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ABSTRACT
We examine the influence of the quadrupole moment of a slowly rotating neutron
star on the oscillations of non-slender accretion tori. We apply previously developed
methods to perform analytical calculations of frequencies of the radial epicyclic
mode of a torus in the specific case of the Hartle-Thorne geometry. We present
here our preliminary results and provide a brief comparison between the calculated
frequencies and the frequencies previously obtained assuming both standard and lin-
earized Kerr geometry. Finally, we shortly discuss the consequences for models of
high-frequency quasi-periodic oscillations observed in low-mass X-ray binaries.
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1 INTRODUCTION

Numerous interesting features have been discovered during the long history of X-ray obser-
vations of low-mass X-ray binaries (LMXBs). One of them is the fact that variability of the
X-ray radiation coming from these sources occurs at frequencies in the order of up to hun-
dreds of Hertz with the highest values reaching above 1.2 kHz. Even though the discovery
of this rapid variability was made almost 30 years ago, to this day, there is no convincing
explanation of its origin. The phenomenon is called the high-frequency quasi-periodic os-
cillations (HF QPOs) and many models have been proposed in the attempt to explain its
nature (see, e.g., Török et al., 2016a; Kotrlová et al., 2020 and references therein).

It has been noticed that the HF QPOs frequencies are in the same order as those corre-
sponding to orbital motion in the very close vicinity of a compact object, such as neutron
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star (NS) or black hole (BH). This suggests that there is a relation between the QPO phe-
nomenon and the physics behind the motion of matter close to the accreting object. Since
positions of specific orbits in the accretion disk (such as its inner edge) and the associated
orbital frequencies depend on the properties of the central object, there is a believe that it
is possible to infer the compact object properties from the QPOs data.1

In the above context, several studies have focused on a possible relation between the
QPOs and an oscillatory motion of an accretion torus formed in the innermost accretion re-
gion (Kluzniak and Abramowicz, 2001; Kluźniak et al., 2004; Abramowicz et al., 2003a,b;
Rezzolla et al., 2003; Bursa, 2005; Török et al., 2005; Dönmez et al., 2011; Török et al.,
2016a; de Avellar et al., 2018).

Straub and Šrámková (2009) and Fragile et al. (2016) have performed calculations of
frequencies of the epicyclic oscillations of fluid tori assuming Kerr geometry, which de-
scribes rotating BHs. Here we follow their approach and consider slowly rotating NSs
and their spacetimes described by the Hartle-Thorne geometry (Hartle, 1967; Hartle and
Thorne, 1968). We present the first, preliminary results of our calculations of the radial
epicyclic oscillation frequencies and provide a brief comparison of these to the frequencies
obtained previously for the Kerr and linearized Kerr geometries. Finally, we discuss some
consequences for models of NS QPOs.

2 OSCILLATIONS OF TORI IN AXIALLY SYMMETRIC SPACETIMES

We consider an axially symmetric geometry. The spacetime element may be expressed in
the general form as

ds2 = gttdt2 + 2gtϕdtdϕ + grrdr2 + gθθdθ2 + gϕϕdϕ2. (1)

We use the units in which c = G = 1 with c being the speed of light and G the gravitational
constant.

2.1 Equilibrium configuration

We assume a perfect fluid torus in the state of pure rotation with constant specific angular
momentum l as described in Abramowicz et al. (2006); Blaes et al. (2006).

In this case, the fluid forming the torus has a four-velocity uµ with only two non-zero
components,

uµ = A(1, 0, 0,Ω), (2)

where A is the time component ut and Ω is the orbital velocity. One may write

A =ut = (−gtt − 2Ωgtϕ −Ω2gϕϕ)−1/2, (3)

Ω =
uϕ

ut =
gtϕ − lgϕϕ

gtt − lgtϕ . (4)

1 We often use the shorter term ”QPOs” instead of ”HF QPOs” throughout the paper.
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The perfect fluid with density ρ, pressure p and the energy density e is characterised by the
stress-energy tensor

T µν = (p + e)uµuν + pgµν. (5)

For a polytropic fluid, we may write:

p = Kρ
n+1

n , (6)
e = np + ρ, (7)

where K and n denote the polytropic constant and the polytropic index, respectively. In this
work, we use n = 3, which describes a radiation-pressure-dominated torus.

The Euler formula is obtained from the energy–momentum conservation law, ∇µT µ
ν =

0, using the assumption of l = const. (Abramowicz et al., 1978, 2006)

∇µ(lnE) = −
∇µp
p + e

, (8)

with E being the specific energy

E = −ut =
(
−gtt + 2lgtϕ − l2gϕϕ

)−1/2
. (9)

By integrating (8) we obtain the Bernoulli equation (Fragile et al., 2016; Horák et al.,
2017)

HE = const., (10)

where H =
p+e
ρ

denotes the enthalpy in the form presented by Fragile et al. (2016) and
Horák et al. (2017). From relation (10), we can derive the equations describing the structure
and shape of the torus:

p
ρ

=
p0

ρ0
f (r, θ), (11)

f (r, θ) =
1

nc2
s,0

[(
1 + nc2

s,0

) E0

E
− 1

]
, (12)

(13)

where cs is the sound speed in the fluid defined as (Abramowicz et al., 2006)2

c2
s =

∂p
∂ρ

=
n + 1

n
p
ρ
, (14)

and the subscript 0 denotes the quantities evaluated at the torus centre. From equations (6)
and (11), one can obtain the following formulae for pressure and density of the fluid:

p = p0
[
f (r, θ)

]n+1 , (15)
ρ = ρ0

[
f (r, θ)

]n . (16)

2 The definition is fully valid for cs << 1, but this has no significant effect on our results.
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It is useful to introduce new coordinates x and y by relations

x =

√
grr,0

β

(
r − r0

r0

)
, (17)

y =

√
gθθ,0
β

( π
2 − θ

r0

)
. (18)

In these coordinates, we have x = 0 and y = 0 at the torus centre. We furthermore introduce
a β parameter determining the torus thickness, which is connected to the sound speed at the
torus centre in the following manner (Abramowicz et al., 2006; Blaes et al., 2006):

β2 =
2nc2

S,0

r2
0Ω2

0A2
0

. (19)

The surface of the torus, which coincides with the surface of zero pressure, is given by the
condition f (r, θ) = 0. An example of the torus cross-section is shown in Figure 1 illustrating
the character of the equipressure surfaces for different values of β. An equilibrium torus is
formed when the perfect fluid fills up a closed equipressure surface. The largest possible
torus arises by filling up the equipressure surface that has a crossing point – the so-called
cusp. We call this structure, for which we have β = βcusp, the ”cusp torus”. Notice that,
for β > βcusp, the equipressure surfaces are no longer closed and no torus therefore can be
formed.

2 4 6 8 10 12 14 16

-4

-2

0

2

4

r sinθ [M]

r
co

s
θ
[M

]

Figure 1. Meridional cross-section illustrating the shape of the equipressure surfaces in the
Schwarzschild geometry. The red line marks a cusp torus with β = βcusp, the blue line corresponds to
an equilibrium torus with β < βcusp, and the black dot denotes the centre of the torus (as well as the
infinitely slender torus with β→ 0).

2.2 The oscillating configuration

We assume the effective potential U (e.g. Abramowicz et al., 2006) in the form

U = gtt − 2l0gtϕ + l20gϕϕ. (20)
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An infinitesimally slender torus with β→ 0 at r0 with specific angular momentum l0 under-
going a small axially symmetric perturbation in the radial direction will oscillate with the
frequency equal to the radial epicyclic frequency of a free test particle given by (Abramow-
icz and Kluźniak, 2005; Aliev and Galtsov, 1981)

ν2
r =

1
4π2

E2
0

2A2
0grr,0

∂2U

∂r2

∣∣∣∣∣∣
0

. (21)

Now let us investigate how the frequency changes when the torus becomes thicker and/or
when the perturbation is not axially symmetric. Assume small perturbations of all quanti-
ties around the equilibrium state in the form (Abramowicz et al., 2006; Blaes et al., 2006)

δX(t, r, θ, ϕ) = δX(r, θ)ei(mϕ−ωt), (22)

where m is the azimuthal number and ω is the angular frequency of the oscillations. In this
work, we focus on two modes of oscillations: the axially symmetric (m = 0) and the first
non-axisymmetric (m = −1) radial epicyclic modes.

From the continuity equation ∇µ (ρuµ) = 0, one can get the relativistic version of the
Papaloizou-Pringle equation (Abramowicz et al., 2006; Fragile et al., 2016), 3

1
√
−g

∂µ

√
−ggµν f n∂νW

nc2
s,0 f + 1

+ (l0ω − m)2 Ωgtφ − gφφ

1 −Ωl0

f n

nc2
s,0 f + 1

W =

= −
2nA2

(
ω − mΩ

)2

β2r2
0

f n−1W, (23)

where {µ, ν} ∈ {r, θ}, A ≡ A/A0, Ω ≡ Ω/Ω0, ω ≡ ω/Ω0, g is the determinant of the metric
tensor and W equals to (Abramowicz et al., 2006)

W = −
δp

Aρ (ω − mΩ)
. (24)

Equation (23) has no analytical solution except for the limit case of an infinitely slender
torus (β→ 0). In the case of non-slender tori (β > 0), the equation can be solved using a
perturbation method (see, e.g., Straub and Šrámková (2009)).

2.2.1 Solving the Papaloizou-Pringle equation

When the exact solution for a simplified case is known (as for β → 0), we can use pertur-
bation theory to find the solution for more complicated cases (β > 0). 4

3 For the sake of simplicity, from now on, we will use f = f (r, θ).
4 Note the perturbation method gives reasonable results only for small values of β and our results are therefore
valid only for slightly non-slender tori.
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By expanding the quantities ω, W, A, Ω, f in β (Straub and Šrámková, 2009)

Q = Q(0) + βQ(1) + β2Q(2) + · · · , Q ∈
{
ω,W,A,Ω, f

}
, (25)

substituting that into equation (23), and comparing the coefficients of appropriate order in β,
we obtain the corresponding corrections to W and ω. Note that the zero order corresponds
to the slender torus case (β→ 0), in which we have ω = 2πνr.

Using this procedure, Straub and Šrámková (2009) have derived the expression for the
radial epicyclic mode frequency with the second order accuracy, which may be written as

ωr,m = 2π νr + m Ω0 + Pm β
2 + O

(
β3

)
, (26)

where Pm denotes the second order correction term for which the explicit form can be found
in their paper.

3 THE HARTLE-THORNE GEOMETRY

The exterior solution of the Hartle-Thorne metric is characterized by three parameters:
the gravitational mass M, angular momentum J and the quadrupole moment Q of the
star. We use this metric assuming dimensionless forms of the angular momentum and
the quadrupole moment, j = J/M2 and q = Q/M3, which can be in the Schwarzschild
coordinates written as (Abramowicz et al., 2003)5:

gtt = −

(
1 −

2M
r

) [
1 + j2F1(r) + qF2(r)

]
, (27)

grr =

(
1 −

2M
r

)−1 [
1 + j2G1(r) − qF2(r)

]
, (28)

gθθ = r2
[
1 + j2H1(r) + qH2(r)

]
, (29)

gϕϕ = r2 sin2 θ
[
1 + j2H1(r) + qH2(r)

]
, (30)

gtϕ = −
2M2

r
j sin2 θ, (31)

where (using the u = cos θ substitution)

F1(r) = −
[
8Mr4(r − 2M)

]−1[
u2

(
48M6 − 8M5r − 24M4r2 − 30M3r3 − 60M2r4 + 135Mr5 − 45r6

)
+ (r − M)

(
16M5 + 8M4r − 10M2r3 − 30Mr4 + 15r5

)]
+ A1(r), (32)

5 Note misprints in the original paper.
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F2(r) = [8Mr(r − 2M)]−1
[
5
(
3u2 − 1

)
(r − M)

(
2M2 + 6Mr − 3r2

)]
− A1(r), (33)

G1(r) = [8Mr(r − 2M)]−1
[(

L(r) − 72M5r
)
− 3u2

(
L(r) − 56M5r

)]
− A1(r), (34)

L(r) =80M6 + 8M4r2 + 10M3r3 + 20M2r4 − 45Mr5 + 15r6, (35)

A1(r) =
15

(
r2 − 2M

) (
1 − 3u2

)
16M2 ln

( r
r − 2M

)
, (36)

H1(r) =
(
8Mr4

)−1 (
1 − 3u2

) (
16M5 + 8M4r − 10M2r3 + 15Mr4 + 15r5

)
+ A2(r), (37)

H2(r) = (8Mr)−1 5
(
1 − 3u2

) (
2M2 − 3Mr − 3r2

)
− A2(r), (38)

A2(r) =
15

(
r2 − 2M

) (
3u2 − 1

)
16M2 ln

( r
r − 2M

)
. (39)

While for j = 0 and q = 0 the Hartle-Thorne metric coincides with the Schwarzschild
metric, by setting j = a/M and q = j2 and performing a coordinate transformation into the
Boyer-Lindquist coordinates (Abramowicz et al., 2003),

rBL = r −
a2

2r3

[
(r + 2M)(r − 2M) + u2(r − 2M)(r + 3M)

]
, (40)

θBL = θ −
a2

2r3 (r + 2M) cos θ sin θ, (41)

we obtain Kerr geometry expanded upon the second order in the dimensionless angular
momentum.

4 OSCILLATIONS OF TORI IN THE VICINITY OF ROTATING NEUTRON
STARS

Let us now study the changes that arise in the torus structure and for the frequencies of
its oscillations when the Hartle-Thorne geometry is assumed to describe the spacetime
geometry.6 The main motivation behind this analysis is related to models of NS QPOs.
While the Kerr geometry is (likely) proper to be used in the context of BH QPOs (e.g.,
Kotrlová et al., 2020), its validity in the case of NS QPOs is limited to very compact NSs
only.

4.1 The Hartle-Thorne geometry parameters range relevant to rotating NSs

A thorough discussion of the relevance of the Hartle-Thorne geometry for the calculations
of the geodesic orbital motion and QPO models frequencies is presented in Urbancová et al.
(2019). Here we just briefly summarize the appropriate ranges of the individual parameters
that are implied by the present NS equations of state. The maximum value of the specific

6 Following Straub and Šrámková (2009) and Fragile et al. (2016), we use a Wolfram Mathematica code, which
has been extended to the Hartle-Thorne geometry.
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angular momentum of a NS is about jmax ∼ 0.7, the specific quadrupole moment takes
values from q/ j2 ∼ 1.5 for a very massive (compact) NS up to q/ j2 ∼ 10 for a low-mass
NS (Urbancová et al., 2019). The conservative expectations of the NS mass values are
about 1.4 − 2.5 M�.

4.2 The quadrupole moment influence on the non-oscillating torus shape and size

In Figures 2 and 3, we present meridional cross-sections of tori carried out in different ge-
ometries, namely the Schwarzschild, Kerr, linearized Kerr, and the Hatle-Thorne geometry.
The figures also show plots of the Keplerian angular momentum and the angular momen-
tum of the fluid (which is constant across the torus), and the radial extentions of the tori. For
both figures, the top panels correspond to j = 0 (a non-rotating NS, i.e., the Schwarzschild
geometry), and the bottom panels to j = 0.2 (Figure 2) and j = 0.4 (Figure 3). The radial
coordinate r0 is chosen such that the radial epicyclic frequency of a free test particle defined
at this coordinate reaches its maximum.

In Table 1, we provide a quantitative comparison of the radial extensions of tori from
Figures 2 and 3. It is given in terms of the proper radial distance, rprop, measured between
the minimal, rmin, and the maximal, rmax, radial coordinate of the torus surface,

∆rprop =

∫ rmax

rmin

√
grr dr. (42)

Table 1. The percentual differences in the proper radial extension ∆rprop of tori in the Hartle-Thorne
geometry and in the Schwarzschild, Kerr, and linearized Kerr geometries. The displayed values
correspond to the situations illustrated in Figures 2 and 3.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) − 5 % − 11 % + 2 % − 5 % − 1 % − 13 %

HT (q = 10 j2) − 7 % − 12 % − 1 % − 6 % − 4 % − 14 %

4.3 The quadrupole moment influence on the radial epicyclic oscillations of
non-slender tori

We use equation (26) to derive the radial epicyclic mode frequency as a function of the
radius of the torus centre r0. In Figure 4, we plot the frequencies of both the m = 0 (left
panel) and m = −1 (middle panel) radial epicyclic modes. These are compared for the
four different geometries assuming j = 0.2. The right panel of this figure illustrates the
behaviour of tori cross-sections corresponding to maxima of the m = 0 radial epicyclic
mode frequency. Figure 5 then provides the same illustration but for j = 0.4.
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Figure 2. Illustration of some characteristics of tori carried out in different geometries. The tori
are centered at the radial coordinate at which the radial epicyclic frequency of a free test particle
reaches its maximum. Left panels: Meridional cross-sections of the equipressure surfaces determin-
ing the shape of the tori. From top to bottom, the results correspond to calculations carried out in
the Schwarzschild, linearized Kerr ( j = 0.2), Kerr ( j = 0.2), and the Hartle-Thorne ( j = 0.2, q = j2

and j = 0.2, q = 10 j2) geometry. Right panels: Plots of the specific angular momentum of the fluid
(which is constant across the torus) along with the Keplerian angular momentum. The intersection
points of the two functions marked by the spots correspond to the centre of the tori. The coloured
segments indicate the corresponding radial extentions of the tori.
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Figure 3. The same as in Figure 2 but for j = 0.4.
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In Table 2, we provide a quantitative comparison of the maximal frequencies of the
m = 0 radial epicyclic mode for tori of maximal thicknesses (i.e., the frequencies denoted
by the red dots in the left panels of Figures 4 and 5) for the Hartle-Thorne and the other
three geometries. In Table 3, we then present the same but for the m = −1 radial epicyclic
mode (i.e., the frequencies denoted by the red dots in the middle panels of Figures 4 and
5). The proper radial extension of tori related to Tables 2 and 3 (i.e., those shown in the
right panels of Figures 4 and 5) are compared in Table 4.

Table 2. The percentual differences in the maximal values of frequencies of the m = 0 radial epicyclic
mode of the cusp tori in the Hartle-Thorne geometry and in the Schwarzschild, Kerr, and linearized
Kerr geometries. The displayed values correspond to the situations illustrated in Figures 4 and 5.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) + 15 % + 35 % 0 % 0 % − 1 % − 4 %

HT (q = 10 j2) + 8 % + 4 % − 6 % − 23 % − 7 % − 26 %

Table 3. The percentual differences in the frequency of the m = −1 radial epicyclic mode of the cusp
tori in the Hartle-Thorne geometry and in the Schwarzschild, Kerr, and linearized Kerr geometries.
The frequency is evaluated at the radius at which the m = 0 radial epicyclic mode frequency has its
maximum. The displayed values correspond to the situations illustrated in Figures 4 and 5.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) + 20 % + 49 % 0 % − 1 % − 1 % − 8 %

HT (q = 10 j2) + 5 % − 10 % − 23 % − 40 % − 14 % − 44 %
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Figure 4. Frequencies of the radial epicyclic mode.
Left panels: The m = 0 case. From top to bottom: the Schwarzschild, linearized Kerr, Kerr, and the
Hartle-Thorne (q = j2 and q = 10 j2) geometry. For rotating stars, we assume j = 0.2. The maximal
frequencies allowed for the slender torus and for the cusp torus are denoted by the black and red
spots, respectively.
Middle panels: The same but for the m = −1 case. The coloured spots denote the frequency value
corresponding to the radius at which the m = 0 radial mode frequency has its maximum.
Right panels: Tori that would oscillate with the maximal value of the m = 0 radial epicyclic mode
frequency for a given torus thickness.

äy ää äy åå ? o n 6



Oscillations of tori in the vicinity of neutron stars 197

Figure 5. The same as in Figure 4 but for a = 0.4.
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Table 4. The percentual differences in the proper radial extension ∆rprop of the cusp tori relevant to
Tables 2 and 3 and shown in the right panels of Figures 4 and 5.

Geometry Schwarzschild Kerr Lin. Kerr

Spin j 0.2 0.4 0.2 0.4 0.2 0.4

HT (q = j2) − 7 % − 17 % 0 % − 4 % 0 % + 1 %

HT (q = 10 j2) − 6 % − 7 % − 4 % + 7 % + 2 % + 13 %

=1.97

Figure 6. Frequency correlations predicted by the CT model vs. data of the 4U 1636-53 atoll source.
The fit for j = 0.22 obtained under the consideration of the Kerr geometry (the curve marked as Kerr)
is compared here to two examples of predictions obtained under the consideration of the Hartle-
Thorne geometry (the curves marked as HT). Examples of the best fits predicted by the relativistic
precession model for a given j and q are shown as well (the curves marked as RP model).

5 DISCUSSION AND CONCLUSIONS

Our results indicate that, while the shape of the non-oscillating tori is not much sensitive
to the NS quadrupole moment, the frequencies of the radial epicyclic modes of tori oscil-
lations are affected significantly. Clearly, the difference of the frequencies of oscillations
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of tori around BHs and NSs can reach tens of percents. Although a more detailed analysis
is certainly needed ( including the completion of the radial epicyclic mode investigation as
well as the investigation of the vertical epicyclic mode behaviour), we may already con-
clude that the consideration of the quadrupole moment induced by the NS rotation likely
should have an impact on the modeling of the high-frequency quasi-periodic oscillations.

Our conclusion is demonstrated in Figure 6. There we consider a recently proposed QPO
model (CT model; Török et al., 2016a) and compare the frequencies predicted by the model
for several combinations of M, j, q with the frequencies observed in the 4U 1636-53 atoll
source (the data are taken from Barret et al., 2006; Török, 2009). We include in the figure
examples of correlations predicted by the relativistic precession model (Stella and Vietri,
1999). This model provides less promising fits of the data than the CT model while the
effects associated to the NS rotation do not imply a significant improvement (see Török
et al., 2012; Török et al., 2016b,a). It is clear from the figure that even when we restrict
ourselves to values of the Hartle-Thorne spacetime parameters that are consistent with up-
to-date models of neutron stars, no conceivable smooth curve can reproduce the data in a
significantly better way compared to the CT model.
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Peak Quasi-periodic Oscillations with Realistic Neutron Star Equations of State, The Astrophysical
Journal, 833, 273, arXiv: 1611.06087.
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