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ABSTRACT
We study transition from regular to chaotic motion in the neighbourhood of sta-
ble equilibrium point of a relativistic current-carrying string-loop located around
Schwarzschild black hole. We demonstrate successive transfer from the purely reg-
ular, periodic motion through quasi-periodic motion to purely chaotic motion of the
string loop, with increasing of its energy. We also calculated quasi-periodic funda-
mental frequencies, which are important for survival of corresponding KAM tori.
Using maximal Lyapunov exponent we show how the chaoticity of the string loop
motion changes with increase of the string loop energy.

Keywords: chaos and regularity – string loop – Schwarzschild – black holes –
Lyapunov exponent

1 INTRODUCTION

Relativistic current-carrying strings moving axisymmetrically along the axis of a Kerr black
hole have been studied in (Jacobson and Sotiriou, 2009) where it has been proposed that such
a string loop configuration can be used as a model of jet formation and acceleration in the
field of black holes in microquasars or active galactic nuclei. Tension of such string loops
prevents their expansion beyond some radius, while their worldsheet current introduces an
angular momentum barrier preventing them from collapsing into the black hole. It has
bee shown that string loop model could in a simplified way represent plasma that exhibits
associated string-like behaviour via dynamics of the magnetic field lines in the plasma
(Christensson and Hindmarsh, 1999; Semenov et al., 2004) or due to thin isolated flux
tubes of magnetized plasma that could be described by an one-dimensional string (Spruit,
1981; Semenov and Bernikov, 1991; Cremaschini and Stuchlík, 2013).

The astrophysical applications of the current carrying string loops have been focused on
the problem of acceleration of string loops due to the transmutation process (Jacobson and
Sotiriou, 2009), the role of the cosmic repulsion in the string loop motion has been investi-
gated for the Schwarzschild–de Sitter (SdS) spacetime in (Kološ and Stuchlík, 2010a). Since
the string loops can be accelerated to ultra-relativistic velocities in the deep gravitational
potential well of compact objects (Stuchlík and Kološ, 2009; Kološ and Stuchlík, 2010b;
Stuchlík and Kološ, 2012a,b), the string loop transmutation can be well considered as a
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process of formation of ultra-relativistic jets, along with the standard model based on the
Blandford–Znajek process (Blandford and Znajek, 1977). Here we concentrate out attention
on the inverse situation of small oscillations of string loops in vicinity of stable equilibrium
points in the equatorial plane of black holes that was proposed as a possible model of HF
QPOs observed in black hole and neutron star binary systems (Stuchlík and Kološ, 2012b).

2 CURRENT-CARRYING STRING LOOP MOTION

We study a string loop motion in the field of a black hole described by the Schwarzschild
metric

ds2
= −A(r) dt2

+ A−1(r) dr2
+ r2(dθ2

+ sin2 θ dφ2), A(r) = 1−
2M
r
. (1)

We use the geometric units with c = G = 1 and the Schwarzschild coordinates. In order to
properly describe the string loop motion, it is useful to use the Cartesian coordinates

x = r sin(θ), y = r cos(θ) . (2)

The string loop is threaded on to an axis of the black hole chosen to be the y-axis. Due to the
assumed axisymmetry of the string motion one point path can represent whole movement
of the string. Trajectory of the string can be represented by a curve in the 2D x-y plane. The
string loop can oscillate, changing its radius in x-z plane, while propagating in y direction.

The string loop motion is governed by barriers given by the string tension and the
worldsheet current determining the angular momentum – these barriers are modified by the
gravitational field. Dynamics of the string is described by the action

S =
∫

d2σ
√
−h(µ+ habϕ,aϕ,b) , (3)

where ϕ,a = ja determines current of the string and µ > 0 reflects the string tension.
The worldsheet stress-energy tensor density Σ̃ab can be expressed in the form (Jacobson

and Sotiriou, 2009)

Σ̃ττ
=

J 2

gφφ
+ µ , Σ̃σσ

=
J 2

gφφ
− µ , Σ̃στ

=
−2 jτ jσ

gφφ
, J 2

≡ j2
σ + j2

τ . (4)

We shall use for simplicity the dimensionless radial coordinate r/M → r , dimensionless
time coordinate t/M → t , and we make the rescaling Eb/µ→ Eb and J/

√
µ→ J .

As demonstrated in (Larsen, 1993), the string loop motion in spherically symmetric
spacetimes can be described by the Hamiltonian

H =
1
2

grr P2
r +

1
2

gθθ P2
θ +

1
2

gφφ
(
Σττ

)2
+

1
2

gt t E2 . (5)

The motion of string loops is given by the Hamilton equations in the form

dXµ

dζ
=
∂H
∂Pµ

,
dPµ
dζ
= −

∂H
∂Xµ

, (6)

where Xµ is 4-position, Pµ is the 4-momentum and ζ is the affine parameter.
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Due to symmetries of metric (1), conserved quantities occur for the string loop motion,
being the energy E and string the axial angular momentum L , given by

−E = Pt = gt tΣ̃
ττ X t
|τ , L = Pφ = gφφΣ̃στ

= −2 jτ jσ . (7)

The components of the current, jτ , jσ , give the angular momentum of the string loop
(Stuchlík and Kološ, 2012a).

Hamiltonian is constant of the motion, H = 0. The loci where the string loop has zero
velocity (ṙ = 0, θ̇ = 0) form boundary of the string motion

E = Eb(r, θ) =
√
−gt t gφφ Σ̃ττ . (8)

Function Eb(r, θ) is playing the role of effective potential, see discussion in (Stuchlík and
Kološ, 2012a), its shape is determined by current parameter J 2

= j2
τ + j2

σ .
There are four different types of the behaviour of the energy boundary function for the

string loop dynamics in the Schwarzschild BH spacetime represented by the characteristic
E = const sections of the function Eb(r, θ) in dependence on parameter J (Jacobson and
Sotiriou, 2009). We can distinguish them according to two properties: possibility of the
string loop to escape to infinity in the y-direction, and possibility to collapse to the black
hole. A detailed discussion can be found in Kološ and Stuchlík (2010a), here we shortly
summarize the results.

The first case corresponds to no inner and outer boundary – the string loop can be captured
by the black hole or escape to infinity. The second case corresponds to the situation with
an outer boundary – the string loop must be captured by the black hole. The third case
corresponds to the situation when both inner and outer boundary exist – the string loop is
trapped in some region forming a potential “lake” around the black hole. The fourth case
corresponds to an inner boundary – the string loop cannot fall into the black hole but it must
escape to infinity, see Fig. 2. in Stuchlík and Kološ (2009). For our following discussion
only the third case, corresponding to the string loop trapped in toroidal space along black
hole, will be relevant.

3 SMALL OSCILLATIONS AROUND MINIMA OF THE “EFFECTIVE
POTENTIAL”

It is convenient to examine systems which are constructed from regular part, H0, plus some
small non-linear perturbation, Hp,

H = H0 + εHp . (9)

As the non-linear parameter ε increases, it causes a non-linearity in the system. This
“regular+perturbation” separation in not possible in every given Hamiltonian, examples can
be given by string loop model (5), or by charged particles moving in combined magnetic
and gravitational field, (Kopáček et al., 2010).

However the “regular+perturbation” separation (9) of the Hamiltonian can be done in the
neighbourhood of any elliptic point of the Hamiltonian, (Arnold, 1978; Tabor, 1989). The
equilibrium points of the Hamiltonian (5) correspond to the local minima at Xα0 = (r0, θ0)
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Figure 1. Fundamental frequencies Ωr(r) and Ωθ (r), as function of radial coordinate r , for string
loop oscillations in equatorial plane of Schwarzschild BH. Resonant and another important radii, such
as marginally stable rms = 6, marginally bound rmb = 4 orbit for particle motion and marginally
stable sms

.
= 4.3 string loop position, are also given.

of the energy boundary function Eb(r, θ), (Arnold, 1978). It is useful to rewrite the
Hamiltonian in the form

H = HD + HP =
1
2

grr P2
r +

1
2

gθθ P2
θ + HP (r, θ) (10)

where we split H into the “dynamical” HD and the “potential” HP parts. Introducing a
small parameter ε � 1, we can rescale coordinates and momenta by the relations

Xα = Xα0 + ε X̂α , Pα = ε P̂α , (11)

applied for the coordinates α ∈ {r, θ}. We can make polynomial expansion of the Hamil-
tonian into the Taylor series and express it in separated parts according to the power of ε

H
(

P̂α, X̂α
)
= H0 + εH1

(
X̂α
)
+ ε2 H2

(
P̂α, X̂α

)
+ ε3 H3

(
P̂α, X̂α

)
+ · · · , (12)

where Hk is a homogeneous part of the Hamiltonian of degree k considered for the momenta
P̂α and coordinates X̂α . Recall that Pα occurs in the quadratic form in (5) and appears in
Hk only for k ≥ 2. If the string loop is located at a local minimum of the Eb(x, y) function,
we have HD = 0 and hence H0 = 0. The local extrema of the Eb function, given by (6),
imply also H1(X̂α) = 0.

We can divide (12) by the factor ε2 (remember H = 0) expressing the Hamiltonian in
the vicinity of the local minimum in the “regular” plus “perturbation” form

H = H2

(
P̂α, X̂α

)
+ εH3

(
P̂α, X̂α

)
+ . . . (13)

If ε = 0, we arrive to an integrable Hamiltonian

H = H2

(
P̂α, X̂α

)
=

1
2

∑
α

[
gαα

(
P̂α
)2
+ ω̃2

α

(
X̂α
)2
]

(14)
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representing two uncoupled harmonic oscillators. This “perturbation” approach corre-
sponds to the linearisation of the motion Eqs. (6) in the neighbourhood of local minima of
the function Eb(r, θ).

For the string loop motion represented by coordinates r = r0+δr, θ = θ0+δθ we obtain
the periodic harmonic oscillations determined by the equations

δ̈r + ω2
r δr = 0 , δ̈θ + ω2

θ δθ = 0 , (15)

where the locally measured frequencies of the oscillatory motion are given by

ω2
r =

1
grr

∂2 HP

∂r2 , ω2
θ =

1
gθθ

∂2 HP

∂θ2 . (16)

The locally measured angular frequencies

ω(r,θ) =
d f(r,θ)

dζ
(17)

are connected to the angular frequencies related to distant observers,Ω , by the gravitational
redshift transformation

Ω(r,θ) =
d f(r,θ)

dt
=
ω(r,θ)

P t , (18)

where P t
= d t / d ζ = −gt t E . If the angular frequenciesΩ(r,θ), or frequencies ν(r,θ), of

the string loop oscillation are expressed in the physical units, their dimensionless form has
to be extended by the factor c3/G M . Then the frequencies of the string loop oscillations
measured by the distant observers are given by

ν(r,θ) =
1

2π
c3

G M
Ω(r,θ) . (19)

Notice that this is the same factor as the one occurring in the case of the orbital and
epicyclic frequencies of the geodetical motion in the black hole spacetimes, (Török and
Stuchlík, 2005). Therefore, the order of magnitude and scaling of the frequencies of the
radial and vertical oscillations due to the mass of the central object is the same for both
current-carrying string loops and test particles.

In the Schwarzschild spacetime the harmonic oscillations have frequencies (16) relative
to distant observers given by expressions relatively very simple for both string loops and
test particles. Therefore, we can give the frequencies in dimensional form, as an example.
In the case of string loops they read

Ω2
r (r) =

3M2
− 5Mr + r2

r4 , Ω2
θ (r) =

M
r3 , (20)

while for the epicyclic motion of test particles there is

Ω2
r(geo)(r) =

M(r − 6M)
r4 , Ω2

θ(geo)(r) =
M
r3 . (21)
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Figure 2. Poincare surface of section r/pr (θ = π/2) for string loop trajectories in the neighbourhood
of minima of Eb(r, θ) function. Resonant (3:2, 1:1, 2:3, 1:2) and nonresonant (1:ϕ, r0 = 9) radii for
Ωθ (r) : Ωr(r) frequency ratios are depicted. Every picture contains multiple trajectories and every
(regular) trajectory is forming a ring. Trajectories are differing in initial conditions r, Pr, Pθ , but has
the same energy E and parameter J . They are bounded by the Eb function, see thick curve. We see
destruction of the initial tori for 1:1 and 1:2 and formation of new ones on Pr = 0 line. For another
resonances and also for nonresonant radii, the initial tori are preserved. The most resilient tori exist
for golden frequency ratio 1:ϕ.

It is quite interesting that the latitudinal frequency of the string loop oscillations in the
Schwarzschild or other spherically symmetric spacetimes equals to the latitudinal frequency
of the epicyclic geodetical motion as observed by distant observers – for details see (Stuchlík
and Kološ, 2012b).

The radial profiles of the string loop oscillations qualitatively differ from those related to
the radial oscillations of the geodesic, test particle motion in the Schwarzschild geometry,
especially there is a crossing point of the radial and vertical frequencies in the Kerr black
hole spacetimes for the string loop oscillation, while for the test particle oscillations such
a crossing is possible only in the Kerr naked singularity spacetimes, (Török and Stuchlík,
2005; Stuchlík and Schee, 2012).

4 TRANSITION FROM REGULAR TO CHAOTIC MOTION

According to the Kolmogorov–Arnold–Moser (KAM) theory (Arnold, 1978), a string loop
will oscillate in a regular quasi-periodic motion, if the parameter ε remains small. The
trajectory of such regular motion, restricted by energy (8) in its phase space r, θ, Pr, Pθ ,
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(a) E = 19.8
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(c) E = 20.15
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Figure 3. Transition from the regular to the chaotic regime of the string loop motion. The string
loop is starting from the rest near the local minimum located (for the string parameter J = 11) at
r0

.
= 9.64, θ0 = π/2, with successively increasing energy E . For every energy level we plotted

the string loop trajectory, the Poincare surface sections (r, Pr),(θ, Pθ ) and the Fourier spectrum for
both coordinates r and θ (Ott, 1993). The vertical lines in the Fourier spectra are the frequencies
ωr/(2π), ωθ/(2π).
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will lies on so called KAM torus. As the parameter ε grows, the condition ε � 1 becomes
violated, the nonlinear parts in the Hamiltonian become stronger, and the string loop enters
the nonlinear, chaotic regime of its motion.

The Birkhoff theorem, ensuring the existence of a canonical transformation (11) putting
a Hamiltonian system into normal form (13) up to a remainder of a given order, is violated,
if for our two degrees of freedom (2 DOF) (5)

k1 ω1 + k2 ω2 = 0 , k1 + k2 < 4 . (22)

So for resonances 1:1, 1:2, 2:1 we can not construct normal forms, with frequencies ω1, ω2.
It does not mean that at resonant radii the motion in the vicinity of minima will not be
regular, we still have regular motion close to the minima of Eb, but the former KAM tori
are destroyed for 1:1, 1:2, 2:1, see Fig. 2.

Increase of non-linearity and chaoticity of a system moving in vicinity of its local stable
equilibrium point is caused by increase of its energy. We demonstrate successive transfer
from the purely regular, periodic motion through quasi-periodic motion to purely chaotic
motion of a string loop in Fig. 3. The Poincare surface sections in the phase space and the
Fourier transforms of the oscillatory motion in the radial and latitudinal direction clearly
represent the transfer to the chaotic motion. Of course, in the entering phase of the motion
with lowest energy, the string loop motion is fully regular and periodic and is represented
by appropriate Lissajousse figures.

It is convenient to represent the transfer to the chaotic system by an appropriate Lyapunov
coefficient. The chaotic systems are sensitive to initial conditions and we can follow two
string loop trajectories separated at the initial time t0 by a small phase-space distance d0.
As the system evolves, the two orbits will be separated at an exponential rate if the motion
of the string loops is in the chaotic regime. The Lyapunov exponent (Ott, 1993)

λL = lim
d0→0
t→∞

(
1
t

ln
(

d(t)
d0

))
(23)

is describing the two orbits separation and hence the measure of chaos. The transition
from the regular to the chaotic regime of the string loop motion is clearly visible due to the
evolution of the maximal Lyapunov exponent (Ott, 1993) demonstrated in Fig. 4. We clearly
see strongly increasing measure of chaos with increasing energy of the moving string loop
when some critical energy is crossed. This effect is genuine to the dynamical systems and
we observed it also for the string loops in the spherically symmetric braneworld spacetimes,
(Stuchlík and Kološ, 2012b).

5 CONCLUSIONS

System will oscillate in a quasi-periodic motion, if the parameter ε remains small. As
the parameter ε grows, the condition ε � 1 becomes violated, the nonlinear parts in the
Hamiltonian become stronger, and we enter the nonlinear, chaotic regime of its motion.
Increase of non-linearity of a system moving in vicinity of its local stable equilibrium point
(minimum) is caused by increase of its energy. The transition from the regular to the chaotic
regime of the motion is the solution to the “focusing” problem of the string loop trajectories
discussed in (Jacobson and Sotiriou, 2009).
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Figure 4. Evolution of the maximal Lyapunov exponent in dependence of on the string loop energy,
related to Fig. 3. For small energies the motion is regular, for bigger energies the motion is chaotic –
this is manifestation of the KAM theorem. The transition between the regular/chaotic regimes occurs
approximately at E ∼20.15. Letters denote the individual cases in Fig. 3.
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