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ABSTRACT
We study ejection speed of current-carrying string-loops governed by the presence
of an outer tension barrier and an inner angular momentum barrier in the field of the
Schwarzschild black holes. We restrict attention to the axisymmetric motion of string
loops with energy high enough, when the string loop can overcome the gravitational
attraction and escape to infinity. Due to the chaotic character of the string loop motion,
the strings can be scattered and the energy of the string oscillations can be efficiently
converted to the energy of the linear motion that can represent a jet motion. We give
the condition limiting energy available for conversion onto jet-like motion.

Keywords: string loops – black holes – Schwarzschild – spacetime – accelerating
jets

1 INTRODUCTION

Relativistic current carrying strings moving axisymmetrically along the axis of a Kerr black
hole (Jacobson and Sotiriou, 2009) or a Schwarzschild-de Sitter black hole (Kološ and
Stuchlík, 2010) could in a simplified way represent plasma that exhibits associated string-
like behaviour via dynamics of the magnetic field lines in the plasma (Christensson and
Hindmarsh, 1999; Semenov et al., 2004) or due to thin isolated flux tubes of plasma that
could be described by an one-dimensional string (Spruit, 1981). Tension of such a loop
string prevents its expansion beyond some radius, while its worldsheet current introduces an
angular momentum barrier preventing the loop from collapsing into the black hole. Such
a configuration was also studied in (Larsen, 1994; Frolov and Larsen, 1999). It has been
proposed in (Jacobson and Sotiriou, 2009) that this current configuration can be used as a
model for jet formation. Here we shall test the possibility to converse motion of a string loop
originally oscillating around a black hole in one direction to the perpendicular direction,
modelling thus an accelerating jet. It is well known that due to the chaotic character of the
motion of string loops, such a transformation of the energy from the oscillatory to the linear
mode is possible (Jacobson and Sotiriou, 2009; Kološ and Stuchlík, 2010). Here we make
the estimate of efficiency of such a transformation in the Schwarzschild gravitation field.
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Figure 1. Schematic picture of a string loop moving around a black hole. Assumed axial symmetry
of the string loop allows to investigate only one point on the loop; one point path can represent whole
string movement. Trajectory of the loop is then represented by the black curve on the picture, given
in 2D x-y plot.

2 CURRENT-CARRYING STRING LOOPS

We study a string loop motion in the field of a black hole described by the Schwarzschild
metric

ds2
= −A(r) dt2

+ A−1(r) dr2
+ r2(dθ2

+ sin2 θ dφ2) , A(r) = 1−
2M
r
. (1)

We use the geometric units with c = G = 1 and the Schwarzschild coordinates. In order to
properly describe the string loop motion, it is useful to use the Cartesian coordinates

x = r sin(θ) , y = r cos(θ) . (2)

The string loop is threaded on to an axis of the black hole chosen to be the y-axis – see
Fig. 1. The string loop can oscillate, changing its radius in x-z plane, while propagating
in y direction. The string loop tension and worldsheet current form barriers governing
its dynamics. These barriers are modified by the gravitational attraction of the black hole
characterized by the mass M .

2.1 Equations of motion

The string worldsheet is described by the spacetime coordinates Xα(σ a) (with α =

0, 1, 2, 3) given as functions of two worldsheet coordinates σ a (with a = 0, 1) that im-
ply induced metric on the worldsheet in the form

hab = gαβXα,a Xβ ,b . (3)

Any two-dimensional metric is conformally flat metric, i.e. in our case when we use the
standard Schwarzschild coordinates (1), there is

−hττ = hσσ = gφφ , hτσ = hστ = 0 , (4)

where we adopt coordinates a = (τ, σ ).
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Dynamics of the string is described by the action related to a scalar field ϕ and tension µ
(worldsheet with minimal area), expressed in the form (Jacobson and Sotiriou, 2009)

S =
∫

d2σ
√
−h(µ+ habϕ,aϕ,b) , (5)

where ϕ,a = ja determines current of the string and µ > 0 reflects the string tension. For
ja = 0, we have Nambu–Goto string (Zwiebach, 2004), for ja = 0, µ = 0 we have null
string.

Varying the action with respect to ϕ yields the 1+ 1 dimensional wave equation(√
−hhabϕ,a

)
,b
= 0 . (6)

Using the scalar field equation of motion (6) and the assumption of axisymmetry we can
conclude that the scalar field can be expressed in linear form with constants jσ and jτ

ϕ = jσσ + jτ τ . (7)

Varying the action with respect to the induced metric hab yields the worldsheet stress-
energy tensor density Σ̃ab with the components that can be expressed in the form (Jacobson
and Sotiriou, 2009)

Σ̃ττ
=

J 2

gφφ
+ µ , Σ̃σσ

=
J 2

gφφ
− µ , Σ̃στ

=
−2 jτ jσ

gφφ
, J 2

≡ j2
σ + j2

τ . (8)

Varying the action with respect to Xα , we arrive to equations of motion(
Σ̃abgαγ Xα,a

)
,b
−

1
2
Σ̃abgαβ,γ Xα,a Xβ ,b = 0 . (9)

In spherically symmetric spacetimes, the axisymmetric string loops can be characterized
by coordinates

Xα(τ, σ ) =
(

t (τ ), r(τ ), θ(τ ), σ
)
. (10)

Equation of motion (9) for coordinates γ = t and γ = φ imply two conserved quantities(
Σ̃ττ gt t ṫ

)
,τ
= 0 ,

(
Σ̃στ gφφ

)
,τ
= 0 , (11)

while for coordinates γ = r and γ = θ we obtain two second order ordinary differential
equations describing the string motion (Kološ and Stuchlík, 2010).

2.2 Hamiltonian formulation in spherically symmetric spacetimes

The string motion can be also formulated using Hamiltonian formalism (Larsen, 1993). We
can consider Hamiltonian

H̃ =
1
2

gαβ PαPβ +
1
2
µ2r2 sin2 θ + µJ 2

+
1
2

(
j2
τ − j2

σ

)2
r2 sin2 θ

, (12)
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Figure 2. In the Schwarzschild spacetimes, we can distinguish four different types of the behavior of
the boundary energy function Eb.

where α, β correspond to coordinates t, r, θ, φ. The spacetimes symmetries imply existence
of two constants of motion

Pt = −E , Pφ = L = −2 jτ jσ . (13)

Then in spherically symmetric spacetimes the Hamiltonian can be expressed in the form

H =
1
2

A(r)P2
r +

1
2

1
r2 P2

θ −
1
2

E2

A(r)
+

Veff(r, θ)
A(r)

, (14)

where an effective potential for the string motion has been introduced by the relation

Veff(r, θ) =
1
2

A(r)
(
µr sin θ +

J 2

r sin θ

)2

. (15)

The Hamilton equations

dXµ

dλ
=
∂H
∂Pµ

,
dPµ
dλ
= −

∂H
∂Xµ

(16)

applied to the Hamiltonian (14) imply equation of motion in the form

r ′ = APr , (Pr )
′
=

1
A

P2
θ

r4

(
Ar −

1
2

dA
dr

r2
)
−

dA
dr

P2
r −

1
A

dVeff

dr
, (17)

θ ′ =
Pθ
r2 , (Pθ )′ = −

1
A

dVeff

dθ
. (18)

where prime is derivative with respect to the lambda: f ′ = d f/dλ.
Systems of equations for the string motion in the form (9) and (17–18) are related by

transformation

dτ = Σττ dλ . (19)
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3 STRING LOOP IN SCHWARZSCHILD SPACETIME

The Schwarzschild metric (1) introduces a characteristic length scale corresponding to the
radius of the black hole horizon (that is given by the condition A(r) = 0, rh = 2M). It
is convenient to use the dimensionless coordinates r̃ = r/M (x̃ = x/M, ỹ = y/M), the
dimensionless string (angular momentum) parameter J̃ = J/M and energy Ẽ = E/M .
Then the condition H = 0 can be written in the form

Ẽ2
=
(
(r ′)2 + Ar2(θ ′)2

)
+ 2Ṽeff , (20)

The conditions r ′ = 0, θ ′ = 0 determine boundary for the string motion. The boundary
energy reads

Ẽ2
b = 2Ṽeff . (21)

In Cartesian coordinates it takes the form

Eb(x, y) =
√

A(r)
(

J 2/x + xµ
)
=

√
A(r) f (x) , (22)

where r = r(x, y) =
√

x2 + y2. The function A(r) reflects the spacetime properties,
while f (x) those of the string loop. The behaviour of the boundary energy function is
given by interplay of the functions A(r) and f (x). The local extrema of the boundary
energy function Eb, given by

(Eb)
′
x = 0⇔ x A′r f = −2r A f ′x (Eb)

′
y = 0⇔ A′r y = 0 , (23)

are of crucial importance since they determine the regions of different character of the string
loop motion.

In the Schwarzschild geometry the extrema equations (23) can be expressed in the form

J̃ 2
= J̃ 2

E ≡
x̃2(x̃ − 1)

x̃ − 3
, ỹ = 0 . (24)

The boundary energy function Eb has two extrema, maximum and minimum, located above
the black-hole horizon (at x̃ > 2), when

J̃ > J̃E(min)
.
= 7 . (25)

The detailed discussion of the properties of the effective potential and the string loop motion
can be found in (Kološ and Stuchlík, 2010). Here we summarize some relevant results.

We can distinguish four different types of the behaviour of the boundary energy function
Eb in the Schwarzschild spacetimes; in Fig. 2 we denote them by numbers 1 to 4. The
first case corresponds to no inner and outer boundary and the string can be captured by the
black hole or escape to infinity. In the second case, there is an outer boundary, the string
loop cannot escape to infinity and it must be captured by the black hole. The third case
corresponds to the situation when both inner and outer boundary exist and the string is
trapped in some region forming a potential “lake” around the black hole. In the fourth case
string cannot fall into the black hole but it can escape to infinity (or be trapped).
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Figure 3. Conversion of energy between Ex and Ey modes – string transmutation effect in the
Schwarzschild spacetime. Thick lines represents string trajectory, while thin lines on the first column
form boundary for the string motion Eb. The string with current J̃ = 11 is starting from region
away from black hole horizon x̃ = 22 and ỹ = 115 (first row), ỹ = 111.5 (second row). Near
the starting point the spacetime is almost flat, so string oscillates in the x-direction, while moving
with initial speed in y direction v(λ1)

.
= 0.41 c towards the black hole. Around conformal factor

λ ∼8 the string approaches region near the black hole horizon, where transmutation regime begins,
and crosses the equatorial plane. Near the black hole horizon, the modes of energy in the x and y
direction are interchanging, and the string is chaotically scattered. First row of pictures represents
acceleration of the string in y direction v(λ2)

.
= 0.67 c, while the second one represents its deceleration

v(λ2)
.
= 0.08 c.

4 STRING TRANSMUTATION

4.1 Flat spacetime energies

The Schwarzschild metric is flat at infinity. Therefore, we first discuss the motion of the
string loop in the flat spacetime. The energy of the string loop (20) in Cartesian coordinates
is given by

E2
= (y′)2 + (x ′)2 +

(
J 2/x + x

)2
= E2

y + E2
x , (26)

where prime is derivative with respect to the affine parameter λ. We introduce energy in x
and y directions by the relations

E2
y = (y

′)2 , E2
x = (x

′)2 +
(

J 2/x + x
)2
= (xi + xo)

2
= E2

0 . (27)

The energy in x direction E0 (for flat spacetime we introduce new marking Ex = E0) can
be determined by the inner xi and outer xo radii limiting motion of the string loop

xo,i =
1
2

(
E ±

√
E2 − 4J 2

)
. (28)
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The energy E0 is minimal if the inner and the outer radii coincide – then xi = xo = J ;
there is

E0(min) = 2J . (29)

Clearly, Ex and Ey are constants of the string loop motion in the flat spacetime and no
transmutation is possible.

4.2 Schwarzschild spacetime energies

If the spacetime in not flat, A(r) 6= 1, we can write the string loop energy (20) in Cartesian
coordinates in the form

E2
= A(r)

[
gxx

(
x ′
)2
+ 2gxy

(
x ′
)(

y′
)
+ gyy

(
x ′
)2]
+ A(r)

(
Σ̃ττ

)2x2 , (30)

where metric coefficients for the Schwarzschild spacetime in x and y coordinates are given
by

gxx =
x2
+ Ay2

A
(
x2 + y2

) , gxx =
y2
+ Ax2

A
(
x2 + y2

) , gxy = xy
1+ A

A
(
x2 + y2

) . (31)

The term gxy(x ′)(y′) is responsible for interchange of energy between Ex and Ey modes –
string transmutation effect. The coefficient gxy is significant only in the neighbourhood of
the black hole, so the effect of string transmutation can occur only in this region.

All energy from the Ey mode can be transmitted to the Ex mode – oscillations of the
string loop in the x direction will grown up, while the string will stop moving in the y
direction. On the other hand, all energy from Ex mode can not be transmitted to the Ey
mode – there remains always inconvertible energy E0(min) = 2J in Ex mode, see (29) .

The string motion transmutation will change rate of the string propagation in the y
direction; an example of acceleration (deceleration) in the y direction can be found on
Fig. 3.

4.3 String ejection speed

We consider the toy model of jets represented as string loops starting from region near
equatorial plane. We are interested in the maximum speed in y direction that strings can
achieve through the transmutation effect, if starting from the rest.

The relativistic gamma factor reads (Jacobson and Sotiriou, 2009)

γ 2
=

1
1− v2 =

E2

E2
0
, (32)

where E is the energy, E0 is energy of the string in the x-direction taken at infinity, and v
is string velocity in y direction (v ∈ [0, 1 c)).

Maximal gamma factor (32) (maximal speed) can be obtained if the string loop energy E
is large and the final energy in x direction (its value at infinity) is minimal, i.e. E0(min) = 2J .
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Figure 4. Speed of the string starting from the rest with fixed current J = 11 and starting point
x̃ = 20 while ỹ position (and total energy Ẽ) is changing. There are velocities up to the v = 0.65 c.
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Figure 5. Speed of the string starting from the rest with fixed current J = 2 and starting point x̃ = 20
while ỹ position (and total energy Ẽ) is changing. There are velocities up to the v = c.

In order to reach acceleration of the string loop in the y-direction the string must past region
near the black hole horizon, where string transmutation effect Ex ↔ Ey occurs.

Astrophysically most interesting situation corresponds to the string loop initially oscil-
lating in (or near) the equatorial plane when the oscillatory energy is transmitted to the
perpendicular direction; such transmutation represents jet ejection. The largest velocities
for the string ejection reported in (Jacobson and Sotiriou, 2009) is v = 0.39 c. On the other
hand, in our study of strings with J̃ > J̃E(min) we have found substantially higher values
of speed with v = 0.65 c. The results are represented in Fig. 4 clearly demonstrating the
chaotic nature of the string transmutation effect. Notice that the regular part of the results
of the simulations (in the region 3 < ỹ < 9) gives maximal v ∼ 0.3 c, or v ∼ 0.4 c for
ỹ ∼ 11, in accord with results of (Jacobson and Sotiriou, 2009), while the chaotic region
allows v ∼0.65 c.

There is an important question, whether ultrarelativistic speed of the jet model can be
achieved, and under which conditions. The ultra relativistic speeds can be achieved only for
small string currents J̃ < J̃E(min) starting from region out of the equatorial plane. We have
type 1 of the motion boundary is such case of J̃ < J̃E(min) and any string starting close to
the equatorial plane will collapse to the black hole. This implies necessity to start the string
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motion in sufficient distance from the equatorial plane. The results of modelling chaotic
string loop motion finishing at infinity for J̃ < J̃E(min) is demonstrated in Fig. 5. Notice
that now even in the regular part ultrarelativistic speeds v ∼c occur.

5 CONCLUSIONS

We can summarize the possibility of substantial acceleration of string loops that can model
jet ejection in the field of Schwarzschild black hole by the statements

• string transmutation effect Ex ↔ Ey occurs only near the black hole horizon,
• string can be accelerated for J̃ > J̃min up to v ∼0.65 c and up to v ∼c only for small J
and for type 1 of energy boundary.
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