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ABSTRACT
In the following article we present properties and functionality of the COSMOC
library designed to exploit basic features of Compton scattering process and its
computational modelling. Basic physics of Compton scattering is pointed out, ac-
companied by various procedures accessible by user. The COSMOC library uses
Monte Carlo method to perform single photon scattering. Special care is given to
emphasize use of proper random number generator for Monte Carlo method.
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1 INTRODUCTION

Scattering of photons on free charged particle is called Compton scattering. It was first
observed in year 1923 by Arthur H. Compton when he was examining scattering of X-ray
photons on stationary electrons. The Compton scattering was found to be useful in many
areas of science and astrophysics is no exception. Its influence can be found in spectra
produced by many astrophysical objects and phenomena. This is especially true in low
densities of matter where Compton scattering is dominating in comparison with other
types of scatterings. By scattering on non-relativistic electrons the photons can only loose
energy on the other hand scattering by relativistic electrons can result in increased energy
of the scattered photons. Even moderately energetic electrons can contribute to the resulting
spectra by multiple scatterings of photons, this behaviour is called comptonization.

The Compton scattering is suspected to be responsible for power law shaped spectra
emitted by many astrophysical objects. Scattering of synchrotron photons is considered in
explaining non-thermal (power law) parts of the spectra of sources like blazars or radio
quasars. The comptonization has considerable effect in X-ray emission in hard (low) and
soft (high) spectral states of black-hole binaries.

Effects of the Compton scattering on observed spectra can by more easily simulated by
Monte Carlo method. One of the first Monte Carlo simulations of the Compton scattering
and its effect on observed spectra is work by (Pozdnyakov et al., 1983). Full relativis-
tic treatment of the Compton scattering was recently done by (Dolence et al., 2009) or
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(Schnittman and Krolik, 2013). Polarisation was also introduced into Compton scattering
codes, for more details see works by (McNamara et al., 2008) or (Krawczynski, 2012). Aim
of our code is to calculate Compton scattering in Kerr space-time with help of Monte Carlo
method. The code is in form of C library.

This library is concerned only with Compton scattering on free electrons and does not
consider any modifications needed for scatterings on bounded electrons. It is also limited to
gases which can be approximated by equation of state for ideal gas. It also does not consider
polarization. Polarization should be first candidate for improvements of the library in the
future. The COSMOC library was written using GSL 1.16. The GSL is an abbreviation of
GNU Scientific Library and it is a numerical library for C and C++. It provides wide variety
of numerical methods for scientific purposes.

2 COMPTON SCATTERING

2.1 Compton Scattering

The Compton scattering is an inelastic scattering process, where photon is scattered by free
charged particle, usually electron. Since the scattering is inelastic photon looses energy in
favour of the scattering particle. The differential cross-section is described by the Klein–
Nishina formula (Rybicki and Lightman, 1985)
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where r0 is classical electron radius, εi is the energy of the incident photon and ε f is the
energy of the scattered photon. This equation also gives probability distribution function
pdfC(θ) for scattering angle θ of the Compton scattering.

The energy of the scattered photon is given by following relationship (Rybicki and
Lightman, 1985)
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The total cross-section is an integral of differential cross-section (1) over spatial angleΩ
and it is given by
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After we perform integration we arrive at (Rybicki and Lightman, 1985)
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where x = εi/(mec2) and σT = (8π/3)r2
0 is Thomson total cross-section.
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To obtain cumulative distribution function cdfC(θ) we must integrate Eq. (1) over scat-
tering angle θ , where ε f is given by Eq. (2). This gives
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where B = 11x4
+ 4x3

− 12x2
− 10x − 2.

Implementation in the code

The implementation of Compton scattering consists of following subroutines. Equation (1)
can be invoked by calling functionCM diffcr, total cross-section Eq. (4) is returned by func-
tion CM totcr. To obtain values of the cdfC(θ) for different values of scattering angle θ one
must call function CM EDiE cdf. These functions are used by procedure for generating ran-
dom numbers with Klein–Nishina distribution Random num icdf bisection CM EDiE.
This function implements bisection to search for value of the inverse cdfC(θ) and produces
one random number per call.

2.2 Thomson Scattering

The Thomson scattering is a special case of Compton scattering, it is an approximation of
the Compton scattering for low photon energies. This approximation can be used as long as
incident photon energies εi �511 keV (electron rest energy). The differences in probability
distribution functions pdfC(θ) for distinct photon energies are shown in the Figure 1. Since
energy of the incident photon is much smaller than electron rest energy εi �mec2 we can
neglect denominator in Eq. (2) and get

ε f = εi , (6)

which means that photon energy εi is not changed by the scattering. Using this approxi-
mation we can simplify the differential cross-section given by the Klein–Nishina Eq. (1) to
(Rybicki and Lightman, 1985)
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and the total cross-section is then reduced to
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The cdfTH(θ) can be obtained by integration of the Eq. (7) and it has form
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Figure 1. Differential cross-section dε/dΩ of Compton scattering for low energy photons as it
depends on scattering angle. The cross-sections are normalized. Chosen photon energies demonstrate
deviation of dε/dΩ with increasing photon energy. Differential cross-section for photons with energy
above ε = 51 keV starts to deviate from Thomson limit (photons with ε = 2.75 eV).

Implementation in the code

As with Compton scattering the library contains similar functions for Thomson approxima-
tion. To get differential cross-section (7) call of function TH diffcr is appropriate. Thom-
son total cross-section is stored at variable TH totcr since it is independent on incident
photon energy. To get the value of the cdfTH(θ) one must call the function TH cdf value.
However since we do not have direct expression for inverse cdfTH(θ), the Thomson approxi-
mation is not useful in a sense of performance. In other words using Thomson approximation
for evaluation of low energy photons we would not gain any increase in performance.

2.3 Inverse Compton Scattering

If we restrict ourselves just to scattering particle at rest we are confined to Compton scattering
frame where photons can only loose energy. To increase energy of the scattered photons
we need to take into account motion of the scattering particle as well. Since we are able
to calculate Compton scattering only in the frame where the scattering particle is at rest
we must transform photon’s momentum by Lorentz transformation into this rest frame first.
This transformation involves two effects: The first effect is relativistic aberration or beaming
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effect. This effect changes the angle α between scattering particle’s velocity and incident
photon direction. This transformation reads (Rybicki and Lightman, 1985)

cos(ᾱ) =
cos(α)+ β

1+ β cos(α)
, (10)

where β = |ve|/c and |ve| is electron velocity. This effect is applied to both incident and
radiated photons.

The second phenomenon is the Doppler effect which modifies photon frequency thus
causes increase or decrease of its energy as measured by observer comoving with electron.
The energy of the interacting photon is transformed as follows (Rybicki and Lightman,
1985)

ε̄i = εiγ
(
1− β cos(α)

)
, (11)

where again β = |ve|/c. This transformation must be performed before as well as after
scattering took place.

3 ELECTRON VELOCITY

3.1 Maxwell–Boltzmann Distribution

Maxwell–Boltzmann distribution gives distribution of velocities of particles of ideal gas.
We assume point-like, non-relativistic particles with negligible inter-particle forces. Many
gases in astrophysics behave as ideal gas or they are similar to it. In Compton scattering
scheme we are mostly dealing with rarefied real gasses. For these, at ordinary temperatures,
the Maxwell–Boltzmann distribution is a good approximation.

The probability of particle having magnitude of velocity p within a gas with temperature
T is given as (Bradt, 2014)
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)3
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, (12)

where k is Boltzmann constant k = 8.61 × 10−5 eV/K and m is mass of the gas particle
(in this case electrons me = 9.11× 10−31 kg). To acquire cumulative distribution function
cdfMB(v) we must integrate (12)
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where erf(x) is Error function.

Implementation in the code

Maxwell–Bolzmann distribution is implemented in these routines: MB pdf returns value
of pdfMB(v) Eq. (12), MB cdf gives cdfMB(v) Eq. (13). The function for random electron
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speed is called Random num icdf bisection MB and it returns electron speed sampled
from Maxwell–Boltzmann distribution. To evaluate cdfMB(v) we are using GSL library
implementation of Error function erf(x) by calling gsl sf erf().

If the temperatures throughout the simulation do not exceed TB = 2×108 K the Maxwell–
Boltzmann distribution can be used reasonably well. However if the temperature T > TB
we recommend using Maxwell–Jüttner distribution for whole computation.

3.2 Maxwell–Jüttner Distribution

The Maxwell–Jüttner distribution is a generalization of the Maxwell–Boltzmann distribution
for ideal non-interacting gas. For low temperatures T and in limit of small velocities this
distribution becomes identical with the Maxwell–Boltzmann distribution.

Probability distribution for γ of the electrons within the gas with temperature T such
that kT approaches or exceeds mc2 is given by (Kershaw et al., 1986)

f (γ ) =
γ 2β

τK2(1/τ)
exp−

γ

τ
, (14)

where β = v/c, τ = kT /mc2, K2 is Bessel function of the second kind and c is speed of
light.

Integral through all velocities must be∫
∞

−∞

f (γ ) = 1 . (15)

Behaviour of the distribution for low temperatures can be seen in the Fig. 2.

Implementation in the code

In the code we implement the distribution using logarithmic expression ln f (γ ). This
is advantageous because we can express Bessel function K2 in its logarithmic form thus
reducing possible errors due to round-off error. For calculating Bessel function we are using
GSL library by calling function gsl sf bessel lnKnu(). After we got value ln f (γ ) we
return exp (ln f (γ )).

Random number with Maxwell–Jüttner distribution

Implementation of random number generation, which produces random numbers with
Maxwell–Jüttner distribution is similar to the technique described in Section 4.2. There is
slight modification of the binary search starting position which is determined by the function
get points MJ(). This function returns approximation of the peak of the distribution and
end point of the distribution (which is a point where f (γ ) < 10−30). The aim is to decrease
searching time and number of evaluations of the cdf(x) (which involves integrals) by setting
middle point to the peak thus near most probable random value.



COSMOC library 7

Cut-off Temperature

From the Fig. 2 we can see that for temperatures T < 2 × 108 K the distribution has its
maximum very near γ = 1. Thus no relativistic effects are noticeable. Putting cut off
temperature to Tcut = 2× 108 K is reasonable.
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Figure 2. Maxwell–Jüttner distribution for different temperatures. Probability P(γ ) is normalized to
unity.

4 NUMERICAL METHODS

Our simulation, in current state, is intended to follow single photons by using Monte Carlo
method. The Monte Carlo method heavily depends on random numbers and thus good
random number generator is needed for accurate results.

4.1 Random Number Generators

On computer using algorithms it is very hard if not impossible to get truly random unbiased,
uncorrelated random numbers with uniform distributions in multiple dimensions. When
using computer we are using a pseudo-random numbers produced by the pseudo-random
number generators like rand in standard C. However some generators are better then others.
The ‘good’ random number generator should pass number of theoretical and empirical tests.
More can by found in (L’Ecuyer and Simard, 2007).
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For our Monte Carlo simulation we choose to use GSL library random number generator
MT19937. This generator has unusually long period of P = 219937

− 1 numbers. This algo-
rithm has been developed with special attention to the most significant bits. This property
makes it especially well suited for Monte Carlo simulations (Matsumoto and Nishimura,
1998). With performance comparable to the standard C rand it is ideal pseudo-random
number generator for our needs. It also performed well in tests conducted by (L’Ecuyer and
Simard, 2007).

4.2 Random Numbers with Distribution

Standard random number generator produces uniformly distributed random numbers in
range (0, 1). To obtain random numbers with desired custom distribution we must project
this range onto some other which is defined by cdf(x). For this projection we need to
find an inverse cumulative distribution function cdf(x)−1 of our custom distribution. To
check if our custom distribution of random numbers does agree with cdf(x) we have used
Kolmogorov–Smirnov test for random number distribution (Wall and Jenkins, 2003).

Inverse cdf method

Assuming we have probability density function pdf(x) with property∫
∞

−∞

pdf(x ′) dx ′ = 1 , (16)

we can construct cumulative distribution function cdf(x) given as

cdf(x) =
∫ x

−∞

pdf(x ′) dx ′ . (17)

Taking into consideration the Eq. (16) we can see that cdf(x) ∈ [0, 1]. To generate
random numbers with distribution given by pdf(x) we need to construct inverse cumulative
distribution function cdf(x)−1 and project generated random numbers in interval (0, 1) by
the cdf(x)−1 to get random number with desired custom distribution. If we cannot find
cdf−1(x) than we have to find appropriate function value by using root-finding algorithm.
Since cdf(x) is strictly increasing in the interval (0, 1) we can apply bisection to find the
value of the cdf−1(x).

5 IMPLEMENTATION

5.1 Structures and constants

The COSMOC library uses these classes:

• kn par class is directly used by user and it holds all variables connected with the
scattering of the photon. For example it holds energy of the incident photon kn par::nu i,
energy of the scattered photon kn par::nu f, scattering angles kn par::theta f and
kn par::phi f. These are variables most likely to be accessed by the user.
• prop, approx and Max dis int are internal classes and user does not need to interact
with them.
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Figure 3. Broadening of iron spectral line with initial energy ν = 6400 eV. On x axis we see energy
of the scattered photon, y axis shows normalized count. The scattering is performed on electrons with
different temperatures, where k is Boltzmann constant and Te is electron temperature. Temperatures
are distinguished by different colours.

5.2 Scattering

The whole process of scattering is performed by function scatter EDiE, which then makes
use of other internal functions of COSMOC library. These internal functions are accessible
by user. Whole library as of now has a form of includable .h and .cpp file and it is not
en-capsuled into a class. The declaration of function scatter is following:

void scatter EDiE(
kn par *par – information about incident photon,
double eT – temperature of the gas,
approx *mj app – internal class which must be initiated at the beginning of the code,
int mj size – size of mj app,
gsl rng *rnd – GSL library handle for random numbers
gsl integration workspace *w – GSL library handle for integration,
int force relativistic=0 – optional switch to force relativistic treatment

).

The procedure scatter EDiE works in three modes, which mode is triggered depends on
temperature of the gas. For temperatures T > 2.0×108 K the relativistic treatment is used.
This includes beaming effect Eq. (10) and Doppler effect Eq. (11). For electron velocities
the Maxwell–Jüttner distribution is used.

The second mode is for temperatures 300 K < T < 2.0× 108 K. In this mode Maxwell–
Boltzmann distribution is used and only Doppler effect is taken into account.

Last mode is for stationary electrons for temperatures below T = 300 K, where only
Compton scattering without any additional effects is performed.

The effect of Doppler shift can be seen on spectral line broadening, which is shown in
the Fig. 3. The figure shows broadening of iron ν = 6.4 keV spectral line.
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SUMMARY

The COSMOC library simulates Compton scattering by following single photon by Monte
Carlo method. It includes Compton as well as inverse Compton scattering. We have
implemented Maxwell–Boltzmann distribution of electron velocities and it’s relativistic
version the Maxwell–Jüttner distribution. The random number generator used is MT19937.
The accuracy of generated distribution (Klein–Nishina, Maxwell–Boltzmann, Maxwell–
Jüttner) were tested by using Kolmogorov–Smirnov test. The functions in COSMOC library
can also be used separately.
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