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ABSTRACT
General relativity combined with a non-linear electrodynamics enables to find regular
black hole solutions. The best known solution of this kind is described by the Bardeen
spacetime with spacetime parameters giving gravitational mass m and magnetic
charge g. For ratio g/m large enough, the Bardeen spacetime describes a no-horizon
regular solution. Here we demonstrate properties of the Bardeen spacetimes by the
embedding diagrams of the equatorial plane of the ordinary geometry, and the optical
geometry enabling reflection of properties of test particle motion.
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1 INTRODUCTION

Black holes predicted by the general relativity contain a physical singularity with diverging
Riemann tensor components. Regular black hole solutions of the Einstein gravity have
been found that eliminate the physical singularity from the spacetimes having an event
horizon, but these are not vacuum solutions of the Einstein equations, but contain necessarily
a properly chosen additional field, or modified gravity.

The well known regular spherically symmetric black hole solution containing a magnetic
charge as a source has been proposed by Bardeen (1968). The magnetic charge is related to
a non-linear electrodynamics (Ayón-Beato and García, 2000). The solution is characterized
by the mass parameter m and the charge parameter g. Their geodesic structure is governed
by the dimensionless ratio g/m. For properly chosen charge parameter g/m, the Bardeen
solution allows for existence of fully regular spacetime, without an event horizon. We call
it Bardeen “no-horizon” spacetime.

A detailed discussion of the geodesic structure of the regular Bardeen black hole and no-
horizon spacetimes and its implication to optical phenomena were presented in Stuchlík and
Schee (2014a). It has been shown that the geodesic structure of the regular Bardeen black
holes outside the horizon is similar to those of the Schwarzschild or Reissner–Nordström
(RN) black hole spacetimes, but under the inner horizon, no circular geodesics can exist.
The geodesic structure of the Bardeen no-horizon spacetimes is similar to those of the naked
singularity spacetimes of the RN type, or the Kehagias–Sfetsos (KS) type (Kehagias and
Sfetsos, 2009; Stuchlík and Schee, 2014b; Stuchlík et al., 2014) that is related to the solution
of the modified Hořava quantum gravity (Hořava, 2009a,b). In all of these no-horizon and
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naked singularity spacetimes, an “antigravity” sphere exists consisting of static particles
located at stable equilibrium points at a given “static” radius that can be surrounded by
a Keplerian disc Stuchlík and Schee (2014b).

The basic properties of the Bardeen black hole and no-horizon spacetimes can be reflected
by the embedding diagrams that illustrate in a proper way the curvature of the spacelike
(constant time) surfaces and give for the ordinary space geometry an overall insight into its
nature – (see e.g. Kristiansson et al. (1998); Stuchlík and Hledík (1999, 2002)). In the case
of the optical geometry, the embeddings can give an illustration of some hidden proper-
ties of the geodesic structure of the spacetime (Stuchlík et al., 2000). Here we present
the embeddings for both the Bardeen black hole and no-horizon spacetimes.

2 BARDEEN SPACETIMES

The spherically symmetric geometry of the regular Bardeen black-hole or no-horizon space-
times is characterized in the standard spherical coordinates and the geometric units (c=G=1)
by the line element

ds2
= − f (r) dt2

+
1

f (r)
dr2
+ r2(dθ2

+ sin2 θ dφ2) , (1)

where the “lapse” f (r) function depends only on the radial coordinate, the gravitational
mass parameter m and the charge parameter g. The Bardeen spacetimes are constructed to
be regular everywhere, i.e. the components of the Riemann tensor, and the Ricci scalar are
finite at all r ≥0 (Ayón-Beato and García, 1999).

The lapse function f (r) reads

f (r) = 1−
2mr2(

g2 + r2
)3/2 . (2)

The event horizons of the Bardeen black hole spacetimes, determined by the condition
f (r) = 0, are given by

g6
+
(
3g2
− 4m2)r4

+ 3g4r2
+ r6
= 0 . (3)

The critical value of the dimensionless parameter g/m separating the black-hole and the “no-
horizon” Bardeen spacetimes reads

(g/m)NoH/B = 0.7698 . (4)

In the “no horizon” Bardeen spacetimes the metric is regular at all radii r ≥ 0. We assume
r = 0 to be the site of the self-gravitating charged source of the spacetime.

The optical geometry of the Bardeen spacetimes is given by the line element (Kristiansson
et al., 1998)

ds2
opt = −dt2

+
dr2

f (r)2
+

1
f (r)

r2 dθ2
+

r2

f (r)
sin2 θ dϕ2 . (5)
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3 THE EMBEDDING PROCEDURE

We make the embedding of the equatorial plane, θ = π/2, of the t = const spacelike
sections of the spacetime and its optical geometry. For the ordinary, simply projected
space, the 2D equatorial plane can be cast in the form

dl2
ord =

dr2

f (r)
+ r2 dϕ2 , (6)

while for the optical geometry we find

dl2
opt =

dr2

f (r)2
+

r2

f (r)
dϕ2 . (7)

The plane has to be embedded into the 3D flat space with line element

dl2
3D = dR2

+ R2 dφ2
+ d z2 . (8)

The 3D flat space is expressed in the standard cylindrical coordinates R, z, φ. The em-
bedding is realized by the function Z = Z(R) that implies the line element of the 2D
embedding surface in the form

dl2
2D = dR2

+ R2 dφ2
+

( dz
dR

)2
dR2 . (9)
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Figure 1. Embeddability limits of equatorial plane of directly projected (left) and optical (right)
Bardeen geometry. Green colour indicates area that can be embedded.

4 EMBEDDING DIAGRAMS OF DIRECTLY PROJECTED GEOMETRY

In this case we can make the trivial identification

φ = ϕ , R = r (10)
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that implies the relation(
1+

(
dz
dr2

)2 )
=

1
f (r)

. (11)

The embedding formula then takes a simple form

z =
∫ √

1
f (r) − 1 dr . (12)

The embeddability conditions read

1
f (r)
− 1 ≥ 0 , f (r) ≥ 0 . (13)

Clearly, the region between the horizons is not embeddable. The regions are given in de-
pendence on the spacetime parameter g/m in Fig. 1. The embedding diagrams are for rep-
resentative values of the parameter g/m given in Fig. 2.

5 EMBEDDING DIAGRAMS OF THE OPTICAL GEOMETRY

In the case of the optical geometry, the identification of the radial coordinate is not trivial,
we have to define

φ = ϕ , R =
r

f 1/2(r)
. (14)

Such an identification implies the relation((
dR
dr

)2

+

(
dz
dr2

)2
)
=

1
f 1/2(r)

(15)

and the embedding formula takes the form

z =
∫ √

1
f 2(r) −

(
dR
dr

)2
dr . (16)

The embeddability condition of the optical space reads

1
f 2(r)

−

(
dR
dr

)2

≥ 0 . (17)

The limits on the embeddability are given in Fig. 1, while the typical embedding diagrams
of the optical space are illustrated in Fig. 3.

Recall that the turning points of the embeddings of the optical space reflect an impor-
tant information on the geodesic structure of the spacetime, namely they represent loci
of the photon circular orbits (Stuchlík et al., 2000).
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Figure 2. Embedding diagrams of directly projected geometry for different values of g/m. The in-
tegration in (12) ends slightly before horizons, because on the horizons there is dZ/dr = 0. Top
part corresponds to g/m = 0 (Schwarzschild geometry), g/m = 0.5 (Bardeen black hole) and
g/m = 0.7698 (extreme Bardeen black hole). Bottom part corresponds to q/m = 0.8 (there are two
turning points in optical geometry, see Fig. 3), g/m = 0.858665 (there is one turning point in optical
geometry) and g/m = 1.0 (there are no turning points in optical geometry).
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Figure 3. Embedding diagrams of optical geometry for different values of g/m. The integration
in (16) ends slightly before embeddability limits for the same reason as in the normal case. The g/m
values are exactly the same as on Figure 3.
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6 CONCLUSIONS

We have constructed the embedding diagrams of the equatorial plane of the spherically
symmetric regular Bardeen black-hole and no-horizon spacetimes for both the ordinary
projected space, and the optical space. We have found the limits of embeddability of these
spaces. The embeddability limits appear to be more extended in the vicinity of the coordinate
origin r = 0 while compared to those related to the embeddings of the Kehagios–Sfetsos
spacetimes that are spherically symmetric solutions of modified Hořava quantum gravity
(Goluchová et al., 2014). This is rather surprising result, as the Kehagias–Sfetsos space-
times are singular at r = 0, while the Bardeen spacetimes are regular there. The reason
is related to different character of the “antigravity” region occurring near the origin of both
Kehagias–Sfetsos and Bardeen spacetimes (Vieira et al., 2014; Stuchlík and Schee, 2014b,a).
The gravitation repulsion in the Bardeen spacetimes occurring near the coordinate origin is
of the de Sitter character, while in the case of the Kehagias–Sfetsos spacetimes, it is much
weaker, being of a quintessential character Stuchlík and Schee (2014b,a).
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