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ABSTRACT
We present a new numerical code for radiation transport in strong gravity regime that
includes arbitrary emission and absorption mechanisms and also electron scattering.
We give a brief description of the methods employed. A simple example of a possible
use is presented that also illustrates the effect of light bending on the comptonized
thermal spectra.
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1 INTRODUCTION

There has been a growing interest in radiation transport codes in astronomy since the pi-
oneering paper of Shakura and Sunyaev (1973) and there already exists plentiful of such
codes that treat the problem of high photon and electron energies with different level of
accuracy. X-ray sources usually contain a compact object as their central engine and so not
only special relativistic but also general relativistic effects have to be properly included in
the accurate and physically realistic treatment of radiation transport. Such codes must nec-
essarily employ the emitter-to-observer scheme, which is naturally more computationally
expensive. This seem to be the main reason why such codes have been developed only quite
recently. The most advanced codes have been presented by Dolence et al. (2009) and by
Schnittman and Krolik (2013).

In this paper, we introduce our own code for general relativistic radiation transport that
includes arbitrary emission and absorption mechanisms and also electron scattering while
properly taking into account all GR effects. We demonstrate the capabilities of the code on
a simplified model of an accretion disk and comptonizing corona. Such an example will help
us to quantify the effect of gravitation light bending on resulting spectra of comptonized
thermal radiation and so to stress and justify the importance of GR treatment.
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2 PHOTON GEODESIC MOTION

Motion of photons in the Kerr spacetime can be solved for using several approaches. For
instance, the geodesic equation can be numerically integrated to find a photon trajectory
(e.g. Dovčiak et al., 2004), or one can proceed using Hamilton equations (e.g. Schnittman
and Bertschinger, 2004) or one can write down the equation of motion and try to find
a solution to it, which is possible in terms of elliptic integrals (e.g. Li et al., 2005).

Following Carter (1968), Bardeen et al. (1972) and Merloni et al. (1999), we can write
down equations of motion for a photon in a separable form. In Boyer–Lindquist coordinates,
where we employ a substitution of m = cos θ , they look like
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and q = Q/E2
∞ is scaled Carter’s constant, l = L z/E∞ is conserving angular momentum

about the black hole z-axis.
With the help of above equation the photon trajectory can be directly calculated if we

know the initial conditions, i.e. a point on the trajectory and the direction of the photon. As
an example, we can think of a photon that has been emitted from the surface (photosphere) of
an accretion disk. If photons are emitted isotropically, we can randomly choose the initial
direction at a given place, calculate photon’s 4-momentum and constants of motion and
iterate numerically Eq. (1). We will describe the exact procedure in Section 5.

3 COMPTON SCATTERING

If photons have to propagate through a non-empty environment, they may encounter colli-
sions with other particles. In astrophysics, the most relevant process of this type is a collision
of a photon with a (quasi-)free particle, usually with an electron. Such a process is called
Compton scattering after Arthur Holly Compton who observed it for the first time in 1923
while scattering X-ray photons on stationary electrons (Compton, 1923). This experiment
played an important role in persuading physicists that light can behave as a stream of
particle-like objects (quanta) whose energy is proportional to the frequency. Eventually,
Compton earned Nobel Prize for his discovery five years later.
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Often, the term Compton scattering is used to describe the original process in which
an energetic electron scatters off an electron at rest. However, an opposite situation may
happen as well: a lower energy photon is scattered to higher energy by a relativistic electron.
This process is refereed to as Inverse Compton scattering and it is of great importance
in astrophysics. However, as basically both processes share the same mechanism, we are
using the term Compton scattering for both throughout this paper.

The energy of the photon after the scattering event is different from its initial energy,
because some of it is exchanged with the electron. The ratio of photon energy after and
before the collision is

P(Eγ , θ) =
1

1+ (Eγ /mec2)(1− cos θ)
, (6)

where Eγ is the original photon energy before collision, me is mass of an electron and
cos θ is the scattering angle, which itself is given by Klein–Nishina differential cross-
section formula. For incident photon energies much lower than the electron rest energy,
ε � mec2, the energy-dependent Klein–Nishina formula can be replaced by a simpler
Thomson approximation

dσ
dΩ
=

1
2

r2
0
(
1− cos θ

)
, (7)

which does not depend on the photon energy. We should keep in mind that the photon mo-
mentum must be Lorentz-transformed to the electron rest frame, so if we have a distribution
of thermal electrons, there is a factor γ that modifies the photon’s energy in the frame of
the electron. Still, if we consider initial photons with energy .1 keV and .108 K electron
temperature, Thomson approximation can be used safely.

4 COMPGR

In this article, we are introducing a new code, COMPGR, that is capable of calculating effects
of Compton scattering in the regime of strong gravity.
COMPGR combines two existing codes, a code for Compton scattering COSMOC (Adámek

and Bursa, 2014) and a code for relativistic ray-tracing SIM5 (Bursa et al., 2004), in a
readily usable package. COMPGR finds its use in situations where it is necessary to accurately
compute comptonization effects on radiation in a close vicinity of a black hole, where strong
gravitational light bending causes photons to follow curved geodesic trajectories.

The code generates photons according to the specified geometry and distribution and
those are then propagated along geodesics based on their initial conditions. At each step of
the trajectory, the total optical depth to scattering along the travelled path is increased by

dτ = κes ρ dl (8)

and the probability of scattering is evaluated as

PSC = 1− e−τ . (9)
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When the photon does scatter off an electron, we make a coordinate transformation from
coordinate basis to fluid local rest frame (LRF). In LRF we determine the temperature of
the fluid and corresponding electron energy distribution. This gives us particular electron
velocity and direction and after transforming into the rest frame of the electron, we perform
the scattering calculation. The electron velocity is taken from isotropic Maxwell–Jüttner
distribution (Jüttner, 1911)

fMJ(γ ) =
γ 2β

θT K2(1/θT )
exp(−γ /θT ) , (10)

where γ = (1− v2/c2)−1/2, θT = kT/mec2, and K2 is modified Bessel function. After we
determine new photon energy and direction, we make a back-transformation from electron
rest frame to LRF and from LRF to the coordinate frame, we update photon momentum
and constants of motion and the photon is followed along the new trajectory until it scatters
again or until it either escapes sufficiently far or hits the black hole or is destroyed by some
other means depending on the physical setup.

The code can also handle optically thin emission and absorption, such as bremsstrahlung
or synchrotron. In the fluid rest frame, the radiation transport equation is
dIν
dl
= jν − αν Iν , (11)

where dl is the path element and Iν , jν and αν are respectively the specific intensity,
emissivity and absorption of the fluid that are given by the specific radiation process.
The emission and absorption processes are integrated along the photon path so that the
intensity of a particular photon bundle is updated at each step.

5 EXAMPLE

We demonstrate the code on a simple example of a thin Shakura–Sunyaev-type accretion
disk that is surrounded by a optically thin hot corona. We employ a very simple physical
setup that shall demonstrate the effect of light bending on the scattered spectra.

In the case of an accretion disk surrounding a black hole the disk produces a thermal
spectrum with typical energy of few kiloelectronvolts or less (depending on the mass of the
black hole). The lower energy photons emitted from the disk surface are scattered to higher
energies by relativistic electrons in the surrounding corona. This effect is believed to cause
the power law component observed in X-ray spectra of accreting black holes.

In this numerical experiment, we use a non-rotating Schwarzschild black hole with an
accretion disk around it. The disk has a standard inner edge at 6M and we will use
a power-law temperature profile T = T0 r−3/4 for it (flux F(r) ∼r−3), where T0 is fixed at
3 keV.

In addition, there is a radial and spherically symmetric wind with constant temperature
Te = 108 K, constant Ṁ and constant radial velocity ve = 0.1 c. In our simplified setup,
the wind originates from the black hole, but more realistically we can imagine a wind that
is fed by the material from the disk. Density of the wind decreases with radius as

ρ =
Ṁ

4π r2 ve
. (12)
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The total optical depth of the wind along the line of sight is

τ =

∫
∞

r0

ρ σT dr , (13)

which combined with the previous expression gives the density

ρ =
r0

r2
τ

σT
(14)

simply as a function of radius and total optical depth. r0 is the radius of the wind base, that
is of the black hole horizon in our case, r0=2M . Photons are scattered in the wind, but we
assume that after 10 such events the photon is lost (it is likely to be absorbed by an ion).

To illustrate the effect of light bending, we perform two simulations for each setup: one
uses full GR with geodetic photon trajectories, in the second one we follow the photon path
along straight lines in the original direction of emission while preserving other GR effects.
True photon geodesic motion has been described in Section 2. In the simulation, where we
assume straight photon paths, we replace Eq. (1) by its limit version for M = a = 0 and
we solve it. That way, we can follow the marked direction of emitted photon as it would go
through a flat spherically symmetric space until the trajectory escapes far enough from the
black hole, ends up in the black hole, ends up in the disk, or we encounter a scattering event
in corona. No other changes are made and the scattering, g-factor evaluation, etc., still use
standard Kerr metric and GR formalism, so we can say that the the eventual difference in
results is solely due to photons taking bended or straight paths.

What can we expect? When the corona is not considered and photons travel from the disk
to the observer freely without any scatterings, we expect the ‘flat’ spectrum to be identical
to ‘GR’ spectrum at lower energies that are contributed by photons coming from cooler
outer parts of the disk, where relativistic effects do not play much role. At higher energies,
on the other hand, we expect the ‘flat’ spectrum to be slightly harder than the ‘GR’ spectrum
simply because the photons come from the disk to the observer, who has a fixed inclination
of 60◦, on average at slightly more grazing angles than it is the case in GR, where light
bending effect allows for escaping angles nearly parallel to the disk normal from parts of
the disk. Larger emission angles mean larger Doppler boost and thus the spectrum should
harden. The corresponding two spectra (‘GR’ and ‘flat’) are compared in Fig. 1, where the
difference due to light bending can clearly be seen.

With corona present, we eventually expect the difference to go in the opposite direction –
the ‘flat’ spectra should be softer as the corona becomes optically thicker. The density of the
corona decreases with square of the distance from the black hole, so the largest scattering
probability is very close to the black hole. If photons follow true GR geodesics they feel
the ‘attractive force’ of the black hole’s gravity and the strongly bended trajectories cause
photons to stay around the black hole longer then it is the case for ‘flat’ photons that do
not feel such effect. Again, that acts mostly on the most on energetic photons coming from
inner parts of the disk that have more chances to upscatter and harden the ‘GR’ spectra.
Figure 2 shows how the spectrum evolves with increasing optical depth τ = 1, τ = 5 and
τ = 10. When the optical depth is too high and the corona is largely optically thick, the
difference in the two spectra should diminish.
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Figure 1. Observed spectra when no corona is assumed. Photons travel from the disk to the observer
freely without any scatterings. Solid line represents the true spectrum with all GR effects taken
account properly. Dashed line shows how would the spectrum look like if there was no relativistic
light bending and photons were following straight lines as in a flat space (all other GR effects are
preserved).
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Figure 2. Observed spectra (lines in bold black) for total optical depths τ = 1 (left), τ = 5 (middle)
and τ = 10 (right). Gray lines show the spectra from Fig. 1 without corona for reference. Corona
temperature is 108 K and its density decreases with square of radius.

6 SUMMARY

We have presented a new numerical code, COMPGR along with some technical details
behind its treatment of general relativistic radiation transport. Its capabilities include namely
Compton scattering with proper treatment of geodesic photon propagation between collision
events and as such it finds its use in setups involving scattering regions close to a black hole,
where gravitational effects on light propagation play a strong role.

We have demonstrated the importance of GR effect on the simple example of scattering
soft thermal photons in the radial wind of hot electrons. The results clearly justify the need
for a proper GR treatment of radiation transport.
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