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ABSTRACT
We introduce a pseudo-Newtonian gravitational potential describing the gravitational
field of Schwarzschild black hole surrounded by a quintessential field. We also
show, how the geodesic motion reflected in behaviour of general relativistic effective
potential can be alternatively described by the pseudo-Newtonian one.
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1 INTRODUCTION

Starting in late seventies, the conception of the so-called pseudo-Newtonian (PN) gravita-
tional potential came up in astrophysics (Abramowicz, 2009). Those days, the observational
‘discover’ of the black hole Cygnus-X seemed to be widely accepted in astrophysics. Conse-
quently, general relativity started to play its role in investigation of astrophysical processes.
Even these days, however, many astrophysicists neglect the effects of general relativity, be-
ing focused on processes relatively far from sources of gravity, where the general relativistic
effects can be assumed as small corrections to Newtonian calculations only. On the other
hand, coming closer to the objects, like compact objects (black holes, neutron stars, etc.)
are, the Newtonian calculations lose its validity and general relativity approach must be
applied. Accretions discs (toroidal fluid structures) circling round black holes represent the
impressive example of this. The accretion disc treated within Newtonian theory does not
exhibit the cusp, through which the matter flows onto the black hole. Just the application of
general relativistic description shows up the existing cusp (Abramowicz et al., 1978, 1980)
Thus, in dependence on studied problems, it is crucial to decide correctly, which approach
to apply. The exact and general, but complex general relativistic one, or the approximative,
simpler and perhaps more intuitive Newtonian one, but failing in strong gravity very close
to compact objects.

In 1980, however, B. Paczyński and P. Wiita introduced the gravitational potential of
spherically symmetric static object – the source of strong gravity (e.g. Schwarzschild black
hole) ψPW = −1/(r − 2G M/c2) in the paper (Paczyński and Wiita, 1980). Being used
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instead of the standard Newtonian one ψN = −G M/r in the Newtonian theory, such a
gravitational potential ‘helps’ the Newtonian approach to describe also some features of
processes taking place close to Schwarzschild black holes.

There is a variety of different approaches in defining the PN gravitational potential
describing different kinds of black holes and various aspects of their spacetime structure
(Paczyński and Wiita, 1980; Chakrabarti and Khanna, 1992; Nowak and Wagoner, 1991;
Artemova et al., 1996; Semerák and Karas, 1999; Mukhopadhyay, 2002; Mukhopadhyay
and Misra, 2003; Ghosh and Mukhopadhyay, 2007; Abramowicz, 2009). In the case of
Schwarzschild spacetimes, it seems (Artemova et al., 1996) that to reflect the accretion
disc properties, the most convenient is the original Paczyński–Wiita gravitational potential
ψPW. It enables us to calculate positions of the marginally stable and bound circular orbits
at the same radii as follow from the general relativistic calculations.

Originally, the Paczyński–Wiita potential was introduced by a guess, when attempting
to include the Schwarzschild radius r = 2G M/c2 into the Newtonian gravity. There
is, however, a simple heuristic method for derivation of the PN potentials that yields the
Paczyński–Wiita potential. The same method was used for the derivation of the PN gravita-
tional potential for the equatorial plane of rotating Kerr black hole as well (Mukhopadhyay,
2002). Then the position of the marginally stable circular orbit corresponds to the posi-
tion determined by using the general relativistic approach, and differences in positions of
marginally bound circular orbit determined in both the ways are relatively small.

Standardly, this kind of approach, i.e. using the common Newtonian routines and for-
mulas, but with the PN gravitational potential is called the PN approach. The gravity,
however, is not the only widely manifesting force in the universe influencing the astro-
physical processes. Cosmological observations of distant Ia-type supernova explosions
indicate an accelerating universe. Starting at the cosmological redshift z ≈ 1, the acceler-
ated expansion should be generated by some appropriate form of the so-called dark energy
(S. Perlmutter et al., 1999; Riess and et al., 2004). These results are in accord with a large
variety of cosmological tests including gravitational lensing, galaxy number counts, etc.
(Ostriker and Steinhardt, 1995). The recent detailed studies of the cosmic microwave back-
ground (CMB) anisotropies indicate that the energy content of the dark energy represents
∼74.5% of the energy content in the observable universe, and the sum of energy densities is
very close to the critical energy density ρcrit, corresponding to almost flat universe (Spergel
D. N. et al., 2003, 2007).

A large variety of possible candidates for the dark energy is discussed these days. First
of all, there is the standard possibility represented by the cosmological constant Λ. Its
Lorentz invariant form enables interpretation in terms of a ground state or vacuum energy
of quantum fields (Dolgov et al., 1988). The energy density ρΛ, which can be associated
with the cosmological constant, remains unchanged during the cosmic expansion, and its
pressure to energy density ratio (equation of state) is w = pΛ/ρΛ = −1.

Further, there is a variety of scalar fields evolving outside of their energy minimum,
called quintessence, which possess a time varying energy density and equation of state with
−1 < w < −1/3 (Zlatev et al., 1999). Such a scenario can be realised by light scalar
field coming from modified f (R) gravity (Nojiri and Odintsov, 2003), string-inspired
cosmologies (Tsujikawa and Sami, 2001), cosmology with extra dimensions (Neupane,
2004), or by k-essence being a scalar field with a non-canonical kinetic term (Armendariz-
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Picon et al., 1999). Similar behaviour is exhibited by the coupled dark energy, i.e. a scalar
field coupled to the dark matter. For example, Chaplygin gas or its generalization called
quartessence explain both dark energy and dark matter from an unified physical origin
(Kamenshchik et al., 2001).

Several years ago, trying to have an effective PN tool even for processes with the dark
energy, we constructed the PN gravitational potential describing the gravitational field of
Schwarzschild black hole in the universe with the cosmological constant Λ (Stuchlík and
Kovář, 2008; Stuchlík et al., 2009). The general relativistic description of such a configu-
ration is represented by the Schwarzschild–de Sitter spacetimes (Stuchlík, 1990; Stuchlík
et al., 2000; Stuchlík, 2005). Here we follow this kind of investigation, introducing the PN
gravitational potential for the gravitational field of Schwarzschild black hole immersed in a
quintessence, representing an alternative explanation of the dark energy.

2 SCHWARSCHILD BLACK HOLE SURROUNDED BY QUINTESSENCE IN
GENERAL RELATIVITY

In the standard Schwarzschild coordinates (t, r, θ, φ) and the geometric system of units
(c = G = 1), the spacetime of Schwarzschild black hole surrounded by a quintessence
field is determined by the static and spherically symmetric Kiselev solution of the Einstein
equations (Kiselev, 2003)

ds2
= −g(r) dt2

+
dr2

g(r)
+ r2(dθ2

+ sin2 θ dφ2) , (1)

with the lapse function

g(r) = 1−
2M
r
−

α

r3w+1 , (2)

where M is the mass parameter of the spacetime,w is the quintessential state parameter and
α is the normalization factor. The quintessential parameter relates the quintessence pressure
p and density ρ in the equation of state p = wρ and takes values from −1 < w < −1/3,
whereas the limiting value w = −1 corresponds to the dark energy not being quintessence
but the vacuum energy (cosmological constant). Moreover, in that case of α = Λ/3, where
Λ is the cosmological constant, the solution (1) reduces exactly to the Schwarzschild–
de Sitter solution. Comparison of both the solutions is given in the paper (Fernando,
2013).

In the following, we focus on the exemplary case w = −2/3, when the metric lapse
function takes a simple form

g(r) = 1−
2M
r
− αr . (3)

Singularities of the lapse function giving the black-hole and cosmological horizons are
determined by the equation r − 2M − αr2

= 0 and are located at

rbh =
1−
√

1− 8αM
2α

, rc =
1+
√

1− 8αM
2α

. (4)
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Both the horizons exist for 1 − 8αM > 0, separating the spacetimes into two dynamic
regions and one static region between rbh and rc. For M = 1/(8α), both the horizons
coalesce at the radius rbh = rc = 1/(2α).

The heuristic method (see, e.g. Mukhopadhyay (2002)), enabling us to define the PN
gravitational potential is based on the knowledge of exact general relativistic relations for the
angular momentum per particle mass Lc and energy per particle mass Ec of particles moving
along circular geodesics. Then, we have to realize that in Newtonian physics, the Newtonian
gravitational potentialψN for central gravitational fields is related to the Newtonian angular
momentum per particle mass lN,c of free particles moving along circular orbits by the
relation dψN/dr = l2

N,c/r3. Now, the main idea in definition of the PN gravitational
potential ψ is in the transposition lN,c → Lc/Ec ≡ lc,1 thus we define the potential by the
relation

ψ =

∫
L2

c
E2

c r3 dr . (5)

Note that the described method of PN determination works quite well in spherically symmet-
ric (non-rotating) spacetimes, or in the equatorial plane of axially symmetric (rotating, e.g.
Kerr or KdS) spacetimes. However, it is much more complicated task to find a PN potential
for regions outside the equatorial plane of the rotating spacetimes, because of a non-trivial
influence of the dragging of inertial frames. There is a need to upgrade this method (Ghosh
and Mukhopadhyay, 2007) or use completely different way of the gravitational potential
definition (Semerák and Karas, 1999).

3 CIRCULAR GEODESICS IN GENERAL RELATIVITY

In general relativity, the circular geodesics at rc correspond to extrema of the effective
potential, given in the equatorial plane of static and spherically symmetric spacetimes in
terms of the metric coefficients gφφ and gt t , and the angular momentum L , by the relation
(Misner et al., 1973)

V 2
eff = −gt t

(
1+

L2

gφφ

)
, (6)

thus, for the Schwarzschild-quintessential spacetime, it is given by the relation

V 2
eff =

(
1−

2M
r
− αr

)(
1+

L2

r2

)
. (7)

1 The quantity lc = Lc/Ec plays its role only when the PN (e.g., Paczyński–Wiita) gravitational potential is
defined. Later, standard Newtonian quantities in Newtonian theory are used along with the PN gravitational
potential.
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The extrema condition for this effective potential, ∂r Veff |rc = 0, enables us to determine
the constants of motion related to the circular geodesic orbits in the form

L2
c =

r2
c
(
αr2

c − 2M
)

αr2
c − 2rc + 6M

, (8)

E2
c = −

2
(
αr2

c − rc + 2M
)2

rc
(
αr2

c − 2rc + 6M
) . (9)

Dropping now the subscript ‘c’, the PN gravitational potential (5) can be written in the form

ψ = −
r

2
(
r − 2M − αr2

) +K , (10)

where K is an integration constant having no physical meaning, but enabling to specify a
proper form of the potential ψ . Here, we demand that for α = 0 expression (11) takes the
form of the Paczyński–Wiita potential. This corresponds to the choice K = 1/2 and the
PN gravitational potential can be then written in its final form

ψ = −
2M + αr2

2
(
r − 2M − αr2

) . (11)

We can see that the potential diverges at the radii of horizons and reflects the position of
the static radius rs (corresponding to the local maximum of this potential) of the Kiselev
spacetime (see Fig. 1).

Along with the horizons, the static radius is the crucial feature of the Kiselev spacetime.
It is the radius where the gravitational attraction of the central black hole is balanced by the
cosmic repulsion caused by the quintessence matter. In more details, test particle can stay
at rest at that radius – its angular momentum must vanish, Lc = αr2

c − 2M = 0, which
determines the static radius as

rs =
√

2M/α . (12)

4 TEST-PARTICLE MOTION IN THE PN POTENTIAL

In the case of central gravitational fields, test-particle motion is confined to central planes
(e.g. to the equatorial plane). Following the Newtonian physics, the radial equation of the
Keplerian equatorial motion can be written in the form

1
2

(
dr
dt

)2

= e − veff , (13)

where e is the total PN energy per particle mass (energy hereafter) and veff is the PN
effective potential per particle mass (effective potential in the following) defined by the
standard relation

veff = ψ +
l2

2r2 . (14)
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Figure 1. Pseudo-Newtonian gravitational potential for the gravitational field of Schwarzschild black
hole surrounded by the quintessence with w = 2/3. The solid curve represents the behaviour of the
limit case α = 0 of the potential, the dashed curve shows its behaviour for α = 1/10 M−1, while
the dotted curve represents the limit case α = 1/8 M−1, when the horizons coalesce at the radius
r = 4 M.

Here,ψ is the PN gravitational potential (11) and l is the PN angular momentum per particle
mass (angular momentum hereafter) defined in Section 2. The circular Keplerian orbits
(geodesics) correspond to the effective potential extrema.2 Thus, their angular momentum
is governed by the function

l2
c = −

r3(αr2
− 2M

)
2
(
αr2 − r + 2M

)2 , (15)

and the corresponding energy (effective potential extreme) is governed by the function

ec =
2
(
αr2
+ 2M

)2
− r

(
3αr2

+ 2M
)

4
(
αr2 − r + 2M

)2 . (16)

2 Keplerian circular motion can be equivalently given also directly from the PN gravitational potential (11) using
relations for orbital and angular velocities, and for the angular momentum and energy

v =

(
r

dψ
dr

)1/2
, Ω =

(
1
r

dψ
dr

)1/2
, lc =

(
r3 dψ

dr

)1/2
, ec =

1
2
v2
+ ψ .

However, in some sense, the method of effective potential (Misner et al., 1973), combining the gravitational
potential and potential of centrifugal forces, is more general, illustrative and convenient for our case.



Pseudo-Newtonian gravitational potential 139

5 CONCLUSION

In general, the PN gravitational potential, being used instead of the Newtonian one in the
Newtonian approach represents very useful tool to describe the test particle motion (and not
only that problem, as we show, e.g. in (Stuchlík et al., 2009)) within the Newtonian physics,
taking into account some of the most important features following from general relativity
effects when strong gravitational field is present. It also enables us to simply incorporate
cosmic repulsive forces (caused by the cosmological constant, quintessence matter, etc.)
into our consideration, having an impact on astrophysical phenomena as well.

Few years ago, we presented the construction of the PN gravitational potential for the
gravitational field of Schwarzschild black hole in the universe with cosmological constant
(Schwarzschild–de Sitter spacetime) and tested its accuracy. We showed that the PN gravi-
tational potential defined for the Schwarzschild–de Sitter spacetimes reflects precisely the
existence of the static radius, diverges at both the black-hole and cosmological horizons,
and predicts locations of both the inner and outer marginally stable and marginally bound
circular orbits at the same radii as those following from the full general relativity (Stuchlík
and Kovář, 2008). The energy difference between the inner and outer marginally stable
circular orbit, which plays a crucial role in the theory of thin discs, has been shown very
close to the relativistic result. We also demonstrated that the PN potential can be well
applied even for description of thick discs orbiting Schwarzschild–de Sitter black holes;
it provides exact determination of the equipressure (equipotential) surfaces governing the
shape of toroidal discs in equilibrium configuration (Stuchlík et al., 2009).

Here, we have presented the construction of the PN gravitational potential describing the
gravitational field of a Schwarzschild black hole surrounded by a quintessence representing
source of the accelerated expansion of the universe. We have presented its form that reduces
to the well-known Paczyński–Wiita gravitational potential (describing the gravitational field
of the pure Schwarzschild black hole) when the quintessence parameter α tends to zero (the
quintessence is not present). The PN gravitational potential diverges on both the horizons
and reflects the position of the static radius as well.

In the future, we plan to deeply go through the testing of accuracy of the presented
potential in the same way as we have done for the case of the PN gravitational potential for
the Schwarzschild black hole gravitational field and cosmological constant, summarized
above.
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