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ABSTRACT
We propose a new model of twin-peak quasi-periodic oscillations. This model con-
siders an oscillating torus with cusp that changes location of its centre around radii
very close to innermost stable circular orbit. Preliminary results of analytically and
computationally complex calculations indicate that the model can provide very good
fits of data and matches several neutron star equations of state.
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1 INTRODUCTION

Many models have been proposed to explain a phenomenon of twin peak quasi-periodic
oscillations observed in neutron-star low-mass X-ray binaries (QPOs in LMXBs). It is
believed that QPOs are carrying signatures of strong gravity and dense matter composition.
Serious theoretical effort has been devoted to explain the observed frequencies and their
correlations. The brief introduction to twin peak QPOs and their models can be found in
paper of Török et al. (2014) in this Volume.

One of the first QPO models, the so called relativistic-precession model (RP model)
identifies the twin-peak kHz QPO frequencies νU and νL with two fundamental frequencies
of a nearly circular geodesic motion: the Keplerian orbital frequency and the periastron-
precession frequency,

νU = νK , νL = νper = νK − νr , (1)

where νr denotes the radial epicyclic frequency. The correlations among them is then
obtained by varying the radius of the underlying circular orbit in a reasonable range. Within
this framework it is usually assumed that the variable component of the observed X-ray signal
originates in a bright localized spot or blob orbiting the neutron star on a slightly eccentric
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orbit. The observed radiation is then periodically modulated due to the relativistic effects. It
has been shown that the model is roughly matching the observed νU(νL) correlations (Stella
and Vietri, 1999; Belloni et al., 2007; Török et al., 2012). Nevertheless the RP model also
suffers some theoretical difficulties. It is not clear whether the modulation of a radiation
from a small localized spot can produce sufficiently strong signal modulation to explain
a relatively large observed QPO amplitudes. It is then expected that larger spots (giving
higher amount of modulated photons) can undergo a serious shearing due to the differential
rotation in the surrounding accretion disk. This does not agree with a high coherence of
the QPO signal which is often observed. The model also lacks an explanation of inferred
existence of preferred orbits which should be responsible for appearance of QPO pairs and
clustering of their frequencies.

Only slightly later, Abramowicz and Kluźniak (2001); Kluźniak and Abramowicz (2001)
proposed concept of orbital resonance models. Within this concept, QPOs originate in
resonances between oscillation modes of the accreted fluid. The most quoted, so called 3:2
epicyclic resonance model identifies the resonant eigenfrequencies with frequencies νθ and
νr of radial and vertical epicyclic axisymmetric modes of disc (or torus) oscillations. It is
assumed that

νU = νθ , νL = νr ⇔ νU/νL = 3/2 , (2)

while the correlation νU(νL) arises from resonant corrections to the eigenfrequencies
(Abramowicz et al., 2005a,b). We stress that the model deals with a collective motion
of the accreted matter. Moreover, the oscillation modes of innermost region of the accretion
flow can modulate the amount of matter transferred to NS surface through the boundary
layer (Paczynski, 1987; Abramowicz et al., 2007; Horák, 2005). Therefore, it may naturally
explain both high amplitudes and coherence of the kHz QPOs. Nevertheless, it is question-
able whether the resonant corrections to the eigenfrequencies can be large enough to explain
the whole observed range of νU and νL. Furthermore, it was shown that the model implies
large range of NS masses and has difficulties when confronted to models of rotating NS
based on up-to-date equations of state (EoS, see Urbanec et al., 2010; Török et al., 2012).

Motivated by partial success of above models and their complementary difficulties, we
present a modified framework for interpreting twin peak QPOs. Our paper sketch results
from the prepared publication of Török et al. (2015).

2 OSCILLATING TORI

Our model is largely based on the theoretical work of Straub and Šrámková (2009). Through-
out this Section we adopt Kerr geometry as description of slowly rotating compact NS. We
assume that the innermost region of accretion flow is hot enough to form a pressure sup-
ported torus of a moderate thickness. Assuming a non-relativistic polytropic equation of
state and neglecting the poloidal components of the fluid velocity (so that the fluid follows
circular orbits), the equilibrium torus shape and its structure are completely determined
by the Lane–Emden function, which is given by a simple analytic formula (Straub and
Šrámková, 2009; Abramowicz et al., 2006)

f = 1−
1

nc2
s0

ln
E

E0
. (3)
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In this equation, E = (−gt t
+ 2`gtφ

− `2gφφ)−1/2 denotes the energy of a particle on a
(non-geodesic) circular orbit having the specific angular momentum `. We assume that
the angular momentum is constant in the whole volume of the torus, ` = `0 = const. As
we assume that the torus is located in the vicinity of the innermost stable circular orbit
(ISCO) where also Keplerian angular momentum is nearly constant, we believe that it is a
reasonable approximation. Meaning of other symbols in Eq. (3) is straightforward: n is the
polytropic index (n = 3 for a radiation pressure dominated fluid), gµν are the contravariant
component of Kerr metric (we employ the (−+++) signature) and cs0 is the sound speed
at the center of the torus located at radius r0 in the equatorial plane, where the pressure
gradient vanishes and where the energy E takes the value E0. Vanishing of the pressure
forces in the torus center implies that the streamline r = r0, θ = π/2 is a geodesic line and
therefore the fluid angular momentum takes the Keplerian value at that radius, `0 = `K(r0).

The surfaces of constant density and pressure coincide with those of constant f and their
values can be calculated from f by ρ = ρ0 f n and p = p0 f n+1, where ρ0 and p0 refer to
the values at the torus center that corresponds to f = 1. On the other hand, the surface of
the torus, where both pressure and density vanishes is given by the condition f = 0. It is
also worth to note that the position of the center r0 and a shape of these surfaces are entirely
given by the value of `0 and the spacetime geometry, while the particular values of p and ρ
and therefore also the location of the overall surface of the torus are set by the central value
of the sound speed cs0.

Straub and Šrámková (2009) introduce a dimensionless parameter β that characterizes a
size of the torus,

β =

√
2ncs0

r0E0
(
`0gφφ0 − gtφ

0
) . (4)

This parameter is roughly proportional to the Mach number of the flow at the torus center
as can be seen from its Newtonian limit β =

√
2n(cs/rΩ)0 (compare with Blaes, 1985). In

addition, it is also roughly proportional to the ratio of the radial (or vertical) extension of the
torus to its central radius r0. Hence, the sound-crossing time and the dynamical timescale
of the torus are roughly similar.

2.1 Marginally overflowing tori (cusp tori)

The stationary solution does not exist for an arbitrary large value of β (Abramowicz et al.,
1978). Apart of the obvious limit β ≤ 1, there is much stronger constrain coming from
general relativity. Large enough tori that extend below the ISCO radius, may be terminated
there by a “cusp”, where the rotation of the flow becomes Keplerian again. This is a
consequence of the fact that the Keplerian angular momentum close to a relativistic object
reaches its minimum at ISCO and raises up again bellow.

The cusp corresponds to a saddle point of the Lane–Emden function and the corre-
sponding self-crossing equipotential limits the surface of any stationary rotating fluid
configuration with given angular momentum `0. Fluid that appear outside this surface, is
accreted onto the central star on the dynamical timescale driven by gravity and pressure
forces without need of viscosity Paczynski (1977). Abramowicz et al. (1978) calculated
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analytically the accretion rate from a slightly overflowing torus, his result agrees very well
with numerical simulations.

The critical value of the β-parameter giving a marginally overflowing torus follows from
Eqs. (3) and (4),

βc(r0) =

√
2 ln (Ec/E0)

r0E0
(
`0gφφ0 − gtφ

0
) , (5)

where Ec = E(rc) is the particle energy at the cusp. Its location r = rc can be found
by equating the Keplerian angular momentum to the fluid angular momentum `0. This
procedure leads to the third-order algebraic equation (in

√
rc), giving the position of the

cusp in terms of the location of the torus center,

r3/2
c −

(
2r1/2

0 − j M1/2
) (

r1/2
0 − j M1/2

)
(

r3/2
0 − 2Mr1/2

0 + j M3/2
)

M1/2

(
rc − r1/2

0 r1/2
c

)
+

+ j
r0

(
r1/2

0 − j
)

r3/2
0 − 2Mr1/2

0 + j M3/2
= 0 , (6)

where r0 ≥ rISCO( j). If the stellar spin is neglected ( j = 0), this equation is reduced to the
quadratic one and its solution can be expressed as

rc = r0

(
M +
√
(2r0 − 3M)M

r0 − 2M

)2

, r0 ≥ 6M (7)

and the critical β-parameter reads

βc =
(r0 − rc)(r0 − 2M)2

[
r0rc − 2M(r0 + 2rc)

]1/2

rcr0(rc − 2M)1/2(r0 − 3M)1/2
. (8)

2.2 Frequencies of epicyclic oscillations

Abramowicz et al. (2006) pointed out the existence of the radial and vertical epicyclic
modes that describes a global motion of the torus. They have found that, in the limit of
infinitesimally slender tori β → 0, frequencies of this modes νR and νV measured in the
fluid reference frame coincide with the epicyclic frequencies of test particles,

νr =

(
1−

6M
r
+

8 j M3/2

r3/2 −
3 j2 M2

r2

)1/2

νK , (9)

νθ =

(
1−

4 j M3/2

r3/2 +
3 j2 M2

r2

)1/2

νK , (10)

while at fixed azimuth their frequencies are given by νR,m = νr+mνK and νV,m = νθ+mνK

with m being the integer azimuthal wave number. In particular, the m = −1 radial and
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Figure 1. Illustration of the equipotential surfaces of an accretion torus. The yellow colour denotes a
non-accreting equilibrium torus. The orange colour denotes the case of the cusp torus.

vertical modes give the frequencies of the periastron and nodal precession of a weakly
eccentric and tilted torus. It is also worth to note that they now describe a collective motion
of the fluid, rather then a motion of individual particles.

In a more realistic case, when β ≥ 0, the pressure gradients start to contribute to the
restoring force of the perturbed torus shifting their frequencies to new ‘corrected’ values,

νR,m(r0, β) = νr(r0)+ mνK(r0)+∆νR,m(r0, β) , (11)
νV,m(r0, β) = νθ (r0)+ mνK(r0)+∆νV,m(r0, β) . (12)

The pressure corrections ∆νR,m and ∆νR,m have been calculated by Straub and Šrámková
(2009) using perturbation expansion in β-parameter. They found that a first non-zero
corrections are of the order of β2.

3 FREQUENCY IDENTIFICATION

We identify the observed QPO frequencies with frequencies of the epicyclic modes of torus
oscillations. We propose that the upper kilohertz QPO frequency is the Keplerian orbital
frequency of the fluid at the center of the torus, where both pressure and density peaks and
from which the most of torus radiation emerges. The lower kilohertz QPO corresponds to
the frequency of the non-axisymmetric m = −1 radial epicyclic mode. Overall, there is

νU ≡ νK(r0) , νL ≡ νR,−1(r0, β) . (13)

The QPO frequencies are then strong functions of the position of the center of the torus
r0 and its thickness β. Obviously, a choice β = 0 (slender tori) recovers the RP model
frequencies completely, as the QPO frequencies would be now given entirely by the geodesic
frequencies. In addition, in the case of a finite thickness β > 0, they also weakly depend on
the value of the polytropic index n. In the following discussion, we fix n = 3 as the inner
parts of the accretion flow are believed to be radiation-pressure dominated.
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We assume the cusp configuration

β(r0)
.
= βc(r0) . (14)

In other words, we expect that for given r0 is the torus always close to its maximal possible
size, just filling its ‘Roche-like’ lobe.

Thus, our model predicts that QPO frequencies are function of single parameter, the
position of the center of the torus r0,

νu ≡ νK(r0) , νl ≡ νR,−1 [r0, βc(r0)] . (15)

Therefore, one obtains a unique correlation among them by changing this parameter in a
reasonable range. In the next section we compare this predicted correlation with the data
of the atoll source 4U 1636-53.

4 APPLICATION TO TWIN PEAK QPOS IN 4U 1636-53

Török et al. (2012, 2014) have confronted several QPO models to the data of atoll source
4U 1636-53. They have outlined a comparison between individual matches of the model
to the data as well as quantitative estimates of inferred NS parameters. We apply the same
fitting procedure to the discussed cusp torus model.

4.1 Non-rotating approximation

First, we investigate the case of a simple one parametric fit assuming non-rotating NS
approximated by Schwarzschild geometry. In this way we can obtain a comparison to the
RP model and a rough estimate of the NS mass implied by our cusp torus model.

In the left panel of Fig. 2 we plot the sequence of equipotential contours of cusp tori
which provides the best match of 4U 1636-53 data. In the right panel of the same Figure
we show this best fit. The RP model best fit is included for comparison. Clearly, the cusp
torus model matches the observed trend better than the RP one. In more detail, the related
χ2 improvement is about∆χ2

≈80 %. The NS mass inferred from the cusp torus model is
then

M0 = 1.69 [±0.01]M� , (16)

where the scatter in the estimated mass corresponds to the 2σ confidence level. Considering
results of Török et al. (2012, 2014), we can expect that the mass (16) belongs to a mass-
angular momentum relation implied by the model.

4.2 Consideration of NS rotation

The results of the two-dimensional fitting of the parameters M and j are shown in the
left panel of Fig. 3. The Figure illustrates χ2 behaviour in the form of color-coded map.
Remarkably, the best fits are reached when M and j are related through the specific relation
denoted by the green line.
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Figure 2. Left: Sequence of cusp tori corresponding to one-parametric fit of 4U 1636-53 data. Bottom
panel indicates angular momentum behaviour. Right: Corresponding frequency relation (red curve)
plotted together with the data. The blue curve indicating the best fit by RP model ( j = 0) is shown
for a comparison.
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Figure 3. Left: Two-dimensional color-coded map of χ2 behaviour resulting from fitting of data
points by the cusp torus model. The green curve indicates the preferred mass-angular momentum
relation. The other curves indicate mass-angular momentum relations predicted by models of rotating
NS. These are drawn for several NS and spin (rotational frequency) 580 Hz inferred from the X-ray
burst measurements. The spot roughly indicates combination of M ∼ 2 M� and ∼ 0.2. Right:
Consideration of j = 0.22. The red curve indicate the prediction of cusp torus model. The blue curve
indicates the best fit by RP model for the same angular momentum, j = 0.22.
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Figure 4. Combinations of β and r exactly matching individual data points vs. cusp torus relation.

5 DISCUSSION AND CONCLUSIONS

There is good evidence on the NS spin frequency of 4U 1636–53 based on X-ray burst
measurements. Depending on the (two- or one-) hot-spot model consideration, the spin
νS reads either νS

.
= 290 Hz or νS

.
= 580 Hz (Strohmayer and Markwardt, 2002). The

value of 580 Hz is usually preferred. In the left panel of Fig. 3 we include several mass-
angular momentum relations expected from models of rotating NS (see Török et al., 2014
for details) assuming this spin. We can see that there are overlaps between these relations
and the relation inferred from the cusp torus model.

In the right panel of Fig. 3 we show the best fit of the model to the data for j = 0.22
corresponding to

M0 = 2.00 [±0.02]M� , (17)

where the scatter in the estimated mass corresponds to the 2σ confidence level. We choose
j = 0.22 as a referential value since it roughly corresponds to three different EoS. Further-
more, as discussed by Urbanec et al. (2013), the NS oblateness factor is decreasing along
the displayed EoS relation towards the low values close to the Kerr limit. Thus, the Kerr
approximation adopted here should be well applicable. In the same panel, the RP model
best fit drawn for j = 0.22 is included for a comparison. In analogy to the non-rotating
case, the cusp torus fit is better than a fit based on RP model. Having these results we
also attempted to fit the data by the discussed torus frequencies but considering any torus
thickness and fixed M = 2 M� and j = 0.22. We searched for the combinations of β
and r matching each individual data point. The result of this procedure is shown in Fig. 4.
Clearly, the obtained values are distributed very close to the cusp relation.

Overall, there is a strong indication that twin peak QPOs can be identified with a particular
non-axisymmetric m = −1 radial epicyclic mode and Keplerian orbital motion associated
to the cusp torus. These modes may naturally give strong modulation of both emerging
radiation and the accretion rate. They are therefore very good candidates for explaining
high amplitudes of QPO. In addition, their eigenfrequencies change only weakly on the
spatial scale of the turbulent motion, therefore it may be expected that they may survive
also in highly turbulent media typical for accretion flows.
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Finally, we note that the presented concept has also potential to explain the observed
low frequency QPOs. As noticed by Rosińska et al. (2014); Kluźniak and Rosińska (2013)
the frequencies of vertical epicyclic modes seem to be very sensitive to the NS quadrupole
moment. Their consideration thus rather exceeds the framework of Kerr spacetime ap-
proximation adopted here. Nevertheless, we roughly investigated also the frequencies of
non-axisymmetric m = −1 vertical epicyclic mode of cusp tori. Assuming the same mass,
angular momentum and radii as those in Figs. 3 and 4 we obtained values of tens of Hertz.
These are of the same order as the observed frequencies of low frequency QPOs. The
m = −1 vertical epicyclic mode may therefore play the same role in the framework of cusp
torus model as the Lense–Thirring precession in the framework of RP model.
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