
Proceedings of RAGtime 14–16, 18–22 Sept./15–18 July/11–19 Oct., '12/ '13/ '14, Opava, Prague, Czech Republic 257
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ABSTRACT
We discuss methods for modelling eclipsing binary stars using the “physical”, “sim-
plified”, and “phenomenological” models. There are few realizations of the “physi-
cal” Wilson–Devinney (1971) code and its improvements, e.g. Binary Maker, Pho-
ebe. A parameter search using the Monte-Carlo method was realized by Zola et al.
(2010), which is efficient in expense of too many evaluations of the test function.
We compare existing algorithms of minimization of multi-parametric functions and
propose to use a “combined” algorithm, depending on if the Hessian matrix is pos-
itively determined. To study methods, a simply fast-computed function resembling
the “complete” test function for the physical model. Also we adopt a simplified
model of an eclipsing binary at a circular orbit assuming spherical components with
an uniform brightness distribution. This model resembles more advanced models in
a sense of correlated parameter estimates due to a similar topology of the test func-
tion. Such a model may be applied to detached Algol-type systems, where the tidal
distortion of components is negligible.

Keywords: variable stars – eclipsing binaries – algols – data analysis – time series
analysis – parameter determination

1 INTRODUCTION

Determination of the model parameters of various astrophysical objects, comparison with
observations and, if needed, further improvement of the model, is one of the main directions
of science, particularly, of the study of variable stars. And so we try to find the best method
for the determination of the parameters of eclipsing binary stars. For this purpose, we
have used observations of one eclipsing binary system, which was analysed by (Zola et al.,
2010). This star is AM Leonis, which was observed using 3 filters (B, V, R). For the
analysis, we used the computer code written by Professor Stanisław Zoła (Zola et al., 1997).
In the program, the Monte-Carlo method is implemented. As a result, the parameters were
determined and the corresponding light curves are presented in the paper (Andronov and
Tkachenko, 2013)
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Figure 1. Scheme of eclipsing binary system with spherical components. Number 1 corresponds to
a larger star, which eclipses the smaller star at phases close to 0.

With an increasing number of evaluations, the points are being concentrated to smaller
and smaller regions. And, finally, the “cloud” should converge to a single point. Practically
this process is very slow. This is why we try to find more effective algorithms. At the
“potential – potential” diagram (Andronov and Tkachenko, 2013), we see that the best
solution corresponds to an “over-contact” system, which makes an addition link of equal
potentials Ω1 = Ω2 and corresponding decrease of the number of unknown parameters.

Such a method needs a lot of computation time. We had made fitting using a hundred
thousands sets of model parameters. The best 1500 (user defined) points are stored in the
file and one may plot the “parameter – parameter diagrams”. Of course, the number of pa-
rameters is large, so one may choose many pairs of parameters. However, some parameters
are suggested to be fixed, and thus a smaller number of parameters is to be determined.

Looking for the “parameter–parameter” diagrams, we see that there are strong correla-
tions between the parameters, e.g. the temperature in our computations is fixed for one
star. If not, the temperature difference is only slightly dependent on temperature, thus both
temperatures may not be determined accurately from modelling. So the best solution may
not be unique; it may fill some sub-space in the space of parameters.

This is a common problem: the parameter estimates are dependent. Our tests were made
on another function, which is similar in behaviour to a test function used for modelling of
eclipsing binaries.

To determine the statistically best sets of the parameters, there are some methods for
optimization of the test function which is dependent on these parameters (Cherepashchuk,
1993; Kallrath and Milone, 2009). As for the majority of binary stars the observations
are not sufficient to determine all parameters, for smoothing the light curves may be used
“phenomenological fits”. Often were used trigonometric polynomials (=“restricted Fourier
series”), following a pioneer work of (Pickering, 1881) and other authors, see (Parenago
and Kukarkin, 1936) for a detailed historical review. Andronov (2010, 2012) proposed a
method of phenomenological modelling of eclipsing variables (most effective for algols,
but also applicable for EB and EW – type stars).

Below we discuss the “simplified” and “phenomenological” models.
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Figure 2. A set of theoretical light curves for the “simplified” model generated for R1 in a range from
0.2 to 0.55 with a step of 0.05 for fixed values of other parameters listed in the text.

2 “SIMPLIFIED” MODEL

The simplest model is based on the following main assumptions: the stars are spherically
symmetric (this is physically reliable for detached stars with components being deeply in-
side their Roche lobes); the surface brightness distribution is uniform. This challenges the
limb darkening law, but is often used for teaching students because of simplicity of the
mathematical expressions, e.g. (Andronov, 1991). Similar simplified model of an eclipsing
binary star is also presented by Dan Bruton (http://www.physics.sfasu.edu/astro/
ebstar/ebstar.html). The scheme is shown in Fig. 1. The parameters are L1, L2 (pro-
portional to luminosities), radii R1, R2, distance R between the projections of centres to
the celestial sphere.

The square of the eclipsed segment is S = S1 + S2

S1 = R2
1(α1 − sinα1 cosα1) , (1)

S2 = R2
2(α2 − sinα2 cosα2) , (2)

where the angles a1, a2 may be determined from the cosine theorem:

cosα1 =
R2
+ R2

1 − R2
2

2R1 R
=

R2
+ η

2R1 R
, (3)

cosα2 =
R2
+ R2

2 − R2
1

2R1 R
=

R2
− η

2R2 R
, (4)

where obviously η = R2
1−R2

2 and |R1−R2| ≤ R ≤|R1+R2|. The total flux is L = L1+L2,
if R ≥ R1 + R2 (i.e. both stars are visible, S = 0). For R ≤ R1 + R2, S = πR2

2 (assuming
that R2 ≤ R1). Generally, L = L1 + L2 − L j S/πR2

j , where j is the number of star
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which is behind another, i.e. j = 1, if cos 2πφ ≤ 0, and j = 2, if cos 2πφ ≥ 0. Here
φ is phase (φ = 0) corresponds to a full eclipse, independently on which star has larger
brightness). For scaling purposes, a dimensionless variable l(φ) = L(φ)/(L1 + L2) is
usually introduced. For tests, we used a light curve generated for the following parameters:
R1 = 0.3, R2 = 0.2, L1 = 0.4, L2 = 0.6 and i = 80◦. The phases were computed with a
step of 0.02. This light curve as well as other generated for a set of values of R1 is shown
in Fig. 2. As a test function we have used:

F =
n∑

i=1

(
xi − αxc(φi )

)2
σ 2

i
, (5)

where xi (or li ) are values of the signal at phases φi with a corresponding accuracy estimate
σi , and xc are theoretical values computed for a given trial set of m parameters. For nor-
mally distributed errors and absence of systematic differences between the observations and
theoretical values, the parameter F is a random variable with χ2

n−m a statistical distribution
(Anderson, 1984; Cherepashchuk, 1993). For the analysis carried out in this work, we used
a simplified model with σi = 1. This assumption does not challenge the basic properties
of the test function. The scaling parameter is sometimes determined as x(0.75)/xc(0.75),
i.e. at a phase where both components are visible, and the flux (intensity) has its theo-
retical maximum (in the “no spots” model). To improve statistical accuracy, it may be
recommended to use a scaling parameter computed for all real observations:

α =

∑n
i=1

xi

σ 2
i∑n

i=1
xc(φi )

σ 2
i

, (6)

This corresponds to a least squares estimate of a scaling parameter, i.e. the model value
of the out–of–eclipse intensity L = L1 + L2 may be theoretically an any positive number,
and these parameters may be “independent”. By introducing l1 = L1/L and l2 = L2/L ,
we get an obvious relation l2 = 1 − l1, i.e. one parameter. For L sometimes are used
values at the observed light curve at the phase 0.75 (i.e. when both stars are to be visible
so maximal light). We prefer instead to use all the data with scaling as in Eq. (6). Even
in our simplified model, the number of parameters is still large (4). At Figure 4, the lines
of equal levels of F are shown. One may see that the zones of small values are elongated
and inclined showing a high correlation between estimates of 2 parameters. In fact this
correlation is present for other pairs of parameters. This means that there may be relatively
large regions in the multi-parameter space which produce theoretical light curves of nearly
equal coincidence with observations.

In the software by Zola et al. (2010), the Monte-Carlo method is used, and at each trial
computation of the light curve, the random parameters Ck, k = 1, 2, 3, 4 are used in a
corresponding range: Ck = Ck,min + (Ck,max − Ck,min) rand, where rand is an uniformly
distributed random value. Then one may plot “parameter – parameter” diagrams for “best”
points after a number of N trial computations. The “best” means sorting of sets of the pa-
rameters according to the values of the test function F . Initially, the points are distributed
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Figure 3. The “parameter–parameter” diagram. The best (according to the value of the test function)
100 points after 102, 103, 104, 105 trial computations, respectively.

Figure 4. Lines of equal values of the test function F for fixed values of other parameters. The arrow
shows position of the “true” parameters used to generate the signal.

uniformly. With an increasing N , “better” (with smaller F) point concentrate to a mini-
mum. There may be some local minima, if the number of parameters will be larger (e.g.
spot(s) present in the atmosphere(s) of component(s)). We had made computations for an
artificial function of m(= 1, 2, 3) variables (Andronov and Tkachenko, 2013). The mini-
mal value δ (as a true value was set to zero), which was obtained using N trial computations
in the Monte-Carlo method is statistically proportional to

δ ∝ N−2/m , (7)

i.e. the number of computations N ∝ δ−m/2 drastically increases with both an increasing
accuracy and number of parameters. For our simplified model, the numerical experiments
statistically support this relation. Also, the distance between the “successful computations”
(when the test function becomes smaller than all previous ones) ∆N ∝ N . Obviously, it
is not realistic to make computations of the test function for billions times to get a set
of statistically optimal parameters. In the “brute force” method, the test functions are
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computed using a grid in the m – dimensional space, so the interval of each parameter
is divided by ni points. The number of computations is N = n1n2 . . . nm should be still
large. Either the Monte Carlo method, or the “brute force” one allow to determine positions
of the possible local extrema in an addition to the global one. However, if the preliminary
position is determined, one should use faster methods to reach the minimum. Classically,
there may be used the method of the “steepest descent” (also called the “gradient descent”),
where the new set of parameters may be determined as

Ck+1,i = Ck,i − λhk,i , (8)

where Ck,i is the estimated value of the coefficient Ci at k-th iteration, hk,i – proposed
vector of direction for the coefficient Ci , and λ is a parameter. Typically one may use
one of the methods for one-dimensional minimization (Press et al., 2007; Korn and Korn,
1968), determine a next set of the parameters Ck,i , recompute a new vector hk,i and again
minimize λ. In the method of the steepest descent, one may use a hk,i = ∂F/∂Ci gradient
as a simplest approximation to this vector. Another approach (Newton–Raphson) is to
redefine a function F(λ) = F(Ci , i = 1 . . . m), compute the root of equation ∂F/∂λ = 0,
and then to use a parabolic approximation to this function. Thus

λ =
(
∂F/∂λ)/(∂2 F/∂λ2

)
. (9)

There may be some modifications of the method based on a decrease of λ, which may
be recommended, if the shape of the function significantly differs from a parabola. In the
method of “conjugated gradients”, the function is approximated by a second-order poly-
nomial. Finally it is usually recommended to use the (Marquardt, 1963) algorithm. We
tested this algorithm with a combination of the “steepest descent” (when the determinant
of the Hessian matrix is negative) and “conjugated gradients” (if positive), which both are
efficient for a complex behaviour of the test function.

3 PHENOMENOLOGICAL MODELLING

Besides physical modelling of binary stars, there are methods, which could be introduced
as “phenomenological” ones. In other words, we apply approximations with some phe-
nomenological parameters, which have no direct relation to physical parameters – masses,
luminosities, radii etc. The most often used are algebraic polynomial approximations, in-
cluded in the majority of computer programs (e.g. electronic tables like Microsoft Office
Excel, Libre/Open Office Calc, GNUmeric etc.). For periodic processes, one can use a
trigonometric polynomial (also called “restricted sum of Fourier series”)

xc(φ, s) = C1 +

s∑
j=1

(
C2 j cos(2 jπφ)+ C2 j+1 sin(2 jπφ)

)
= C1 +

s∑
j=1

R j cos
(
2 jπ(φ − φ j )

)
.

(10)
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Figure 5. Trigonometrical polynomial approximations of the phenomenological light curve. The
degree s is shown by numbers near corresponding curves.

Figure 6. The model light curve and its approximation by parabola at the intervals of phases centered
on mainima and maxima, as proposed by (Papageorgiou et al., 2014)

The upper Equation is used for determination (using the Least Squares method) of the
parameters Cα , α = 1 . . . m, where the number of parameters is m = 1 + 2s, where the
lower converts the pairs of the coefficients C2 j+1, C2 j+1 for each ( j − 1)-th harmonic
according to usual relations

C2 j = R j cos(2 jπφ0) ,

C2 j+1 = R j sin(2 jπφ0) , (11)
R j =

(
C2

2 j + C2
2 j+1

)1/2
,

φ j = atan(C2 j+1/C2 j )/2π + 0.25
(
1− sign(C2 j )

)
.

Here j = 1 . . . jmax, jmax = n/2 for even n and jmax = (n − 1)/2 for odd n. Using
the Least Squares algorithm, it is possible to determine parameters Cα even for irregularly
spaced data e.g. (Andronov, 1994). Only under strong conditions φk = φ0 + k/n, where
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k = 0 . . . n − 1, n is the number of observations, one may obtain simplified expressions
for the “Discrete Fourier Transform” (DFT) as an extension of the original Fourier (1822)
method:

C0 =
1
n

n−1∑
k=0

xk ,

C2 j =
2
n

n−1∑
k=0

xk cos(2 jπk/n) , (12)

C2 j+1 =
2
n

n−1∑
k=0

xk sin(2 jπk/n) .

If j = n/2, then

Cn =
1
n

n−1∑
k=0

(−1)k xk , (13)

Cn+1 = 0 .

For irregularly spaced data, there are at least 6 different modifications of the method, which
are called themselves as “Fourier Transform”, and give same correct results only under
assumptions listed above for the DFT. For irregularly spaced data The links may be found
in (Andronov, 2003).

Theoretically, the degree of the trigonometric polynomial s is infinite for continuous
case (number of data n →∞) and should be s = jmax = int(n/2), i.e. may be a large
number. For this case, one will get an interpolating function. For lower degree s < jmax,

the function is smoothing, and one may use different criteria for choosing the statistically
optimal value, e.g. the Fischer’s criterion (or equivalent one based on the Beta-type dis-
tribution), the criterion of minimum of r.m.s. error estimate of the smoothing function (at
the moments of observations; integrated over all interval; or at some specific value of the
argument), or the maximum of the “signal–to–noise” ratio.

However, these sums may show apparent waves (so called Gibbs phenomenon). It may
be illustrated in Fig. (5) for a sample function. One may see different approximations.
With an increasing s, the approximation xc(φ, s) becomes closer (in a sense of the Least
Squares), but the apparent waves are well pronounced at m �n.

To decrease the number of parameters, (Andronov, 2010, 2012) proposed an approx-
imation combined from a second-degree trigonometric polynomial and a local function
modelling the shape of the eclipses:

xc(φ) =C1 + C2 cos(2πφ)+ C3 sin(2πφ)+
+ C4 cos(4πφ)+ C5 sin(4πφ)+
+ C6 H(φ − φ0,C8, β1)+ C7 H(φ − φ0 + 0.5,C8, β2) .

(14)
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Figure 7. Dependencies of the light curves (intensity vs. phase) on the parameters C8 = D/2 (left)
and C9 = β1 (right). The relative shift in intensity between subsequent curves is 0.1. The thick line
shows a best fit curve

Figure 8. Dependencies of the light curves on the parameters C10 = β2 (left) and C11 = φ0 (right).

H(φ,C8, β) =

{
V (z) =

(
1− |z|β

)3/2 if |z| < 1 ,
0 if |z| ≥ 1 ,

(15)

where z = 2φ/D, φ = E − int(E + 0, 5) – phase, E = (t − T0)/P – (non-integer) cycle
number, t – time, T0 – initial epoch, P – period, D – full duration of minimum in units
of P .

Papageorgiou et al. (2014) made a statistical study of a sample of eclipsing binaries.
They have used an oversimplified approximations of the light curves, approximating the
my a parabolic fit over overlapping intervals [−0.2,+0.2], [0.1, 0.4], [0.3, 0.7], [0.6, 0.9],
[0.8, 1.2]. Obviously, the first and last interval correspond to the same observations. In
Figure 6 we show their fit to our sample light curve. One may see a relatively good approx-
imation of the out–of–eclipse part of the light curve, and a bad approximation of the zone of
minimum. A better coincidence of the fit near minima may be expected for EW-type stars,
whereas for EA-type stars our NAV algorithm produces significantly better approximation
for all phases.

To illustrate the dependence of the “best fit” light curves on the “non-linear” parameters
C8 . . . C11, we show corresponding approximations in Fig. 7 and Fig. 8. The thick line in
the middle of each figures corresponds to the curve for the sample parameters 1, −0.04,
0.01, −0.05, 0.01, −0.8, −0.6, 0.11, 2, 3.3, 0 for C1 . . . C11, respectively.
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One may see the significant variations of the shape of the curve and, for each real ob-
servations, the best fit solution is expected to be unique. As in previous cases, the solution
may be determined using different methods.

4 CONCLUSIONS

The “simplified” and “phenomenological” models are discussed. The behaviour of the test
functions resembles that of the test-function for the “physical” model based on the Wilson
and Devinney (1971) code and its improvements. Few algorithms for the statistically opti-
mal determination of the parameters have been tested on these test functions, and we prefer
to use a “combined” algorithm, where the best method for an estimate of the next set of the
parameters is chosen at each step, making the convergence of the numerical solution as fast
as possible.

The specified shapes – either for the “simplified” model, or the “phenomenological”
one – are much more effective for the EA-type stars with narrow minima, but also can be
applied to EB-type and EW-type stars with smooth variations.

We developed the software realizing various methods for study of variable stars. The
results of this study will be used in the frame of the projects “Ukrainian Virtual Observa-
tory” (UkrVO) (Vavilova et al., 2012) and “Inter-Longitude Astronomy” (Andronov et al.,
2010).
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