] [
a sinψ − r+ cosψ

]
, (88)

with

ψ = φ +
a

r+ − r−
ln

r − r+
r − r−

∝ ln(r − r+) . (89)

For a �M ,

σH =
a

16πM

[
B0
(
1− 3 cos2 θ

)
+ 3B⊥ sin θ cos θ cosψ

]
. (90)

It should be obvious that σH does not represent any kind of a real charge distribution. Instead,
it is introduced only by pure analogy with junction conditions for Maxwell’s equations in
classical electrodynamics. The classical problem was treated in original works by Faraday,
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Lamb, Thomson and Hertz, and more recently in Bullard (1949); Elsasser (1950). It is
quite enlightening to pursue this similarity to greater depth (see e.g. Karas and Budinová,
2000 and references cited therein) despite the fact that this is purely a formal analogy, as
pointed out by Punsly (2008).

4 ON THE WAY FROM TEST FIELDS TO EXACT SOLUTIONS OF
EINSTEIN–MAXWELL EQUATIONS

So far we discussed test-field solutions of Einstein equations which reside in a prescribed
(curved) spacetime. In the rest of this lecture we will briefly outline a way to construct
exact solutions of mutually couple (vacuum) Einstein–Maxwell equations. Because this
task is very complicated, astrophysically realistic results can be only obtained by numerical
approaches. However, important insight can be gained by simplified analytic solutions. We
will thus explore the latter approach.

The spacetime metric

Let us first assume a static spacetime metric in the form

ds2
= f −1

[
e2γ ( dz2

+ dρ2)
+ ρ2 dφ2

]
− f ( dt − ω dφ)2 , (91)

with f , ω, and γ being functions of z and ρ only. We consider coupled Einstein–Maxwell
equations under the following constraints: (i) electrovacuum case containing a black hole,
(ii) axial symmetry and stationarity, (iii) not necessarily asymptotically flat (see Kramer
et al. (1980); Alekseev and Garcia (1996); Ernst and Wild (1976); Karas and Vokrouhlický
(1991), and references cited therein).

As explained in various textbooks and, namely, in the above-mentioned works, one can
proceed in the following way to find the three unknown metric functions:

• Standard approach: gµν → Γ
µ
νλ→ Rαβγ δ → Gµν .

• Exterior calculus: eµ(λ)→ ωµνΩµν → Rα̂
β̂γ̂ δ̂
→ Gµ̂ν̂ .

• Variation principle: L = − 1
2ρ f −2∇ f ·∇ f + 1

2ρ
−1 f 2∇ω·∇ω .

We denoted nabla operator, ∇ ·
(
ρ−1eφ×∇ϕ

)
= 0 ∀ϕ ≡ ϕ(ρ, z). Now, the vacuum field

equations (without electromagnetic field) can be written in the form:

f∇2 f = ∇ f ·∇ f − ρ−2 f 4
∇ω ·∇ω , ∇ ·

(
ρ−2 f 2

∇ω
)
= 0 . (92)

Let us define functions ϕ(ρ, z), ω(ρ, z) by the prescription

ρ−1 f 2
∇ω = eφ×∇ϕ ,

f −2
∇ϕ = −ρ−1eφ×∇ω .
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By applying∇· operator on the both sides of the last equation, the relation for ϕ comes out,
∇ ·

(
f −2∇ϕ

)
= 0 . Let us further define E ≡ f + =ϕ. Then, both field equations can be

written in the form(
<E

)
∇

2E = ∇E ·∇E . (93)

Now we can proceed to adding the electromagnetic field:

L′ = L+ 2ρ f −1 A0
(
∇A

)2
− 2ρ−1 f

(
∇A3 − ω∇A0

)2
. (94)

Functions f , ω, A0, and A3 are constrained by the variational principle. Define Φ ≡
Φ(A0, A3), E ≡ f − |Φ|2 + =ϕ:(
<E + |Φ|2

)
∇

2E =
(
∇E + 2Φ̄∇Φ

)
·∇E , (95)(

<E + |Φ|2
)
∇

2Φ =
(
∇E + 2Φ̄∇Φ

)
·∇Φ . (96)

Let us assume E ≡ E(Φ) to be an analytic function which satisfies

(
<E +Φ2

) d2E

dΦ2∇Φ ·∇Φ = 0 . (97)

Assume further a linear relation,

E = 1− 2
Φ

q
, q ∈C (98)

and a new variable ξ ,

E ≡
ξ − 1
ξ + 1

, Φ =
q

ξ + 1
, (99)[

ξ ξ̄ −
(
1− qq̄

)]
∇

2ξ = 2ξ̄∇ξ ·∇ξ . (100)

Generating “new” solutions

We introduce new variables by relations

ξ0 → ξ = (1− qq̄)ξ0 , (101)[
ξ0ξ̄0 − 1

]
∇

2ξ0 = 2ξ̄0∇ξ0 ·∇ξ0 , (102)

i.e.

(<E0)∇
2E0 = ∇E0 ·∇E0 , E0 ≡

ξ0 − 1
ξ0 + 1

. (103)

where E0 has a meaning of an “old” vacuum solution.
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Theorem. Let (Φ, E , γαβ) be a solution of Einstein–Maxwell electrovaccum equations
with anisotropic Killing vector field. Then there is another solution (Φ ′, E ′, γ ′αβ), related
to the old one by transformation

E ′ = αᾱE , Φ ′ = αΦ , . . . dual rotation, ?Fµν →
√
α/ᾱ ?Fµν ,

E ′ = E + =b , Φ ′ = Φ , . . . calibration, no change in Fµν ,

E ′ = E − 2β̄Φ − ββ̄ , Φ ′ = Φ + β , . . . calibration . . . ,
E ′ = E(1+ =cE)−1 , Φ ′ = (1+ =cE)−1 ,

E ′ = E(1− 2γ̄ Φ − γ γ̄E)︸ ︷︷ ︸
Λ=1−B0Φ−

1
4 B2

0 E

−1 , Φ ′ = (Φ + γE)(1− 2γ̄ Φ − γ γ̄E)−1 .

E → E ′ = Λ−1E , f → f ′ = |Λ|−2 f , ω→ ω′ = ? , (104)
Φ → Φ ′ = Λ−1(Φ − 1

2 B0E
)
, ∇ω′ = |Λ|2∇ω + ρ f −1(Λ̄∇Λ−Λ∇Λ̄) . (105)

Examples

Example 1. Minkowski spacetime→ Melvin universe.

ds2
=

[
dz2
+ dρ2

− dt2
]
+ ρ2 dφ2 . (106)

f = −ρ2 , ω = 0 , Φ = 0 , E = −ρ2 , ϕ(ω) = 0 ,
f ′ = −Λ−2ρ2 , ω′ = 0 , Φ ′ = 1

2Λ
−1 B0ρ

2 ,

Bz = Λ
−2 B0 , Bρ = Bφ = 0 ,

(107)

ds2
= Λ2

[
dz2
+ dρ2

− dt2
]
+Λ−2ρ2 dφ2 . (108)

Gravity of the magnetic field in balance with the Maxwell pressure. Cylindrical symmetry
along z-axis.

Example 2. Schwarzschild BH→ Schwarzschild–Melvin black hole.

ds2
=

[(
1−

2M
r

)−1

dr2
−

(
1−

2M
r

)
dt2
+ r2 dθ2

]
+ r2 sin2 θ dφ2 , (109)

f = −r2 sin2 θ , ω = 0 , ρ =
√

r2 − 2Mr sin θ ,
Br = Λ

−2 B0 cos θ , Bθ = −Λ−2 B0(1− 2M/r) sin θ ,
(110)

ds2
= Λ2

[
. . .
]
+Λ−2r2 sin2 θ dφ2 . (111)

There the following limits of the magnetized Schwarzschild–Melvin black hole: (i) B0 = 0
. . . Schwarzschild solution, (ii) r/M →∞ . . . Melvin solution, (iii) |B0 M | �1 . . . Wald’s
test field in the region 2M � r � B−1

0 .
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Figure 5. Contours of magnetic flux across a cap on the horizon (latitude angle θ is measured from
the rotation axis) of a magnetized black hole: (a) a = e = 0; (b) a = 1, e = 0; (c) a = 0.2, e = 0;
(d) a = −e = 1/

√
2 (electric charge and spin of the black hole). Here, γ ≡ (1+ β)−1, β ≡ B0 M .

This figure from Karas and Budinová (2000) illustrates strong-gravity effects on magnetic fields that
do not occur in weak-magnetic (test) field approximation, namely, the expulsion of the magnetic flux
as a function of the intensity of the imposed magnetic field.

Example 3. Magnetized Kerr-Newman BH.

g = |Λ|2Σ
(
∆−1 dr2

+ dθ2
−∆A−1 dt2

)
+ |Λ|−2Σ−1 A sin2 θ

(
dφ − ω dt

)2
, (112)

Σ = r2
+ a2 cos2 θ ,∆ = r2

− 2Mr + a2
+ e2, A = (r2

+ a2)2−∆a2 sin2 θ are functions
from the Kerr–Newman metric.
Λ = 1 + βΦ − β2E/4 is given in terms of the Ernst complex potentials Φ(r, θ) and

E(r, θ):

ΣΦ = ear sin2 θ − =e
(
r2
+ a2) cos θ ,

ΣE = −A sin2 θ − e2(a2
+ r2 cos2 θ

)
+ 2=a

[
Σ
(
3− cos2 θ

)
+ a2 sin4 θ − re2 sin2 θ

]
cos θ .

The electromagnetic field can be written in terms of orthonormal LNRF components,

H(r) + iE(r) = A−1/2 sin−1θ Φ ′,θ ,

H(θ) + iE(θ) = − (∆/A)1/2 sin−1θ Φ ′,r ,

where Φ ′(r, θ) = Λ−1 (Φ − βE/2).
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The horizon is positioned at r ≡r+ = 1+
√
(1− a2 − e2), independent of β. As in the

non-magnetized case, the horizon exists only for a2
+ e2
≤1.

There is an issue with this solution, namely, the range of angular coordinates versus the
problem of conical singularity: 0 ≤ θ ≤ π , 0 ≤ φ < 2π |Λ0|

2, where

|Λ0|
2
≡ |Λ(sin θ = 0)|2 = 1+

3
2
β2e2
+ 2β3ae + β4

(
1
16

e4
+ a2

)
. (113)

The total electric charge QH and the magnetic flux Φm(θ) across a cap in axisymmetric
position on the horizon (with the edge defined by θ = const):

QH = −|Λ0|
2
=mΦ ′ (r+, 0) ,

Φm = 2π |Λ0|
2
<eΦ ′

(
r+, θ̄

)∣∣∣θ
θ̄=0 .

The magnetic flux across the black hole hemisphere in the exact magnetized black hole
solution is shown in Fig. 5.
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