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ABSTRACT
We present a detailed comparison of several integration schemes applied to the dy-
namic system consisting of a charged particle on the Kerr background endowed with
the axisymmetric electromagnetic test field. In particular, we compare the perfor-
mance of the symplectic integrator with several non-symplectic routines and discuss
under which circumstances we should choose the symplectic one and when we should
switch to some other scheme. We are basically concerned with two crucial, yet op-
posing aspects – accuracy of the integration and CPU time consumption. The latter
is generally less critical in our application while the highest possible accuracy is
strongly demanded.

Keywords: black hole physics – test particle dynamics – magnetic fields – sym-
plectic integrators – deterministic chaos

1 INTRODUCTION

In our recent study of the test particle dynamics (Kopáček et al., 2010; Kovář et al., 2010)
we faced the problem of numerical integration of relativistic dynamic system described
by the non-integrable equations of motion. Such system generally allows for both regular
and chaotic orbits. We first applied several standard ‘all-purpose’ integration routines to
realize that they are unable to provide sufficiently accurate results concerning the long-term
integration. Seeking for the scheme which would better fit our problem and provide more
reliable results we finally employed symplectic integrators which are specifically designed
for the integration of Hamiltonian systems.

In this contribution we compare performance of a symplectic routine with several non-
symplectic integrators. We treat separately the case of regular and chaotic motion because
we may expect different results. Particular system which we employ in the survey consists
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of a charged test particle orbiting above the outer horizon of the Kerr black hole which
is immersed into the asymptotically uniform magnetic field aligned with the rotation axis
(Wald, 1974). Specification of this system along with the detailed study of the charged
particle dynamics is given by Kopáček et al. (2010). Current paper is based on the results
previously published in the Ph.D. thesis of one of the authors (Kopáček, 2011).

We recall that in the given system the particle of rest mass m is characterized by its
specific angular momentum L̃ ≡ L/m, specific energy Ẽ ≡ E/m and specific charge
q̃ ≡ q/m. Black hole of mass M is described by the spin parameter a and specific test
charge Q̃ ≡ Q/M . Background magnetic field is specified by its asymptotic strength
B0. Inspecting the equations of motion we reveal that q̃, Q̃ and B0 are not independent
variables and we only need to specify values of products q̃ Q̃ and q̃ B0 to characterize the
system. We use standard Boyer–Lindquist coordinates xµ = (t, r, θ, ϕ) and denote the
canonical four-momentum asπµ = (πt , πr , πθ , πϕ). Standard kinematical four-momentum
pµ and canonical four-momentum are related as follows pµ = πµ− q Aµ where Aµ stands
for the electromagnetic four-potential. Integration variable is affine parameter λ defined
as λ ≡ τ/m where τ denotes the proper time of the particle. We use geometrized units
G = c = 1 and scale all quantities by the mass of the black hole M .

We are dealing with the integration of the autonomous Hamiltonian system1 whose
equations of motion form a specific subclass of first order ordinary differential equations
(ODEs). Two fundamental characteristics of the Hamiltonian flow should be highlighted

• conservation of the net energy (Hamiltonian) of the system
• conservation of the symplectic 2-form ω = dπµ ∧ dxµ.

Here d stands for the exterior derivative and ∧ denotes the wedge product.
In the classical mechanics the natural choice of the generalized coordinates leads to

the Hamiltonian which may be interpreted as a net energy of the system. This is true
even for the system of a charged particle in the external electromagnetic field where the
generalized momenta-dependent potential is introduced (Goldstein et al., 2002, Chap. 8).
Time-independence of the Hamiltonian is thus equivalent to the conservation of the net
energy of the system. In the general relativistic version of this system, however, we employ
super-hamiltonian formalism (Misner et al., 1973, Chap. 21) in which the energy of the
particle E , as a negatively taken time component of the canonical momentum E ≡ −πt ,
is conserved by virtue of the Hamilton’s equations it selves providing that the super-
hamiltonian doesn’t depend on the coordinate time t . On the other hand the value of the
super-hamiltonian H = pµ pµ/2 is by construction equal to −m2/2 where m is the rest
mass of the particle. Conservation of the super-hamiltonian in the system is thus equivalent
to the conservation of the rest mass of the particle.

1 Equations of motion may be equivalently expressed in terms of Lorentz force (Misner et al., 1973, p. 898)
which leads to the set of four second order ODEs. Numerical experiments, however, led us to the conclusion that
this formulation is computationally less effective compared to the Hamiltonian formalism. Generally for a given
numerical scheme with the same parameters (resulting in similar accuracy of the integration) the integration of
Hamilton’s equations was roughly two times faster. Moreover, the symplectic methods may only be applied in the
Hamiltonian formulation of the problem.
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Figure 1. Regular trajectory of a charged test particle (q̃ Q̃ = 1, L̃ = 6 M and Ẽ = 1.6) on the
Kerr background (a = 0.9 M) with Wald magnetic field

(
q̃ B0 = 1M−1)

. The particle is launched at
r(0) = 3.68 M , θ(0) = 1.18 with ur (0) = 0.

By conservation of the symplectic 2-form ω we mean that its components ωαβ in the
basis

(
dt (λ),dr(λ),dθ(λ),dϕ(λ),dπt (λ),dπr (λ),dπθ (λ),dπϕ(λ)

)
do not change during

the evolution of the system and for arbitrary value of the affine parameter λ (i.e. at each
point of the phase space trajectory) we obtain

ωαβ =

(
0 −I
I 0

)
, (1)

where I stands for the four-dimensional identity submatrix and 0 is the null submatrix of
the same dimension. Conservation of the symplectic structure expresses in the abstract
geometrical language the fact that the evolution of the system is governed by the Hamil-
ton’s canonical equations. See Arnold (1978) for details on the geometric formulation of
the Hamiltonian dynamics.

It would be highly desirable to use such integration scheme which would conserve both
quantities which are conserved by the original system. It appears, however, that this is not
possible for non-integrable systems and one has to decide whether he employs the scheme
which conserves energy or rather the integrator which keeps the symplectic structure.
The latter are referred to as symplectic integrators and by many accounts provide most
reliable results in numerical studies involving Hamiltonian systems. See Yoshida (1993)
for a comprehensive review on symplectic methods.

We list all the schemes we employ in this survey specifying their basic properties. We shall
actually compare one symplectic method with several standard integrators. Code names we
use for the schemes are those which denote the routines in the MATLAB system.
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Figure 2. Comparison of the integrators in the case of regular trajectory. Symplectic GLS provides
the most reliable results for λ &105. Bottom panel shows that besides secular drift in energy (artificial
excitation or dumping of the system; plot shows absolute values, however) it also oscillates on the
short time scale.
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• GLS – Gauss–Legendre symplectic solver, s-stage implicit Runge–Kutta (RK) method,
crucial control parameter: stepsize h.
• ODE87 – Dormand–Prince 8th-7th order explicit RK scheme, the most precise RK
method

(
local error of order O

(
h8)), adaptive stepsize – RelTol is set to control the local

truncation error.
• ODE113 – multistep Adams–Bashforth–Moulton solver, based on the predictor-corrector
method (PECE), RelTol is set.
• ODE45 – Dormand–Prince seven stage 5th-4th order method of explicit RK family,
adaptive stepsize, default integration method in MATLAB and GNU OCTAVE, error is
controlled by RelTol.

Apart from ODE113 all other routines are single-step (Runge–Kutta like) methods which
means that they express the value of the solution in the next step in terms of a single preceding
step. They may be related explicitly or implicitly. Multistep methods in contrast employ
more preceding steps to calculate the solution at the succeeding point. RelTol (relative
tolerance) is a parameter which specifies the highest allowed relative error in each step of
integration (local truncation error) when the adaptive stepsize methods are used. In the case
of exceeding the RelTol the stepsize is reduced automatically to decrease the error.

We comment that for general non-separable Hamiltonians only implicit symplectic
schemes may be found. Explicit methods exist for separable Hamiltonians and for some
special forms of non-separable ones (Chin, 2009). Besides other implications of the usage
of the implicit methods we note that they necessarily involve some type of iterative scheme
which is typically of a Newton’s type and thus requires to supply Jacobian of the right hand
sides of the equations of motion which is the Hessian matrix of the second derivatives of
the super-hamiltonian H in our case.

integrator ∆|E |/|E | tcomp[h] RelTol stepsize h

GLS ≈10−10 14 N/A 0.25
ODE87 ≈10−9 14 10−14 adaptive
ODE113 ≈10−3 1/3 10−14 adaptive
ODE113 ≈10−3 1/4 10−6 adaptive
ODE45 ≈10−3 1/4 10−14 adaptive

Table 1. Comparison of the performance of several integration schemes for the regular trajectory
integrated up to λ = 4× 105 (see Fig. 2). Quantity tcomp expresses the CPU time in hours.

Another inconvenience connected with the symplectic methods is their failure to conserve
the symplectic structure once the adaptive stepsize method would be used (Skeel and Gear,
1992). Therefore the stepsize has to be set rigidly for a given integration segment when
using symplectic method. Several workarounds have been suggested to combine benefits
of symplectic solvers and variable stepsize algorithms – e.g. Hairer’s symplectic meta-
algorithm (Hairer, 1997) which is, however, only applicable to the separable Hamiltonians.
In our context one would considerably suffer from the fixed timestep only in the case of
highly eccentric orbits.
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Figure 3. Chaotic trajectory of a charged test particle (q̃ Q̃ = 1, L̃ = 6 M and Ẽ = 1.8) on the
Kerr background (a = 0.9 M) with Wald magnetic field (q̃ B0 = 1M−1). The particle is launched at
r(0) = 3.68 M , θ(0) = 1.18 with ur (0) = 0.

2 PERFORMANCE OF THE INTEGRATORS

First we integrate the cross-equatorial regular trajectory depicted in Fig. 1. Comparison of
the performance of the integrators is plotted in Fig. 2. We plot relative deviation of the
particle’s specific energy Ẽ from its initial value rather than the error in super-hamiltonian
because the discussion of motion in Kopáček et al. (2010) was mostly held in terms of Ẽ
whose impact upon the trajectory is thus more familiar to us. We calculate the current value
of Ẽ from the super-hamiltonian H , while the value of πt remains truly constant regardless
the integrator since the Hamilton’s equation for its evolution is simply dπt/dλ = 0.

Stepsize of GLS is set in such a way that the integration consumes roughly the same
amount of the CPU time as it does for ODE87 with RelTol = 10−14 to make the results
comparable. The global accuracy of the GLS solver could be further increased by reducing
the stepsize while decreasing the RelTol hardly improves the secular accuracy of non-
symplectic methods here (we have compared RelTol = 10−6 and RelTol = 10−14 results
for ODE113 obtaining global errors of the same orders in both cases).

integrator |∆E |/|E | tcomp [h] RelTol stepsize h

GLS ≈10−9 14 N/A 0.25
ODE87 ≈10−6 14 10−14 adaptive
ODE113 ≈10−3 1/6 10−14 adaptive
ODE113 ≈10−3 1/6 10−6 adaptive
ODE45 ≈10−3 1/2 10−14 adaptive

Table 2. Comparison of the performance of several integration schemes for the chaotic trajectory
integrated up to λ = 4× 105 (see Fig. 4).
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Figure 4. Comparison of the integrators in the case of chaotic trajectory. For λ & 5× 103 the GLS
dominates in accuracy over other schemes with the difference rising steadily. In the upper panel we
compare ODE113’s outcome for two distinct values of the RelTol parameter. ODE45 is not shown to
avoid overlapping of its plot with ODE113 curves.
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We observe that the error of GLS rises steeply at the beginning and ODE87 is considerably
better for some amount of time. However then the error of GLS almost saturates while
ODE87’s error keeps growing significantly. For λ & 105 which corresponds to ≈ 1000
revolutions around the center2 the GLS scheme becomes more accurate than ODE87 with
the difference further rising steadily. We conclude that in the case of regular trajectory
ODE87 is appropriate for short-term accurate integration and GLS for any longer accurate
integrations. On the other hand for fast, though inaccurate computations one employs
ODE113 on all time scales. See Table 1 for the summary.

u
r

r [M]

GLS, λ
fin

=3 x 10
5

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

u
r

r [M]

ODE87, λ
fin

=3 x 10
5

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

u
r

r [M]

ODE113, λ
fin

=3 x 10
5

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

u
r

r [M]

ODE45, λ
fin

=3 x 10
5

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

Figure 5. We show how the accuracy of the integration crucially affects the appearance of the Poincarè
surfaces of section of a single regular trajectory with q̃ Q̃ = 1.76, L̃ = 4.02 M and Ẽ = 1.619855 on
the Kerr background a = 0.55 M with Wald magnetic field q̃ B0 = 1.92 M−1. Particle is launched
at r(0) = 2.5012 M , θ(0) = 1.0447 with ur (0) = 0. We distinguish downward crossing with uθ ≥0
(black point) from the upward crossing with uθ < 0 (red point) in the surfaces of section.

2 For instance for M = 106 M� the azimuthal proper period of a given particle reads Tϕ ≈103 s in SI.
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In the case of the chaotic trajectory (depicted in Fig. 3) the dynamics changes in favour
of symplectic solver GLS. In Fig. 4 we observe that in this case the symplectic scheme
is superior to the others in even more convincing manner than it was in the regular case.
Although the initial phase when the error induced by GLS rises more steeply than that of
ODE87 is also present, it turns over very quickly and for λ & 5 × 103 (≈ 50 azimuthal
revolutions) the GLS turns out to be more accurate. The difference then rises much faster
compared to the regular case.

Experiments with ODE113 reveal that here we obtain distinct (though not sharply) errors
by changing the RelTol. Difference of eight orders of magnitude in RelTol resulted in
roughly one order difference in global error. We also note that chaotic regime induces
disorder in short-time oscillations of the global error (see bottom panel of Fig. 4). We
summarize that the chaotic regime accents the supremacy of the symplectic scheme which is
to be applied on all time scale here (except very short integrations where ODE87 dominates)
to obtain the most accurate results. For fast though inaccurate calculation one would switch
to ODE113 as before. Results for the chaotic orbit are summarized in Table 2.

From a practical point of view we demand high accuracy of the long-term integration
when constructing Poincarè surfaces of section. By theory the intersection points with
regular trajectory form one-dimensional curve in the section plane. In Fig. 5 we observe,
however, that the points may be dispersed over the considerable area if the global error
in energy rises causing artificial excitation/dumping of the system. Symplectic integrator
GLS provides the most reliable outcome, with ODE87 the curve is blurred significantly but
the interpretation remains unambiguous. With ODE113 the curve is further blurred and
using ODE45 solver we obtain completely unreliable outcome which could easily lead to
the incorrect interpretation of a trajectory as a chaotic one. We note that we intentionally
chose such trajectory which is highly sensitive to the relative errors in dynamic quantities
since it itself spans small range of coordinate and momenta values.

3 CONCLUSIONS

We confirm that the symplectic integrators are the method of choice in the case of long-term
integration of the Hamiltonian system which in our case consists of a charged test particle
orbiting around the Kerr black hole with stationary and axisymmetric electromagnetic
test field. Its supremacy over non-symplectic methods is even more apparent in the case of
chaotic orbits, where the global accuracy of non-symplectic methods decreases rapidly. The
accuracy of the symplectic integrator could be further increased by reducing the stepsize
(at the cost of the computational time). On the other hand the performance of the non-
symplectic solvers is not considerably affected by reducing the local error (controlled by
the RelTol parameter in our case) across the wide range of the values. Once the integrator
does not fit the problem (= is not symplectic) there is no effective way to control the global
error and even the extremely small local truncation errors do not ensure reliable outcome
on a long time scale.

We suggest that our results are not problem-specific and may be generalized to the
broad class of the systems. In particular, we suppose that symplectic integrators provide
outstanding results in the chaotic regime of any non-integrable Hamiltonian system.
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