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ABSTRACT
We study the result of the U-H-E collisions of particles radially colliding in the strong
gravity of Kerr superspinars. The colliding particles have different masses m1 6= m2
and we quantify the outcome of such collision taking place at fixed radius r = 1 in
the field of Kerr superspinar determined by spin parameter a under assumption of
both inelastic and elastic collisions.

1 INTRODUCTION

Recently a wide interest is devoted to the so called Banados–Silk–White (BSW) process
(Bañados et al., 2009) where centre of mass energy of colliding particles can be highly
ultrarelativistic if they collide in vicinity of the black hole horizon (Zaslavskii, 2010;
Harada et al., 2013; Tursunov et al., 2013), or in the strong gravity of naked singularity
spacetimes, as those related to the Kerr superspinars (Stuchlík et al., 2011; Stuchlík and
Schee, 2012, 2013; Stuchlík et al., 2014). In those processes it is usually assumed that the
collisions are inelastic and the rest energy of the colliding particles is transformed into the
energy of outgoing particles and photons. Here we shall consider also the possibility when
the particles are scattered in an elastic process.

2 SPACETIME GEOMETRY AND EQUATIONS OF MOTION

According to String theory there exist a class of solutions interpreted as spinning object of
mass M violating the general relativistic bound of spin of black holes, having a > 1. They
are called Kerr superspinars which, in the astrophysical area of interest, can be primordial
remnants of high energy phase of very early period of evolution of the Universe. It turns
out that the geometry generated by Kerr superspinar is the well known Kerr geometry and
its line element in Boyer–Lindquist coordinates read

ds2
= −

(
1−

2r
Σ

)
dt2
+
Σ

∆
dr2
+Σ dθ2

+
A
Σ

sin2 θ dϕ2
−

4ar sin2 θ

Σ
dt dϕ , (1)

where is ∆ = r2
− 2r + a2, Σ = r2

+ a2 cos2 θ , and A = (r2
+ a2)2 − a2∆ sin2 θ .
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It was shown that the equations of motion are separable and can be found by Hamilton–
Jacobi separation process. For the motion in the equatorial plane we have the following set
of equations of test particle motion

Σ ṙ = ±
√

R(r) , (2)
Σϕ̇ = − (aE − L z)+

a
∆

P(r) , (3)

Σ ṫ = −a (aE − L z)+
r2
+ a2

∆
P(r) , (4)

where ˙ ≡ d/dw with w being the affine parameter and

P(r) = E
(
r2
+ a2)

− L za , (5)
R(r) = P2

−∆
[
m2r2

+
(
L z − aE

)2]
. (6)

There are two constants of motion introduced reflecting temporal and azimuthal symmetries
of Kerr spacetime, they are covariant energy E = −pt and azimuthal angular momentum
L z = pϕ .

3 LOCALLY NON-ROTATING FRAMES

The collision process is studied in the frames connected with the zero-angular-momentum
observers, those with L z = 0. Such frame are commonly named as Locally Non-Rotating
Frames (LNRF), and the corresponding tetrad reads

ω(r) =

{
0,

√
Σ

∆
, 0, 0

}
, (7)

ω(θ) =
{

0, 0,
√
Σ, 0

}
, (8)

ω(t) =

{√
∆Σ

A
, 0, 0, 0

}
, (9)

ω(ϕ) =

{
−ΩLNRF

√
A
Σ

sin θ, 0, 0,

√
A
Σ

sin θ

}
(10)

with the angular frequency of LNRF being

ΩLNRF =
2ar
A
. (11)

4 THE PARTICLES COLLISION

We assume the elastic collision between two particles taking place in the equatorial plane,
θ = π/2. The constant of motion Q = 0 and it takes place at rc = 1. We let collide
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radially freely falling (1) and radially freely receding (2) particles with constants of motion
E1 = m1, L z1 = 0, E2 = m2, and L z2 = 0. The only non-zero components of 4-momentum
in the LNRF frame are temporal and radial, i.e.

P(µ)i =

(
P(t)i , P(r)i , 0, 0

)
, (12)

which in particular case of our two particles reads

P(µ)1 =

(
m1γ,m1γ v

(r), 0, 0
)
, (13)

P(µ)2 =

(
m2γ,−m2γ v

(r), 0, 0
)
. (14)

with the radial 3-velocity component v(r) given by relation

v(r) =
ω
(r)
µ Uµ

ω
(t)
µ Uµ

= ±

√√√√ 2
(
1+ a2

)(
1+ a2

)2
−
(
1− a2

)
a2
. (15)

and γ = (1− [v(r)]2)−1/2.
Just before the collision the total 4-momentum P(µ) is

P(µ) = P(µ)1 + P(µ)2 =

(
(m1 + m2)γ, (m1 − m2)γ v

(r), 0, 0
)
. (16)

We first assume that masses of particles remain the same after collision, then the cor-
responding components of 4-momenta of colliding particles after collision follow from
conservation principles and from normalization of 4-momentum, i.e.

P ′(t) = P ′(t)1 + P ′(t)2 = P(t) = (m1 + m2)γ , (17)
P ′(r) = P ′(r)1 + P ′(r)2 = P(r) = (m1 − m2)γ v

(r) , (18)

−m2
1 = −

[
P ′(t)1

]2
+

[
P ′(r)1

]2
, (19)

−m2
2 = −

[
P ′(t)2

]2
+

[
P ′(r)2

]2
. (20)

Solving this set of equations and using

v′
(r)
i =

P ′(r)i

P ′(t)i

, i = 1, 2 (21)

the resulting radial 3-velocity of particles after collision read

v′
(r)
1 =

B D +
√

B2 D2 −
(

A2 − B2
)(

4A2m2
1 − D2

)
AD −

√
A2 D2 −

(
A2 − B2

)(
4B2m2

1 + D2
) , (22)

v′
(r)
2 =

2B
(

A2
− B2)

− B D −
√

B2 D2 −
(

A2 − B2
)(

4A2m2
1 − D2

)
2A
(

A2 − B2
)
− AD +

√
A2 D2 −

(
A2 − B2

)(
4B2m2

1 + D2
) , (23)
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where we have introduced A = (m1 + m2)γ , B = (m1 − m2)γ v
(r), and

D = (m1 + m2)
[
m1 − m2 + (m1 + m2)γ

2
]
− (m1 − m2)

2γ 2
[
v(r)

]2
. (24)

In the second case we assume that the mass of collision products are the same having value
of m we have

−m2
= −

[
P ′(t)1

]2
+

[
P ′(r)1

]2
, (25)

−m2
= −

[
P ′(t)2

]2
+

[
P ′(r)2

]2
. (26)

From Equations (17), (18), (25), and (26) the resulting radial 3-velocities of collision
products are

v′
(r)
1± =

B ± A
√

1− 4m2

A ∓
√

2A2 − B2
(
1+ 4m2

) , (27)

v′
(r)
2± =

2A − B ∓ A
√

1− 4m2

2B − A ±
√

2A2 − B2
(
1+ 4m2

) . (28)

In the third case we asked a question, what are the conditions for masses of colliding
particles and the masses of the products if we want the products of the collision to became
static just after the collision? In this case we have following set of equations

P ′(t)1 + P ′(t)2 = γ (m1 + m2) , (29)

P ′(r)1︸︷︷︸
0

+ P ′(r)2︸︷︷︸
0

= 0 = γ v(r)(m1 − m2) . (30)

Which imply the masses of particles before collision are same m1 = m2 and the masses of
the products is determined by formula

m = γm1 =
1√

1− [v(r)]2
m1 . (31)

The characteristic parameter of collision is the centre-of-mass energy ECM. It is the total
energy of system measured by observer at rest in CM. In the case of two particle collision
we have Ptot = P1 + P2 which imply the energy

E2
CM = −Ptot · Ptot = m2

1 + m2
2 − 2gµν Pµ1 Pν2 , (32)

and, in our particular case, it reads

E2
CM = m2

1 + m2
2 +

2
r2

{[
m1m2

(
r2
+ a2)2

+ 2r
√

m1m2
(
r2
+ a2)] 1

∆
− a2m1m2

}
. (33)
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Figure 1. Plots of v′(r)1 and v′(r)2 curves as functions of spin parameter for fixed values of particle
masses. Plots on the left (right) are constructed for m1 = 2 and m2 = 1 (m1 = 1 and m2 = 2).
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Figure 2. The difference between the magnitude of velocities of two particles collision products
gaining after it same mass m. Each curve is plotted for a representative value of collision product
masses. Each curve is asymptotically for a →∞ getting to limiting value which in presented cases
are ∆v′lim(m = 1.0) = 0.0928676, ∆v′lim(m = 1.5) = 0.205702, and 0.357901.

5 RESULTS

We let collide two particles with L z = 0 at r = 1. The particles have distinct masses
m1 6= m2. With respect to collision products masses we have studied two situations:

• Masses of products do not change during collision. We first study the case of m1 = m′1 =
1 and m2 = m′2 = 2 and of m1 = m′1 = 2 and m2 = m′2 = 1.
• The masses of products is the same m′1 = m′2 = m. In our simulations the mass m = 1,
1.5, and 2.0.

The outcome of the collision is reflected in the plots of curves v′(r)1 (a) and v′
(r)
2 (a) in Fig. 1.

There are two limiting values as spin a→∞, v′(r)1 limit=−0.528321 and v′
(r)
2 limit=0.935984 in the first

choice of particle masses and v′
(r)
1 limit=±0.81651 for the second choice of particle masses. The

maximal values of velocities of particles is reached for spins close to extreme Kerr black
hole state.
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Figure 3. We demonstrate the strength of head on collision of two radially moving test particles with
masses m1 = 1 and m2 = 2, which are moving radially, by the square of centre-of-mass energy E2

CM.

The square of centre of mass energy E2
CM, given by formula (33), of collision taking

place at r = 1 of two radially moving particles with masses m1 = 1 and m2 = 2 is given at
Fig. 3.

6 CONCLUSION

We can conclude that in the case of the elastic collisions, the efficiency is largest for near-
extreme Kerr superspinars, similarly to the case of the collisions where the rest energy of
the colliding particles is transformed into energy of outgoing particles and photons.
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