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ABSTRACT
We consider equatorial motion of test particles around a rotating Kerr naked sin-
gularity in the Randall–Sundrum braneworld scenario and its implications for the
properties of Keplerian accretion disks. We demonstrate existence of some unex-
pected phenomena related to properties of spacetimes having positive braneworld
tidal charges. This new phenomenon can be an interesting explanation for extremely
high energy cosmic radiation.

Keywords: Randall Sundrum – Brane-world

1 INTRODUCTION

In recent years, one of the promising approaches to the higher-dimensional gravity theories
seems to be the string theory and particularly M-theory (Hořava and Witten, 1996; Hořava
and Witten, 1996). This new idea is describing gravity as a truly higher-dimensional interac-
tion becoming effectively 4D at low enough energies. Also these theories inspired so called
braneworld models, in which the observable universe is a 3-brane on which the standard-
model fields are confined, while gravity enters the extra spatial dimensions (Arkani-Hamed
et al., 1998). The braneworld models provide an elegant solution to the hierarchy problem of
the electroweak and quantum gravity scales, as these scales could become to be of the same
order (TeV) due to large scale extra dimensions (Arkani-Hamed et al., 1998). Future collider
experiments can test the braneworld models quite well, including even the hypothetical mini
black hole production (Dimopoulos and Landsberg, 2001). The braneworld models could
be tested observationally since they predict relevant astrophysically important properties of
black holes. Gravity can be localized near the brane even with a non-compact, infinite size
extra dimension with the warped spacetime satisfying the 5D Einstein equations as shown
by Randall and Sundrum (1999). The rotating brany black hole spacetimes are represented
by the Kerr-Newman geometry (without an electromagnetic field). The standard studies of
black hole and naked-singularity geodetical motion (Stuchlík, 1981; Stuchlík and Calvani,
1991; Stuchlík and Hledík, 2000) can thus be fully applied for brane-world black holes and
naked singularities with positive tidal charge.
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2 ORBITAL MOTION IN THE BRANEWORLD KERR SPACETIMES

Using standard Boyer–Lindquist coordinates (t, r, θ, ϕ) and geometric units (c = G = 1),
we can write the line element of a rotating (Kerr) black hole or naked singularity on
the 3D-brane in the form

ds2
= −

(
1−

2Mr − b
Σ

)
dt2
−

2a(2Mr − b)
Σ

sin2θ dt dϕ

+
Σ

∆
dr2
+Σ dθ2

+

(
r2
+ a2

+
2Mr − b
Σ

a2sin2θ

)
sin2θ dϕ2 , (1)

where

∆ = r2
− 2Mr + a2

+ b , (2)
Σ = r2

+ a2cos2θ , (3)

M and a = J/M are the mass parameter and the specific angular momentum of the back-
ground, and the braneworld parameter b, called the “tidal charge”, represents the imprint of
non-local (tidal) gravitational effects of the bulk space (Aliev and Gümrükçüoğlu, 2005).
The physical “ring” singularity of the braneworld rotating black holes (and naked singular-
ities) is located at r = 0 and θ = π/2, as in the Kerr spacetimes.

The form of the metric (1) is the same as that of the standard Kerr–Newman solution of
the 4D Einstein–Maxwell equations, with the tidal charge b being replaced by the squared
electric charge Q2 (Misner et al., 1973). The following discussion can then be separated
into these cases:

a) b = 0 in which we are dealing just with the standard Kerr metric.
b) b > 0 in which we are dealing with the standard Kerr–Newmann metric.
c) b < 0 where we are in the domain of new physics.

In the brany K-N spacetimes the geodetic motion is also relevant to charged test particles.

3 EFFECTIVE POTENTIAL AND RADIAL FUNCTION

The radial function R(r) of the geodesic motion is defined by:

R(r) ≡ −sign(m)+
E2gϕϕ + 2E Lgtϕ + L2gt t

g2
tϕ − gt t gϕϕ

, (4)

and the effective potential of the brany Kerr spacetimes takes the form:

VEff(r, a, b, L) =
−aL(b − 2r)± r

√
∆

√
L2r2 + r4 + a2

(
r2 + 2r − b

)
r4 + a2

(
r2 + 2r − b

) , (5)

where L is the specific angular momentum as measured by an observer at infinity, E is
the specific energy and m is the mass of the test particle. Circular motion is discussed in
Stuchlík and Kotrlová (2009).
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Figure 1. Brany Kerr black holes and naked singularities are divided into ten classes according to
the properties of circular photon orbits. The corresponding regions of the b–a2 plane are denoted by
I–X; the number in parentheses gives the number of circular photon orbits in the respective class. See
also Stuchlík (1981); Balek et al. (1989).
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Figure 2. Classification of accretion disks with respect to parameters a and b. Classic: stands for
those combinations of a and b where the ISCO coincides with the marginally stable orbit. Stable
photon orbit: the ISCO for particles coincides with the stable circular photon orbit (the efficiency of
accretion can then theoretically tend to infinity). Stable photon orbit and r = b: the ISCO is located
at r = b and the effective potential has a minimum for all positive values of L (this minimum is
always higher than r = b and is unimportant for accretion processes). Region r = b: the ISCO is
located at r = b. The depicted star points correspond to chosen examples given in Fig. 3.
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Figure 3. Examples of the effective potential from each region.

4 PHOTONS

In the case of photon orbits in the equatorial plane, the radial function R(r) is determined
by Eq. (4) with m set to zero (Schee and Stuchlík, 2009a,b):

R(r)
E2 =

[
r2
− a(λ− a)

]2
−∆(λ− a)2

r2∆
, (6)

where the impact parameter is defined by λ = L/E .
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The photon orbits depend only on the impact parameter λ. The character of the photon
motion is given by the number of circular orbits. We can distinguish ten cases of the brany
Kerr spacetimes (Fig. 1).

5 EFFECTIVENESS OF ACCRETION

We discuss here some properties of thin Keplerian accretion disks. We will focus on disks
orbiting naked singularities. The circular orbits can exist from infinity down to the radius
of the limiting circular photon orbit, determined by the condition

r2
− 3r + 2b ± 2a

√
r − b = 0 . (7)

At this point E goes to ±∞ and L goes to ±∞, but the impact parameter λ = L/E
remains finite.

The loci of the stable circular orbits are given by the condition

∂2 R
∂r2 ≤ 0 , (8)

where the case of equality corresponds to the r coordinates of the marginally stable circular
orbits rms. This procedure of finding the marginally stable orbit as an inflexion point of
the effective potential given by the condition (8), is what we will be calling a “standard
treatment”. We obtain1

r
(
6r − r2

− 9b + 3a2)
+ 4b

(
b − a2)

∓ 8a
(
r − b

)3/2
= 0 . (9)

This standard treatment works perfectly for the black holes, but as we shall demonstrate,
does not work as well for counter-rotating disks around naked singularities.

The innermost stable circular orbit (ISCO) does not always correspond to the marginally
stable orbit defined by Eq. (9).2 This is demonstrated in Fig. (3, e) where we have depicted
the effective potentials VEff(r, a, b, L). We can clearly see that sometimes the marginally
stable orbit defined by Eq. (9) is not the innermost stable circular orbit. The ISCOs are
actually located at r = b. The reason for this is that there can be a stable circular orbit at
r = b, but not at r < b. This makes it possible to have an ISCO which is not an inflexion
point of the radial function (4), which is the reason why the “standard treatment” (8) has to
be treated very carefully. Of course, for accretion processes, the marginally stable circular
orbits, i.e. the stable orbits with lowest energy, are relevant as the orbiting matter loses
energy (and angular momentum) during accretion.

In the Figure 2 we have shown the classification of parameter space spanned by spin a
and tidal charge b. This parameter space is divided into several areas according to following
physical properties:

(1) existence of stable circular orbits in spacetime,

1 Formally the same results, relevant for Kerr–Newman spacetime, can be found in Aliev and Galtsov (1981).
2 In some of the naked-singularity spacetimes (Reisner–Nordström, Kehagias–Sfetsos), two marginally stable
orbits (ISCO and OSCO) can appear, (Pugliese et al., 2013; Stuchlík et al., 2014; Stuchlík and Schee, 2014; Vieira
et al., 2014). However, this is not the case for the Kerr spacetimes (Stuchlík, 1980). See also Favata (2011).
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(2) existence of ISCO at r = b which is different than marginally stable orbit found by
classic treatment,

(3) existence of ISCO which is identical with marginally stable orbit found by classic
treatment.

Most interesting situation in Fig. 2 is lightly shaded area, where there are no present any
ISCO’s or marginally stable orbits. All orbits are stable up to a photon circular orbit, what
is new phenomenon which can theoretically leads to unbound effectiveness of accretion.

6 CONCLUSIONS

We have shown an interesting new behaviour of the effective potential with regard to the
stable circular photon orbits. These stable orbits can exist in the case of naked singularities
in the Randall–Sundrum II brane-world scenario and in the case of classical Kerr–Newman
naked singularities with quite a large amount of charge. This new phenomenon can be an
interesting explanation for extremely high energy cosmic radiation.
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Aliev, A. N. and Gümrükçüoğlu, A. E. (2005), Charged rotating black holes on a 3-brane, Phys. Rev.
D, 71(10), p. 104027, arXiv: hep-th/0502223.

Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. (1998), The hierarchy problem and new dimensions
at a millimeter, Physics Letters B, 429, pp. 263–272, arXiv: hep-ph/9803315.

Balek, V., Bicak, J. and Stuchlík, Z. (1989), The motion of the charged particles in the field of rotating
charged black holes and naked singularities. II - The motion in the equatorial plane, Bulletin of the
Astronomical Institutes of Czechoslovakia, 40, pp. 133–165.

Dimopoulos, S. and Landsberg, G. (2001), Black Holes at the Large Hadron Collider, Physical Review
Letters, 87(16), 161602, arXiv: hep-ph/0106295.

Favata, M. (2011), Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr
black hole: A new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to
test-particle spin and the gravitational self-force, Phys. Rev. D, 83, p. 024028, arXiv: 1010.2553.

Hořava, P. and Witten, E. (1996), Eleven-dimensional supergravity on a manifold with boundary,
Nuclear Physics B, 475, pp. 94–114, arXiv: hep-th/9603142.

Hořava, P. and Witten, E. (1996), Heterotic and Type I string dynamics from eleven dimensions,
Nuclear Physics B, 460, pp. 506–524, arXiv: hep-th/9510209.



Some Aspects of Brany Kerr Spacetimes Relevant to Accretion Processes 17

Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973), Gravitation, W. H. Freeman and Co, New
York, San Francisco.

Pugliese, D., Quevedo, H. and Ruffini, R. (2013), Equatorial circular orbits of neutral test particles in
the Kerr-Newman spacetime, Phys. Rev. D, 88(2), 024042, arXiv: 1303.6250.

Randall, L. and Sundrum, R. (1999), An Alternative to Compactification, Physical Review Letters,
83, pp. 4690–4693, arXiv: hep-th/9906064.

Schee, J. and Stuchlík, Z. (2009a), Optical Phenomena in the Field of Braneworld Kerr Black Holes,
International Journal of Modern Physics D, 18, pp. 983–1024, arXiv: 0810.4445.

Schee, J. and Stuchlík, Z. (2009b), Profiles of emission lines generated by rings orbiting braneworld
Kerr black holes, General Relativity and Gravitation, 41, pp. 1795–1818, arXiv: 0812.3017.

Stuchlík, Z. (1980), Equatorial circular orbits and the motion of the shell of dust in the field of
a rotating naked singularity, Bulletin of the Astronomical Institutes of Czechoslovakia, 31, pp.
129–144.

Stuchlík, Z. (1981), The radial motion of photons in Kerr metric, Bulletin of the Astronomical Institutes
of Czechoslovakia, 32, pp. 40–52.

Stuchlík, Z. and Calvani, M. (1991), Null geodesics in black hole metrics with non-zero cosmological
constant, General Relativity and Gravitation, 23, pp. 507–519.

Stuchlík, Z. and Hledík, S. (2000), Equatorial photon motion in the Kerr-Newman spacetimes with
a non-zero cosmological constant, Classical and Quantum Gravity, 17, pp. 4541–4576, arXiv:
0803.2539.

Stuchlík, Z. and Kotrlová, A. (2009), Orbital resonances in discs around braneworld Kerr black holes,
General Relativity and Gravitation, 41, pp. 1305–1343, arXiv: 0812.5066.

Stuchlík, Z. and Schee, J. (2014), Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos
naked singularities, ArXiv e-prints, arXiv: 1402.2891.

Stuchlík, Z., Schee, J. and Abdujabbarov, A. (2014), Ultra-high-energy collisions of particles in the
field of near-extreme Kehagias-Sfetsos naked singularities and their appearance to distant observers,
Phys. Rev. D, 89(10), 104048.
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